
Review Adenoviruses: update on structure and function

W. C. Russell

Correspondence

W. C. Russell

wcr@st-andrews.ac.uk

School of Biology, Biomolecular Sciences Building, University of St Andrews, North Haugh,
St Andrews, Fife KY16 9ST, UK

Adenoviruses have been studied intensively for over 50 years as models of virus–cell interactions
and latterly as gene vectors. With the advent of more sophisticated structural analysis techniques
the disposition of most of the 13 structural proteins have been defined to a reasonable level. This
review seeks to describe the functional properties of these proteins and shows that they all have a
part to play in deciding the outcome of an infection and act at every level of the virus’s path
through the host cell. They are primarily involved in the induction of the different arms of the
immune system and a better understanding of their overall properties should lead to more effective
ways of combating virus infections.

Prologue

Adenoviruses (Ads) are relatively promiscuous in their ability
to infect a wide range of species and tissues, but their
propensity to produce disease is normally well circumscribed
and is a function of the effective defences that are mounted
by the infected host. In this review I shall concentrate on the
structural characteristics of human adenoviruses and how
they influence the outcome of disease.

There are 51 human Ad serotypes classified originally on
the basis of their ability to be neutralized by specific animal
antisera. These can be further subdivided into six species –
or subgroups – (A to F) based on their capacity to aggluti-
nate erythrocytes of human, rat and monkey as well as on
their oncogenicity in rodents. Sequence availability has
also allowed more detailed phylogenetic analysis to be
employed in classification (Crawford-Miksza & Schnurr,
1996; Fauquet et al., 2005). Species B is further subdivided
into B1 and B2 (Segerman et al., 2003a). There is some
correlation between the species and their tissue tropism
and clinical properties. Thus species B1, C and E mainly
cause respiratory disease, whereas species B, D and E can
induce ocular disease. Species F is responsible for gastro-
enteritis and B2 viruses infect the kidneys and urinary tract
(see Table 22, in Russell, 2005).

Animal model systems (mouse, rat, dog, hamster and pig)
have been explored for adenovirus respiratory disease
(Ginsberg, 1999; Jogler et al., 2006; Ternovoi et al., 2005;
Weinberg et al., 2005; Ginsberg et al., 1999; Toth et al., 2005;
Thomas et al., 2006). A human lung organ culture has also
been claimed to be a useful pointer to the in vivo infection
(Booth et al., 2004) and a recent report has demonstrated
that a mouse model for keratitis can be constructed using
human adenovirus 37 (Chintakuntlawar et al., 2007). A

number of studies have also examined experimental infection
of healthy humans with a range of adenoviruses (Lichtenstein
&Wold, 2004) and it was concluded that infection did not, in
general, cause severe disease. Thus, when inoculated
intranasally most Ads caused mild respiratory disease, but
inhaled Ad4 produced acute respiratory disease (ARD). Very
recent reports from the USA and Canada have implicated
Ad14 (of species B) in episodes of ARD. A number of
adenovirus species (Ads 1, 3, 4, 5, 8, 16, 26 and 27) produced
conjunctivitis when swabbed into the eye.

These observations were consistent with the idea that the
host defence mechanisms, for the most part, were function-
ing effectively in the healthy individual. Nevertheless, it is
also evident that some serotypes can bring about consider-
able morbidity (e.g. ARD), especially in individuals who
are compromised immunologically (e.g. transplant patients)
or nutritionally (e.g. gastrointestinal infections in children in
the developing world). In addition, with the very consider-
able interest in the development of adenoviruses as gene
vectors, it is becoming ever more important to understand
the molecular aspects of infection and the host response to it.
In this review I shall update (Russell, 2000) the role of the
structural components of the virus in defining the outcome
of an infection.

The structure of the virus

With the progress made in X-ray crystallography and cryo-
electron microscopy image reconstruction now providing
resolution to 6 Å (0.6 nm), a better understanding of the
disposition of a number of the structural components is
evident (Fabry et al., 2005; Saban et al., 2005, 2006; Stewart
et al., 1993). Fig. 1 provides a schematic diagram of the
current state of our knowledge of the complex adenovirus
icosahedral capsid. The principal component is the
homotrimeric hexon and there are 240 on the faces and
edges of the capsid with the pentons consisting of the
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penton bases and extended fibres on the 12 fivefold apices.
Other so-called ‘minor’ components: IIIa, VI, VIII and IX
are also associated with the capsid (Vellinga et al., 2005).
There are six other structural components situated in the
virus core, five are associated with the double stranded DNA
genome [V, VII, Mu, IVa2 and the terminal protein (TP)],
the remaining component is the 23K virion protease which
plays a vital role in the assembly of the virion (see below).
Most of the detailed structural analyses have been carried
out using human serotypes, although a recent study of
canine adenovirus 2 has indicated that, while the basic
features are retained, the capsid of the canine virus is much
smoother and the fibre is more complex (Schoehn et al.,
2008). A recent structural analysis of an atadenovirus by
cryo-electron microscopy has indicated that there are some
differences from mastadenoviruses in capsid topology, but
the main characteristic adenovirus morphology is retained
(Pantelic et al., 2008). A more detailed description of these
structural proteins is given below as a forerunner for
consideration of their role in infection.

Hexon

The hexon capsomere is a pseudo-hexagonal trimer situated
on the 20 facets of the icosahedral capsid created by
threefold repetition of two b-barrels at the base of each
hexon molecule. The pseudo-hexagonal base allows close
alignment within the facets and there are three tower
regions that are presented to the exterior. There are 240
hexons in the capsid. Because of their different environ-
ments there are four kinds of hexon – designated H1, H2,
H3 and H4 (Burnett, 1985). Sixty H1 hexons associate
with the pentons at the 12 apices and are also termed
peripentonal hexons (Fig. 2a). The remaining hexons are
designated ‘groups of nine’ or GONs on the 20 faces of the
icosahedron and are further defined as H2 (on the twofold
axes), H3 (on the threefold axes) and the remaining ones as
H4 (Fig. 2a).

The size of the hexon molecule can vary with the serotype –
the largest described is from Ad2 and comprises 967 aa. Up
to nine hypervariable regions, determined by comparative
sequence analysis of serotypes, are present in each hexon
molecule. These are situated at the top of the molecule and
six can be resolved as a-helical rods in the 6 Å structure
(Saban et al., 2006). These relate to the type-specific
antigens of the hexon and at least one of them constitutes
the major part of the virus-neutralizing activity (Crawford-
Miksza & Schnurr, 1996; Pichla-Gollon et al., 2006; Roberts
et al., 2006; Rux et al., 2003; Takeuchi et al., 1999) (Fig. 3a).

The base of each hexon molecule has one loop and two
eight-stranded ‘jelly rolls’ which provide the means for
interacting with neighbouring capsomeres, probably via
charged residues in interacting loops. There must be
considerable flexibility in these interactions given the
differing environments of the H1 to H4 hexons. The N
and C termini lie beneath the base and do not seem to take
part in interactions with other hexons.

Penton

The penton capsomere is a covalent complex of two
proteins – the homopentameric penton base and the
homotrimeric fibre protein protruding from the 12 vertices
of the icosahedron (Fig. 1). The fibre has three distinct
regions: tail, shaft and knob.

The penton base monomer in Ad2 comprises 471 aa and
its pentameric structure (Fig. 3b) has been determined to
3.3 Å (0.33 nm; Zubieta et al., 2005) and consists of two
domains: the lower one with the typical jelly roll of two
four-stranded anti-parallel b-sheets forming a b-barrel, and
the upper one with irregular folds formed by two insertions
arising from the lower jelly roll strands. The first insertion
contains the RGD loop (discussed later) and the other a
loop which is variable between serotypes. Pentamerization
can occur, providing stability by the burying of hydro-
phobic surfaces. A pore occurs along the fivefold axis of the
pentamer and the top narrow part is predominantly
hydrophobic. The b-barrels from the surrounding peri-

Fig. 1. Structure of adenovirus. A schematic depiction of the
structure based on cryo-electron microscopy and crystallography.
The locations of the capsid and minor components are reasonably
well defined and are not to scale. The disposition of the core proteins
and the virus DNA is largely conjectural. The symbols for IIIa and VIII
are based on the structures defined by Saban et al. (2006).
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pentonal hexons appear to interact with grooves in the
penton base.

The fibre polypeptide comprises 582 aa in Ad2 and binds
non-covalently by its N terminus onto the top surface of
the penton base (Devaux et al., 1987; Zubieta et al., 2005).
It is found that a sequence near the N terminus
(FNPVYPY), which is highly conserved between serotypes
(Tarassishin et al., 2000), lies in a relatively hydrophobic
groove on the top surface of the base formed between two
adjacent monomers (Zubieta et al., 2005). There are also a
number of hydrogen bonds and a salt bridge contributing
to the stability of the interaction with the penton base. The
peptide sequences taking part in this interaction are also
well conserved between serotypes. The symmetry mismatch
here appears to be a function of co-operative conforma-
tional changes following fibre binding, with the result that
there is room for only the three conserved fibre peptides.

These are arranged horizontally and radially on the base,
allowing the three flexible tails to form the characteristic
protruding trimeric fibre. The fibre polypeptide consists of
a variable number of pseudorepeats of 15–20 aa connected
by a b-turn (Green et al., 1983). These repeats form a shaft
of three intertwined strands (van Raaij et al., 1999) that is
rigid and stable, but of varying length depending on the
number of pseudorepeats (related to the serotype). How-
ever, there can be disruptions to the shaft sequences,
allowing the fibre to form hinge regions (Chroboczek et al.,
1995). A further ~180 aa form the C-terminal globular
head or knob. Trimerization is governed by sequences in
both the knob and shaft regions (Li et al., 2006). The knob
contains eight-stranded b-barrels in each subunit and has a
central depression with three symmetry-related valleys.
There are a number of loops emanating from the knob
(designated DG, HI and AB) (Xia et al., 1994) and these
will be discussed below in the light of their role in receptor

Fig. 2. Facets of the adenovirus icosahedron.
(a) External. The GON hexons are multicol-
oured and the H1 peripentonal hexons are
either lettered in black when they are on the
same plane as the GONs or lettered in orange
where they are associated with GONs on a
different facet. Similarly, the H2 hexons let-
tered in orange are associated with GONs on
a different facet. The symbol for protein IX is
not to scale. (b) Internal. Hexons are desig-
nated in (a). Note symbols for other structural
proteins are not to scale. (c) Internal structure
at the apex; symbols as above.

Fig. 3. Structure of the capsomeres. (a) Ad5
hexon trimer space-filling model showing
seven hypervariable loops in colours with the
remainder of the hexon in grey. Top shows side
view and bottom the view from the top of the
hexon. (b) Penton base from cryo-electron
microscopic image reconstruction of the Ad5
capsomere: side view showing one of the
RGD loops from the pentameric structure. (c)
A ribbon representation of the fibre knob
showing protruding loops with the agreed
notation. All fibre knobs have the same general
structure with variations in the number and
amino acid composition. This one is from
Ad35. (d) Fibre space-filling model indicating
sites for receptor attachment modelled from
the atomic structure of Ad2. The figures above
were taken with permission from Roberts et al.
(2006) for (a), Zhang & Bergelson (2005) for
(b) and (d) and from Wang et al. (2006) for (c).
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recognition (Fig. 3c). Glycosylation of the fibre shaft at a
serine residue has been reported, although it is not clear if
this has a functional role (Cauet et al., 2005).

Other capsid proteins

The location of polypeptide IIIa (570 aa for Ad2) in the
capsid has recently been defined by difference mapping to a
position below the penton base (Saban et al., 2006). The N-
terminal region is highly helical and as well as binding to
the penton base is also associated with hexons and protein
VI. Some evidence of binding to core proteins V and VII
(see below) has also been reported (Boudin et al., 1980).
There appears to be 60 monomers per virion (Rux &
Burnett, 2004), in agreement with the finding of five helical
clusters interacting with the other capsomeres at the apex
of the capsid (Figs 1 and 2b, c).

Polypeptide VI (500 aa for Ad2) has two long a-helices and
one of these binds to hexon (Matthews & Russell, 1994,
1995) and can be discerned within a cavity at the base of the
hexon (Saban et al., 2006). However, a number of reports
examining the stoichiometry of VI (Chelius et al., 2002;
Lehmberg et al., 1999) imply that there are only about 360
copies per virion. Since VI also associates with IIIa at the
apices, it is not clear if there are multimers of VI or if there is
only partial occupancy of the hexon cavity. It has also been
suggested that VI is located underneath the peripentonal
hexons as trimers of dimers (Stewart et al., 1993), and this
has been assumed in formulating Figs 1 and 2 (b, c).

The location of polypeptide VIII (140 aa for Ad2) has been
difficult to resolve, but there is now agreement that it can
be located to the inner side of the capsid in two non-
equivalent positions: viz. five copies in a ring around the
peripentonal hexons connecting them to the GONs and
three copies in further rings around the threefold axes
presumably stabilizing the GONs, giving a copy number of
120 (Fig. 2b). In looking at the internal structure at the
apex of the virion (Fig. 2c) it will be noted that VIII
provides a bond between the peripentonal hexons and the
rest of the capsid. It is possible that this is a relatively weak
link which can be ruptured when the penton base is
detached during virus entry into the cell, allowing the H1
hexons to be released, leaving a hexon shell (see below).

Polypeptide IX (140 aa for Ad2) has recently been shown to
have a great propensity to form coiled coils and it has been
proposed that its N terminus is situated at the middle of each
facet, while the C terminus forms a four helix bundle, with
one helix interacting with the hexon HVR4 loop thus
assigning it externally to the adjoining facet edges, in
agreement with its copy number of 240 (Marsh et al., 2006;
Saban et al., 2006). However, there are indications that the
C termini could be more flexible in their locations and there
is some disagreement about these assignments (Marsh et al.,
2006) (Fig. 2a).

The remaining structural polypeptides are associated with
the virus core, i.e. the virus genome and the core

polypeptides V, VII, Mu as well as terminal protein (TP).
Two other polypeptides, IVa2 and the protease, could also
be considered as components of the core (see below). The
cores can be visualized by negative staining electron
microscopy, but only as rather diffuse entities (Fig. 4c).

There is very little structural information regarding poly-
peptide V (368 aa for Ad2); it seems to be associated
loosely with polypeptide VII and the virus DNA (Harpst
et al., 1977; Russell et al., 1971) and tighter with poly-
peptide VI (Matthews & Russell, 1998b), thus providing a
bridge between the core and the capsid. Since there are
about 160 copies of V and 360 of VI (Chelius et al., 2002;
Rux & Burnett, 2004), there may be multimers of VI
involved in the binding to polypeptide V (see above).

Polypeptide VII (174 aa for Ad2) is highly basic and binds
tightly to DNA (Russell & Precious, 1982) and since there
are over 800 copies per virion these appear to be spread
along the length of the virus DNA, although there is some
indication of the formation of particulate structures and
supercoiling on treatment with nucleases (Goding &
Russell, 1983b; Nermut et al., 1975; Wong & Hsu, 1989).
Another very basic component of the nucleoprotein core is
Mu (36 aa), with about 100 copies per virion. Mu has

Fig. 4. Hexon shells and cores. On heating adenovirus hexon (a)
shells (b) and cores (c) can be viewed by negative staining. The
bar represents 500 Å (50 nm; Russell et al., 1967b).
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properties akin to those found in protamines. Nothing is
known of its disposition along the DNA.

A protein which is also found in the virion is polypeptide
IVa2 (449 aa for Ad2), present as only a few copies. This
protein binds to DNA (Russell & Precious, 1982) at a
specific stretch of the virus DNA and is critical to the
packaging process (see below) and seems to be present as a
multimer (Tyler et al., 2007). The terminal protein (653 aa
for Ad2) is covalently attached to the 59 termini of the virus
DNA (Rekosh et al., 1977); however, it is not known if this
interacts with other structural proteins. A critical structural
protein is the virus protease (adenain) (204 aa for Ad2): it
is necessary to produce the infectious virus particle from
the procapsid by cleaving the precursors to the structural
proteins IIIa, VI, VII, VIII, as well as pTP and precursor of
Mu (polypeptide X) (Anderson, 1990; Mangel et al., 2003;
Weber, 1976; Webster et al., 1989). Crystal structure deter-
mination has shown that the molecule is folded into two
domains that are similar to that of the cysteine protease
papain (McGrath et al., 2003). There is some disagreement
as to the number of copies per virion – varying from 10 to
70. In Fig. 1 it is surmised that there are 12 copies and that
these are associated with the vertices of the icosahedron.
The protease is activated by binding (non-specifically) to
virus DNA, but requires binding of the C-terminal peptide
from VI for optimal activity (McGrath et al., 2003) (see
below). Hereafter, the prefix p refers to the precursor of the
cleaved polypeptide.

This review seeks to examine the role of these structural
components in determining the course of infection. In
doing so it will become evident that the capsid is not just a
shell, but a vehicle for delivering specific functions which
will decide the fate of the virus–host interaction.

Initial events in infection

The fibre is the first virus component to interact with a given
tissue. In a natural infection this will probably occur via an
aerosol into either the respiratory or gastrointestinal tracts,
the oropharynx or conjunctiva. In all cases, there may very
well be physical barriers to entry and it has been shown in
mousemodel systems that the glycocalyx and tetheredmucins
can inhibit adsorption of virus to the lung tissue (Stonebraker
et al., 2004). However, by extensive analysis of infection in
vitro it has become evident that there are a number of binding
receptors (Zhang & Bergelson, 2005) on a variety of cells viz.
the major receptor for most adenoviruses is the so-called
CAR receptor (coxsackie adenovirus receptor), which is a
member of the immunoglobulin superfamily and is involved
in vivo in the formation of tight junctions (Coyne &
Bergelson, 2005, 2006; Philipson & Pettersson, 2004) such as
in polarized epithelial cells. In general terms, viruses in
species A, C, E and F interact with CAR receptors while with
species D and E other receptors are utilized.

Most of the species B viruses bind to a ubiquitously expressed
membrane complement regulatory molecule CD46 (Gaggar

et al., 2005; Marttila et al., 2005; Segerman et al., 2003b;
Sirena et al., 2004), but the species B viruses Ad3 and Ad7
bind to a related molecule CD80 or CD86 (Marttila et al.,
2005; Short et al., 2004). Members of the group D viruses can
also utilize ubiquitous sialic acid receptors (Arnberg et al.,
2002; Segerman et al., 2003a). There are also reports of
heparin sulphate glycosoaminoglycans (HSGAGs) binding
Ad2 and Ad5 viruses (Dechecchi et al., 2001) (Fig. 3).

Attachment to these initial receptors normally occurs in
concert with the binding of the RGD peptide on the penton
base to cellular anb3/anb5 integrins (Mathias et al., 1994),
thus facilitating virus internalization via clathrin-coated
vesicles (Patterson & Russell, 1983) and into endosomes for
further processing. This interaction with integrins induces
a variety of cellular responses, e.g. activation of PI3 kinase
(Li et al., 1998b) and Rho GTPases (Li et al., 1998a), both
of which are important in altering the cytoskeleton in
order to facilitate internalization. The later stages of virus
trafficking into the cell can vary depending on the portal of
entry and the serotype (Stone et al., 2007a). However, it
may be that in vivo other factors are important, e.g. targeting
of Ad5 to the liver requires the involvement of coagulation
factors and hexon (Waddington et al., 2007, 2008).

The structural components can therefore play a critical part
in facilitating efficient transport into the nucleus as well as
activating the cell to respond to infection. As a first step to
understanding these events, a more detailed assessment of
the functions of the various structural components of the
virion is made below.

Functions associated with structural components

Fibre

The fibre consists of a rod and a knob attached to the
penton base as described above. The length and flexibility
of the rod component can vary quite considerably among
serotypes. The length is a function of the number of
pseudorepeats present and can range from 3 to 23,
providing very short fibres for serotype 3 and long fibres
for serotype 12. A single repeat (as noted above) is
characterized by a consensus sequence coding for two anti-
parallel b-strands connected to a b-turn and a surface-
exposed loop of variable length. Insertions of two to four
residues in the b-turn at given positions can create hinge
regions, which provide sufficient flexibility to the fibre rod
to allow binding to two separate sites (such as CAR and
integrins) and contributes significantly to the ability of the
virus to bind to and infect cells (Lecollinet et al., 2006;
Nicklin et al., 2005; Wu et al., 2003). As noted above, the
fibre knob has a number of exposed loops on the sides and
top, and these expose variable sequences, providing the
range of receptor binding sites characteristic of the
different species (Fig. 3c, d). The characteristics of the
fibre structure are reasonably well conserved within the
species and contribute significantly to the tissue tropism
and to the disease patterns observed. On binding it seems
as if considerable structural alterations of the receptor
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occurs (Persson et al., 2007). In addition, the haemagglu-
tinating properties of species are a function of the variable
sequences on the fibre knob, and these can in turn be used
to distinguish species A to F adenovirus isolates by a single-
step PCR technique (Pehler-Harrington et al., 2004) and
provide an indicator of disease potential (Russell, 2000).
The ability of the virus to bind to different cells is obviously
a key feature of the infection process and governs the
potential pathogenicity of the virus.

Species A adenoviruses consists of three serotypes, 12, 18
and 31, which utilize CAR and RGD binding to integrins
and have been grouped thus because they readily produce
tumours in hamsters. They also show incomplete haemag-
glutination with rat erythrocytes and have a fibre length of
approximately 20 b-repeats – properties which they share
with members of the C species. However, there are
significant differences in the prevalence and disease
characteristics of these two species – C being associated
with extensive mild respiratory disease while A is relatively
rarely isolated from humans. Detailed studies on the knobs
of adenoviruses 2 and 12 have shown that, although the
location of the CAR-binding sites are similar, there are
large differences in the charge distribution, accounting for
up to 100-fold differences in binding affinities for soluble
CAR. This would be consistent with differing propensities
of these species to infect respiratory epithelia (Howitt et al.,
2003). It may also be that species A fibres could bind more
effectively to a receptor not yet recognized.

Species B adenoviruses can be subdivided into B1 (Ads 3, 7,
16, 21 and 50) and B2 (Ads 11, 14, 34 and 35) (Benko et al.,
2000). Most of them cause respiratory and/or ocular infec-
tions. Three B2 viruses have, in addition, been associated
with renal infections and severe disease in immunocompro-
mised patients. There have been rather conflicting results in
terms of receptors for species B viruses, but it has been
claimed that all bind CD46 (Fleischli et al., 2007; Marttila
et al., 2005). Ads 3, 7 and 11 also bind the related receptors
CD80 and CD86, and it has been claimed that these receptors
can also be utilized by all species B adenoviruses (Short et al.,
2006). However, contrary results for Ad 3 have been
demonstrated, suggesting that there may be receptors other
than CD46, CD80 and CD86 (K. Hall and G. E. Blair,
personal communication).

Adenoviruses 2 and 5, members of species C, are the most
studied and the availability and characteristics of their cell
receptor CAR on target tissues have been analysed
extensively. CAR is a member of the immunoglobulin
family with two extracellular domains that is present in
intracellular junctions, such as the cardiac intercalated disc
and the tight junctions of polarized epithelial cells. Its
tissue distribution in humans is not well defined, but its
mRNA seems to be present in a range of organs such as the
heart, brain, pancreas, intestine, lung, liver and kidney
(Zhang & Bergelson, 2005). Nevertheless, CAR expression
does not seem to follow virus tropism in vivo and it seems
likely that there are anatomical and other immunological

barriers to infection (Fechner et al., 1999). To some extent,
this can be explained by the fact that CAR is on the
basolateral membrane, below the level of the tight junction
which forms a barrier regulating the transport of water and
molecules into the cell. Infection initially appears to be very
limited until virus and soluble fibre is released from
infected cells and compete with the CAR and mediating cell
adhesion. The epithelial layer is then permeabilized, allow-
ing more efficient infection (Walters et al., 2002). A recent
study indicates that lactoferrin, a component of tear fluid,
may have a role in acting as a bridge for CAR-independent
binding of virus to epithelial cells (Johansson et al., 2007).
Another factor which limits infection is the apparent
requirement for the virus to bind to two receptors, e.g.
CAR and integrins via the penton base (see below). This
will impose geometric constraints depending on the surface
distribution of the two receptors. Thus, a longer more
flexible fibre may be advantageous to allow infection.

Although the above pathways have been reasonably well
delineated, the fact that there is sufficient variability in the
fibre structure allows binding to other receptors. Thus, it
has been established that HSGAGs (heparin sulphate
glycosoaminoglycans) can mediate CAR-independent
attachment and infection by species C viruses (Dechecchi
et al., 2001). It has been hypothesized that a basic sequence
on the proximal fibre shaft, KKTK, is responsible for the
binding (Smith et al., 2003). Interestingly, this motif is
present on all species C viruses, but absent from all other
adenoviruses that have been sequenced (Zhang &
Bergelson, 2005) (Fig. 3d). Since HSGAGs are prevalent
in the extracellular matrix and the cellular glycocalyx, these
may also act as virus chelators inhibiting infection. A syste-
matic approach to identify cellular proteins binding to
fibre knobs has indicated that there are other knob ligands,
e.g. blood proteins which probably play an important role
in vivo (Gaggar et al., 2007). Indeed, liver tropism hampers
systemic administration of adenovirus vectors, and it has
been shown that ablation of the HSGAG receptors on the
fibre can lead to abrogation of liver binding (Bayo-Puxan
et al., 2006). The fibre knob also seems to be important in
fibre protein synthesis and encapsidation (Henning et al.,
2006).

As noted above, classification is partially based on aggluti-
nation of red blood cells and this is fibre-mediated (Eiz &
Pring-Akerblom, 1997) via a so-called gamma determinant
located on the loops on the knob (Nicklin et al., 2005).
Recent studies have indicated that sequestration of virus
via the fibre on blood components such as coagulation
factor IX, complement, C4-binding protein and platelets as
well as Kuppfer cells in liver sinusoids play a significant
role in defining the route and outcome of virus infection
(Baker et al., 2007; Nicklin et al., 2005; Shayakhmetov et al.,
2004, 2005b; Stone et al., 2007b).

Species D adenoviruses, although containing 32 different
serotypes, are rarely isolated from humans. The major
exception to this occurs with serotypes 8, 19a and 37,
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which cause severe epidemic keratoconjunctivitis. It is also
significant that the prototype isolate of Ad19 (Ad19p) does
not cause disease. There appears to be two mutations on
the top of the fibre knob of 19p which lead to a partial loss
of the high positive charge, but it has been difficult to relate
these changes to altered tropism and cell binding (Burmeister
et al., 2004). With several species D viruses it is clear that
sialic acid functions as a receptor via a charge-dependent
interaction (Arnberg et al., 2002), and that binding takes
place at the top of the fibre trimer (Burmeister et al., 2004)
(Fig. 3d).

There is only one member of species E adenovirus, adeno-
virus type 4, and this appears to have some genetic input
from both species C and B viruses (Gruber et al., 1993) and
to be responsible for rather more clinically severe diseases,
both respiratory and pharangoconjuctival. As yet, there has
been no definitive studies on receptor usage.

Human enteric adenoviruses of species F have a striking
difference from the other species in that they have two
lengths of fibre in the same virion in about equal numbers
(Kidd et al., 1993; Favier et al., 2002). The longer fibre has
been shown to bind CAR, but the binding site of the short
one has not yet been defined. The short fibre head has a
number of differences from the standard knob, particularly
in terms of sensitivity to pepsin, and does not bind CAR
(Seiradake & Cusack, 2005).

Recent crystallographic studies have shown that, while the
essential fibre structure is retained among the human
serotypes, there are significant differences in the electro-
potentials on the surfaces of the fibre heads: thus the
isoelectric potentials can vary from 4.97 (Ad3) to 9.4 (Ad37)
(Arnberg et al., 2002). There are also critical changes in the
loops emanating from the fibre knobs (Fig. 3c), e.g. the AB
loop of Ad3 does not allow CAR binding as a result of
changes in amino acid residues (Durmort et al., 2001).

Penton base

As noted above, the penton base occupies a strategic
position at the apices of the icosahedral capsid and can play
a key role in stabilizing the capsid by interacting with the
neighbouring capsomeres, peripentonal hexons and IIIa.
However, it is well established that the penton base is the
weakest site in the capsid, being sensitive to heat, trypsin,
pH and to changes in ionic strength (Rexroad et al., 2006a,
b; Russell et al., 1967b; Wiethoff et al., 2005). As indicated
above, the RGD sequence in the variable loop of the penton
base (Fig. 3b) seems to be essential in co-operation with the
fibre knob in attaching and internalizing the invading
virion via clathrin-coated pits. This dual binding depends
on the flexibility of the fibre in binding to the cell receptor
and the base in reacting with cellular integrins (Fig. 5b).
The RGD loop also seems to play a role in facilitating the
release of the virion from the endosome (Shayakhmetov et
al., 2005a). Moreover, it has been reported that fibres can
detach themselves from the penton base following the

reaction of the penton with integrins (Nakano et al., 2000).
Thus, if this is the case, it seems likely that the penton base,
perhaps in association with IIIa and/or VI, can be regarded
as the main facilitator for virion entry and penetration into
the cell (see below). Moreover, it is interesting to note that
pentons can aggregate readily to form dodecahedra which
can interact with cellular components in a different way
from virions (Fender et al., 2005, 2008; Fuschiotti et al.,
2006; Vives et al., 2004). Isolated pentons have also been
shown to interact with cells and follow a different pathway
(Rentsendorj et al., 2006). In view of these apparently
discordant observations, it is not clear what role the
pentons play at the post-entry stages in vivo, e.g. it has been
shown that they can interact with a number of cellular
components such as ubiquitin ligases (Chroboczek et al.,
2003). Neutralizing antibodies against the penton base have
been demonstrated in patients’ sera and the responsible
epitopes have been mapped proximal to the RGD sequences,
confirming the importance of the RGD recognition step in
infection (Hong et al., 2003). A very old finding that isolated
penton base can very rapidly lead to cell rounding in vitro
(Pereira, 1958; Russell et al., 1967a) could also be explained
by the RGD interaction, although some other highly
conserved motifs appear to be essential for this ‘early
cytopathogenic’ effect (Madisch et al., 2007): it may be that
other properties of the penton base have yet to be defined. It
is also evident that the pathways of entry may differ accord-
ing to cell type as well as with different species of adenovirus.
Thus, infection of lacrimal acinar cells by adenovirus type 5
does not require the participation of penton base, and they
seem to remain on the cell surface after infection (Xie et al.,
2006).

Hexon

The hexon, being the major capsid component, is one of
the principal players in establishing the immune responses
– humoral, cellular and innate (see below). The overall
stability of the virus structure during infection depends on
the interactions of hexons between themselves and with the
other structural components. The peripentonal hexons in
association with the penton base, VI and IIIa seem to be
less stable in the initial stages of infection, perhaps by being
more susceptible to pH changes occurring in the endo-
some, thereby allowing access to the virion core. It may be
that the ‘cement’ polypeptides IX on the outer facet provide
better hexon-hexon bonding than that with polypeptide VIII
(see below). On heating purified virus it was noted earlier
(Russell et al., 1967b) that, as well as GONs, a shell of hexons
composed of 20 GONs (perhaps associated with polypeptides
VI and VIII) could be discerned (Fig. 4a), and it may be that
this structure is the one that can persist in the acidic
environment of the endosome (see below) and is sufficiently
stable to protect the virus genome on its journey to the
nucleus. The hexon also seems to have a significant role in
infection of hepatocytes by binding tightly to coagulation
factor X (Kalyuzhniy et al., 2008).
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Polypeptide IIIa

As noted above, IIIa has a highly helical structure with at
least 14 helices at the N-terminal two-thirds and two at the
C-terminal third (Saban et al., 2006). Structural studies
place the 60 copies at the 12 apices with five copies in close
proximity to the underside of the penton base. The N
termini seem to mediate the interaction with the penton
base (Saban et al., 2005). This polypeptide appears to be
highly phosphorylated (Russell & Blair, 1977) at multiple
sites as determined by two-dimensional polyacrylamide
electrophoresis (Russell & Kemp, 1995). Furthermore, a
motif analysis indicates that there are a number of putative
protein kinase sites towards the C terminus (unpublished
observations). Phosphorylation of IIIa occurs early in
infection (Tsuzuki & Luftig, 1983), and in keeping with
these findings, it has been shown that the virus contains
protein kinase activity (Blair & Russell, 1978; Tsuzuki &
Luftig, 1985a). Since IIIa appears to associate with the
other proteins at the vertex, it could be that activation of a
putative virion kinase and phosphorylation of IIIa is an
important step in the initial stages of virus disassembly.
However, there have as yet been no characterization of a
kinase in terms of structural components (Fig. 5c).

Polypeptide VI

The structure of VI and its precise location in the virion is
unclear but, as noted above, it seems to be in contact with
the inner cavity of hexons, possibly as a trimer of dimers
(Stewart et al., 1993), and also associated with IIIa and
penton base at the vertex as well as the core protein V
(Chatterjee et al., 1985; Matthews & Russell, 1998b). This
being the case, it seems likely that the hexon association
could be with the peripentonal hexons (Fig. 2c). The
current evidence indicates that VI is released from the
virion when the acidic environment of the endosome
triggers a conformational change, and can then mediate
disruption of the endosomal membrane to allow the
transport of the virus towards the nucleus (Wiethoff et al.,
2005). There is also a role for VI in virus maturation, since
cleavage of newly synthesized pVI by the virion protease
and release of the C-terminal peptide leads to activation of
the protease (see below) (Honkavuori et al. 2004; Mangel
et al., 1993; Webster et al., 1993; Webster & Kemp, 1993).
Prior to cleavage, pVI facilitates the import of newly
translated hexon into the nucleus, and after cleavage it
participates in virion assembly (Wodrich et al., 2003).

Polypeptide VIII

Very little is known about the function of this protein,
although its location suggests that it may have a role to play
in stabilizing the GONs (see above); this is borne out by
reports that a mutation in VIII induces thermolability in
the virion (Liu et al., 1985). It is interesting that compo-
nent p30 of bacteriophage PRD (which shows some
structural similarities to adenovirus) shares properties with

VIII and seems to play a role in binding the icosahedral
facets of the virus (Abrescia et al., 2004). In bovine
adenovirus 3, polypeptide VIII has been shown by yeast
two-hybrid analysis to bind to polypeptide IVa2 (Singh
et al., 2005), but it is not clear whether this interaction
modifies the function of IVa2 (see below).

Polypeptide IX

As noted above, this component seems to act as a stabilizer
of the capsid, being situated on the external facets. How-
ever, polypeptide IX only seems to be present in the family
Mastadenoviridae, and indeed mutant HAd 5 viruses
lacking IX can be propagated, although they are more
heat-sensitive than wild-type HAd5 (Boulanger et al., 1979;
Colby & Shenk, 1981). The N terminus is situated centrally
on the external facet of nine hexons or GONs (Fig. 2a) and
is preserved between serotypes, and seems to confer
thermostability. The central alanine-rich region and the
C-terminal coiled-coil regions appear to be more freely
available and can be used as a basis for anchoring other
polypeptides to the capsid, and are therefore useful in
constructing gene vectors (Vellinga et al., 2004) and for
tagging the virus with a fluorescent marker to facilitate
tracking of virus in infected cells (Meulenbroek et al.,
2004). A recent report shows that a triple mosaic of IX can
be constructed with three different modifications at the C
termini (Tang et al., 2008).

Core proteins V, VII, Mu, protease and TP

The core proteins V and VII interact with the virus DNA in
such a way that the virus template is available at least for
limited in vitro replication (Goding & Russell, 1983a), and
since protein V seems to be dispensable (Ugai et al., 2007),
and it is not present in the family Atadenoviridae (Gorman
et al., 2005), it is plausible to postulate that virus DNA plus
protein VII may be the functional template for replication
and transcription in vivo, at least for the initial stages
(Chatterjee et al., 1986; Haruki et al., 2006; Spector, 2007).
Following endocytosis, and disruption of the endosome,
entry of the virus core into the nucleus is governed by
multiple signals in VII which target the genome to the
nucleus and to the nucleolus (Lee et al., 2003; Wodrich
et al., 2006). Transport to the nucleus seems to be via the
microtubule network and association with the microtubule
organizing centre (MTOC). A number of cellular proteins
have been implicated in the import into the nucleus, i.e.
importins, histone H1, hsp70 and nuclear export factor
CRM1 (Saphire et al., 2000; Strunze et al., 2005; Trotman
et al., 2001). Since it has been shown by yeast two-hybrid
analysis that protein V has an affinity with a cellular
protein, p32, which shuttles between the nucleus and
mitochondria, it may be that there are a number of routes
which the invading virus template can hijack to reach the
nucleus (Matthews & Russell, 1998a). A recent paper
suggests that protein VII is the major mediator of virus
DNA import into the nucleus, facilitated primarily by

W. C. Russell

8 Journal of General Virology 90



transportin (Hindley et al., 2007). There is also evidence
that, prior to nuclear import, V and VII interact with the
Golgi apparatus via the MTOC and then travel to the
endoplasmic reticulum prior to nuclear import (C. Hindley
and D. A. Matthews, personal communication). After
import, cellular proteins SET and pp32 (components of
two multiprotein complexes of cellular chromatin) also
play a role in altering the template properties (Xue et al.,
2005) and a template-activating factor (TAF-1) binds to
VII, leading to remodelling of the virus chromatin
(Gyurcsik et al., 2006; Haruki et al., 2006). Protein VII
seems to dampen early transcription, but eventually
transcription of E1A leads to the release of VII, followed
by remodelling of the virus chromatin and late transcrip-
tion (Chen et al., 2007; Johnson et al., 2004).

pVII, in addition, participates in virus assembly by interact-
ing with protein IVa2 and L1 52/55K, which are both bound
to the specific packaging sequences on the virus DNA (Zhang
& Arcos, 2005). It is interesting that protein V, at least in Ad5
infected cells, seems to home to both the nucleus and the
nucleolus (Matthews & Russell, 1998b) and induces
redistribution of nucleolin and B23 from nucleolus to
cytoplasm (Matthews, 2001). B23, an acidic protein and a

component of template-activating factor 3, seems to interact
with both V and pre VII and could facilitate dissociation of
core proteins (Samad et al., 2007), and thereby reveal the
virus template for replication and/or transcription (see
above). Furthermore, a nucleolar component ‘upstream
binding factor’ appears to be involved in virus DNA
replication (Lawrence et al., 2006), but it is not clear whether
these effects are directly dependent on protein V. It may be
that V facilitates these nucleolar functions without being
absolutely necessary. Another possibility is that the small core
protein Mu can duplicate these nucleolar functions of V
(Ugai et al., 2007). This small peptide can exclusively target
the nucleolus (Lee et al., 2004), and appears to play a part as a
precursor (preMu) in modulating expression of E2 early
proteins, resulting in a shift in late protein expression. PreMu
is formed as a precursor molecule, polypeptide X, which
presumably condenses the virus prechromatin by virtue of its
two basic domains, and following cleavage by the virion
protease there is a conformational change to facilitate
packaging of the core complex.

There seems to be efficient binding between V, VII and Mu
(Chatterjee et al., 1985) to form a complex, although the
precise topology of the complex with the virus DNA is

Fig. 5. Early events in infection. (a)
Adenovirus at the plasma membrane (PM),
peripentonal hexons are in red. (b) Binding of
pentons to integrins and receptors followed by
phagocytosis. (c) A phagocytic vesicle (endo-
some/lysosome) and disruption of the adeno-
virus particle releasing peripentonal hexons, IIIa
and VI and revealing the core. (d) Rupture of
endosome/lysosome and release into cyto-
plasm of hexon shell with a metastable core
(virus DNA with TP, VII, V, Mu and possibly
protease). (e) Hexon shell at nuclear pore (NP)
with core being released into the nucleus. (f)
Core in the nucleus targeting cellular chro-
matin. Key steps in the induction of the immune
response are noted in red. NM, nuclear
membrane.

Adenovirus: update on structure and function

http://vir.sgmjournals.org 9



unknown. The nucleosome-like structures could be formed
by six molecules of VII and linked by V proteins (Sung et
al., 1983). It is plausible that some modification of these
protamine-like proteins, such as phosphorylation (Blair &
Russell, 1978; Tsuzuki & Luftig, 1985b) or acetylation,
could also be involved in alteration of the virus template
for transcription and/or virus DNA replication.

The adenovirus protease is an essential feature of the
virion and is synthesized in an inactive form that is then
activated in two stages: it first binds non-specifically to
virus DNA (Gupta et al., 2004) and becomes partially
activated to cleave the precursor to polypeptide VI, which
presumably is proximal to the protease. The C-terminal
11 aa peptide (pVIc) which is produced binds to the
protease and bridges its two domains (see above) to
induce its full activation. It has been postulated (Mangel et
al., 2003) that the protease–peptide complex then moves
along the viral DNA, cleaving the other virion precursor
proteins (IIIa, VII, VIII, IX, TP and X-precursor to Mu).
Indeed all of these polypeptides are either associated with
the virus DNA or proximal to polypeptides which are (e.g.
IIIa and VII). Interestingly an early report (Chatterjee &
Flint, 1987) suggested that the protease may be phos-
phorylated and this may have some role in its function
within the virion. Another function of the protease, which
facilitates cell lysis at the early stage of infection, is its
ability to cleave both cytokeratin and actin – indeed the C
terminus of actin is homologous to that of pVIc (Brown &
Mangel, 2004; Gupta et al., 2004; Mangel et al., 2003). The
importance of the protease is underlined by the finding
that a protease defective ts mutant cannot proceed beyond
the initial stages of infection (Russell & Kemp, 1995;
Weber, 1976). Following cleavage, there seems to be
significant conformational changes to the structural
proteins, e.g. the cleaved C-terminal peptide of polypep-
tide pVI can then facilitate capsid assembly (Wodrich
et al., 2003) and the preMu polypeptide seems to have a
role in the regulation of early proteins – a property not
apparent with the matured polypeptide (Lee et al., 2004).

The structural protein IVa2, which is present only as a few
molecules attached to the virus DNA at the so-called A
repeat sequences at the left-hand end and to the major late
promoter, plays a major part in both encapsidation and
regulation of late transcription. Packaging of the virus
DNA involves specific binding of IVa2 to virus DNA as a
multimeric complex with a virus-coded non-structural
protein L1 52/55K and with pVII, which is bound non-
specifically to the virus DNA (Ostapchuk et al., 2005;
Perez-Romero et al., 2005; Tyler et al., 2007; Zhang &
Arcos, 2005). Another non-structural protein, L4 22K, also
appears to be involved in packaging along with IVa2
(Ewing et al., 2007; Ostapchuk et al., 2006).

The transcriptional complex that regulates the major late
promoter (MLP) is claimed to bemade up of a dimer of IVa2
and the non-structural protein, L4 33K (Ali et al., 2007;
Pardo-Mateos & Young, 2004). Given that there are only a

few molecules of IVa2, specific binding of IVa2 to virus DNA
towards the left-hand end of the conventional virus genome
and also to the MLP (nearer the middle) could be
accommodated if the core complex is folded so that the A
sequences and theMLP promoter are proximal (e.g. as in Fig.
1). However, recent studies suggest that IVa2 occurs at a
single vertex in the mature virion (Christensen et al., 2008)
and consistent with its packaging function it binds ATP
(Ostapchuk & Hearing, 2008). To add further complexity, it
has also been reported by yeast two-hybrid analysis that pVIII
binds to IVa2 in a porcine adenovirus (Singh et al., 2005).

A further structural component is terminal protein (TP),
which is covalently attached to the virus DNA termini
(Rekosh et al., 1977) and may facilitate circularization of
the virus genome (Ruben et al., 1983). The terminal
protein is made as a precursor pTP, with cleavage by the
virus protease at two sites being essential for virus
replication (Webster et al., 1997b). pTP, along with the
virus-coded polymerase and cellular protein NF1, primes
virus DNA replication (Liu et al. 2003; Hay et al. 1995;
Webster et al., 1997a). pTP also plays a role in binding to
the trifunctional enzyme CAD (carbamyl phosphate
synthetase, aspartate transcarbamylase and dihydroorotase)
in the nuclear matrix, and thereby anchors the replication
complex to this site (Angeletti & Engler, 1998).

Host response to adenovirus infection

Adenoviruses have been utilized extensively as gene therapy
vectors but, although they can package and deliver foreign
genes to appropriate cells, the host response is so effective
that, in most cases, the transduced cells are rapidly
eliminated, often accompanied by considerable toxicity.
Both arms of the immune system to adenoviruses, i.e. innate
and adaptive, are involved (Burgert et al., 2002). The virus
structural components are key instigators of these responses.

Induction of innate immunity

On infection by adenoviruses rapid innate responses are
induced as the host seeks to repel the invader. This innate
early response occurs as a result of the interaction of the
virus with the cell and does not necessarily depend on the
transcription of any virus genes. The nature of the innate
response network triggered varies significantly depending
on receptor usage and cell type, yielding a complex
signalling cascade with diverse outcomes. Many of these
pathways eventually lead to the upregulation of the
transcription factor NF-kB and interferon regulatory factor
3 (IRF3) and the production of interferon (Randall &
Goodbourn, 2008). Interferon can also be induced after
transcription of early genes (Russell, 2000).

The earliest reports of interferon induction mediated by
adenovirus infection were performed in chick embryo
fibroblasts (Béládi & Pusztai, 1967; Ho & Kohler, 1967).
Intriguingly, interferon induction was observed in the
absence of virus-encoded protein synthesis, and was only
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partly ablated if the virus was heated or UV-inactivated, thus
implicating virus structural components as the precipitating
components. The infection of chick cells was abortive and
further investigation identified two ts mutants that failed to
stimulate interferon induction (Ustacelebi & Williams,
1972). Analysis of these mutants suggested that the mutant
virions were unstable and that, surprisingly, protein VI was
possibly defective (Tarodi et al., 1979). There have been no
further investigations using this system.

Later studies have confirmed that interaction of the viral
capsid with the host cell is sufficient to activate the
pathways leading to inflammatory responses (Muruve,
2004). Thus, on infecting the human respiratory epithelial
cell line A549 with Ad5, it has been demonstrated that fibre
(and not hexon or penton base) was sufficient for the
immediate pro-inflammatory response as measured by the
induction of extracellular signal-regulated kinases 1 and 2
(ERK1/2), c-Jun N-terminal kinase (JNK), mitogen-
activated protein kinase (MAPK) and the nuclear trans-
location of NF-kB. Moreover, the interaction of the fibre
with the cellular CAR (and not with HSGAG) seems to
have been the critical initial event (Tamanini et al., 2006).
Other authors have come to different conclusions regard-
ing the initial events, e.g. Liu et al. (2003) noted that RGD
motifs in the penton base were critical for induction in
endothelial cells. Recently, an in-depth transcriptome
analysis using a mouse cell line permissive for Ad5, as well
as mouse liver cells, revealed early dysregulation of
multiple cellular genes with both infectious virus and with
UV-inactivated virus (Hartman et al., 2007a, b). There was
a widespread alteration of gene expression even with empty
capsids (Stilwell & Samulski, 2004), accompanied by a
strong induction of MAP kinase and Jak/Stat pathways, all
leading to inflammatory outcomes. In addition, there was
activation of focal adhesion and tight junction functions,
thus facilitating the further progress of the infection.
Significant alterations in cellular gene expression were
evident both early and late in infection (Granberg et al.,
2005; Granberg et al., 2006; Miller et al., 2007). During
adenovirus infections, pathogen-associated molecular pat-
terns (PAMPs) are detected by a limited number of cellular
sensors, which come into play depending on the route of
entry and the type of cell. Interestingly, toll-like receptors
(TLRs) are significantly upregulated in the transcriptome
analyses described above. There at least 13 TLRs in
mammals and they have unique specificities (Randall &
Goodbourn, 2008). TLR9 and the adaptor molecule
MyD88 have also been implicated in infection of murine
and human cells by Ad5 vectors (Yamaguchi et al., 2007;
Cerullo et al., 2007). Peripheral blood mononuclear cells
are rich in CD46 and on infection with adenoviruses
belonging to species B and Ad37 induce efficient interferon
production via plasmacytoid dendritic cells (pDCs;
Iacobelli-Martinez & Nemerow, 2007). On the other hand,
myeloid-derived murine dendritic cells produce interferon
independent of TLR 9 on infection with Ad5 (Basner-
Tschakarjan et al., 2006). In contrast with species C

adenoviruses, empty capsids of CD46-utilizing viruses did
not induce interferon expression, and clearly the viral DNA
in this case was required for the inflammatory response.
Thus, there are differences in innate immune response
pathways depending on the nature of the cells infected and
on the adenovirus species (Fig. 5). After entry via the CAR
receptor, species C viruses are released rapidly into the
cytoplasm via early endosomes, whereas after entry via
CD46, species B viruses associate with late endosomes and
lysosomes. It is in the latter cellular compartment that
TLR9 appears to concentrate (Kim et al., 2008). TLR9
recognizes unmethylated CpG sequences in virus or
microbial DNA, and it may be that the Ad genome is
sufficiently different from the methylated CpG seen in
normal cell DNA to signal that a foreign DNA is present.
However, there are situations, as noted above, where the
innate immune response is activated without the par-
ticipation of TLR9. Here, the initial event seems to be the
delivery of the virus genome into the cytoplasm and the
interaction of the viral DNA with a cellular DNA-
dependent activator (DAI; DLM-1/ZBP1) when released
(Takaoka et al., 2007). These routes are not mutually
exclusive (Zhu et al., 2007), and depend to a large extent on
the nature of the cell being infected; thus pDCs, which are
major inducers of type 1 interferons, operate mainly via
TLR 9 and MyD88, whereas bone marrow-derived
conventional DCs and lung fibroblasts may detect Ad
DNA via a cytoplasmic DNA sensor (Nociari et al., 2007).
In both cases, a critical transcription factor for interferon
induction, IRF3, is upregulated. There is now evidence that
translational control via repressors is also an important
factor in interferon induction (Colina et al., 2008).
Therefore, structural components of the virus, both capsid
and DNA, play various roles in the induction of the innate
immune response to adenovirus infection, and outcomes
can vary depending on the virus species and the nature of
the infected cell (Fig. 5). On considering the situation in
vivo, it is clear that there are other factors, such as the
complement system, which interact with these pathways
(Kiang et al., 2006). The induced innate immune response
will obviously have an impact on the efficacy of gene
therapy and application to vaccines (Hartman et al., 2008;
Muruve, 2004).

Adaptive immunity

The hexon, being the major capsid component, is a
principal player in establishing the adaptive immune
response – both humoral and cellular. As noted above,
the hexon capsid can have at least nine hypervariable loops
(Fig. 3a), and some of these appear to function as type-
specific neutralizing antigens and thus define the serotype
(Gall et al., 1998; Madisch et al., 2005; Pichla-Gollon et al.,
2006; Roberts et al., 2006; Sumida et al., 2005; Toogood et
al., 1992; Varghese et al., 2004; Worgall et al., 2005; Wu et
al., 2005). There have been a number of different
conclusions about the number and specific locations of
the neutralizing epitopes, perhaps reflecting the varying
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experimental conditions used. However, it is interesting to
see that a structural and phylogenetic analysis of all 51
human serotypes indicated that only three of these variable
regions were sufficiently stable to withstand mutations
without affecting the overall structure of the hexon (Ebner
et al., 2005; Rux et al., 2003). One of the more recent
studies (Pichla-Gollon et al., 2006), using a chimpanzee
adenovirus, has shown that conformational recognition of
a single small loop on the hexon defines a major
neutralization site by monoclonal antibodies, but this
may not be applicable to human in vivo responses.

There are also a number of reports which point to the
importance of both fibre and penton base in the induction
of neutralizing antibodies (Hong et al., 2003; Stallwood et
al., 2000). It has been shown that there is a synergy between
the anti-capsid antibodies in contributing to neutralization
(Gahery-Segard et al., 1998). It seems likely that there are
number of different mechanisms for virus neutralization,
e.g. aggregation of virus may impede proper recognition at
the cell surface, and there is also evidence that virus–
antibody complexes can enter the cell and that inhibition
occurs at a later stage (Varghese et al., 2004).

Indeed, it has been demonstrated that an anti-hexon
monoclonal antibody can block infection by arresting
microtubule-dependent cytoplasmic transport (Smith et al.,
2008). In the context of type and species specificity, it is
interesting to note that there is a correlation between the
characterization of fibre and hexon – both in respect of
haemagglutination and neutralization. Also, a recent study of
16 Ad C field isolates covering phylogenetic analyses of four
serotypes indicated that the hexon and fibre proteins from
different serotypes were incompatible – at least in nature
(Lukashev et al., 2008). It can be speculated that there may
well be critical indirect structural communications between
fibre and hexon, perhaps at the junction with the penton base
at the apex which governs the overall stability of the virion.
Another recent report has highlighted the importance of the
cell’s natural microbial defences (termed defensins) in
combating adenovirus infection. These small peptides have
been shown to inhibit the disruption of the virus by binding
to the virus apex (Smith & Nemerow, 2008).

Cellular immune responses to adenoviruses have been
reported both for cytotoxic CD8+ T cells and for memory
CD4+T cells (Leen et al., 2004; Olive et al., 2002; Onion et al.,
2007; Perreau & Kremer, 2005; Tang et al., 2004, 2006). In the
case of the CD8+, HLA class I-restricted and multiple
epitopes have been mapped to the highly conserved distal
termini of the hexon. A recent extensive study (Leen et al.,
2008) examined adenovirus-reactive human cytotoxic T
lymphocyte (CTL) lines with an overlapping hexon peptide
library and detected 33 stimulating peptides with both HLA
class I and II restriction. Of these peptides five were
overlapping CD4 and CD8 T-cell epitopes. Moreover, all of
these immunogenic peptides lay within the conserved region
of the hexon. It has been noted that hexon can also be a
potent adjuvant for activation of cellular immune responses

(Molinier-Frenkel et al., 2002). Only minimal responses to
the other capsid proteins, fibre and penton base, were
detected. Similar observations were made for the cell
proliferative response (Flomenberg et al., 1995), although
there has been one report suggesting a role for fibre or IIIa
(Souberbielle & Russell, 1995).

The role of natural killer (NK) cells in controlling Ad
infections is not well characterised. Interestingly, depletion of
the NK response in mice does not affect their sensitivity to
murine Ad type (Welton et al., 2008). With human Ad5,
either expression of E1A or breakthrough expression from a
E1 vector can stimulate cell surface expression of ligands for
the powerful NK cell activity receptor NKG2D; however, this
is countered by E3 19K (Routes et al., 2005; Tomasec et al.,
2007; McSharry et al., 2008). Remarkably, the Ad5 vector
alone, even when inactivated by UV irradiation, stimulates a
proliferation of NK cells in mice (Ruzek et al., 2002).

It should be noted that adenoviruses also have very
effective means of subverting the host immune responses
by using the early E3 cassette of genes, but these are not
discussed here (see review by Windheim et al., 2004).

Epilogue

From the foregoing it has been seen that, although signifi-
cant progress has been made in defining the structural
characteristics of adenovirus, there are still many gaps in
our knowledge of the complete functional significance of
these components. It is obvious, as with other virus gene
products, that the structural components have a range of
properties – thus they do not merely provide a protective
shell for the virus genome, but are essential in facilitating
virus entry, survival and eventual successful replication in
the face of the host’s defence mechanisms.

Fig. 5 provides a simplified possible compendium for the
early stages of virus infection. Assuming that the virus can
gain access to a susceptible cell, and has overcome the
physical and other barriers such as mucins (which can
chelate the virus), then it has to find appropriate receptors
before further progress can be made. This presumably will
be a random process, facilitated by charge interactions of
the fibre knob with the plasma membrane of the host cell.
Moreover, there is a requirement for two receptors (e.g.
CAR and integrin) to be contiguous (Fig. 5b). At least one
of the receptors, in addition, will be variable depending on
the virus species. The tissue distribution of the receptors
will also be dependent on cell type (e.g. CAR is deficient in
fibroblasts and in haematopoietic cells) and on tissue type
(Nemerow, 2002). These early requirements play a large
part in the subsequent fate of the infection in terms of
pathology and disease outcome.

Given successful attachment to cellular integrins by the
RGD motif on the penton base and to the fibre receptor,
the next stage is triggering internalization of the virion via
clathrin-coated pits and then endocytosis or macropino-
cytosis (Meier & Greber, 2004) (Fig. 5b). Once the virion is
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enclosed within the endocytic vacuole (Fig. 5c) there is a
profound change in the environmental pH, leading to its
destabilization with the loss of capsomeres from the apices
possibly with the concomitant formation of the hexon shell
surrounding the virus core. In this situation, it seems likely
that there will be release of VI and IIIa from the virion. It
has been noted that protein VI can bind to the endosomal
membrane, leading to its disruption (Wiethoff et al., 2005)
and perhaps acting in concert with the penton base (Fig.
5d). It is not clear if the penton is still intact at this stage,
i.e. the fibres may have been removed at the early stages of
initial binding (see above), but since the penton base does
seem to be sensitive to proteolysis it may be degraded,
especially if it is exposed to lysosomal enzymes. When
released into the cytosol the genome is transported to the
nuclear membrane, presumably by hijacking a cellular
transport system (Leopold & Crystal, 2007). There is good
evidence for the involvement of microtubules (Bailey et al.,
2003; Leopold et al., 2000; Suomalainen et al., 1999), but it
may be that other mechanisms can be utilized, depending
on the type of cell infected (Yea et al., 2007). Most of these
early stages of infection have been studied using species C
adenoviruses and it is interesting that a recent report has
indicated that Ad3, a member of species B, is dynamin-
independent (Amstutz et al., 2008), in contrast to Ad5. On
reaching the nuclear membrane, the mechanism by which
the virus genome is imported into the nuclear pore (Fig. 5e)
has been shown to involve components of the nuclear pore
complex (Greber et al., 1997) and CRM1, a nuclear factor
exported from the nucleus (Strunze et al., 2005). In any
case, it is probable that the hexons are mostly shed at the
nuclear pore and the virus core enters the nucleus
(Matthews & Russell, 1998b). Thereafter, the virus core
proteins fulfil various functional roles in programming the
nuclear machinery for transcription and replication
(Russell & Matthews, 2003) in much the same way as the
capsid proteins facilitated the early events in infection.

From the above, it is evident that all the structural components
of the virus fulfil many functional roles in the infectious
process, and in so doing activate the cellular and host defence
mechanisms. The outcome in terms of the fate of the host
depends ultimately on whether these defence mechanisms are
effective in combating the wiles of the infecting virus.
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