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Abstract
Aims/hypothesis Glucose and incretins regulate beta cell
function, gene expression and insulin exocytosis via
calcium and cAMP. Prolonged exposure to elevated glucose
(also termed glucotoxicity) disturbs calcium homeostasis,
but little is known about cAMP signalling. We therefore
investigated long-term effects of glucose on this pathway
with special regard to the incretin glucagon-like peptide 1
(GLP-1).
Methods We exposed INS-1E cells and rat or human islets
to different levels of glucose for 3 days and determined
functional responses in terms of second messengers (cAMP,
Ca2+), transcription profiles, activation of cAMP-responsive
element (CRE) and secretion by measuring membrane
capacitance. Moreover, we modulated directly the abun-
dance of a calcium-sensitive adenylyl cyclase (ADCY8)
and GLP-1 receptor (GLP1R).

Results GLP-1- or forskolin-mediated increases in cytosolic
calcium, cAMP-levels or insulin secretion were largely
reduced in INS-1E cells cultured at elevated glucose
(>5.5 mmol/l). Statistical analysis of transcription profiles
identified cAMP pathways as major targets regulated by
glucose. Quantitative PCR confirmed these findings and
unravelled marked downregulation of the calcium-sensitive
adenylyl cyclase ADCY8 also in rat and in human islets.
Re-expression of ADCY8, but not of the GLP1R, recovered
GLP-1 signalling in glucotoxicity in INS-1E cells and in rat
islets. Moreover, knockdown of this adenylyl cyclase showed
that GLP-1-induced cAMP generation, calcium signalling,
activation of the downstream target CRE and direct amplifi-
cation of exocytosis by cAMP-raising agents (evaluated by
capacitance measurement) proceeds via ADCY8.
Conclusions/interpretation cAMP-mediated pathways are
modelled by glucose, and downregulation of the calcium-
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sensitive ADCY8 plays a central role herein, including
signalling via the GLP1R.

Keywords ADCY8 . Adenylate cyclase . Calcium . CRE .

Cyclic AMP. Exocytosis . Islets . GLP-1 . Glucotoxicity .

Incretins

Abbreviations
ADCY Adenylyl cyclase
AKAP A-kinase anchoring protein
[Ca2+]i Cytosolic free calcium
CRE cAMP-responsive element
CREM/ICER cAMP-responsive element modulator/

inducible cAMP early repressor
eGFP Enhanced green fluorescent protein
EPAC Exchange protein directly activated by

cAMP
GLP-1 Glucagon-like peptide 1
GLP1R Glucagon-like peptide 1 receptor
GPCR G protein coupled receptor
PDE Phosphodiesterase
PKA Protein kinase A
shRNA Short hairpin RNA

Introduction

Glucose stimulates insulin secretion and modulates gene
expression by regulating levels of calcium and cAMP in
pancreatic beta cells [1]. Prolonged exposure to elevated
levels of glucose, termed glucotoxicity [2], reduces glucose
detection, modifies glucose metabolism as well as calcium
handling and induces cellular stress [3]. Moreover, increased
levels of glucose are directly correlated to decreased
efficiency of incretin hormones, such as glucagon-like
peptide 1 (GLP-1), on insulin secretion [4, 5].

The stimulatory action of incretins contributes consider-
ably to physiological insulin secretion in beta cells [6].
Recognition of GLP-1 by its cognate receptor activates a
classical signalling cascade via Gs and adenylyl cyclases,
thus increasing cellular levels of cAMP and activating the
effectors protein kinase A (PKA) and exchange protein
directly activated by cAMP (EPAC [6]. GLP-1 facilitates
membrane depolarisation through ATP-dependent potassi-
um channels (KATP) in a PKA-and EPAC-dependent
manner, antagonises voltage-dependent K+ channels via
PKA and transactivates the epidermal growth factor
receptor [7–9]. The ensuing Ca2+ influx is further enhanced
by PKA-dependent phosphorylation of voltage-dependent
calcium channels and mobilisation of calcium from stores
[10, 11]. Whereas calcium constitutes the sole trigger of
insulin exocytosis [1, 12], cAMP amplifies exocytosis and

is required for the full physiological response [13]. In
addition, GLP-1 also acts as a growth factor as well as a
differentiation factor, and activation of the cAMP-response
element (CRE) via calcium- and cAMP-dependent path-
ways is essential for glucose homeostasis and beta cell
survival [14].

Prolonged exposure to elevated levels of glucose alters
calcium handling in a cAMP-dependent manner [15, 16]. As
the incretin GLP-1 exerts most of its effects through these
second messengers and its efficacy is partially lost in type 2
diabetes, we used this hormone to investigate the interplay
between cAMP and calcium under exposure to normal and
chronically elevated glucose levels to identify underlying
changes in signal transduction and gene expression.

Methods

Materials The following antibodies were used: anti-actin
(Abcam, Cambridge, UK), anti-CD8 (DAKO, Glostrup,
Denmark), anti-adenylyl cyclase (ADCY8), anti-glucagon-
like peptide 1 (GLP1R) and anti-synaptotagmin IV (SYT4)
(Santa Cruz Biotechnology, Santa Cruz, CA, USA). Anti-
bodies against enhanced green fluorescent protein (eGFP),
cAMP-responsive element modulator/inducible cAMP ear-
ly repressor (CREM/ICER), A kinase (PRKA) anchor
protein 12 (AKAP12) and calcium and DAG-regulated
guanine nucleotide exchange factor (Caldag-GEFI [also
known as RASGRP2]) were generously donated by M.
Rout (Rockefeller University, New York, NY, USA), J.
Miano (University of Rochester, Rochester, NY, USA), L.
Gao and I. Gelman (Roswell Park Cancer Institute, Buffalo,
NY, USA) and A. Graybiel (MIT, Cambridge, MA, USA),
respectively. Plasmids encoding ADCY8, ADCY8-eGFP
and myc-GLP1R were generously donated by D. Cooper
(University of Cambridge, UK) and A. Bisello (University
of Pittsburgh, PA, USA). Plasmids encoding control short
hairpin RNA (shRNA) or shRNA directed against ADCY8
were from SABiosciences (Frederick, MD, USA), the
plasmid encoding human growth hormone (hGH) has been
described [16, 17]. CD8-eGFP was obtained by replacing
the cytosolic domain of CD8 with eGFP.

Preparation of islets, cell culture, secretion assays,
immunofluorescence, determination of cAMP and CRE-
activation Rat islets or human donor islets were obtained
and cultured as described [18, 19] and approved by the
ethics committee. For calcium imaging, rat islet cells were
seeded on polylysine-coated glass coverslips (6,000/cover-
slip, 25 mm diameter) and precultured for 4 days at
11 mmol/l glucose before transfection with lipofectamine.
Cells were cultured subsequently for 72 h at indicated
glucose concentration as described [19].
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INS-1E cells were generously provided by P. Maechler and
C. B. Wollheim (Université de Genève, Switzerland). Cell
culture, transfections, secretion assays and immunocyto-
chemistry were as published [16, 17]. Glucose pretreat-
ments were conducted in the presence of 10% FCS [16].
For determination of cAMP, cells were exposed for 30 min
to indicated agents and cellular cAMP was measured by
ELISA (Correlate-EIA; Assay Designs, Ann Harbor, MI,
USA). Activation of CRE was determined using pCRE-
LUC (Invitrogen, Carlsbad, CA, USA) and peGFP for
normalisation, luciferase was measured using the Lucifer-
ase Assay System (Promega, Madison, WI, USA).

Sorting of co-transfected INS-1E cells Cells were co-
transfected with a plasmid encoding the extracellular/
transmembrane domain of CD8 linked to eGFP and the
plasmid of interest. After 72 h of culture, cells were
detached in PBS/10 mmol/l EDTA at 37°C, centrifuged,
resuspended in ice-cold PBS/2 mmol/l EDTA and incubat-
ed at 4°C for 30 min with magnetic beads coated with anti-
CD8 antibodies (Invitrogen). CD8-expressing cells were
recovered using a magnet and washed three times in cold
PBS/EDTA 2 mmol/l before assays.

Protein production and quantitative PCR Proteins resolved
by SDS-PAGE were immunoblotted as described [16].
Quantitative PCR was performed as published [16]. The
cycle threshold (Ct) value of each gene was normalised
against household genes (EF1a [also known as EF1A] and
β-actin, INS-1E cells; TBP, rat islets; GUSB, human
islets) and the relative expression levels calculated using
the comparative (2�ΔΔCt ) method. Threshold cycles
ranged from 14 to 30 and primers used are detailed in
Electronic supplementary material (ESM) Table 1. Statis-
tics were performed on Ct values normalised for house-
hold genes.

Oligonucleotide microarray Total RNA was extracted
(RNAeasy; Qiagen, France) and used to synthesise labelled
cRNAs for hybridisation of rat expression arrays (230 2.0;
Affymetrix, Santa Clara, CA, USA). Data were analysed
with Arraystar v3.0 (DNASTAR, Madison, WI, USA) and
PLIER (Quantile/Perfect Match-Mismatch) used for nor-
malisation. Of 31,099 transcripts, 22,084 were reliably
detected on arrays in at least one glucose concentration at a
mean signal intensity >5 (log2 value) and selected for
further analysis; 3,614 transcripts showed differences among
at least two conditions (ANOVA, p<0.02), and finally 2,064
transcripts were retained with a fold change >1.5 and a false
discovery rate <0.02 in at least one comparison (see ESM
Table 2). Pathway analysis was performed using Ingenuity
Pathways Analysis (Ingenuity Systems, Redwood City,
CA, USA).

Microfluorimetry and electrophysiology Microfluorimetry
was performed as described [16, 17]. Electrophysiological
recordings were performed by the whole-cell configuration
of the patch clamp technique using an EPC-9 amplifier
(HEKA, Lambrecht, Germany). Data were acquired and
analysed with Patchmaster/Fitmaster (v2.35, HEKA). Patch
pipettes pulled from borosilicate glass capillaries had tip
resistances of 2–4 MΩ when filled with intracellular
solutions. The zero-current potential was adjusted in the
bath. The composition of the intracellular pipette solution
was (in mmol/l): KCl 135; NaCl 10; MgCl2 1; CaCl2 9,
EGTA 10, Mg-ATP 3; HEPES 5; pH adjusted to 7.1 with
KOH. The extracellular medium was (in mmol/l): NaCl
138; KCl 5.6; MgCl2 1.2; CaCl2 2.6, HEPES 5; glucose
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Fig. 1 Prolonged exposure to elevated concentrations of glucose
diminishes GLP-1 or forskolin-induced raises in cAMP generation,
cytosolic calcium and insulin secretion in INS-1E beta cells. a
Generation of cAMP in cells cultured at 5.5 (white bars) or at
20 mmol/l glucose (black bars) for 72 h and subsequently exposed to
5.5 mmol/l glucose in the absence or presence of forskolin (FSK,
1 μmol/l) and/or IBMX (100 μmol/l); n=4. b Increases in cytosolic
calcium ([Ca2+]i) evoked by glucose (white circles) 10 nmol/l GLP-1
(black circles) or FSK (white squares) in cells cultured at indicated
glucose concentrations for 72 h. Note that cells were kept at 5.5 (G5.5)
or 15 mmol/l glucose (G15) for 30 min before the addition of GLP-1
or FSK, which ensured a stable baseline (see also Figs 5, 6 and 7); n=
15–77. c Insulin secretion was stimulated for 30 min by either
15 mmol/l glucose alone (black circles), or 15 mmol/l glucose in the
presence of 10 nmol/l GLP-1 (white squares) or 1 μmol/l FSK (black
squares). Basal secretion (2.8 mmol/l glucose) is given by white
circles. Data are normalised for total protein at the respective glucose
concentration; n=6–11. d Insulin content after 72 h culture at different
glucose levels; n=11. Statistics (a–d): *p<0.05 compared with the
absence of FSK or of IBMX (a) with GLP-1 alone (b) or with G15
alone (c); †p<0.05 compared with cells cultured at G11; ‡p<0.05
compared with cells cultured at G20
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5.5, pH 7.4 with NaOH. Holding potential was −70 mV to
prevent activation of voltage-dependent depolarising channels.
Increases of cell capacitance were determined using a sine +
DC protocol of the LockIn extension of the HEKA software
(40 mV peak-to-peak, 1,250 Hz). Exocytosis was triggered by
either iterative 200 ms depolarising steps from a holding
potential at −70 to 0 mV or by intracellular dialysis of the
calcium containing solution (1.5 μmol/l) [20] from the
micropipette. Changes of cell capacitance were measured
during the first minutes following the establishment of the
whole-cell configuration. Curve fittings were done in ORI-
GIN v8 (OriginLab Corporation, Northampton, MA, USA).

Statistics Experiments were replicated at least three times.
Unless otherwise stated, data are given as mean ± SEM and
groups were compared using ANOVA with Bonferroni as
post hoc test.

Results

Prolonged exposure to elevated glucose blunts cAMP-mediated
effects Dynamics of cAMP and cytosolic calcium are linked
[21], contributing both to insulin secretion and gene
expression [12, 13]. We first examined whether pro-
longed exposure to glucose alters the generation of
cAMP in INS-1E cells (Fig. 1a). Note that the conditions
used induced only a minor increase in apoptosis in line
with previous observations [16]. The response to for-
skolin, a general activator of adenylyl cyclases, or
IBMX, a general inhibitor of phosphodiesterases, was
reduced by 60% and 30%, respectively, in cells cultured
for 3 days at 20 mmol/l glucose (G20). When both
agents were added together, cAMP accumulation was
again reduced by two-thirds in cells cultured at G20.
This suggests that the decrease in stimulation observed
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Fig. 2 Glucose-induced changes in the mRNA levels of genes
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map was created according to analysis of canonical pathways by
INGENUITY. Genes involved in selected signalling pathways were
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at G20 is linked to cAMP generation rather than its
metabolism.

As shown in Fig. 1b, GLP-1 raised cytosolic calcium
[Ca2+]i when added to cells kept for 72 h at 5.5 mmol/
l glucose (G5.5). This effect was reduced in cells cultured at
G11 and completely lost in cells cultured at G20. To allow
clear observation of the potentiating effects of GLP-1 and
separate them from glucose effects, cells were kept at G15
for 30 min before the addition of GLP-1, which ensured a
stable baseline. Note that preculture at G20 almost
completely abolishes acute stimulation by glucose, as
published previously [16]. Similarly to the effect of GLP-
1 alone, the response to GLP-1/glucose was pronounced in
cells cultured in G5.5 but was largely decreased in cells
cultured in G11 and abolished by preculture at G20.
Increasing cAMP levels by forskolin raised [Ca2+]i as
expected [22]. The effect was reduced in cells cultured in

G20, but to a lesser extent than observed for GLP-1. As
decreased efficiency of GLP-1 or forskolin might be due to
enhanced cAMP metabolism, the latter was blocked with
IBMX. In the presence of 100 μmol/l IBMX, the loss in
forskolin-induced responses was less prominent (G5.5 vs
G20, 687±101 vs 441±61 nmol/l, n=10 for each, 2p<0.05,
Student’s t test), whereas the response to GLP-1 was lost to
the same extent as in the absence of IBMX in cells cultured
at G11 or G20 (data not shown).

We subsequently evaluated insulin secretion, an event
downstream from changes in [Ca2+]i or in cAMP [12, 13].
Similar to calcium handling, the amplifying action of GLP-
1 was already lost in cells cultured at G11, whereas the
effect of forskolin was reduced but still present after culture
in G20 (Fig. 1c). As reported previously [16, 23],
prolonged exposure to glucose leads to a reduction in
insulin content (Fig. 1d). Although this certainly contributes
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Fig. 3 Timecourse and protein levels of glucose-regulated expression
of transcripts implicated in cAMP-mediated signalling and in
exocytosis in INS-1E cells. a–h Quantitative PCR was performed on
INS-1E cells cultured at 5.5, 11 or 20 mmol/l glucose for the indicated
time range. Normalised expression values are given in terms of
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were quantified, normalised against the level of actin and expressed as
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*p<0.05; **p<0.01; ‡p<0.02
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to the decrease in effects, it was not solely due to a
reduction in vesicular hormone content by culture in G20,
as similar effects were observed in cells transiently
expressing human growth hormone as a secretory product
under the control of a cytomegalovirus promoter (data not
shown).

Prolonged exposure to elevated glucose remodels gene
expression in G protein coupled receptor- and cAMP-linked
pathways To get insight into underlying mechanisms, we
examined the effect of glucose on gene expression by
microarray analysis of INS-1E beta cells after 72 h culture
at G5.5, G11 and G20 (see ESM Table 2). Interestingly,
statistical evaluation of alterations in canonical pathways
revealed the highest scores for two signalling pathways, via
cAMP or more generally via G protein coupled receptors
(GPCRs), and two metabolic pathways, pyruvate metabo-
lism and glycolysis/gluconeogenesis (see ESM Table 3).

To visualise changes in GPCR- and cAMP-mediated
pathways, a map was constructed (Fig. 2), with colour
assignment according to clusters (see ESM Fig. 1). In
addition, quantitative PCR for a number of transcripts
confirmed alterations measured by microarrays (see ESM
Table 4). Several GPCRs are differentially regulated,
including those known for their specific function in islets
[24] such as the GLP1R, as well as G protein subunits and
regulators of G protein signalling. Among the adenylyl
cyclases detected, calcium-sensitive Adcy8 was strongly
downregulated, whereas the major adenylyl cyclase, Adcy6,
remained unchanged, as did the more recently described
soluble adenylyl cyclase, Adcy10. Indeed, Adcy8 was the
most downregulated transcript within the GPCR- or cAMP-
linked pathways and ranked also among the five most
downregulated identified transcripts in the total study.
Concomitantly several phosphodiesterases were upregu-
lated, including calcium-sensitive phosphodiesterase 1C
(Pde1c). Changes in expression of other genes intervening
in adenylyl cyclase organisation were noted, such as those
coded for by the two A-kinase anchoring proteins, Akap7
and -12, whereas expression remained constant for the
immediate targets of cAMP Rapgef3/4 (also known as
Epac1/2) or subunits of protein kinase A. Downstream of
PKA we observed an increase for Sik2, a kinase inhibiting
PKA-induced nuclear translocation of the transcription
coactivator Torc, a major upregulation of CREM and a
decrease in the transactivator Cited2. In addition to changes
in cAMP-mediated signalling, altered expression of tran-
scripts implicated in Ca2+ handling as well as Ca2+ targets
was evident, including channels (Trpc4, Trpv1), pumps
(Serca3 [also known as Atp2a3]) and links to the MAP-
kinase pathway (Rasgrp1 and -2, Dusp).

We performed time-course experiments to determine the
sequence of events (Fig. 3a–h). Whereas Glp1r, Adcy8 and

Akap12 were modulated by glucose at early time points and
peaked at 48 h, differences in PDEs reached their maximum
later. Altered levels of GLP1R, ADCY8, AKAP12 and the
vesicle protein synaptotagmin 4 (SYT4) were also evident
at the protein level (Fig. 3i, j). Whereas Adcy8 was already
reduced by 40% at G11, Glp1r was significantly reduced
only at G20. In addition, the transcriptional regulator of
CRE, Crem, was not altered, whereas its splice variant Icer
increased mainly between G5 and G11 with little if any
further changes at G20.

We further assayed several key transcripts identified in our
screen in rat (Fig. 4a, b) or human donor islets (Fig. 4c).
Among the GPCRs stimulating adenylyl cyclase, Glp1r was
decreased but only after 24 h. Again, Adcy8 but not Adcy6
was strongly downregulated, and the production of Akap12
decreased. The mRNA levels of the phosphodiesterases
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Pde1c and -10a did not increase above G10, as already
observed in INS-1E cells (see Fig. 2). Similarly to clonal beta
cells, levels of Crem/Icer were only slightly augmented be-
tween G10 and G30. In human donor islets (Fig. 4c) ADCY8
also declined by 60%, whereas ADCY6 and PDEs remained
stable. Expression profiles for CREM/ICER were similar to rat
islets, although changes did not reach significance.

Re-expression of ADCY8 restores calcium signalling in
clonal and primary cells The functional consequences of
prolonged exposure to elevated glucose observed in INS-1E
cells in conjunction with transcript profiling in cells and
islets pointed towards a major role of ADCY8. To test

whether downregulation of this minor isoform in beta cells
indeed does play a role, we examined the outcome of its re-
expression and of its knockdown on Ca2+ signalling.
Transient transfection with a plasmid encoding ADCY8
led to re-expression of this enzyme in cells cultured at G20
and its location at the plasma membrane (Fig. 5a, b). As
shown in Fig. 5d, e, culturing cells for 72 h at G20 instead
of G5.5 abolished the potentiating effects of forskolin and
GLP-1 on cells kept in G15 for 30 min before the addition
of the drugs (see also Fig. 1a). Note that transient
overabundance of ADCY8 in cells cultured at G5.5 did
not increase the response to GLP-1 (Fig. 5e, right-hand
side), indicating that ADCY8 is not rate limiting under these

ADCY8

ADCY8

CD8-eGFP

Actin

GLP1R

G5 G20

CON CON CON
GLP

1R

CON--

ADCY8

CON--

ADCY8

ADCY8

GLP
1R

ADCY8
T B T B T B

200

100

50

30

1,000

1,200

800

400

0

800

400

0

750

500

250

100

800

600

400

200
100

FSK

GLP-1 GLP-1 GLP-1

FSK FSK

0 120 240
Time (s)

0 120 240
Time (s)

G5 G20 G20+ADCY8

Δ[
C

a2+
] i 

(n
m

ol
/l)

Δ[
C

a2+
] i 

(n
m

ol
/l)

Δ[
C

a2+
] i 

(n
m

ol
/l)

Δ[
C

a2+
] i 

(n
m

ol
/l)

† †

†

***

***

a

d

G5 G20 G20+ADCY8e g

f

b c

Fig. 5 Re-expression of adenylyl cyclase 8 restores GLP-1-regulated
calcium handling in glucotoxicity in INS-1E cells. a Confocal images
of INS-1E cells transiently expressing ADCY8-eGFP or myc-tagged
GLP1R in (scale bar, 10 μm). b Immunoblots of sorted INS-1E cells
transfected with plasmids encoding the extracellular and transmem-
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beads (T, total; B, cells bound to beads) and subjected to immunoblots
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eGFP) or actin as a control. c Immunoblot of homogenates of cells

transfected with a control plasmid (CON, pcDNA3) or a plasmid coding
for GFP-tagged GLP-1 receptor (GLP1R). Representative recordings of
cells exposed to FSK (1 μmol/l) (d) or GLP-1 (10 nmol/l) (e). Cells
had been cultured for 72 h at G5.5 or G20 and left untransfected (−) or
transfected with either a control plasmid (CON, pcDNA3) or a
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40; †p<0.001 compared with culture at G5.5; ***p<0.001 compared
with CON or non-transfected cells cultured at G20
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conditions. In cells cultured at G20, the effects of forskolin
and of GLP-1 were completely restored by re-expression of
ADCY8. By contrast, overabundance of the GLP1R in cells
cultured at G20 did not restore the effect of GLP-1 (Fig. 5e,
right-hand side), although the receptor was clearly expressed
and located at the plasma membrane (Fig. 5a, c). Most
importantly, these effects were also observed in rat primary
cells upon re-expression of ADCY8 (Fig. 6). GLP-1 induced
a prominent increase in [Ca2+]i in cells precultured at G11,
and preculture at G30 completely abolished hormone effects.
Again, re-expression of ADCY8, but not of GLP1R, restored
incretin-induced responses.

ADCY8 is required for normal calcium signalling To
further evaluate the role of this minor isoform, we down-
regulated its expression by shRNA-mediated knockdown.
Levels of transiently expressed ADCY8-eGFP or of
endogenous ADCY8 were decreased by the expression of
shRNAs and plasmid psh-4 was used in subsequent assays
(Fig. 7a, b). GLP-1 induced a robust increase in [Ca2+]i in
control-transfected cells cultured at G5 and placed at G15
for 30 min before the addition of the hormone. Knockdown
of endogenous Adcy8 (shADCY8) reduced the response by
90%. By contrast, knockdown of Adcy8 diminished the
effect of forskolin on [Ca2+]i only by one-third (Fig. 7d, e),
suggesting that only part of total cellular adenylyl cyclase

activity is reduced. The effects of KCl and thapsigargin on
[Ca2+]i remained unchanged (Fig. 7e).

ADCY8 is required for GLP-1-induced cAMP generation
and CRE activation Subsequently we asked whether cAMP
generation and downstream effects, such as regulation of
CRE, may be mediated by ADCY8 and recovered by its re-
expression. Knockdown of Adcy8 as well as prolonged
exposure to elevated glucose abolished GLP-1-induced
cAMP accumulation, and re-expression of Adcy8 recovered
two-thirds of the GLP-1 net effect (Fig. 8a). Moreover,
culture at G20 for 72 h reduced forskolin- and GLP-1-
induced activation of CRE (Fig. 8b). Re-expression of
Adcy8 induced full recovery of CRE activation by both
agents in cells cultured at G20. The amplification of the
effect of glucose by GLP-1 was lost upon knockdown of
Adcy8 (Fig. 8c). However, knockdown of Adcy8 did not
alter glucose-induced regulation of CRE, which may thus
occur independently from ADCY8.

ADCY8 is required for cAMP-induced potentiation of
exocytosis Re-expression of Adcy8 did not recover stimula-
tion of hormone secretion by glucose or by glucose and
forskolin in cells cultured in G20 for 72 h, regardless of
whether early (0–10 min) or late phases (10–45 min) of
release were measured (data not shown). The lack of
reconstitution of exocytosis by re-expression of Adcy8 is in
line with previous reports that central components of the
secretory machinery are downregulated under these condi-
tions [16, 25–27]. To address specifically the role of ADCY8
in the regulation of exocytosis, the final step in secretion, we
resorted to capacitance measurements by patch clamp
(Fig. 9). Stimulating exocytosis via intracellular dialysis with
1.5 μmol/l free calcium allowed circumvention of early
effects of glucose such as metabolism, membrane depolarisa-
tion and calcium influx. The ensuing increase in membrane
capacitance was not changed by knockdown of Adcy8. Direct
stimulation of exocytosis by dialysis with calcium was further
enhanced by the addition of forskolin/IBMX (Fig. 5a)
reflecting amplification [28]. Upon knockdown of Adcy8 a
complete loss of the effect induced by forskolin/IBMX was
observed, demonstrating a prominent role of this isoform in
the amplification of exocytosis by cAMP. Inspection of the
kinetics of exocytosis revealed that the early phase (up to
15 s) remains unaltered, whereas subsequent exocytosis is
largely reduced by the knockdown of Adcy8, indicating its
involvement mainly in the second phase.

Discussion

Chronically elevated glucose alters glucose detection, its
metabolism and subsequent calcium handling [3] as well as
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cellular insulin content [16, 23]. By contrast, it has only a
minor effect on apoptosis under the conditions used [16, 19].
Our data now demonstrate a profound remodelling of
signalling pathways linked to GPCRs such as the GLP-1
receptor, to cAMP and calcium. Moreover, a specific isoform
of adenylyl cyclase, ADCY8, ranked among the most
downregulated transcripts in this study as well as in a
previous one in rat islets [19]. ADCY8 has previously been
proposed as glucose/GLP-1 coincidence detector according

to its biochemical characteristics and cell-specific production
[29]. Our functional assays revealed that this isoform is
crucial for incretin signalling in beta cells, and its reduced
production constitutes an important element in glucotoxicity.

Changes in intracellular levels of cAMP rely on intricate
dynamics between adenylyl cyclases and phosphodies-
terases [30]. Several arguments indicate that effects of
prolonged exposure to elevated levels of glucose are linked
rather to changes in ADCY8 than in phosphodiesterases
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(PDEs). Decreased cAMP levels as well as a loss in
calcium responses were still observed in the presence of the
PDE inhibitor IBMX and changes in production occurred at
a later time point in PDEs as compared with ADCY8.
Furthermore, only a subset of PDEs interferes with
secretion: mainly PDE3B, but also PDE1C, PDE4C,
PDE5A and PDE8B [31]. Among these, prolonged expo-
sure to glucose upregulated only Pde1c, mainly at low and
intermediate glucose levels, whereas Pde3b was down-
regulated. As the latter event enhances GLP-1 induced
insulin secretion [32], it does not account for loss of
incretin effects.

Our data confirm the absolute requirement of ADCY8
for GLP-1 effects on cAMP and [Ca2+]i although it
constitutes only a quantitatively minor isoform as compared
with ADCY6 in INS-1E cells and rat or human islets [29,
33]. Its functional preponderance over ADCY6 is not too
surprising as the latter is inhibited by calcium, similar to
ADCY5 [34]. A second calcium-stimulated adenylyl
cyclase is produced in beta cells, ADCY1. In contrast to
ADCY1, ADCY8 responds more rapidly to changes in
calcium and gives rise to oscillations in cAMP in response
to Ca2+-transients [35] and may be better suited to the
physiology of beta cells. Expression of the direct down-
stream effectors of cAMP, PKA as well as EPAC, remained
stable further pointing towards ADCY8 as an important
player. Most importantly, our re-expression experiments

demonstrate that calcium, cAMP and CRE responses to
GLP-1 can be recovered by restoring levels of ADCY8.
Within the same line of arguments, knockdown of Adcy8
imitated the loss or decrease in forskolin or GLP-1 response
in [Ca2+]i and cAMP observed in glucotoxicity. This
provides the molecular identity for previous observations
on calcium-dependency of GLP-1 effects [29] and places
this isoform in a central position. Additional, though
indirect, arguments for a role of ADCY8 in glucose
homeostasis are provided by genetic data. A quantitative
trait locus was identified containing the ADCY8 gene with
significant linkage to fasting hyperglycaemia and impaired
glucose tolerance in the Akita mouse, a non-obese model
for type 2 diabetes [36]. A linkage between ADCY8 and
type 2 diabetes has recently been mentioned in a genetic
study in humans [37].

Prolonged exposure to elevated glucose remodels the
production of numerous GPCRs required to adapt beta cells
to physiological demands [24]. The GLP-1 receptor was
downregulated in INS-1E cells, whereas significant changes
were apparent in rat islets after 24, but not after 72 h. These
results differ from observations in pancreatectomised rats,
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G15+GLP-1), washed and processed as in A. Data are expressed as
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db/db mice or islets cultured at elevated glucose [38]. We
have no ready explanation for this difference except that
islets used in our study were precultured for up to a week to
recover from the stress of the isolation procedure. Note that
data similar to ours on 24 h effects of glucose have been
published by others [39]. As re-expression of ADCY8, but
not of the glucagon-like peptide 1 receptor (GLP1R),
restored calcium signalling in clonal and primary cells,
post-receptor events may represent the most vulnerable part
of the pathway.

Regulation of gene expression via the calcium- and
cAMP-responsive element CRE is important for beta cell
function and survival. Glucose and GLP-1 can activate
CRE via PKA either directly or through mitogen-activated
kinases (ERK) [40, 41]. Both pathways are probably
compromised at G11 by increased expression of the
phosphatase DUSP14 acting on ERK [42] and the kinase
SIK2 impeding nuclear translocation of CRTC2 (also
known as TORC2), a CREB coactivator [43]. Our data also
confirm that glucose leads to a large increase in the inducible
repressor isoform of CREM, ICER, which inhibits CRE

activation [25, 44]. Changes were present between G5.5
and G11 with little further alteration at G20 in clonal cells
and islets. Interestingly, loss of forskolin- or GLP-1-
induced CRE activation was reverted upon re-expression
of ADCY8. Thus, CREM/ICER as well as DUSP and SIK
are important physiological regulators, but their alterations
seem to be less disruptive than those of ADCY8.

Compartmentalisation and isoform specificity confer
selectivity in cAMP signalling [34]. Specific scaffold
proteins, the AKAPs, ensure defined localisation of
enzymes implicated in cAMP generation [45] and their
differential expression by glucose could further disturb
signalling. Isoform specificity for effectors was evident as
only GLP-1 induced increases in [Ca2+]i and potentiation of
CRE activation, but not glucose-induced activation of CRE
relied on ADCY8. Recently ADCY10, a forskolin-
insensitive isoform, has been identified as mediator of
glucose-induced phosphorylation of ERK [46]. Its presence
may explain the persistence of glucose-induced CRE
activation after ADCY8 knockdown. ADCY10 is probably
not involved in glucotoxicity as glucose did not affect its
expression in INS-1E cells or rat islets.

The specificity of adenylyl cyclase isoforms was further
underlined by measuring exocytosis, the final step in
insulin secretion. Insulin exocytosis is triggered by calcium
and amplified by cAMP-raising agents, thus providing an
adequate response to physiological demands [13]. Although
ADCY8 constitutes only a minor adenylyl cyclases [29,
33], its expression was required for cAMP-induced ampli-
fication of exocytosis. The observed defect may reside in
vesicle priming, reminiscent of the specific role of ADCY8
in hippocampal synapses despite the presence of calcium-
sensitive ADCY1 [47].

Collectively our data highlight the role of signalling
pathways in glucose desensitisation/glucotoxicity and spe-
cifically identify the role of the calcium-sensitive adenylyl
cyclase 8 in this setting and in normal signalling. The
potential importance of altered signalling pathways, includ-
ing those linked to GPCRs or to adenylate cyclases, in the
pathogenesis of type 2 diabetes has also been underscored
by recent genetic studies [48–50].
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