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The adherens junction (AJ) is an element of the cell–cell junction in which cadherin
receptors bridge the neighboring plasma membranes via their homophilic interactions.
Cadherins associate with cytoplasmic proteins, called catenins, which in turn bind to cyto-
skeletal components, such as actin filaments and microtubules. These molecular complexes
further interact with other proteins, including signaling molecules, rendering the AJs into
highly dynamic and regulatable structures. The AJs of such nature contribute to the physical
linking of cells, as well as to the regulation of cell–cell contacts, which is essential for
morphogenesis and remodeling of tissues and organs. Thus, elucidating the molecular
architecture of the AJs and their regulatory mechanisms are crucial for understanding how
the multicellular system is organized.

The adherens junction (AJ) is a form of
cell–cell adhesion structure observed in a

variety of cell types, as well as in different
animal species. It is characterized by a pair of
plasma membranes apposed with a distance of
10–20 nm between them, whose intercellular
space is occupied by rod-shaped molecules
bridging the membranes (Hirokawa and
Heuser 1981; Miyaguchi 2000), and the cyto-
plasmic side of the AJ is associated with con-
densed actin filaments. In polarized epithelia
of vertebrates, the AJ is part of the tripartite
junctional complex localized at the juxta-
luminal region, which comprises the tight junc-
tion (zonula occludens), AJ, and desmosome
(macula adherens) aligned in this order from
the apical end of the junction (Farquhar and
Palade 1963). In this type of epithelia, the AJ

is specifically termed the “zonula adherens” or
“adhesion belt,” as it completely encloses the
cells along with the F-actin lining, called the cir-
cumferential actin belt (Fig. 1). The AJs in other
cell types assume different morphologies: For
example, the AJs in fibroblastic cells are spotty
and discontinuous (Yonemura et al. 1995),
and those in neurons are organized into tiny
puncta as a constituent of the synaptic junctions
(Uchida et al. 1996).

A major function of AJs is to maintain the
physical association between cells, as disruption
of them causes loosening of cell–cell contacts,
leading to disorganization of tissue architec-
ture. Calcium chelators such as EDTA and
EGTA are widely used as a reagent to promote
the dissociation of cells in tissues or monolayer
cultures. A major target of these chelators is the
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AJ, as this is a calcium-sensitive structure;
although, calcium removal is generally insuffi-
cient for the complete dispersion of cells
because of the presence of calcium-independent
cell–cell adhesion mechanisms (Takeichi et al.
1977). Early studies to search for the molecules
responsible for the calcium-dependent junc-
tions resulted in the identification of a group
of type-I transmembrane proteins, and its
founding member was termed cadherin
(Yoshida and Takeichi 1982; Yoshida-Noro
et al. 1984). Related molecules identified were
also called by various names, such as uvomoru-
lin (Peyrieras et al. 1983), LCAM (Gallin et al.
1983), and ACAM (Volk and Geiger 1984).
Later studies revealed that the cadherins form
a superfamily, and therefore, the original
cadherins are now called “classic” cadherins.

Another series of studies have identified
nectins, a family of immunoglobulin-like
transmembrane proteins, as an AJ component.
Nectins function in a calcium-independent
way to promote cell–cell adhesion (Nakanishi
and Takai 2004). In this article, we overview
the molecular organization of the AJs con-
structed with these membrane proteins, as
well as the regulatory mechanisms that operate

to sustain or remodel these junctions, paying
much attention to the linkages between the AJ
and cytoskeletal or signaling proteins.

CADHERINS

The classic cadherin family comprises approx-
imately 20 members that share a common
domain organization. The members are called
E-cadherin (cdh1), N-cadherin (cdh2), and
so on, each of which shows a distinct tissue
distribution pattern (Takeichi 1988). Their
extracellular domain is divided into five re-
petitive subdomains, called cadherin repeats
or EC domains, and each subdomain contains
calcium-binding sequences (Overduin et al.
1995). The interaction of calcium ions with
these sequences controls the conformation of
the extracellular domain (Pokutta et al. 1994),
switching its adhesive function “off” and “on.”
On its association with calcium, the extra-
cellular domain of cadherins on a cell undergoes
homophilic interaction with that of cadherins
present on the apposed cells (Fig. 2). The
precise mechanism for this homophilic inter-
action is still controversial (Troyanovsky
2005), although current studies support the
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Figure 1. Morphological variations of the adherens junction. In Caco2 cells (colonic carcinoma line), E-cadherin
is localized along the actin circumferential belt to organize the zonula adherens (arrow). At the lateral portions of
cell junction (arrowheads), E-cadherin signals are punctate, only occasionally overlapping with actin signals in
this specific sample. The lateral patterns of cadherin and actin distribution, however, vary with cellular
conditions. In MCF10A cells (mammary epithelial line), spotty adherens junctions are seen, where actin
filaments perpendicularly terminate at E-cadherin puncta.
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idea that a trans binding between cadherin
monomers via their EC1 domains initiates
their interactions (Zhang et al. 2009).

The calcium-sensitive sequences are highly
conserved among the family members, whose
sequences are the hallmarks for this family,
and all classic cadherins show a similar calcium
dependence. Other sequences in the extracellu-
lar domain, however, vary, and this sequence
variation confers the adhesive specificity on
each member (Nose et al. 1988). For example,
E-cadherin preferentially binds E-cadherin,
and N-cadherin does so to N-cadherin; al-
though, the degree of the selectivity changes
depending on the partners (Shimoyama et al.
2000; Patel et al. 2006). This nature of classic
cadherins has been implicated in the sorting
of different cell types (Takeichi 1988).

AJs occur in a wide variety of animal species,
and classic cadherin-type molecules have been
identified in many species (Oda et al. 2005).
However, their molecular organization is not
perfectly conserved. For example, although
Drosophila E-cadherin (DE-cadherin) is a

component of the AJ, it has seven EC
domains, instead of the five in the vertebrate
classic cadherins (Oda et al. 1994). The other
Drosophila classic cadherin, DN-cadherin,
has even 17 EC domains (Iwai et al. 1997).
These Drosophila cadherins also contain other
domains, such as EGF-like and laminin
globular-like domains, inserted between the
set of EC domains and the transmembrane
domain. As a result, these Drosophila cadherins
are much larger in size than the vertebrate ones,
despite the similar appearance of their AJs. The
functional importance of AJs also differs among
species. For example, Caenorhabditis elegans has
a classic-cadherin-type molecule (HMR-1), but
its role in cell junction formation is limited:
HMR-1-deficient animals fail to enclose the
epidermal sheets, but their general cell junc-
tions look normal even in the absence of this
cadherin (Cox et al. 2004). The organization
of apical junctional complexes is also different
between vertebrates and invertebrates. In Dro-
sophila, the relative positions of the AJ and
tight junction are inverse; that is, the AJ is
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Figure 2. Representative molecular constituents of the zonula adherens. These constituents vary with the types of
adherens junction.
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located above the septate junction, which is
considered as a structure equivalent to the
vertebrate tight junction. Irrespective of these
species-dependent diversifications, the key
structure and function of the cadherin cyto-
plasmic domain is highly conserved among
different species; that is, the classic cadherins
from any species interact with their conserved
cytoplasmic partners (see the following).

After the discovery of the classic cadherins,
a number of other molecules that share the
conserved EC domains but have divergent cyto-
plasmic sequences were identified, and these are
collectively called nonclassic cadherins. These
include desmosomal cadherins (Wheeler et al.
1991; Buxton and Magee 1992), protocadherins
(Redies et al. 2005; Morishita and Yagi 2007),
Fat and Dachsous cadherins (Saburi and
McNeill 2005; Tanoue and Takeichi 2005), and
Flamingo/Celsr (Takeichi 2007) (see McNeill
et al. 2009). Among them, desmosomal cadher-
ins are the closest to the classic cadherins, and
desmosomes, in fact, are similar in appearance
to AJs, though not identical from a number of
aspects (Holthofer et al. 2007) (see Green
et al. 2009; Delva et al. 2009). Except for the
desmosomal cadherins, other nonclassic cad-
herins appear not to organize specialized junc-
tions, nor to be the components essential for
AJ formation; although, they generally can
undergo homophilic interactions at the cell–
cell interfaces. These nonclassic cadherins seem
to have acquired unique molecular roles, rather
than that for the physical linking of cells. For
example, some of the protocadherins negatively
regulate the classic cadherin-dependent adhesion
(Chen and Gumbiner 2006), and Fat (Nollet
et al. 2000; Strutt and Strutt 2005; Tanoue and
Takeichi 2005) and Flamingo (Usui et al. 1999)
regulate planar cellular polarity as well as other
forms of cellular interactions.

CADHERIN–CATENIN COMPLEX

The cytoplasmic domains are highly conserved
among the classic cadherin members, and they
bind common cytoplasmic molecules, collec-
tively called catenins (Fig. 2). The juxtamem-
brane portion of the cytoplasmic domain

associates with p120-catenin, which belongs
to a subfamily of the armadillo proteins
(Reynolds et al. 1992; Shibamoto et al. 1995;
Hatzfeld 2005). The carboxy-terminal half of
the cytoplasmic domain, on the other hand,
binds b-catenin or plakoglobin (g-catenin),
which are close relatives of each other (Ozawa
et al. 1989; Knudsen and Wheelock 1992; Ozawa
and Kemler 1992). As mentioned above, these
molecular partners for the cytoplasmic domain
are well conserved among different animal
species; e.g., its invertebrate versions can bind
both p120-catenin (JAC-1 in C. elegans) and
b-catenin (Armadillo in Drosophila; HMP-2
in C. elegans) (Peifer and Wieschaus 1990; Cox
et al. 2004). These catenins in turn associate
with a variety of other molecules, including
cytoskeletal proteins and their regulators.
These cytoplasmic components of AJ affect
the adhesive action of the extracellular domain
of cadherins in various ways, leading to alter-
ations in the strength and stability of cell–cell
contacts.

INTERACTIONS WITH THE ACTIN
CYTOSKELETON

The AJ is morphologically associated with
actin filaments, posing the questions of how
this association is established and what role
the actin plays in AJ organization and function.
A key player is thought to be a-catenin, a mol-
ecule similar to vinculin (Herrenknecht et al.
1991; Nagafuchi et al. 1991). The a-catenin
binds b-catenin, resulting in the formation
of the cadherin–b-catenin–a-catenin com-
plex. Early biochemical studies showed that
a-catenin can interact with actin filaments
(Rimm et al. 1995), giving rise to the general
belief that a-catenin acts as a linker between
the cadherin–b-catenin complex and F-actin.
However, this concept was challenged by the
finding that the a-catenin complexed with
cadherin and b-catenin cannot bind F-actin
in vitro and that only free a-catenins can
do so (Drees et al. 2005; Yamada et al. 2005).
This finding suggested the possibility that
the cadherin–b-catenin–a-catenin complex
might interact with F-actin via some other
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mediator(s). In fact, a-catenin has been shown
to associate with actin-binding proteins such as
formin (Kobielak et al. 2004) and vinculin
(Watabe-Uchida et al. 1998), and a very recent
study identified another actin-binding protein,
EPLIN (epithelial protein lost in neoplasm; also
known as Lima-1), as ana-catenin partner (Abe
and Takeichi 2008). EPLIN is known to enhance
the bundling of actin filaments and to stabilize
them by suppressing F-actin depolymerization
(Maul et al. 2003). The EPLIN can bind
a-catenin when the latter is associated with
the cadherin–b-catenin complex, and this
entire complex binds F-actin. This finding
illustrates a novel pathway for the interaction
between cadherin and F-actin (Fig. 2).

It should be noted that the morphology of
actin-AJ association differs with the cell types
or cellular conditions (Yonemura et al. 1995).
Although actin filaments run parallel along
the ZA in simple cuboidal or columnar epi-
thelia, these filaments often perpendicularly
terminate at cell–cell borders in many other
junctions, e.g., in those of stratified epithelium-
derived cells and fibroblastic cells, and also in
immature junctions of most cell types (Fig. 1).
It is highly possible that different molecular
mechanisms operate for the linking of F-actin
to AJs in such different types of junction. In
fact, even in the absence of EPLIN, F-actin still
morphologically associates with AJs (see the
following). Meanwhile, the actin-associated
cadherins do not necessarily form a static
domain. In some cell lines, actin filaments are
aligned from the basal to apical end of cell
junctions, and these actins display a type of ret-
rograde flow. Cadherins are tethered to these
actin filaments in an a-catenin-dependent
manner and move together with the actins,
displaying “cadherin flow” (Kametani and
Takeichi 2007); although, the biological role of
this flow is not understood yet. In mature
epithelia, a-catenin is also important for regu-
lating the mobility of cadherins (Cavey et al.
2008) (see Stepniak et al. 2009).

What happens if the linkage between the
cadherin–catenin complex and F-actin is dis-
rupted? When a-catenin is removed, AJ orga-
nization is disrupted, and the apical actin

belt becomes segregated from the cadherin–
catenin complex (Watabe-Uchida et al. 1998).
If this occurs in neural epithelia in vivo, their
architecture is seriously damaged (Vasioukhin
et al. 2001). Removal of neural a-catenin
(aN-catenin) from synaptic AJs destabilizes
synaptic contacts (Abe et al. 2004). On the
other hand, EPLIN loss in epithelia results in
different types of defects at the junctions. The
circumferential actin belt disappears, being
converted to radially oriented actin filaments,
indicating that EPLIN is important not only
for the linkage between cadherin and F-actin
but also for stabilizing this unique configura-
tion of actin fibers (Abe and Takeichi 2008).
Importantly, the actin filaments, rearranged as
a result of EPLIN loss, still target cadherins,
which now assume a spotty localization as
seen in fibroblasts or immature epithelial junc-
tions. This finding suggests that EPLIN is not
the sole linker between cadherin and F-actin
and that other linkers must be present and
also suggests the possibility that the shape of
AJs could be altered by the type of cadherin–
actin linkers.

Because the actin filaments are essential for
AJ assembly, regulators of these filaments would
be expected to affect it. In fact, Rho-family small
GTPases, such as RhoA, Rac1, and Cdc42, as
well as their GEFs and GAPs, have been shown
to regulate AJ formation and integrity (Braga
2000). Because these molecules are used for a
wide variety of cell behavior, precise dissection
of whether a given GTPase targets the actin fila-
ments directly involved in junction formation
or those involved in other processes, such as
cell motility, is important for our correct under-
standing of the roles of these enzymes. aPKC has
also been shown to be essential for the circum-
ferential actin belt formation in epithelial cells.
When aPKC is inactivated, the circumferential
actin belt is lost, and AJs become spot-like
(Suzuki et al. 2002). In vivo, aPKC knockout
results in the loss of adherens junctions in
neuroepithelial cells (Imai et al. 2006). It has
been proposed that the action of aPKC is to
antagonize the myosin-II-driven centripetal
contraction of the circumferential actin cables
(Kishikawa et al. 2008).
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The contractility of AJ-associated circum-
ferential actin belts is used for morphogene-
sis. A well-known example is the Shroom3-
dependent constriction of the zonula adherens
(ZA) in epithelial layers, where constriction
plays an important role in epithelial folding or
bending (Haigo et al. 2003; Hildebrand
2005). In this case, the actin-binding protein
Shroom3 recruits Rho kinases (ROCKs) near
the ZA, and activates myosin-II, inducing
the contraction of the circumferential actin
belts (Nishimura and Takeichi 2008). The
actomyosin-dependent regulation of the AJ is
also implicated in cell intercalation during
early morphogenesis of Drosophila embryos
(Bertet et al. 2004; Zallen and Wieschaus
2004; Blankenship et al. 2006).

INTERACTIONS WITH MICROTUBULES

As compared with the actin cytoskeleton, less
attention has been paid to microtubules
(MTs) with reference to the structure and func-
tion of the AJ. Actually, the MTs do not show
specialized condensation at the AJ, contrasted
with the unique bundling of actin fibers along
the AJ. However, MTs have occasionally been
observed to be located in a close proximity
to the AJ, running parallel to this junction.
Moreover, the radially extending MTs are
targeted to the AJs with their plus ends in a
CLIP-170-dependent manner, and blocking of
the MT extension toward the AJs causes a
reduction in the accumulation of junctional
E-cadherin (Stehbens et al. 2006). In addition,
dynein was found to bind b-catenin, and this
b-catenin-associated dynein was proposed to
tether MTs to cell junctions (Ligon et al. 2001;
Shaw et al. 2007). These observations suggest a
potential interaction of AJ with MT plus ends,
and their interaction seems to have some roles
in AJ assembly. In support of this idea, reagents
that depolymerize MTs are known to disrupt
the integrity of the AJs (Waterman-Storer
et al. 2000), and even inhibit the disassembly
of cell junctions (Ivanov et al. 2006)

Recent studies have also revealed that MT
minus ends interact with AJs via p120-catenin
(p120). This catenin recognizes and binds a

specific sequence located in the juxtamembrane
region of the cadherin cytoplasmic domain. The
p120-cadherin binding is known to play a
central role in the stability of cadherin-mediated
junctions; i.e., when p120 is removed, the plasma
membrane-associated cadherins become endo-
cytosed, leading to reduced cell–cell associ-
ations (see the following discussion). This
action of p120 requires the armadillo domain
occupying its central region (Liu et al. 2007).
Other series of studies have found that p120
can associate with MTs (Chen et al. 2003;
Roczniak-Ferguson and Reynolds 2003; Franz
and Ridley 2004; Yanagisawa et al. 2004), and
this ability of p120 requires its carboxy-terminal
domain (Ichii and Takeichi 2007), suggest-
ing that the amino-terminal and armadillo
domains of this catenin have separate functions.
Further studies on the amino-terminal domain
identified a new partner for p120 (Meng et al.
2008). This is PLEKHA7, which binds the
amino-terminal domain of p120. Intriguingly,
this protein localizes specifically along the ZA,
but not in other portions of the junctions in
epithelial sheets, despite the ubiquitous distri-
bution of p120 and cadherins at the cell–cell
contacts. Depletion of PLEKHA7 exclusively
disrupts the ZA, but not the entire cell–cell
junctions, suggesting that this protein is
specifically required to maintain the ZA.
Subsequently, PLEKHA7 was found to bind
another protein, termed Nezha, which is again
distributed along the ZA; although Nezha was
also detected as punctate signals in the cyto-
plasm. Nezha displays an important property:
It binds the minus ends of MTs, and tethers
them to the ZA, allowing their extension and
retraction from the cell junctions.

These studies have uncovered the presence
of a novel population of MTs, whose minus
ends are anchored at the ZA via the
PLEKHA7–Nezha complex (Fig. 2). The func-
tions of these MTs are not fully understood
yet, but preliminary observations suggest that
minus-end directed kinesin motors, such as
KIFC3, use these MTs to transport themselves
to the ZA. Depletion of PLEKHA7, Nezha,
KIFC3, and MTs results in similar defects
in ZA organization. Thus, these molecules
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appear to work together by forming a complex
to sustain the ZA architecture. It should
be re-emphasized that this novel molecular
complex appears to be important only for the
ZA, but not for the entire cadherin-mediated
cell–cell contacts, confirming that the ZA is a
specialized domain of the cadherin-mediated
junctions/AJs. The mechanisms of how
PLEKHA7 interacts with p120 only at the ZA
remains unknown.

In sum, evidence is accumulating that MTs
play roles in AJ assembly, where both the plus
and minus ends of MTs have been suggested
to be involved. Although the molecular mech-
anisms for the plus-end interactions with AJs
have not been determined yet, the two popu-
lations of MTs with the opposite polarity
might cooperate together for AJ regulation.

COOPERATION BETWEEN CADHERIN
AND NECTIN

Nectins are a family of immunoglobulin-
like molecules, consisting of four members
(Nakanishi and Takai 2004). They are accumu-
lated at the AJ, colocalizing with cadherins
(Fig. 2). The cytoplasmic domain of nectins
associates with AF6/afadin via the carboxy-
terminal PDZ-binding motif of the former.
Afadin, on the other hand, was shown to inter-
act with a-catenin, suggesting that a physical
association might occur between the cad-
herin–catenin and nectin–afadin complexes
(Tachibana et al. 2000). Because afadin is an
actin-binding protein (Mandai et al. 1997;
Takahashi et al. 1999), this system may also
play a role in the linking of AJ to actin filaments.

Nectins interact with other nectins in either
a homophilic or heterophilic way. Different
from the classic cadherins, nectins prefer
heterotypic partners to homotypic ones, and
their heterophilic binding produces stronger
cell–cell adhesion than the homophilic inter-
actions (Fabre et al. 2002; Yasumi et al. 2003;
Martinez-Rico et al. 2005). Importantly,
during the process of early cell–cell contacts,
nectins first accumulate at the contacts, and
then cadherins follow them (Takai et al. 2003),
suggesting that the former may guide the

latter in their junctional localization. This can
be seen in the following example: When cells
expressing nectin-1 and nectin-3 are mixed,
these nectins preferentially accumulate at the
heterotypic interfaces of the cells. In these
cells, cadherins also become predominantly
concentrated at the heterotypic nectin-positive
cell boundaries (Togashi et al. 2006). Thus,
this form of nectin interaction serves for
recruiting cadherins to heterotypic cell–cell
borders, which are otherwise distributed
throughout cell–cell borders. This ability of
nectins is used for recruiting cadherins to the
synaptic contacts formed between two distinct
domains of hippocampal neurons, i.e., axons
and dendrites, which express nectin-1 and
nectin-3, respectively (Togashi et al. 2006).
Thus, nectins show important cooperativity
with classic cadherins in generating heterotypic
cell–cell contacts.

INTERACTIONS WITH CELL POLARITY
REGULATORS

How is the apical junctional complex located
apically? The apico-basal polarity of cells is
regulated by a couple of molecular complexes,
including the aPKC-Par6-Par3 complex local-
ized at a subapical region of the cell junction
(Margolis and Borg 2005). Genetic analysis
using Drosophila embryos showed that the
Drosophila homolog of Par3 (Bazooka) could
establish apical complexes in the absence of
AJs, indicating that Bazooka acts upstream of
AJ formation (Harris and Peifer 2005). Some
reports, on the other hand, suggest the AJs
have a physical interaction with these polarity
factors: Par3 and Par6, but not aPKC, coprecipi-
tate with VE-cadherin, the endothelial-specific
cadherin (Iden et al. 2006). Par3/Bazooka colo-
calizes with cadherins in epithelial junctions
(Harris and Peifer 2005; Afonso and Henrique
2006). These observations illustrate a possible
pathway by which the apical membrane domain
is primarily determined by those apical deter-
minants, and, in turn, the AJ/ZA is recruited
to this domain, possibly via interactions with
the pre-existing Par complex. Cadherins may
also interact with another polarity regulator,
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the Scrib-Dlg-Lgl complex localized at the
lateral membrane (Reuver and Garner 1998;
Navarro et al. 2005). However, the mechanisms
responsible for the clustering of the three
junctions, i.e., tight junction, AJ, and desmo-
somes, to form the apical junctional complex
and their alignment in a specific order remain
unresolved.

CADHERIN EXPRESSION AND RECYCLING

The AJ in mature tissues appears to be a static
structure, but actually, cadherin molecules are
turning over, and their surface levels are con-
trolled by various mechanisms. Elucidating
these mechanisms is important for a molecular
understanding of the homeostatic nature of
cell junctions. In epithelial cells, the newly
synthesized cadherins are transferred from the
Golgi to AJs via an exocyst-dependent mech-
anism (Yeaman et al. 2004). For recycling,
E-cadherin is transported to recycling endo-
somes, and then trafficked to late endosomes
for return to the cell surface. DE-cadherin traf-
ficking depends on the interaction of Rab11 and
b-catenin with exocyst components Sec15 and
Sec10, respectively (Langevin et al. 2005).

The cell surface-located cadherins are sta-
bilized by their homophilic interactions. When
cell–cell junctions are artificially disrupted by
depletion of extracellular calcium or by other
means, the cadherins are actively internalized
(Kartenbeck et al. 1991). Under the physio-
logical situation, p120 plays a critical role in
cadherin stability (Reynolds 2007). It has been
proposed that the attachment of p120 to cad-
herin masks a dileucine motif on the juxta-
membrane region of the cytoplasmic domain,
which is sensitive to endocytotic signals
(Miyashita and Ozawa 2007), and thereby
stabilizes the cadherins. The p120-cadherin
binding is strengthened by the interaction of
p120 with nectin-associated afadin in a way
depending on Rap1, a small GTPase known
to be important for AJ formation (Kooistra
et al. 2007), and this results in the suppression
of E-cadherin endocytosis (Hoshino et al.
2005). A component of the tight junc-
tion, PALS1, can also regulate the cadherin

trafficking: In PALS1-knocked-down epithelial
cells, the exocyst complex is mislocalized, and
E-cadherin puncta accumulate in the cell per-
iphery (Wang et al. 2007). Recently, the
Cdc42-Par6-aPKC pathway was reported to
stabilize the AJ via the control of Arp2/
3-dependent endocytosis (Georgiou et al.
2008; Leibfried et al. 2008). Thus, the cadherin
stability is regulated in a variety of ways.

The level of cadherins on the cell surface is
also controlled by transcriptional and posttran-
scriptional regulators. Many zinc finger family
transcription factors have been implicated
in the control of cadherin expression. For
example, the zinc finger transcription factor
“Snail” is considered as a repressor of
E-cadherin transcription, and the expression
of Snail inversely correlates with that of
E-cadherin (Cano et al. 2000). Other zinc-
finger-family transcription factors, such as
SIP1, dEF1, Slug, Twist, and E12, similarly act
as cadherin transcription repressors through
their interaction with the E-box (Remacle
et al. 1999; Comijn et al. 2001; Perez-Moreno
et al. 2001; Hajra et al. 2002; Yang et al. 2004).
Recently, a family of micro RNAs (miRNAs),
such as miR-200, was reported to control the
expression level of E-cadherin during the
epithelial–mesenchymal transition (EMT).
Ectopic expression of miR-200 in cell lines up-
regulates the expression of E-cadherin. These
microRNAs act on E-cadherin transcriptional
repressors ZEB1/dEF1 and ZEB2/SIP1, and
thereby regulate EMT (Gregory et al. 2008;
Park et al. 2008). Another miRNA, miR-373,
was found to induce E-cadherin expression by
recognizing a target site in the promoter of the
gene for E-cadherin (Li et al. 2006; Place et al.
2008). These findings provide novel insights
into the regulation of cadherin gene expression,
which shows highly complex patterns during
development (Takeichi 1988).

CONCLUDING REMARKS

The AJs do not display highly specialized ultra-
structures, except for having the actin under-
coats, as compared with the tight junction,
desmosome, and gap junction, each of which
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shows uniquely decorated plasma membranes
or intercellular architecture. The relatively sim-
ple structure of the AJ may reflect its dynamic
nature and flexibility. In fact, the overall mor-
phology of AJs varies with the cell type and
changes during morphogenetic cell rearrange-
ments such as convergent-extension and EMT.
The observations of AJ remodeling during
Drosophila germ band extension suggest that
the AJs function not only as a physical ligand
between cells but also as an active regulator for
cell rearrangement (Lecuit and Lenne 2007).
Under these circumstances, studies on AJs will
continue for answering at least two lines of
questions: How are the AJs maintained or dis-
rupted? And, how does the regulation of AJs
contribute to normal morphogenetic cell be-
havior as well as to the pathogenic one, such
as cancer invasion and metastasis?

The integrity of AJs is sustained by cyto-
plasmic components, including catenins and
associated molecules, actin filaments, and micro-
tubules, as well as by the recycling machinery.
Although the entire system is apparently com-
plicated, one of the crucial mechanisms to
maintain the AJs obviously underlies the
interplay of cadherin and the cytoskeleton. We
have not obtained a complete answer to the
long-standing question of how actin regulates
the adhesive function of cadherins. Now, a
new question has been posed: What role do
MTs have in AJ assembly? Future studies are
needed to resolve these problems, through the
analysis of the roles of actin regulators and
MT-associated proteins.

To understand the morphogenetic roles of
AJs, physical and mathematical modeling is
becoming a powerful tool (Honda et al. 2008).
For example, anisotropy of cortical tension at
the AJs has been shown to be sufficient to
drive tissue elongation (Rauzi et al. 2008). On
the experimental biology side, it will be impor-
tant to delineate the cooperative mechanisms
between AJs and other morphogenetic regu-
lators that work at cell–cell borders, for
example, planar cell polarity (PCP) signaling
(Fanto and McNeill 2004), as AJs alone would
not be sufficient for responding to so many
morphogenetic signals.

Other important issues yet unanswered
include how the morphology of AJs differs
between cell types, and the roles of different
classic cadherin members in AJ formation.
Each cadherin subtype, which shows a unique
tissue distribution, might confer some kind of
tissue specificity on the structure and functions
of AJs, but this concept has not been tested. The
roles of nonclassic cadherins in AJ regulation
is another interesting issue, as some proto-
cadherins can down-regulate the functions of
classic cadherins (Chen and Gumbiner 2006;
Nakao et al. 2008). There must be a number of
unknown interactions between the classic and
nonclassic cadherin systems, as both of their
components accumulate at cell–cell contacts.
All these studies targeted on the AJ give us
deeper insights into the problem of how
individual cells, which can freely move when
isolated, can regulate themselves via cell–cell
contacts to generate highly ordered multi-
cellular systems.
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