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Adhesion and electronic structure of graphene on hexagonal boron nitride substrates
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We investigate the adsorption of graphene sheets on h-BN substrates by means of first-principles
calculations in the framework of adiabatic connection fluctuation-dissipation theory in the random
phase approximation. We obtain adhesion energies for different crystallographic stacking configura-
tions and show that the interlayer bonding is due to long-range van der Waals forces. The interplay
of elastic and adhesion energies is shown to lead to stacking disorder and moiré structures. Band
structure calculations reveal substrate induced mass terms in graphene which change their sign with
the stacking configuration. The dispersion, absolute band gaps and the real space shape of the low
energy electronic states in the moiré structures are discussed. We find that the absolute band gaps
in the moiré structures are at least an order of magnitude smaller than the maximum local values
of the mass term. Our results are in agreement with recent STM experiments.

PACS numbers: 81.05.ue; 73.22.Pr; 71.10.–w; 71.20.–b

I. INTRODUCTION

The development of graphene-based nanoelectronic
devices, such as high-speed transistors, calls for high
electron mobilities. Currently, substrates beneath the
graphene present an important source of disorder in-
cluding corrugation effects of the graphene1–4, charge
traps1,5–9 and dangling bonds10,11. A promising can-
didate to become a new standard substrate material is
hexagonal boron nitride (h-BN). This BN polymorph is
remarkably similar to graphite: The alternating B and N
atoms form two-dimensional layers of strong sp2 bonds
within a honeycomb arrangement and a lattice constant
which differs by less than 2% from that of graphene. The
h-BN sheets are weakly bound by long-range adhesive
forces at an equilibrium distance of 3.3Å12. The elec-
tronic structure, however, exhibits clear differences: the
chemically inequivalent sublattices make h-BN an insu-
lator with a band gap of 6.0 eV13. Recently, the fabrica-
tion of graphene devices on h-BN with highly improved
electron mobilities and carrier inhomogeneities, reaching
a quality comparable to suspended graphene has been
reported14,15. Thereby, the graphene was found to keep
its zero band gap and to stack quasi randomly orientated
on the h-BN substrate.

In this paper, we analyze the adhesion behavior and
the electronic structure of graphene on h-BN from first-
principles. The paper is organized as follows: In section
II, we show that methods beyond standard density func-
tional theory (DFT) are necessary to describe the weak
non-local attraction between the h-BN and the graphene
layers. We calculate adhesion energies using the ran-
dom phase approximation (RPA) within the framework
of the adiabatic connection fluctuation-dissipation theo-
rem (ACFDT). On the basis of elasticity calculations, we
discuss in section III mechanisms to release the stress re-
sulting from the lattice mismatch and leading to the for-
mation of moiré superstructures. Section IV is devoted

to the band structure and energy gaps of graphene on
h-BN. From DFT band structure calculations we derive
a low energy tight-binding description of graphene on h-
BN and find mass terms which change their sign with the
stacking configuration. This leads to an absolute gap in
the moiré structure which is at least an order of magni-
tude smaller than the maximum local values of the mass
term. The real space shape of the low energy states,
particularly the issue of sublattice polarization and the
occurrence of so-called snake states in regions where mass
term changes its sign is discussed in section V. Finally,
conclusions and an outlook are given in section VI.

II. ADHESION OF GRAPHENE ON h-BN

DFT is a successful approach to describe ground state
properties of solids. However, widely used semilocal ap-
proximations for the exchange-correlation energy like the
local density approximation (LDA) and generalized gra-
dient approximation (GGA)16,17 do not take long-range
correlations into account correctly. Thus, they fail to re-
produce van der Waals attraction and the prediction of
equilibrium geometries of van der Waals bound layered
systems, such as graphite or h-BN, proves problematic
with these methods18,19. A highly accurate means to
describe van der Waals forces from first-principles is pro-
vided by the random phase approximation to the corre-
lation energy20,21. Evaluated in the ACFDT framework,
the RPA correlation energy reads22

ERPA
c =

∫ ∞

0

dω

2π
Tr{ln[1− νχKS(iω)] + νχKS(iω)}, (1)

where χKS is the response function of the non-interacting

Kohn-Sham (KS) system and ν =
∑

i<j
e2

|~ri−~rj |
the

electron-electron interaction. Together with the total
KS Hartree-Fock energy, usually referred to as exact ex-
change energy EEXX

23, the total ground-state energy of
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the system reads as E = EEXX + ERPA
c . The ACFDT-

RPA method has been proven accurate to describe bulk
properties of solids such as lattice constants as well as
adsorption energies23. For layered van der Waals bonded
systems ACFDT-RPA yields a much more accurate de-
scription of the structural properties than LDA and vdW
DFT methods24,25.

To simulate the graphene–h-BN system in this way,
calculations were performed with the Vienna ab ini-

tio simulation package (VASP)26 using plane wave ba-
sis sets within the projector-augmented wave (PAW)
method27,28. To this end, a unit cell (4 atoms) contain-
ing graphene on an h-BN layer with 25Å of vacuum
above was constructed. Six stacking configurations were
considered (Fig. 1a): starting from configuration I, the
graphene sheet was translated downwards by half a B-N
bond length in each step until the initial configuration
was reached again. The lattice constant was chosen to
2.49Å, referring to the LDA optimized lattice constant
of h-BN (a discussion of the lattice mismatch follows be-
low). χKS , ERPA

c and EEXX were evaluated with the
LDA KS orbitals. In these computationally demanding
simulations, convergence of the results was reached at a
kinetic energy cut-off of 347 eV for the response function,
a plane wave cut-off of 520 eV and a mesh of 7 × 7 × 1
k-points. Additionally, standard LDA/GGA calculations
were performed for the same geometries with a 24×24×1
k-points grid and a kinetic energy cut-off of 500 eV.

Fig. 2 shows the RPA total energies per unit cell
(relative to the energy at large separation) for the dif-
ferent stacking configurations as a function of the inter-
layer spacing d. The curves show that, starting from the
highest-energy configuration I, the lowest-energy config-
uration V is approached step-wise. The configurations
I, II and III exhibit total energy minima at interlayer
spacings between 3.50Å and 3.55Å, whereat II and III
are energetically virtually equivalent with minima of -
65 meV; the minimum of configuration I is only slightly
higher (−62meV). Configuration V, where the carbon
atoms sit on top of a boron atom and in the middle of
the BN hexagon, is energetically most favorable with a
minimum of -83 meV and an equilibrium layer distance
of 3.35Å. Energetically closest to V are IV (-71 meV) and
VI (-70 meV), where the nitrogen atom is also not cov-
ered by a C atom or a C-C bond. The curves exhibit no
additional energy barrier for translation. For distances
larger than 4Å, all configurations become energetically
indistinguishable.

To get further insight to the nature of the attractive
forces between graphene and h-BN, we analyze the decay
of the RPA correlation energy ERPA

c with the interlayer
spacing d (Fig. 2 inset). We find ERPA

c ∼ d−4. This is
clearly different from an exponential falloff as would be
expected for local correlation effects as included in LDA
or GGA. It rather indicates bonding of vdW type which
yields power law decays18 ERPA

c ∼ d−p with p = 4 for
2D insulating systems18,19.

A comparison of the RPA calculations with the stan-

Figure 1. (Color online) (a) Top view of the calculated stack-
ing configurations for graphene on h-BN with the carbon
atoms (yellow), boron (red) and nitrogen (light blue). Be-
tween each neighboring images the graphene lattice is shifted
downwards by half a B-N bond. (b) Moiré structure with
persisting lattice mismatch. A lattice mismatch of 1.8% cor-
responds to a 55 × 55 moiré unit cell. For clarity, a smaller
moiré unit cell (13x13) is shown. (c) Adhesion energy (Eads)
landscape in the moiré pattern (color-coded). (d) The same
for the local sublattice symmetry breaking ∆.

dard LDA and GGA methods is given in Fig. 3. The
LDA (see also 29) yields a qualitatively correct equilib-
rium layer separation but underestimates the RPA ad-
hesion energy by about 30%. The GGA, actually an
improvement over the LDA in many cases16,17, exhibits
an even more dramatic underbinding with a weak min-
imum giving a negligible adhesion energy of less than 6
meV/unit cell at an extremely high equilibrium distance.
The LDA and GGA curves nearly coincide for distances
larger than 4.5Å and underestimate the van der Waals
interaction also in this asymptotic region. The results
clearly show that long-range correlations have to be taken
into account for an accurate description of the layer at-
traction.

III. EXISTENCE OF MOIRÉ STRUCTURES

We now turn to the discussion of the consequences of
the lattice mismatch (1.8% in LDA and 1.9% in GGA)
between the graphene and the h-BN and address the
question whether stacking disorder or moiré superstruc-
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Figure 2. (Color online) Total RPA energies per unit cell for
the stacking configurations I–VI as a function of the distance,
d, between the graphene and h-BN layer. Inset: RPA correla-
tion energy (relative to the correlation energy at large separa-
tion) of configuration V as function of d−4 between 2.9Å and
4.7Å.
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Figure 3. (Color online) Total energies per unit cell of config-
uration V from RPA, LDA and GGA.

tures should occur. To this end, we estimate the total
energy difference of a structure with stacking according
to the minimum energy configuration V in the entire sam-
ple and a moiré structure with persisting mismatch (Fig.
1b).
In the case of persisting mismatch in the system, a

moiré pattern with a large unit cell (55x55 for 1.8% mis-
match) is formed (Fig. 1b). Here, out-of-plane corruga-
tions resulting from interlayer spacings varying between
3.35Å (region V) and 3.55Å (region I) are negligible,
since their amplitude (0.2Å) is small as compared to their
wavelength (∼135Å). Hence, we focus on in-plane de-
formations. It is visible from Fig. 1b that our choice
of stacking configurations I–VI simulated in RPA covers
the sample uniformly and gives a sketch of the energy
landscape (Fig. 1c). Those parts of the moiré pattern,

where the nitrogen atoms are mainly beneath the cen-
ter of the carbon rings (regions IV–VI), are energetically
more favorable than regions I–III. For the moiré struc-
ture we estimate the average adhesion energy per two
carbon atoms by the average over the adhesion energies
of the configurations I-VI. We obtain an average adhe-
sion energy of 69 meV/(2 C-atoms). This is 14 meV/(2
C-atoms) less than the adhesion energy of 83 meV/(2
C-atoms) in configuration V.
In the other case with the entire sample in configura-

tion V, the lattice mismatch must be overcome and strain
energy has to be brought up to force graphene and h-BN
to have the same lattice constant. Now, two situations
have to be distinguished. For graphene on a h-BN crys-
tal as in Refs. 14, 30, and 31, the uppermost h-BN layer
will likely keep its lattice constant at the bulk value. To
stretch the graphene on the lattice constant of h-BN, 40
meV/(2 C-atoms) of strain energy have to be overcome.
Therefore, the strain energy overcompensates the adhe-
sion energy gain of 14 meV/(2 C-atoms) by far when
forcing the entire sample to configuration V. Hence, the
lattice mismatch between the graphene and the h-BN will
persist and strain will be released by realizing different
stacking configurations as in the moiré structure depicted
in Fig. 1. This explains why multiple stacking configura-
tions have been realized in the experiment of Ref. 14 and
also explains the recent observations of moiré patterns in
STM experiments30.
Second, one can conceive a situation where graphene

is adsorbed on a free-standing monolayer of h-BN. In
this case, the elastic properties of h-BN have to be ac-
counted for since, then, a compression of h-BN is possi-
ble. Our first-principles calculations (see App. A) yield
two-dimensional Lamé parameters and Young’s moduli
of λ = 59N/m, µ = 125N/m, Yh−BN,2D = 309N/m
for single h-BN sheets. Compared to graphene, where
YG,2D ≈ 340N/m (YG,3D ≈ 1.0TPa)32, the stiffness of h-
BN is on the same order (about 10% smaller) and thus re-
markably high. For graphene on free-standing h-BN, we
find that a composition of stretched graphene and com-
pressed h-BN is energetically most favorable and obtain
a common optimized lattice constant of 2.467Å (LDA)
with the total strain energy being 18 meV/(2 C-atoms).
Hence, this strain energy is very close to the adhesion
energy gain of 14 meV/(2 C-atoms). This might lead to
an interesting competition of these two energy contribu-
tions and one might expect that systems with graphene
on free-standing h-BN are highly sensitive to the experi-
mental environment.

IV. BAND STRUCTURE AND ENERGY GAPS

We now investigate the band structure of graphene–h-
BN hybrid structures and study the changes upon for-
mation of a moiré structure. To this end, we calculated
the band structure of all geometries depicted in Fig. 1a
within the LDA. For configurations II, IV and VI we de-
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I II III IV V VI

∆(meV) +57 +7 -34 -25 -47 +14

1 − t̃/t 0 0.010 0 -0.002 0 -0.010

Table I. Band gap ∆ and ratio of the two inequivalent nearest-
neighbor hopping parameters t̃/t with t = 2.45eV in struc-
tures with broken trigonal symmetry. The average band gap
is -4 meV.

tect a small shift of the Dirac point in the hexagonal
Brillouin zone away from the K to the M point (IV, VI)
and in the opposite direction (II). Mapping the problem
on a nearest-neighbor tight-binding model, we see that a
description of graphene in configurations II, IV and VI
requires two different hopping parameters, t and t̃, as
the threefold symmetry of the graphene nearest neigh-
bor bonds is broken — analogous to the case of uniax-
ially strained graphene3,4. Fits of the TB model to the
DFT results yield constant t = 2.45 eV in all regions and
t̃ 6= t in regions II, IV and VI (Table I). In agreement
with29,33, we extract finite band gaps ∆ in all regions
varying between 7 meV and 57 meV. However, we find
that these gaps have different signs (Table I), where we
use the convention that a ∆ > 0 corresponds to states
close to valence band maximum being entirely localized
in sublattice B, while ∆ < 0 corresponds to states at
valence band maximum being localized in sublattice A.
In a moiré structure like in Fig. 1d this leads to a

landscape of local sublattice symmetry breaking ∆ with
changing signs (Fig. 1d, Table I). We note that the local
sublattice symmetry breaking does not necessarily lead
to local spectral gaps in the LDOS. To gain understand-
ing of the effect of the modulated gap landscape in the
moiré structure on graphene electrons, we consider the
following tight binding model:

H = −t
∑

〈i,j〉

(

a†i bj + h.c.
)

+
1

2

∑

i

∆i

(

a†iai − b†ibi

)

(2)

with t = 2.45 eV the nearest-neighbor hopping, a†i (b†i )
the creation operators of an electron on sublattice A (B),
and ∆i the local mass term. The lattice vectors of the
moiré unit cell of size n× n are defined as ~an1,2

= n~a1,2
with ~a1 = a (1, 0) and ~a2 = a

(

−1/2,
√
3/2

)

being the
simple graphene unit cell vectors and a the graphene lat-
tice constant. We denote local mass term by ∆i, where
i = (l,m) describes the position within the the moiré
cell. ∆i is periodic with the moiré cell. Transforming the
∆i to the reciprocal space, we find that the zeroth order
Fourier component

∆~G=0
=

1

N

∑

i

∆i (3)

is given by the average of all local gaps in the moiré
cell. In addition to ∆~G=0

, the effect of the first order

components of ∆~G
with the smallest possible ~G 6= 0 on

the band structure is discussed in the following. To this
end, we consider a sinusoidally modulated gap term

∆i = A sin (2πl/n+Φ1) +B sin (2πm/n+Φ2) + C.
(4)

Here, A, B, C and Φ1,2 denote constants. Taking the lo-
cal mass terms obtained from DFT in regions I-VI, realis-
tic parametersA = 18.6 meV, B = 42.0 meV, Φ1 = 1.884
and Φ2 = 1.531 can be obtained from a fit.
First, we concentrate on the question whether the mod-

ulated gap landscape opens an absolute band gap or not.
In Fig. 4a, the two energy bands closest to the Fermi
level for a 20x20 graphene supercell are depicted with a
gap landscape as given by Eq. 4 and different amplitudes
A, B . The average gap is set to zero (∆~G=0

= C = 0).
The green dashed line shows the case of a gap landscape
with realistic amplitudes A, B as given above. We see
that the bands nearly coincide with the bands obtained
for entirely ungapped graphene (∆i = 0, red solid line)
and most importantly, no band gap opens. This holds
even for unrealistically large values of the modulation
amplitudes on the order of the hopping t (also Fig. 4a,
blue and purple dashed lines). For large modulation am-
plitudes, another important feature becomes visible: a
renormalization of the Fermi velocity vF = 1

h̄
∂E
∂k

. For
A, B being 100 times larger than the realistic values, vF
drops down by about 50% (purple dashed line). For a
realistic gap landscape, though, this effect is too small
to be detected in experiments — in contrast, e.g., to the
case of twisted bilayer graphene34.
So, near the Fermi level, the energy bands of graphene

are only weakly affected by a modulated gap landscape
with realistic parameters and zero average gap – no band
gap opens and the amplitudes are too low to renormal-
ize the Fermi velocity measurably. At the Brillouin zone
boundary (Fig. 4b), however, a difference to the per-
fect isolated graphene becomes apparent: here, mini-
gaps open similar to the case of graphene on Ir(111)
moirés35,36.
Now we discuss the scenario of a non-zero average gap,

i.e., the case where the zeroth Fourier component is non-
vanishing (∆~G=0

= C 6= 0). Fig. 5 shows the bands
near the Fermi level of a realistic gap landscape with
C = 5 meV (green dashed line) and C = 15 meV (blue
dashed line). Here, an absolute band gap on the order
of C opens that remains stable upon adding ∆~G 6=0

terms

of realistic amplitudes. Similar as for the Fermi velocity
discussed in Fig. 4 (a), our calculations showed that the
band gap reduces measurably (but not entirely closes)
when the modulation amplitude is increased by orders of
magnitude. However, in the realistic scenario of graphene
on h-BN, Fig. 5 clearly shows that the only quantity de-
termining the absolute band gap is the zeroth Fourier
component ∆~G=0

. Hence, the average gap ∆~G=0
corre-

sponds to the absolute spectral gap in the moiré struc-
ture, while amplitude and periodicity of spatially oscil-
lating contributions to ∆ renormalize the Fermi velocity.
For the structure of Fig. 1b we find ∆̄ ≈ −4 meV. There-
fore, we expect an absolute gap which is at least an order
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of magnitude smaller than the maximum local values of
|∆|. This is well in line with the absence of a gap being
reported in transport14 and STM experiments30. Our TB
simulations further show that velocity renormalizations
are below 2% for the moiré structure of Fig. 1b.

V. REAL SPACE SHAPE OF LOW ENERGY

STATES

To understand how spatially modulated gap terms
(∆~G 6=0

) affect the graphene electrons and how they mani-

fest, for instance, in local probe experiments, we visualize
the states close to the Fermi level in real space. The Figs.

6, 7 and 8 illustrate a 20x20 graphene supercell with sub-
lattice A atoms as dots in black and sublattice B atoms
as dots in red color. Here, the size of the dots illustrates
the contribution of each atom to the states below the
Fermi level (Figs. 6–8a) and above (Figs. 6–8b) in close
proximity to the Dirac point.

Fig. 6 shows the case of realistic modulation ampli-
tudes and vanishing average gap ∆~G=0

= 0. In this
case, the amplitudes of low energy states are equally
distributed over both sublattices throughout the entire
moiré cell as in ungapped graphene. There is no clear
enhancement or decrease of probability density in any
region of the moiré cell. However, increasing the gap
modulation amplitude by a factor of 25 (Fig. 7) induces
a localization of the low energy states in regions where
the local gap |∆i| is small — so-called snake states occur,
but no absolute band gap opens. Apparently, the states
are equally localized in both sublattices.

Whether or not snake states occur depends on the ratio
of the modulation amplitudes A,B to the energy En ≈
2πh̄vF /(na) related to the moiré periodicity na. 20x20
and 50x50 moiré cells lead to En ≈ 0.7 eV and 0.3 eV,
respectively. In the case of large modulation amplitudes
A,B > En (corresponing to Fig. 7), the wave functions
near the Dirac point clearly have the shape of snake states
— in contrast to the case of A,B ≪ En, where the low
energy LDOS is almost homogeneous in the entire moiré
cell (Fig. 6). The situation of Fig. 6 is well in line
with no gap or LDOS inhomogeneities being detected in
the local probe experiments of Ref. 30. It is, however,
important to note that a moiré periodicity of 100a which
might be reached by external strain or twisting already
corresponds to an intermediate case of A, B, and En

being on the same order magnitude.

The shape of the low energy states again changes for
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Figure 6. (color online) 20x20 graphene supercell (red: sublattice A, black: sublattice B) with sinusoidally modulated gap
terms with realistic amplitudes of A = 18.6 meV, B = 42.0 meV and vanishing average gap (∆~G=0

= 0). The size of the dots
depicts the contribution of each atom to states close to the Dirac point in an infinitesimal energy window around the valence
band maximum (a) and the conduction band minimum (b).

Figure 7. (color online) The same as Fig. 6 for a 20x20 moiré cell with a sinusoidally modulated gap with amplitudes Ã = 25A,

B̃ = 25B, and zero average gap (∆~G=0
= 0). So-called snake states occur.

a system with a non-zero average gap ∆~G=0
≈ A,B

on the order of the modulation amplitudes. In Fig. 8
the case of a realistically modulated gap landscape and
∆~G=0

= +50 meV is depicted: the states are homoge-
neously distributed in space fully but sublattice polar-
ized – with the state below Fermi level almost entirely
localized in sublattice B (Fig. 8 (a)) and vice versa
(Fig. 8 (b)). Our DFT calculations yield the case of
a much smaller average gap on the order of few meV
(∆~G=0

≪ A,B). In that case, two situations have to be
distinguished: First, in the case of ∆~G=0

≪ A,B ≪ En

sublattice polarized states as in Fig. 8 should be de-
tectable in STM experiments, if the LDOS is measured
inside an energies range E < ∆~G=0

which is sufficiently
close around the Dirac point. Otherwise low energy
states without any sublattice polarization as shown in
Fig. 6 will be detected. This situation would be again in
line with the STM experiments of Ref. 30.

Differently, in the case of ∆~G=0
≪ En ≪ A,B, there

is generally no the sublattice polarization detectable in
the low energy LDOS but snake states similar to Fig. 7
occur.

VI. CONCLUSIONS

In summary, we have calculated accurate adhesion en-
ergies for graphene–h-BN systems by means of ACFDT-
RPA. A comparison of the strain energies with the adhe-
sion energy differences suggests that a lattice mismatch
between h-BN and graphene persists in experiments like
Refs. 14, 30, and 31. This explains the experimental
observation of different stackings, moiré patterns, and
stacking disorder. Our band structure calculations show
that the gap landscape in the moiré structure exhibits
mass terms with changing sign and a small average gap.

The interplay of constant and spatially oscillating gap
terms is decisive for determining whether or not phe-
nomena like Anderson localization can occur37 — partic-
ularly in experiments where graphene is very close to the
charge neutrality point31. Gaps with spatially changing
sign also control the transport properties of systems like
(Hg,Cd)Te quantum well structures38 which can be tuned
into a topological insulator. While we find that struc-
tures like those in Refs. 14, 30, and 31 are likely not in
a “topological insulator regime”, where charge transport
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Figure 8. (color online) The same as Fig. 6 for a 20x20 cell of sinusoidally gapped graphene with realistic amplitudes A, B
and a finite average gap (here: ∆~G=0

= 50 meV).

would occur through protected edge states, it remains
to be seen whether this might be realized in structures
like externally strained graphene on free-standing h-BN,
where considerably larger moiré periodicities might be
realized.
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Appendix A: Elastic properties of h-BN sheets

Here, we now discuss the calculations of the elastic
constants of h-BN (the elastic properties of graphene
have been widely investigated in experiment32,39 and
theory40). The isotropic Young’s modulus and Lamé
parameters of single h-BN sheets were obtained from

DFT calculations. These elastic constants are deter-
mined by strong in-plane chemical bonds and well de-
scribed within the LDA/GGA41. For single h-BN sheets,
the two-dimensional Young’s modulus is defined by

Y2D =
1

A0

∂2Es

∂ǫ2

∣

∣

∣

ǫ=0
, (A1)

where ǫ is the axial strain, Es the total strain energy
and A0 the equilibrium surface. The strain energies of
a h-BN sheet were evaluated with uniaxial strains be-
tween -8% (compression) and 8% (tension). We obtain
the two-dimensional Lamé parameters and Young’s mod-
uli of λ = 59N/m, µ = 125N/m and Yh−BN,2D = 309N/m
within LDA and λ = 54N/m, µ = 123N/m, Yh−BN,2D =
300N/m within GGA. The Yh−BN,2D correspond to three-
dimensional Young’s moduli of Yh−BN,3D = 0.94TPa
(LDA) and Yh−BN,3D = 0.91TPa (GGA), assuming an
interlayer separation of 3.3Å12. Our full potential PAW
calculations yield about 10% higher elastic constants
Yh−BN,2D and µ than calculations using Gaussian basis
sets42. The results are in agreement with the experi-
ment, where Yh−BN,2D,exp ≈ 220− 510N/m was obtained
for few-layer h-BN43.
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