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Attempts to establish the relationship between adhesion and friction at the contact
of solid surfaces has been frustrated by their inevitable roughness. The recent de-
velopment of nanotribology, in which a single asperity contact can be modelled in
the surface force apparatus (SFA) or the atomic force microscope (AFM), has made
possible the simultaneous measurement of friction and adhesion in a sliding experi-
ment. For the case of pure adhesion, continuum mechanics models exist which assist
in the interpretation of the measurements. In this paper these models are extended
to include both static and sliding friction. The approach is through the concept of
fracture mechanics, in which the rate of release of elastic strain energy is equated
to the work done against surface forces, both frictional and adhesive. The model
appears to be consistent with currently available experimental data.

1. Introduction

The idea that friction is associated with adhesion is an old one, generally attributed
to Desaguliers in the early years of the 18th century, but it was Bowden & Tabor
(1950) who made it a leading concept in their ‘plastic junction’ theory of friction. The
difficulty in providing experimental support for this or any other theory of friction lies
in the inevitable roughness of real surfaces and the fact that the real area of contact
is not known. Further, adhesion is difficult to measure since elastic relaxation of
the higher asperities when the load is removed breaks the adhesive contact of the
lower junctions. To avoid these difficulties attempts are made to experiment with a
single asperity contact, usually modelled by a spherical tip in contact with a plane
surface, in which the real and apparent areas of contact coincide. This quest has been
significantly advanced in recent years by the development of two novel instruments:
(i) the surface force apparatus (SFA), in which crossed cylinders of cleaved mica or
similar surfaces are pressed together (Homola et al. 1990); and (ii) the atomic force
microscope (AFM) in which a probe of tip radius 10–100 nm makes contact with a
flat surface (Sarid 1991). Both instruments have been developed to permit sliding
motion and to measure both normal and tangential (friction) forces, which enables
the interaction between adhesion and friction to be observed directly. A different
situation in which perfect contact can be attained arises when one or both solids
are of a compliant material, such as rubber, polymer or gelatine, which can conform
elastically to small irregularities of the surfaces.

Bowden & Tabors’ plastic-junction theory was originally developed with ductile
metals in mind where, as the name implies, the contacting asperities were assumed
to deform plastically. In the intervening years, with highly finished or well run-in
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surfaces, or with either harder or more compliant materials, the elastic deformation
of asperities has been recognized to play a more significant role. AFM experiments
in ultra-high vacuum frequently result in plastic deformation. This presents an im-
portant problem in nanomechanics, but the present work, like the adhesion theories
of which it is an extension, will be restricted to perfectly elastic deformation. Single
asperity contact will be modelled by a spherical tip in contact with a flat. The aim
is to derive a continuum mechanics model of the static and sliding friction of such a
contact in the presence of adhesive forces. The AFM is capable of resolving variations
of sliding friction force at the periodicity of individual atoms. It will be appreciated,
however, that a continuum theory will ’smear out’ periodic variations on the atomic
scale.

Continuum theories for the adhesion and separation of a spherical elastic con-
tact under the action of purely normal forces are well advanced. Adhesion between
rigid spheres where the surface forces are governed by the Lennard–Jones potential
was analysed by Bradley (1932). Corresponding theories taking elastic deformation
into account were presented by Johnson, Kendall & Roberts (JKR) in 1971 and by
Derjaguin, Muller & Topolov (DMT) in 1975 (subsequently shown to be in error
by Muller et al. (1983) and by Pashley (1984)). These theories, at first thought to
be competitive, were recognized to apply to the opposite ends of a spectrum of a
non-dimensional parameter:

µ =
(
Rw2

E∗2z3
0

)1/3

, (1.1)

where the R is the radius of the spherical surface, w is the ’work of adhesion’ (equals
twice the surface energy γ), z0 is the equilibrium spacing in the Lennard–Jones
potential and E∗ is the combined elastic modulus = [(1− ν2

1)/E1 + (1− ν2
2)/E2]−1.

The parameter µ was shown by Tabor (1977) to be a measure of the magnitude
of the elastic deformation compared with the range of surface forces. For µ small
(less than 0.1 say) elastic deformation is negligible and the Bradley analysis provides
a good approximation; for µ large (greater than 5 say) the JKR theory is good.
For intermediate values of µ numerical analysis is necessary to match the elastic
deformation to the force-separation relationship. This was first done (for a Lennard–
Jones potential) by Muller et al. (1980); more complete computations have recently
been made by Greenwood (1996).

A useful analysis in closed form of the intermediate regime has been made by
Maugis (1992) using the Dugdale approximation that the adhesive force intensity σ0

is constant until a separation h0 is reached, whereupon it falls to zero (see figure 1).
For the work of adhesion w and the maximum force σ0 to match those of Lennard–
Jones, h0 = 0.971z0. For analytical convenience this analysis will be used to model
adhesion in the present paper. It will be outlined in principle in the next section
and the relevant results quoted. It will also be shown that when Tabor’s elasticity
parameter µ is small (less than 5 say), the Maugis–Dugdale relationships reduce to
the well known JKR equations.

The effect of adhesive forces in the contact of spheres is to increase the contact
radius above that prescribed by the Hertz theory. When tangential forces are applied
to such an adhesive contact the consequences are not at all well understood. There
is some experimental evidence (see, for example, Savkoor & Briggs 1977) that the
surfaces tend to peel apart, showing that there is some interaction between normal
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Figure 2. The Maugis–Dugdale distribution of surface traction comprises two terms: the Hertz
pressure p1 (equation (2.1)) acting on area radius a and the adhesive tension pa (equation (2.6))
acting on area radius c.

and tangential surface forces. This aspect of the problem will be considered and
incorporated in the continuum model in §4.

2. Continuum theories of adhesion

(a ) The Maugis–Dugdale theory
The circular contact between a sphere of radius R and a flat surface, as described

by the Maugis–Dugdale theory, is shown in figure 2. Intimate contact is maintained
over a central region of radius a; adhesive forces of intensity σ0 extend to a radius c.
In the annulus a < r < c the surfaces separate slightly by a distance increasing from
zero to h0. The distribution of surface traction comprises the following two terms.

(i) The Hertz pressure associated with a contact of radius a is given by

p1(r) = (3P1/2πa2){1− (r/a)2}1/2, (2.1)

where
P1 = 4E∗a3/3R, (2.2)

the elastic compression by
δ1 = uz1(0) = a2/R, (2.3)

Proc. R. Soc. Lond. A (1997)



166 K. L. Johnson

the displacement at r = c by

uz1(c) = (1/πR){(2a2 − c2) sin−1(a/c) + a
√
c2 − a2} (2.4)

and the gap between the surfaces by

h1(c) = c2/2R− δ1 + uz1(c). (2.5)

(ii) The adhesive (Dugdale) stress is given by

pa(r) = −(σ0/π) arccos
{

2a2 − c2 − r2

c2 − r2

}
, r 6 a,

= −σ0, a 6 r 6 c, (2.6)

the adhesive force by

Pa = −2σ0{c2 arccos(a/c) + a
√
c2 − a2}, (2.7)

the compression by

δa = −(2σ0/E
∗)
√
c2 − a2, (2.8)

and the gap between the surfaces at r = c by

ha(c) = (4σ0/πE
∗){
√
c2 − a2 arccos(a/c) + a− c}. (2.9)

The net traction acting on the contact area p(r) is the sum of p1(r) and pa(r),
given by equations (2.1) and (2.6), as shown in figure 2. Similarly, the net contact
force P = P1 + Pa. The adhesive traction for the Dugdale model falls to zero when
the separation of the surfaces exceeds h0. Therefore we may write

h(c) = h1(c) + ha(c) = h0 = w/σ0. (2.10)

We now introduce the non-dimensional parameters:

ā ≡ a
(

4E∗

3πwR2

)1/3

, c̄ ≡ c
(

4E∗

3πwR2

)1/3

, Ā ≡ πc̄2,

P̄ ≡ P

πwR
, δ̄ ≡ δ

(
16E∗2

9ū2w2R

)1/3

,

and

λ ≡ 2σ0

(
9R

16πwE∗2

)1/3

. (2.11)

It may be shown that λ = 1.16µ. It is thus an alternative measure of the ratio of
the elastic deformation to the range of surface forces. Substituting for h1(c) and
ha(c) from equations (2.5) and (2.9), and making use of the above non-dimensional
parameters, equation (2.10) may be written
1
2λā

2{(m2−2) arccos(1/m) +
√
m2 − 1}+ 4

3λ
2ā{
√
m2 − 1 arccos(1/m)−m+ 1} = 1,

(2.12)
where m = c/a. From equations (2.2) and (2.7) the net contact force becomes

P̄ = P̄1 + P̄a = ā3 − λā2{
√
m2 − 1 +m2 arccos(1/m)}, (2.13)

and, from equations (2.3) and (2.8), the total elastic compression becomes

∆ = ā2 − 4
3λā
√
m2 − 1. (2.14)
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Figure 3. Contact radius–load curves given by the Maugis–Dugdale theory in terms of the
parameter λ: – – –, ā; ——, c̄. When λ > 5, c̄→ ā→ the JKR result.

The variation of c̄ and ā with the load P̄ , for any particular value of λ, is found by
the simultaneous solution of equations (2.12) and (2.13), as shown in figure 3. The
effect of adhesion is to increase the contact size (both c̄ and ā) above the Hertz value.
The surfaces remain in contact at zero load and a negative (tensile) force Pc—the
‘pull-off force’—is required to separate them. When λ is large (greater than 5 say)
the values of c̄ and ā approach equality and are given by the JKR relationship, as
shown later.

(b ) The JKR theory
As the parameter λ is increased, elastic deformation increases the radius a com-

pared with the length d of the ‘Dugdale zone’ in which the adhesive forces act (see
figure 1), i.e.

ε ≡ d/a = (c− a)/a = (m− 1)→ 0.
Letting (m− 1) become small in equation (2.12) gives

1
2λā

2{
√

2ε−
√

2ε}+ 4
3λ

2ā{
√

2ε ·
√

2ε− ε} = 1

i.e.
λ =

√
3/(4āε),

whereupon equation (2.13) becomes

P̄ = ā3 −
√

3/(4āε)ā2{
√

2ε+
√

2ε},
i.e.

P̄ = ā3 −
√

6ā3 = P̄1 −
√

6P̄1. (2.15)
The adhesive traction, given by equation (2.6), in the limit becomes

pa(r) = (P/2πa2){1− (r/a)2}−1/2. (2.16)

This traction exhibits infinite tension at the edge of contact (r = a), as shown in
figure 1b, which corresponds to an external axisymmetric crack having a mode I
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Figure 4. Contact area and friction measurements in dry air between crossed cylinders of smooth
mica in the SFA (Homula et al. 1992). The variation of both contact area and friction with load
fits the JKR theory, giving a uniform frictional stress τ0 = 2× 107 N m−2.

stress intensity factor (Maugis & Barquins 1978):

KI =
P

2a
√
πa

(2.17)

3. Static and sliding friction

We now consider an elastic sphere in contact with a flat surface, subjected to a
constant normal load P and a monotonically increasing tangential force T . Adhesion
forces discussed previously are neglected in this section. The load P gives rise to a
circular contact of radius b given by the Hertz theory. If slip at the interface were
prevented, the tangential traction at the contact surface (r 6 c) is given by Johnson
(1985)

q(r) = (T/2πb2){1− (r/b)2}−1/2. (3.1)
The singularity at r = b gives rise to mode II and mode III stress intensity factors
around the periphery given by

KII =
T

2b
√
πb

cosϑ and KIII =
T

2b
√
πb

sinϑ, (3.2)

where ϑ is the angle between the radius vector at the point in question and the
direction of T .

If we were dealing with the conventional mode II fracture of a solid containing an
external axisymmetric crack, when KII or KIII reach critical values the neck would
shear in an unstable manner. But the contact situation is different. As the stress
intensity is relieved by interfacial microslip, which penetrates into the contact area
from the periphery, the ‘crack faces’ behind the ‘crack front’ remain pressed into con-
tact by the Hertz pressure. This situation has been examined in the past by Savkoor
(1987), but recent experimental evidence suggests a somewhat different approach. In
dry sliding experiments of mica on mica, by Homola et al. (1990) in the SFA, friction
and contact area were measured simultaneously and found to be in direct propor-
tion (figure 4), showing that the frictional shear stress was constant, independent of
load. Similar experiments in the AFM by Carpick et al. (1996), although unable to
measure the contact area directly, found that the friction measurements had a re-
markably close fit to the variation in area given by the JKR theory (figure 5), which
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Figure 5. Friction measurements in UHV in the AFM (Carpick et al. 1996). Fitting the JKR
area–load relationship gives w = 0.21 J m−2 and a uniform frictional stress τ0 = 0.84 GPa.
Fitting Maugis–Dugdale with b = a+ 0.4(c− a) gives w = 0.19 J m−2 and τ0 = 0.96 GPa.
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Figure 6. Traction distribution in static friction caused by the penetration of microslip from
the periphery to the centre of the contact (equation (3.3)).

again strongly suggests a constant frictional shear stress. If it is assumed that this
behaviour also applies in the microslip regime, before full sliding occurs, then we have
the situation in mode II which is the equivalent of a ‘Bilby–Cottrell–Swinden crack’
in mode III, and of a Dugdale crack in mode I. The contact area comprises a central
circle of radius e in which there is no slip, surrounded by an annulus (e 6 r 6 b)
of microslip in which the shear traction τ0 is constant. The traction distribution is
continuous with no singularity at either r = e or at r = b. It has been shown by
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Savkoor (1987) to be

q(r) =
τ0

π
arccos

{
2b2 − e2 − r2

e2 − r2

}
, r 6 e; q(r) = τ0, e 6 r 6 b (3.3)

and is plotted in figure 6 for different values of γ = e/b. When e→ b, i.e. γ → 1 this
expression for the traction reduces to that in equation (3.1). The tangential force is
expressed by

T =
∫ b

0
2πq(r)r dr = 2τ0b

2[arccos γ + γ
√

1− γ2] (3.4)

and the tangential compliance by

D =
(2− ν)

(1− ν)E∗
τ0b
√

1− γ2. (3.5)

The slip displacement s at r = b when microslip has penetrated to r = e = γb, has
been found by Savkoor (1987) to be

s =
2τ0b

(1− ν)E∗
[(2− ν){

√
1− γ2 arccos γ + 1− γ} − ν cos 2ϑ]. (3.6)

Averaging round the periphery gives:

s̄ =
2(2− ν)τ0b

π(1− ν)E∗
[
√

1− γ2 arccos γ + 1− γ]. (3.7)

As the tangential force T is increased from zero to its limiting value Ts = πτ0b
2,

microslip penetrates from the periphery to the centre (i.e. γ decreases from 1.0 to
0), and s̄ increases from zero to a maximum s̄s according to equation (3.7). At this
point complete sliding begins.

The question now arises: what is the radius b of the effective contact area over
which the frictional traction acts? In the JKR regime the sharp edge of the contact
makes b unequivocally equal to the JKR radius a, given by equation (2.15). In the
Maugis–Dugdale regime the situation is far from clear cut. The surface separation
increases in the Dugdale zone from zero at r = a to h0 at r = c, with a corresponding
reduction in tangential surface force. Hence the effective radius b would be expected
to lie between a and c. We write therefore

b = a+ x(c− a), (3.8)

where x is a factor between 0 and 1.
Returning to the AFM measurements in figure 5, Carpick et al. (1996) explain

how the area πa2, obtained from the JKR equation (2.15), was fitted to the friction
measurements. Taking E∗ = 44 GPa for a platinum tip of radius R = 140 nm in
contact with mica, the JKR fit shown in figure 5 gives w = 0.19 J m−2 and τ0 =
0.84 GPa. If the equilibrium z0 separation is taken to be 0.2 nm, the above values give
the Tabor elasticity parameter µ ≈ 0.7 or the Maugis–Dugdale parameter λ ≈ 0.8.
These values lie well in the Maugis regime, so that it is surprising at first sight that
the measurements correlate so well with the JKR area. To resolve this paradox we
note first that Greenwood (1996), in a numerical solution of the adhesion problem
with a Lennard–Jones potential, defined the effective contact radius as that which
coincided with the maximum in the Lennard–Jones force. He found that this radius
agreed closely with the JKR radius for all values of µ greater than 0.5. In our case,
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using the Maugis–Dugdale theory with λ = 0.8, taking x = 0.4 in equation (3.8)
results in the area πb2 having an equally good fit with the friction measurements in
figure 5, yielding w = 0.19 and τ0 = 0.96 GPa.

We shall now consider the situation when friction specified by the above model is
combined with the adhesion model specified in §2.

4. Interaction between friction and adhesion

We now seek to model the possible interaction between friction and adhesion. In
the conditions where linear elastic fracture mechanics (LEFM) applies, i.e. when the
adhesion and slip zones are small compared with the contact radius, the situation is
one of mixed mode interfacial fracture (see Hutchinson 1990). We can then express
the strain energy release rate:

G =
1

2E∗

[
K2

I +K2
II +

1
1− νK

2
III

]
, (4.1)

where KI, KII and KIII are given by equations (2.17) and (3.2). Averaging KII and
KIII round the periphery of the contact area simplifies equation (4.1) to

G =
1

2E∗

[
K2

I +
2− ν
2− 2ν

K2
II

]
. (4.2)

Fracture occurs when G = Gc, where Gc is the work of adhesion. We shall follow
Hutchinson in writing

Gc = wf(KII/KI), (4.3)
where, as previously, w is the work of adhesion in pure mode I loading. In the
conditions of LEFM (d � a) the strain release energy release rate for a Dugdale
crack in mode I is σ0h0 and that for a BCS crack in mode II is τ0s̄ (Rice 1968),
where s̄ is the mean slip at r = b. Equation (4.3) may then be written:

σ′0h0 + τ0s̄ = Gc = σ0h0f(τ0s̄/σ
′
0h0) = σ0h0f1(τ0s̄/σ0h0), (4.4)

where it is assumed that the effect of friction is to reduce the Dugdale stress from
σ0 to σ′0, i.e. the work of adhesion from w to w′. Note that s̄ is not constant, but
increases with tangential force according to equations (3.4) and (3.7). Interaction
with adhesion is unlikely to extend beyond a critical value of slip, denoted by s̄0,
the magnitude of which is about one molecular spacing, i.e. comparable with h0. We
now, rather arbitrarily, choose the function f1 to have the form

f1(g) ≡
√

(1 + g)2 − 2αg, (4.5)

where
g = (τ0s̄/σ0h0), s̄ 6 s̄0, (4.6 a)

or
g = g0 = (τ0s̄/σ0h0), s̄ > s̄0, (4.6 b)

and α is a non-dimensional interaction factor.
We note in passing that the theory of interaction proposed by Savkoor & Briggs

(1977) takes G to be given by equation (4.2) and Gc to be given by equation (4.3)
in which f(KII/KI) is taken to be unity. This assumption corresponds to an ‘ideally
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Maugis–Dugdale (λ = 0.8, τ0 = 0.96 GPa). (P̄c)sliding/(P̄c)static = 0.89 gives α ≈ 0.2.

brittle’ fracture in which frictional energy dissipation is neglected. For f1(g) = 1,
α = 1 + 1

2g.
For small values of λ or when the slip zone is no longer small, the quantities

can only be identified approximately as the strain energy release rates (Kim et al.
1996). Nevertheless, equations (4.4)–(4.6) will still be taken to govern the interaction
between adhesion and friction. Equation (4.4) then gives

X ≡ w′

w
=
σ′0
σ0

=
√

(1 + g)2 − 2αg − g. (4.7)

The influence of friction on the Maugis–Dugdale model of adhesion can now be
found by replacing σ0 by σ′0 in equations (2.7) and (2.9), so that equations (2.12)
and (2.13) become
1
2Xλā

2{(m2−2) arccos(1/m)+
√
m2 − 1}+ 4

3λ
2ā{
√
m2 − 1 arccos(1/m)−m+1} = 1

(4.8)
and

P̄ = P̄1 + P̄a = ā3 −Xλā2{
√
m2 − 1 +m2 arccos(1/m)}. (4.9)

For any given values of λ, g and interaction parameter α, equations (4.7)–(4.9) can
be solved simultaneously to find ā and c̄ as a function of the load P̄ . The contact
area Ā = πb2 is found from equation (3.8) (with x = 0.4) and plotted against P̄ in
figure 7 (shown dotted).

If λ > 5, adhesion is governed by the JKR theory. The interactive effect of friction
can then be found by replacing w by w′ in equation (2.15), with the result

P̄ = ā3 −
√

6Xā3 = P̄1 −
√

6XP̄1 = (Ā/π)3/2 −
√

6X(Ā/π)3/2, (4.10)

where X is given by equation (4.7). In these circumstances the contact radius b = a.
The corresponding area–load curves obtained from equation (4.10) are also plotted
in figure 7 (full lines). Note that defining the contact size by equation (3.8) makes
the difference between the Maugis–Dugdale and JKR estimates of contact area small
for all values of λ greater than 0.3.
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(a ) Complete sliding
During sliding motion the slip s̄ at the edge of the contact will exceed the criti-

cal value s̄0 so that g will take the constant value g0 = (τ0s̄0/σ0h0) prescribed by
equation (4.6 b). The non-dimensional contact radius and area in the absence of any
interaction (α = 0) are denoted by b̄∗ and Ā∗. At any given load P̄ the effect of inter-
action is to cause a reduction in adhesion and hence a decrease in the contact size.
In the Maugis–Dugdale regime (λ < 5) the reduction in area Ā/Ā∗ is calculated as a
function of g0 and α from equations (3.8), (4.7) and (4.10). By way of example, the
reduction in area for λ = 0.8 (corresponding to the experimental results in figure 5)
is plotted for loads P̄ = 3, 0 and −0.75 in figures 9 (shown dotted). Comparative
results for the JKR regime (λ > 5), obtained from equations (4.7) and (4.10), are
also included in figure 9 (full lines). It is clear from this example that the reduction
in adhesion brought about by sliding is not very different in the two regimes.

As the experiments have shown, sliding contact is possible with negative loads,
but the analysis shows that this can only be achieved if the degree of interaction is
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limited. For equation (4.10) to have a real solution X > −2
3 P̄ , whereupon ā3 > −P̄ .

If the contact size attempts to fall below this critical value, the surfaces snap apart,
as shown in figure 8c when α exceeds 0.5. As mentioned previously, the Savkoor &
Briggs (1977) interaction model corresponds to a value of α = 1 + 1

2g and therefore
predicts that sliding at negative loads is impossible.

(b ) Static friction
As a tangential force T applied to the contact is increased from zero to its lim-

iting value Ts = πτ0b
2, microslip spreads through the interface from the periphery

according to equations (3.4) and (3.7). Increasing slip s̄ at the periphery reduces the
adhesion by equations (4.6 a) and (4.7), with a consequent reduction in contact size,
until the critical slip s̄0 is reached. The sequence of events during the static friction
stage can take two forms. Where the parameter λ is large (JKR regime), the critical
slip s̄0 is reached before the onset of sliding. No further reduction in contact size
then takes place up to, and through, the point of sliding, as illustrated in figure 9a.
Alternatively, with lower values of λ the contact can be on the point of sliding before
the critical slip is reached. However, as soon as sliding begins, the critical slip will be
reached and the contact size will drop to its final value, as illustrated in figure 9b.

A feature of note in figure 9b, at larger values of the interaction parameter α, is a
maximum in the tangential force in excess of the limiting friction force. In a system
which is purely ‘force controlled’ this feature would lead to unstable accelerated
sliding. However, both the SFA and AFM apply the tangential force through a spring.
In these circumstances the onset of sliding would be accompanied by a ‘jump’ in
displacement, with the probability of stick–slip motion.

5. Discussion and comparison with experiments

In conditions where it is appropriate (λ > 5, say) the JKR theory of straight
adhesion outlined in §1 has received exhaustive experimental support and will not
be discussed further here. Static friction measurements under adhesive conditions
have been made on soft rubber by Savkoor & Briggs (1977) and Barquins (1985).
Sliding friction has been measured between polymer monofilaments at negative (ad-
hesive) loads by Briscoe & Kremnitzer (1979), between mica surfaces in the SFA by
Israelachvili (1992) (figure 4) and between a platinum coated ceramic tip and mica
in the AFM by Carpick et al. (figure 5)†.

Savkoor & Briggs (1977) applied a monotonically increasing tangential force to
a rubber hemisphere in adhesive contact with a clean glass plate, for a series of
normal loads. They observed that the contact size decreased progressively as shown
in figure 10. They also presented an analysis which has much in common with the
present approach. The strain energy release rate was given by equation (4.2), but the
total work of adhesion was assumed to be w, ignoring energy dissipated by friction.
The analysis predicted a critical tangential force at which the contact area would
collapse to the Hertzian value, as indicated in figure 10, above which sliding contact
would not be possible with a negative load.

The Savkoor & Briggs analysis and an earlier treatment by the present author

† Difficulties in accurate calibration of the dynamometer springs could be responsible for a consistent
error in the load and friction force in figure 5 by up to a factor of two, but the shape of the curve would
be unaffected.

Proc. R. Soc. Lond. A (1997)



176 K. L. Johnson

2.0

1.5

2.0

1.5

2.0

1.5

2.0

1.5

1.0

0.5

0 10 20 30

co
nt

ac
t a

re
a 

ra
di

us
 / 

m
m

0

0

tangential force T / mN

P = –0.20

P = 0

P = 0.3

P = 0.18

0.49 mm

0.64 mm

Figure 10. Contact area measurements during the static friction phase, made with a soft rubber
hemisphere in contact with a glass plate, from Savkoor & Briggs (1977). ◦, experimental; ——,
S & B theory.

(Johnson 1996) raise the question of the appropriate model for the mode II ‘inter-
face crack’: either in terms of a stress intensity KII, or as a BCS crack with no
discontinuity in traction, as adopted in §3. Rice (1992) has modelled the nucleation
of glide dislocations from the tip of a mode II crack through the action of a stress
intensity KII, with the result that the tangential driving force T is proportional to
the contact size a3/2. The experimental evidence from the SFA and AFM in figures 4
and 5, on the other hand, shows the sliding friction force to be proportional to a2.
This strongly suggests that the principal contribution to the force of sliding fric-
tion comes from propagating dislocations through the whole area of the interface,
i.e. the effective Peierls stress, rather than from nucleation at the periphery. This
is consistent with the BCS model of a mode II crack in the static friction phase.
Propagation of dislocations along a glide plane in a regular crystal lattice is an
oversimple model of sliding at a non-commensurate interface, but it is worth noting
that an approximate value for the Peierls stress is quoted by Cottrell (1953) to be
2−4 × (shear modulus), which for mica gives 7 × 106 N m−2, the same order as the
frictional stress of 2× 107 N m−2 measured by Israelachvili (1992). To summarize, it
is recognized that periodic fluctuations in tangential stress will occur on the atomic
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Figure 11. Measurements of the penetration of microslip between a soft rubber sphere and
glass compared with the model of §3 (equations (3.4) and (3.7).

scale as the equivalent of dislocations are nucleated at the periphery of the con-
tact and propagated through the contact area, but our continuum theory smooths
out these fluctuations, giving rise to the steady continuous distribution of traction
expressed by equation (3.3).

Further support for the static friction phase of the model proposed in §3 is pro-
vided by experiments of Barquins et al. (1975) with a glass sphere in contact with
a smooth flat surface of natural rubber. The penetration of the microslip zone with
increasing tangential force was observed and found to agree well with that predicted
by equation (3.4), as shown in figure 11.

Reduction in adhesion leads to the surfaces peeling apart at the edges of the con-
tact. As already mentioned, experimenting with rubber, Savkoor & Briggs observed
a modest amount of peeling (figure 10) as did Barquins et al. (1975). On the other
hand, in the SFA, Israelachvili (personal communication) did not see any change in
the contact size when a tangential force was applied†. In the AFM experiments by
Carpick et al. (1996) (figure 5), the contact size could not be measured. However,
the pull-off force Pc in straight adhesion was measured before and after a sliding
experiment, and compared with the force at which contact was lost in sliding. For
the results shown in figure 5 the ratio was 0.89. The dotted curves in figure 7 show
the effect of interaction on the Maugis–Dugdale area–load relationship for the con-
ditions of figure 5, from which it may be seen that a 0.89 reduction in the pull-off
force corresponds to a value of α ≈ 0.2.

The physical nature of this interaction between adhesion and friction can only be
speculated upon, but it must arise from the interactive nature of the surface force
field at the periphery of the contact in the presence of both normal and tangential
displacements. It would be likely to manifest itself by an increased separation of

† The contact mechanics in this paper, as in Hertz and JKR, is based on homogeneous half-space
theory, but the SFA consists of thin sheets of high-modulus material attached to a low-modulus glue.
The possible effects of this construction on the contact mechanics of the adhesion theory is currently
being investigated.
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the surfaces during sliding compared with a static contact. We have shown how
α, as a measure of interaction, might be found experimentally; perhaps molecular
dynamics might throw light on the physical process. It will be appreciated that, in
this model, adhesion and its interaction with friction is governed by surface forces at
the periphery of the contact. The frictional resistance to sliding, on the other hand, is
the integrated effect of proagating ‘dislocations’ throughout the whole contact area.

Given a value of α, to estimate the effect on the contact area during sliding re-
quires a value for the parameter g0 = (τ0s̄0/σ0h0) = (τ0s̄0/w). The quantity τ0s̄0
is comparable with the ‘unstable stacking fault energy’ employed by Rice (1992) in
his analysis of dislocation nucleation at the tip of a mode II crack. The tangential
displacement (microslip) at the periphery s̄0, which gives rise to the interaction with
adhesive forces is not precisely prescribed. It is likely to be the order of half an atomic
spacing. In the calculations shown in figures 8 and 9 we have taken s̄0 = h0 = 0.2 nm.
On this basis, for the AFM measurements in figure 5, g0 ≈ 1.0, α = 0.2 and λ = 0.8,
whereupon the reduction in area A/A∗ is by a factor of about 0.93. For the SFA
measurements in figure 4, g ≈ 0.08, so that the predicted reduction in area is only a
few percent, which would account for it not being observed.

The model presented in this paper was developed for dry, clean, solid surfaces in
contact, but it would appear to be applicable in principle to surfaces separated by
nanometre films of lubricant, where Israelachvili (1992) has shown that adhesion can
still be a significant effect. However, viscous dissipation in the film introduces a fur-
ther complication: ‘adhesion hysteresis’, in which the work of adhesion in separating
the surfaces is greater than that which is returned when they are coming together.
In separation the elastic energy release has to overcome the viscous dissipation as
well as the surface energy; in coming together it is the surface energy which has to
provide for the dissipation in addition to increasing the elastic strain energy. Similar
behaviour is found in the adhesion of dry rubber surfaces in response to the vis-
coelastic property of the rubber (see Greenwood & Johnson 1981). The influence of
inelastic effects either in the film or in the deforming solids lies beyond the scope of
this paper.

In conclusion it may be stated that a continuum mechanics model of adhesion and
friction between smooth clean spherical elastic surfaces has been presented which is
consistent with available experimental data. It is based on the concepts of fracture
mechanics and incorporates possible interaction between normal adhesive forces and
tangential friction forces. The transition from static to sliding friction is included.
Being a continuum theory force fluctuations at the atomic scale are smoothed out;
nevertheless it is hoped that the model will provide a rational and quantitative
framework for the analysis and interpretation of experimental data in the rapidly
expanding field of nanotribology.

I acknowledge the constructive discussions of the draft of this paper with many colleagues and,
in particular, Professor S. Y. Kim and Professor R. McMeeking for their analysis of the strain
energy release rate in axisymmetric cracks.
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