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ABSTRACT

This paper presents the ADHOCFS file system for mo-

bile users, which realizes transparent, adaptive file access

according to the users’ specific situations (e.g., device in

use, network connectivity, etc). The paper concentrates

more specifically on the support of ADHOCFS for collab-

orative file sharing within ad hoc groups of trusted nodes

that are in the local communication of each other using the

underlying ad hoc network, which has not been addressed

in the past.

I. INTRODUCTION

A number of distributed systems deals with mobility

(e.g., [1], [2], [3], [4], [5], [6]). In these systems, data

copies on a given mobile node are updated locally and are

subsequently loosely synchronized with copies on either

other mobile nodes (e.g., [3], [4], [7], [8]) or stationary

servers (e.g., [2], [1]) through propagation of updates,

which is also referred to as optimistic replication. Copy

synchronization is then handled through the provision of

protocols for the management of conflict detection and

resolution. Optimistic replication has proven successful for

dealing with data access from wireless terminals, while ac-

counting for network disconnection. However, this comes

at a high cost in terms of communication and hence energy,

due to the underlying scheme of update propagation. This

is even more true in the case of collaborative work where

updates are propagated to all nodes storing a copy of

updated files.

In general, advances in WLANs and in service dis-

covery protocols call for revising the handling of data

sharing on mobile nodes. Specifically, nodes that are in

the communication range of each other dynamically form

a LAN system, which may be seen as a temporary wired

LAN system. However, the resulting LAN system has

the following intrinsic requirements that must be dealt

with: resource saving and in particular energy saving for

(unplugged) mobile nodes, adaptation according to the

network’s dynamics, and security. This paper introduces

the ADHOCFS distributed file system that addresses the

above requirements. ADHOCFS manages ad hoc groups,

i.e., dynamic groups of trusted peers that are in the commu-

nication range of each other, so as to further support secure

collaborative sharing of files among the group’s members.

In addition, ad hoc group management is realized so as to

minimize resource consumption, and in particular energy

consumption on the mobile nodes.

The remainder is organized as follows. Section II pro-

vides an overview of ADHOCFS, discussing resolution of

file access from any mobile terminal. Sections III to V

detail the core functions of ADHOCFS that together serve

realizing secure cooperative caching within ad hoc groups

through support for security, ad hoc group management

and coherency management. Section VI then assesses AD-

HOCFS, evaluating response time of core functionalities

through experiment. Finally, Section VII summarizes our

contribution compared to related work.

II. ADHOCFS OVERVIEW

ADHOCFS is organized around a traditional file system

hierarchy and the local file systems of the mobile terminals

act as caches of the distributed file system. Then, file

names are resolved into the various locations from which

the files may be retrieved. For a given file, its locations

include at least the address of the file’s home server (see

Fig. 1-[a]) and may further extend to both a local address

should the file be cached on the terminal (see Fig. 1-

[b]), and to terminals in the local communication range

(see Fig. 1-[c]) that cache the file, as identified using the

ADHOCFS location service. The location service serves

identifying peer (mobile) terminals that are accessible by

the given mobile terminal and with which files may safely

be shared (see Fig. 1-[d]), i.e., terminals belonging to

the embedding ad hoc group. Such an identification relies

on a traditional service discovery protocol combined with

service identification using security domains. Each security

domain is uniquely identified through the address of the

home server storing the file system appertained to the

given domain (see Fig. 1-[e]). An example of security

domain is the Web server (identified by its URL) hosting

the information relating to a given project, which is used

by the project’s members to share data. Seamless access

to files is then realized by making sure that at least the

address of the user’s file system stored on his home server
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Fig. 1. File access in AdHocFS

and the ones of accessible security domains are available

on all his mobile terminals, and through a component

for both resolving file names according to the terminal’s

specifics (i.e., cached files, terminals discovered in the local

communication range) and getting the files upon request.

The local file system of a mobile terminal is then updated

as follows. When access to a file whose name resolves

only into the file’s home server, is requested, a connection

is established using either the wireless LAN or wide-area

wireless network, depending on the terminal location. The

hierarchy of the local file system gets extended with the

path that leads to the requested file (if missing) and the

file is copied locally. In addition, upon discovery of peer

terminals, the directory hierarchy of the terminals’ local

file systems are merged so that any file accessible in the

local communication range gets identified1. Access to such

a file from any of the mobile terminals then leads to copy

the file locally -if not already cached.

In our context where the files get copied and updated in

various locations as users move, it is crucial that each user

always sees coherent data (i.e., at least the last version he

accessed or, possibly, later versions that got subsequently

modified by authorized users). It is further mandatory

to integrate adequate cryptographic techniques within the

system so that the user’s data can only be accessed by

authorized users. Such techniques have to be used upon

access and transfer of data both in the local (see Fig.

1-[f]) and in the wide area (see Fig. 1-[g]). The next

sections detail ADHOCFS support for meeting the above

requirements, concentrating on collaborative file sharing

within ad hoc groups, which lies in the following three core

functionalities: (i) data security, which guarantees that files

1Note that the file data is not merged.

get accessed and replicated only from/on trusted (mobile)

nodes; (ii) ad hoc group management that deals with the

creation of ad hoc groups and their dynamics in terms of

addition and removal of peer nodes; and (iii) coherency

management within groups.

Access to files on the home server from mobile terminals

is no longer discussed, as it is managed in a way similar

to existing mobile systems. Briefly stated, secure file

access from a mobile terminal to the file’s home server

is implemented via public key cryptography. Coherency

management among distinct groups is further based on

optimistic replication; file copies on mobile terminals are

then reconciled with copies at the server upon synchro-

nization with the server, using the same reconciliation

scheme as the one discussed in Section V. Finally, it is

considered that any mobile terminal regularly synchronizes

with the files’ home servers to which it is granted access

to, using either infrastructure-based wireless networking or

ad hoc networking, depending on the specific location of

the terminal and servers.

III. SECURITY MANAGEMENT

Security is of crucial importance in our context since

we are using both wireless LAN and global wireless

networks. It is therefore mandatory to ensure end-to-end

privacy and integrity of the user’s data. However, as our

platform aims at running on resource constrained terminals

(e.g., wireless PDA), it is necessary to balance strong

security enforcement with resource consumption, and in

particular energy. ADHOCFS uses both asymmetric and

symmetric cryptography. The former is used for securing

communication links between any mobile terminal and a

file server, and is not further detailed due to the paper

focus on file sharing among mobile terminals. The latter

is used for securing communication links between any two

peer mobile terminals within an ad hoc group. Symmetric

cryptography enables ensuring privacy of data between

two terminals using a well-known algorithm and a shared

secret, i.e., a secret key. Moreover, by using symmetric

cryptography in conjunction with a cryptographically se-

cure hash function, also called one way function, it is

possible to ensure data integrity [9].

In ADHOCFS, files of related interests are grouped into

a security domain. A secret domain key is then associated

with each domain, and it is shared by the domain’s server

and all the terminals whose users are granted access to

this domain. More specifically, the secret key is regularly

computed at the domain’s server and securely propagated

to trusted mobile terminals when they synchronize with the

server. The domain key is used for both authentication and

secure message exchanges among peer mobile terminals.

The use of the domain key enables minimizing the

computation cost associated with cryptography. However,
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the security enforced by ADHOCFS is dependent upon

the avoidance of the domain key forgery, which requires

regular revocation of the key. Protection against forgery of

the domain key on the terminal itself is enforced by storing

the key encrypted on the terminal, and by decrypting it

using the user’s password (e.g., using a PAM module

in Linux)2. An alternative solution to the setting of the

group key would have been to integrate a protocol for

key agreement within dynamic collaborative groups (e.g.,

[10]). However, such protocols are costly, both in terms

of computation and communication costs. This is why we

have preferred to undertake a simpler solution in a first

step. Finally, access control to files relies on the access

control of the underlying local file system, given that file

owners do not change.

Regarding the encryption of files transferred from one

mobile node to another, the file blocks are encrypted and

decrypted independently of the others (see Fig. 2-[a]).

However, to protect against attacks that would replace

blocks within messages, the header of each such message

includes a secure checksum (using MD5) of the transferred

file blocks (see Fig. 2-[c]). In addition, we use a nonce

to ensure that any message received in reply to a request

is indeed the reply. Using per-block encryption allows

the decryption of blocks upon actual access, instead of

decryption at the time the blocks are received. In the same

way, a block that is decrypted will be encrypted only if

a request for the block (e.g., request for a file copy from

a peer mobile terminal) is received. In this way, the com-

putation cost associated with cryptography is minimized,

and hence energy consumption due to security management

is reduced. Note that reduced energy consumption based

on on-demand decryption is obtained due to the fact that

transferred files are encrypted using the domain key (see

Fig. 2-[b]). If the files were encrypted using a temporary

secret key that would be set up upon the establishment of

a connection between any two peer mobile terminals, then

2Note that this could alternatively be realized using a smartcard, for
mobile terminals equipped with a smartcard device driver.

Group leader Group member (slave)

[c]
[d]

[a] [b]

Fig. 3. Merging groups

upon every subsequent transmission of a file, the file would

have to be decrypted (using the secret key shared with the

terminal from which the file was obtained) -if not already

done- and then encrypted (using the secret key shared with

the requesting terminal).

IV. AD HOC GROUP MANAGEMENT

Ad hoc group management in ADHOCFS builds upon an

existing service discovery protocol, i.e., the IETF Service

Location Protocol (SLP) [11]. We use the configuration of

SLP that does not rely on a directory agent for service

discovery. In ADHOCFS, SLP serves locating peer mobile

nodes, i.e., nodes in the communication range of the WLAN

that have access to common security domains. Every

mobile node acts as a Service Agent that handles lookup

queries for peer nodes of ADHOCFS. Upon initialization,

each terminal registers itself for each security domain of

ADHOCFS it has access to, using the following format

(i.e., SLP’s Universal Resource Locator -URL- format):

service:AdHocFS://IP address:port number /domain3 .

Periodically, every mobile terminal looks for peer ter-

minals by issuing, as a User Agent, the following service

request: service:AdHocFS. Every mobile terminal in the

local range sends back as many messages as security

domains it belongs to; each message carries the URL

associated with the given security domain, which embeds

the terminal’s IP address, port number, domain and unique

identifier (UID). Using received URLs, terminals are able

to join the ad hoc groups they belong to.

Consider first that all peer nodes are isolated (see Fig. 3-

[a]), which is known through the group variable that has the

value nil on every peer. Then, the embedding ad hoc group

is created by one of the peers, called leader, that is the node

that has the smallest UID. The leader concurrently interacts

with all its peers as follows: it first establishes a secure

connection with the peer, it then requests the peer for its

local directory hierarchy that it will merge with its own.

The request additionally embeds the list of group members.

The leader finally broadcasts the directory hierarchy of

the ad hoc group to all the peers and cooperative caching

within the group may proceed. In addition, all the peers

but the leaders concurrently establish secure connections

with all their peers that have a larger UID than theirs. On

3Mobile terminals that do not want to cooperate (e.g., for the sake of
energy saving) de-register for the security domains they belong to.
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every peer, the value of the group variable is now equal

to the list of peers, and the leader variable is equal to the

UID of the leader. Note that for the case where a node is

isolated and hence the single member of a group, the value

of the leader variable is the UID of the node.

Dynamics of the group is handled by periodically look-

ing for peers. For a given period, the leader becomes the

peer with the next higher UID than the value of leader.

The leader then checks the value of group with the list of

nodes returned by SLP. If these two values differ, the ad

hoc group must integrate the (potential) new comers (which

may themselves be part of a distinct ad hoc group), and

discard the (potential) nodes that left. Addition of members

is handled by merging groups as follows, considering that

an isolated node forms a singleton group (see Fig. 3-[b]). In

the reply to SLP requests for the discovery of peer nodes,

the node embeds its local value of group and leader. Then,

the leader of the new group becomes the node that has

the smallest UID among all the leaders if all the merged

groups have more than one member. If some groups are

singleton, the leader is taken from the largest groups. The

new leader then performs a merge protocol similar to the

above one with all the leaders of the merged groups. All

the leaders of merged groups then forward the updated

directory hierarchy4 to the peers that were led by them,

together with the new value of group and leader, leading

nodes to concurrently establish missing connections with

peer nodes (see Fig. 3-[c]) and to form the new group (see

Fig. 3-[d]). Leaving nodes are straightforward to handle;

the leader broadcasts the new value of group to peer nodes.

Note that the case of leader removal is handled by changing

the leader on each period. Hence, in the worst case, a newly

formed group stabilizes in at most two periods after the

change occurrence.

The main cost of ad hoc group management lies in

message exchanges for discovering peers and then merging

groups. The overall cost is further proportional to the

period that is set for managing the group’s dynamics.

The period is initially set to a given value � and is then

dynamically adapted according to the past behavior of the

embedding group (which may be the node itself in the case

of singleton group), using statistical modal class [12].

Peers interact through the WLAN that may be in either

the infrastructure-base mode if a base station is nearby or

the ad hoc mode in the absence of base station. ADHOCFS

does not impose any specific networking mode and it is

currently up to the users to set the preferred mode of

operation, assuming that nodes in the local communication

range of each other select the same networking mode.

Note that ongoing work in the area of mobile networking

will further allow for the transparent setting of the most

4This update is the difference with the previous value of the hierarchy.

adequate networking mode according to the environment

[13]. In the specific case of ad hoc networking, it should

be accounted for the fact that groups may only be partially

connected if the network protocol does not support ad hoc

routing among nodes. In this case, two groups merge only

if all their members can communicate, which is identified

by comparing the lists of peer nodes obtained through the

slptool function of SLP.

V. COHERENCY MANAGEMENT

Existing network file systems aimed at mobile nodes

implement optimistic replication so as to enable file access

in disconnected mode. However, in the case of file sharing

within an ad hoc group, file copies cached on peers may

be strongly synchronized so as to prevent the occurrence

of conflicting updates while in the group (apart from

those created due to concurrent file updates before joining

the group) and hence better support collaborative work

groups. This further leads to minimize the communication

cost (and hence energy cost) of update propagation since

the complexity of update propagation among peer nodes

under optimistic replication is in O(N) for every concurrent

update, with ✁ being the number of peers, while it can

be significantly reduced under conservative replication as

detailed hereafter. In other words, base techniques that

have been proven successful in wired LANs are of direct

relevance for coherency management within ad hoc groups.

Hence, ADHOCFS implements optimistic replication over

nodes that belong to distinct groups, and conservative

replication over peer nodes5. The following details our

conservative coherency protocol within ad hoc groups.

Our coherency management protocol is based on a

exclusive writer protocol within an ad hoc group. Us-

ing read/write locking within a group, all write opera-

tions are exclusive within the group while read opera-

tions are shared. However, local files can be manipulated

(read/write) independently within disjoint groups, provided

that data are synchronized when integrating a group6. A

peer can be in five modes regarding a given data file:

Fresh, the peer holds a fresh data copy after synchronizing

with the reference copy; Read, the peer can read the data;

UpdateRead, the peer is allowed to read the data but has

to update its copy first; ReadWrite, the peer can read and

write the data; and Invalid, the peer has no access to the

data. With this protocol, either a peer modifies data in the

ReadWrite state and all the other peers are in the Invalid

5Note that the granularity of coherency management is left upon the
users who choose the most effective decomposition of their shared data
into files. Taking for instance the case of document editing, the document
may be structured into a number of files according to the degree of
concurrency updates that is targeted.

6Note that a user who is being involved in a group can still choose
to read his local file copy, which may possibly not be up to date, while
waiting for acquiring a lock for accessing the shared file.
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Fig. 4. Coherency Control List

state; or all the peers are in the Read or UpdateRead
state. This protocol ensures that all reads access the most

recent file version within the group. This guarantees data

coherency within a group, given that data are reconciliated

upon their first access.

Within a group, concurrent and diverging file copies are

detected using the CCL (Coherency Control List), which

is attached to each file. The CCL logs in a data structure

how and when the given file copy was modified since it was

copied from its home server. An example of CCL is given

in Figure 4. The CCL comprises the timestamp value of

the reference copy, i.e., the copy stored on the file’s home

server7, at the time it was copied/synchronized with, and

the log of subsequent updates on the local copy (see Fig. 4-

[a]). The log is the list of all successive data holders, as

seen by this specific data file copy (see Fig. 4-[b]). Data

holders give the set of peers belonging to the same ad

hoc group and locally caching the data. Every time the

group members composition is modified, through addition

or deletion of a peer, and upon update, a new item is added

to the list, which contains the new set of group members

storing the data (see Fig. 4-[c]). This enables tracking the

dynamics of the ad hoc group due to peers mobility, and

to distinguish updates within different ad hoc groups in

order to enhance conflict detection. If a disconnected peer

updates its local copy of the data, a new item is added to

its local list, which contains only its UID. For every group

composition, the list of modified file blocks is maintained

(see Fig. 4-[d]).

Given local CCLs, a mobile node is able to determine

whether its local file copies are coherent and/or can be

reconciled with the file copies stored on peer nodes of

the embedding ad hoc group8. When a node � joins the

ad hoc group, its directory hierarchy and the group’s one

are merged (see
✁

IV). The merging is further realized so

that the a priori latest version (i.e., greatest timestamp and

largest update list) of a given file copy is assigned the

ReadWrite mode while others are assigned the Invalid

7If a file is created locally on a peer, the corresponding timestamp has
a special value (NIL) to indicate that this file has no reference copy yet.

8Basically, two copies can be reconciled if the CCL associated to one
is a sub-list of the CCL associated with the other.

mode if none of the file copies are being accessed. The

same scheme applies if either the only copy that is being

accessed is the latest version or all the copies being

accessed may be reconciled. On the other hand, if diverging

copies are being accessed, exceptions are signaled to all

the applications that are accessing the file, leading to

application-specific conflict resolution. In general, at the

time of group merging, diverging copies are detected and

are made known to users by associating a tag to local file

copies that have diverged, which appears upon browsing.

File updates within the group are then lazily propagated

from the latest writer as follows. If the file is requested

for write access by another node, then the node acquires

the ReadWrite lock and gets the list of updates. If the

file is requested for read access the node acquires the

Read lock and gets the list of updates. However, all the

other nodes caching a copy of the file acquire only the

UpdateRead lock. Note that the sent list of updates may

not be sufficient to reconcile -if possible- the local copy

since copies are not synchronized as nodes enter an ad

hoc group. Hence, upon actual access, missing updates are

possibly requested to the latest writer for reconciliation.

In the case where the latest writer of a given file leaves

the group, the protocol guarantees that the copy that will

be accessed is the latest version present in the group.

Lazy update propagation follows from our concern of

minimizing energy consumption and hence computation

and communication.

VI. EXPERIMENT

A first prototype of ADHOCFS has been implemented

in Objective Caml 39. The ADHOCFS prototype builds

upon the Extended 2 FS (Ext2) local file system, the Blow-

fish symmetric encryption algorithm [14] using 128 bits

keys, and the OpenSLP10 implementation of SLP. Mobile

terminals of the platform are laptops with a 500 MHz

Pentium III CPU, 256 KB of cache, 200 MB of RAM and

a 10 GB hard disk running under Linux operating system.

The wireless LAN is IEEE 802.11b in the ad hoc mode

(Lucent 11Mb WaveLAN PC Card).

Figure 5 gives the time taken for creating a group,

leaving and joining a group, which are linear with the

group size. The main cost of group creation lies in de-

tecting trusted peers and sending the directory hierarchies

by group leader so as to compute the directory hierarchy

of the overall group, which is mandatory to allow peers

belonging to the group to have a global view of shared

data and to enable collaborative sharing.

Table I gives the time taken to locally access a coherent

data file in the write mode when the peer is in the Read

state. This time is constant for a given group size: it

9caml.inria.fr
10openslp.org
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TABLE I

FROM READ TO READWRITE STATE

Group size (peers) 2 3 4 5 6 7 8 9 10

Time (sec) 0.00949 0.01281 0.01982 0.02129 0.02645 0.02977 0.03493 0.03825 0.04341

Energy (mW.sec) 1.58 2.91 5.4 6.67 9.08 11.87 15 18. 51 22.38
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Fig. 5. Time taken for group creation
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Fig. 6. From UpdateRead to ReadWrite state.

corresponds to the cost of getting the token and notifying

the peers to set their state to Invalid. Thus, messages sent to

realize the coherent access are only control messages, and

do not contain any updates. Note that the cost of additional

peers in terms of response time is only of about 0.005 sec.

Table I further shows the associated cost in terms of energy

consumption, based on the formulas given in [15]. Note

that energy consumption is highly dependent upon the size

of the group since non destination peers consume energy

when messages are being sent under the ad hoc mode.

Figure 6 gives the time taken to access a coherent data

file when the peer is in the UpdateRead state, which

corresponds to the cost of update propagation. Using our

coherency protocol, getting locally access to a coherent

data depends on the update size, while group size affects

slightly the performance of our protocol. However, the

energy consumption depends on both the group size and
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the update size. It is given by: � ✁ ✄ ✆ ✞ ✠ ✡ ☞ ✍ ✏ ✡ ☞ ✔ ✖ ✘
� ✚ ✘

✜ ✢ ✤ ✦ ✏ ✔ ✔ ✍ ✏ ✍ ✫ ✭ ✘
� (based on equations from [15]), where

� is the ad hoc group size and
✜ ✢ ✤ ✦

the update size.

Figure 7 gives the time taken to access a coherent

data file when the peer ✰ is in the Invalid state, after

successive write operations performed by different peers.

This time corresponds to the cost of getting the token and

the updates, which are lazily propagated. More precisely,

the peer ✰ requesting for file access knows only the identity

of the first writer ✱ (i.e., the peer that set ✰ to the Invalid
state), and thus sends its request to ✱ . However, ✱ is not the

actual token owner (last writer); it thus forwards ✰ ’s request

to the peer that it considers as being the token owner (i.e.,

the peer that set ✱ to the Invalid state). The process is

then repeated until the request reaches the actual token

owner (the last writer), which replies with the updates and

the appropriate meta-data. Compared to the results shown
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in Figure 6, the cost of propagating the request among

successive writers amounts to the cost of propagating an

update from one peer to another.

Figure 8 gives the cost of getting a copy of a data file

for writing when the peer does not cache it locally, while

the peers caching the file within the ad hoc group, are in

the Read/UpdateRead state. The resulting cost is linearly

dependent on the file size. Similarly, the cost of opening

a data file in the writing/reading mode increases linearly

with update size. Hence, using our coherency protocol,

getting locally access to a coherent file depends on the

updates size, while group size affects only very slightly

the performance of our protocol in terms of response time.

The above results show that the overhead introduced

by the core functions of ADHOCFS is kept to a mini-

mum, since response times offered by ADHOCFS remain

comparable to the exchange of a data file between two

nodes through the WLAN. To further show the benefits

of lazy update propagation within ad hoc groups in terms

of response time and energy consumption, we compare it

to a version of our coherency protocol where updates are

propagated whenever they occurs as realized by optimistic

replication protocols supporting collaborative, peer-to-peer

file sharing. We consider an ad hoc group of four peers,

all caching the data, and being in the Read state. We fur-

ther consider four successive write operations by different

peers, each leading to an update size of 640 Kbytes. Under

our protocol, the times taken to write access a coherent data

file from the first write to the fourth one are respectively

equal to: 0.019 sec, 1.20 sec, 1.22 sec, and 1.27 sec

(see Figure 7). On the other hand, when the updates are

propagated whenever they occur, the time taken to write

access a coherent data file is the same for all four write

operations in the above scenario, and is equal to 3.639 sec,

which leads to 7218 mW of extra energy consumption.

Thus, lazy update propagation allows for better response

time but also for a lower communication cost, and hence

lower energy consumption.

VII. CONCLUSION

In ADHOCFS, the file systems of mobile terminals act

as local caches, and mobile terminals that have access to

common files and are able to communicate through the

wireless LAN, cooperate to form an ad hoc distributed

file system. Core components of ADHOCFS lies in:
� A naming service that resolves file names into the

various locations from which files may be retrieved

(i.e., at least the address of the file’s home server, local

copy if cached, peer terminals in the communication

range that stores a file copy).
� A location service, which enables setting up ad hoc

groups of trusted mobile terminals that are connected

using the wireless LAN. In addition, secure links are

established between peer nodes so as to guarantee data

integrity and privacy, while minimizing the computa-

tion cost and hence energy consumption associated

with cryptography.
� A coherency management service that reconciles

copies cached on mobile terminals that belong to

the same group and enables collaborative file sharing

among peer nodes.

We have presented an evaluation of ADHOCFS in terms

of response times offered by the current ADHOCFS pro-

totype. Results show that the response time of ADHOCFS

operations remain comparable to the time taken for ex-

changing a file over the WLAN.

There has been a large amount of work on supporting

access to shared files on mobile terminals. Early work in

the area has been concentrating on enabling access to local

files, independent of network connectivity. Hence, most

proposals have been oriented towards ensuring availability

of a local copy so as to cope with temporary disconnec-

tion. Relevant work in the area includes solutions to file

prefetching (e.g., [16]) and to optimistic replication (e.g.,

[2], [3], [1], [17], [4], [7], [8], [6]). ADHOCFS does not

currently include any support for managing the local cache

according to future accesses, and in particular support for

prefetching. This is part of our future work, which will

benefit from existing solutions such as the one of [16]. On

the other hand, ADHOCFS resembles and benefits from

past work on optimistic replication since we have adopted a

log-based solution for update propagation, which has been

proven successful in this area. ADHOCFS further uses a

conventional log-based optimistic coherency management

for reconciliating copies that have been accessed within

distinct ad hoc groups. It is further part of our future work

to enhance support for automatic reconciliation based on

latest research results (e.g., [18]). However, ADHOCFS

differs from the aforementioned references by accounting

for the specifics of today’s WLANs that allows creating

dynamic networks of mobile nodes when they are in the

local communication range of each other. Such dynamic

networks may then be exploited for supporting collabo-

rative group works. ADHOCFS offers such a capability

through the management of dynamic, ad hoc groups of

trusted mobile terminals, among which files may safely

be shared. This has further led us to use a conservative

replication scheme within ad hoc groups as it is more

suited to collaborative applications, and further allows

reducing the communication and energy cost associated

with coherency management.

An ad hoc group of ADHOCFS realizes cooperative

sharing of nomadic data, which has been an active area

of research over the last few years given the increasing

interest for supporting pervasive computing. Work in the

area that is the closest to our concern relates to enabling

Proceedings of the Second IEEE International Symposium on Network Computing and Applications (NCA’03) 
0-7695-1938-5/03 $17.00 © 2003 IEEE 

Authorized licensed use limited to: UR Rocquencourt. Downloaded on June 23, 2009 at 11:15 from IEEE Xplore.  Restrictions apply.



data caching in various locations, and subsequently retriev-

ing them in another location. However, existing proposals

concentrate on leaving data on untrusted, stationary local

storage servers (e.g., [5], [19]), and are thus complemen-

tary to ours since we are addressing collaborative caching

among trusted mobile nodes.

Among enhancements of ADHOCFS that we are work-

ing on, we are going to further elaborate synchronization

with the files’ home servers so as to both minimize the

occurrence of diverging copies, and regularly revoke the

domain key used within groups to securely share files. We

are further interested in improving the quality of service of

ADHOCFS, regarding in particular availability, examining

more specifically replication of cached files within a group

to ensure availability of the files’ latest version despite the

groups’ dynamics. Exploitation of ad hoc networking raises

the issue of further exploiting ad hoc routing protocols to

allow accessing files stored on a terminal that is reachable

in a number of hops. We have not integrated such a

facility in ADHOCFS due to our focus on collaborative

work where we consider that the communication range of

WLANs like IEEE 802.11 allows for sufficient coverage

of collaborative work groups. However, ad hoc routing

protocols may conveniently be exploited to access a file

that is not available in a group in the absence of a base

station, which prevents accessing the file’s home server.

A base solution to this issue is presented in [20] for the

specific case of Web data, which can be easily adapted

to the context of ADHOCFS. Finally, we are going to

experiment the use of ADHOCFS with various types of

mobile terminals (e.g., iPAQ), which is quite direct given

the availability of Linux for embedded platforms.
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