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Abstract. The effective dynamics of interacting waves for coupled Schrödinger-Korteweg-de
Vries equations over a slowly varying random bottom is rigorously studied. One motivation for
studying such a system is better understanding the unidirectional motion of interacting surface
and internal waves for a fluid system that is formed of two immiscible layers. It was shown
recently by Craig-Guyenne-Sulem [1] that in the regime where the internal wave has a large
amplitude and a long wavelength, the dynamics of the surface of the fluid is described by the
Schrödinger equation, while that of the internal wave is described by the Korteweg-de Vries
equation. The purpose of this letter is to show that in the presence of a slowly varying random
bottom, the coupled waves evolve adiabatically over a long time scale. The analysis covers the
cases when the surface wave is a stable bound state or a long-lived metastable state.
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1. Introduction

1.1. Motivation and heuristic discussion

We study the adiabatic evolution of interacting waves for coupled Schrödinger-Korteweg-de Vries equa-
tions over a slowly varying random bottom. The main physical motivation for the analysis is understand-
ing the effective dynamics of coupled surface and internal waves in a fluid system where two immiscible
layers are separated by a sharp free interface, such as thermocline or pycnocline differential salinity in the
ocean. Recent photographs from the space shuttle showed bright trains or strips of waves over several
kilometers in the Andaman sea, which is a signature of interaction between surface and internal waves.
The heuristic derivation of effective equations that describe this observation was done by Craig-Guyenne-
Sulem [1]. In the regime where the wavelength of the internal wave is long and its amplitude is large, it
was shown in the latter that the unidirectional dynamics of the surface wave is described by the linear
Schrödinger equation, while that of the internal wave is described by the KdV equation. The formal anal-
ysis in [1] starts from the Hamiltonian formulation of Euler equations for an irrotational fluid and uses
perturbation theory for the modulated regime, as in [2]. Here, we modify the KdV equation describing the
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dynamics of the internal wave by adding an effective term to include the effect of a slowly varying bottom.
Such a term appears in the derivation of the KdV equation over a slowly varying bottom, [3,4], and has
been used to study the long-time dynamics of solitary waves for the KdV equation, see Dejak-Sigal [5],
Dejak-Jonsson [6], and Holmer [7]. We note that the rigorous derivation of the Schrödinger-KdV system
of equations is an open and challenging problem.

The main ingredients of our analysis are generalizations of adiabatic theorems for bound and metastable
quantum states to the case at hand, see [10], and also [11–14,16], and a straightforward extension of results
on the effective dynamics of solitons for KdV equation over a slowly varying bottom to the random case,
[7], see also [5, 6, 8, 9] for relevant results.

1.2. The model and statement of the main result

In what follows, (Ω,F ,P) denotes a probability triple for which the probability space Ω has a generic
point ω and is endowed with measure P. For a measurable and integrable function f on Ω, we define its
expectation value by E(f) :=

∫
f(ω)P(dω).

We consider the system of equations

iε∂tu(x, t) = −∂2xu(x, t)− 1

2
gv(x, t)u(x, t) (1.1)

∂tv(x, t) = −∂x(∂2xv(x, t) + 3v2(x, t)− bh(x, t;ω)v(x, t)) (1.2)

where ω ∈ Ω a point in probability space, x ∈ R denotes a point in the configuration space, t ∈ R is time,
g > 0 is a coupling constant, ε and h are small positive paramters, and the slowly varying potential bh is
a measurable real function on R× R×Ω → R satisfying

bh(x, t;ω) ≡ b(hx, ht;ω). (1.3)

We assume that
b ∈ L∞(Ω,C∞0 (R2)). (1.4)

Under this assumption, the system of equations (1.1) and (1.2) is almost-surely well-posed in L2(R,C)×
Hk(R,R), k ≥ 1, for any time interval [−T, T ] ∈ R, see Subsect. 2.1.2 below.

When b = 0, the KdV equation (1.2) admits orbitally stable solitary wave solutions of the form

vσ(x, t) = Q(x, a+ 4c2t, c), (1.5)

where
σ = (a, c), Q(x, a, c) = 2c2 cosh−2(c(x− a)),

see [17] and references therein. Here, a and c correspond to the centre of mass and the velocity of the
internal wave, respectively.

When g > 0, there exists surface waves that are associated with vσ. Let

HPT = −∂2x − g cosh−2(x), (1.6)

the Pöschl-Teller Hamiltonian. It has discrete spectrum

σd(HPT ) = {λn = − (−2n− 1 +
√

1 + 4g)2

4
, n ∈ N, n <

−1 +
√

1 + 4g

2
},

see, for example, [18]. We denote by χn the eigenfucntion of HPT with eigenvalue λn. The surface admits
bound states of the form

χn,σ(x, t) = e−i
λn
ε

∫ t
0
c2dtei4c

4εtei2c
2ε(x−4c2t−a)χn(c(x− 4c2t− a)), (1.7)

where n < −1+
√
1+4g

2 . These surface waves are bound states of the Hamiltonian Hσ = −∂2x − 1
2gvσ.

2



“walid” — 2012/2/20 — 16:35 — page 3 — #3i
i

i
i

i
i

i
i

W. Abou Salem Adiabatic Evolution of Coupled Waves for a Schrödinger-Korteweg-de Vries System

The surface waves χn,σ that are defined above are stable, since they correspond to bound states of a
Schrödinger operator. However, in some cases, there exists long-lived metastable surface waves. Suppose
that there exists m ∈ N and 0 < δg � 1 such that

m(m+ 1)− δg < g < m(m+ 1). (1.8)

In this case, χm is not an eigenstate of HPT . However, it is a bound state of HPT − δg cosh−2 x. Since
the perturbation δg cosh−2 x is dilatation analytic, the results of Theorem 1 in [20] hold, and χm can be
regarded as an approximate metastable state of HPT with life-time τl ∼ δ−2g . The approximate metastable
surface wave is given by

χm,σ(x, t) = e−i
λm
ε

∫ t
0
c2dtei4c

4εtei2c
2ε(x−4c2t−a)χm(c(x− 4c2t− a)). (1.9)

When b 6= 0, the above picture is modified. In the deterministic case, it was shown by Holmer [7] that
up to times of order | log h|h−1, the KdV soliton gets modulated due to the slowly varying bottom, see
also [5,6]. A similar result holds in the random case almost surely, see Theorem 2.1 in Subsect. 2.1.4 for
a complete statement.

We introduce the stochastic process (A(t), C(t))t≥0 corresponding to the rescaled effective dynamics
of the centre of mass of the internal wave, which is given by{

∂tA(t;ω) = 4C2(t;ω)− b(A, t;ω), A(0) = A0,

∂tC(t;ω) = 1
3C(t;ω)∂Ab(A, t;ω), C(0) = C0.

(1.10)

Suppose that b satisfies assumptions (1.3) and (1.4), and that the initial condition of (1.2) is v(0) = vσ(0).
Then up to times τ ∼ | log h|h−1, the true solution of (1.2) is

v(t) = vσ(t) + w(t), (1.11)

where the fluctuation w is small in a suitable norm to be specified below, and the KdV soliton parameters
σ(t) = (a(t), c(t))t≥0 satisfy ‖a(t) − h−1A(ht)‖L∞ω L∞[0,τ] . eαht, ‖c(t) − C(ht)‖L∞ω L∞[0,τ] . heαht. Here, α

is a positive constant that is independent of h, ε and ω ∈ Ω.
The bound state for the surface wave is also modulated. Let

H(t) = −∂2x −
1

2
gv(t) = Hσ(t) −

1

2
gw(t),

where vσ and w appear in (1.11). For h small enough, and for each fixed time t, the bound states of
H(t) can be obtained from those of Hσ(t) by analytic perturbation theory, since the discrete spectrum of
the latter is simple and isolated, see, for example [19]. We denote by χ̃n(t) the nth eigenstate of H(t),

n < −1+
√
1+4g

2 , with corresponding eigenvalue λ̃n(t). This eigenstate is an instantaneous bound state.
Similarly, one can perturbatively define instantaneous metastable states. Suppose that (1.8) holds. Then
χ̃m(t), the mth eigenstate of H(t)− 1

2δgvσ(t), is an approximate metastable state of H(t).
Starting with an initial condition that corresponds to vσ0 for the internal wave and χn,σ (χm,σ) for

the surface wave, one expects the internal wave to be close to vσ(t), and the surface wave to be close
to the instantaneous bound (metastable) state χ̃n(t) (χ̃m(t)). The purpose of this letter is to make this
intuition precise, and to give estimates of the deviation from this picture.

We need the notion of stopping time for the dynamics of the internal wave. Suppose b satisfies (1.4),
and let A0 ∈ R, C0 > 0 and δ ∈ (0, 1). We let τ∗ be the stopping time such that

δ < ‖C‖L∞(Ω,L∞([0,τ∗])) < δ−1,

where C appears in (1.10). The following is the main result of this work.

3
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Theorem 1.1. Consider the coupled equations (1.1) and (1.2), such that bh satisfies (1.3) and (1.4).
Let (A(t), C(t))t≥0 be the stochastic process given by (1.10), and define τ = min(h−1τ∗, h−1δ| log h|).

(i) Suppose that the initial state is (
u(0)
v(0)

)
=

(
χn,σ0(0)
vσ0

(0)

)
,

where the stable waves vσ and χn,σ are given in (1.5) and (1.7) respectively. Then there exists positive
constants ε0, h0 and α that depend on the initial condition and g, but that are independent of ω ∈ Ω,
such that, for t ≤ τ,

E(‖u− χ̃n,σ(t)‖L∞
[0,t]

L2
x
) . tε,

E(‖v − vσ(t)‖L∞
[0,t]

H1
x
) . h1/2eαht,

for h ∈ (0, h0] and ε ∈ (0, ε0]. Here σ(t) = (a(t), c(t)) satisfy

‖a(t)− h−1A(ht)‖L∞ω L∞[0,t] . e
αht,

‖c(t)− C(ht)‖L∞ω L∞[0,t] . he
αht.

(ii) Suppose the resonance condition (1.8) holds for some m ∈ N, and that the initial state is given by(
u(0)
v(0)

)
=

(
χm,σ0

(0)
vσ0

(0)

)
,

where the approximate metastable state χm,σ is given in (1.9). Then there exists positive constants ε0,
h0, δg0 and α that depend on the initial condition and g, but that are independent of ω ∈ Ω, such that,
for t ≤ τ,

E(‖u− χ̃m,σ(t)‖L∞
[0,t]

L2
x
) . (δgε

−1 + ε1/2 + f(ε))t,

E(‖v − vσ(t)‖L∞
[0,t]

H1
x
) . h1/2eαht,

for h ∈ (0, h0], ε ∈ (0, ε0] and δg ∈ (0, δg0 ]. Here, f(x)→ 0 and x→ 0, and σ(t) = (a(t), c(t)) satisfy

‖a(t)− h−1A(ht)‖L∞ω L∞[0,t] . e
αht,

‖c(t)− C(ht)‖L∞ω L∞[0,t] . he
αht.

Note that in case (i), when ε ∼ h3/2−δα

δ| log h| , the deviation of the surface wave and the internal wave from

the coupled bound state is of order O(h1/2−δα).

1.3. Organization

The organization of this letter is as follows. In Sect. 2, we briefly recall basic properties of (1.1) and (1.2).
We also discuss the effective dynamics of the internal wave. In Sect. 3, we state and prove the adiabatic
theorems corresponding to the evolution of the surface wave. Finally, in Sect. 4, we prove Theorem 1.1.

1.4. Notation

– In the following, Lp(I) denotes the (real or complex) Lebesgue space, 1 ≤ p ≤ ∞, with norm

‖f‖Lp = (

∫
I

dx |f(x)|p)
1
p , f ∈ Lp(I), p <∞,

‖f‖L∞ = ess− sup(|f |), f ∈ L∞(I).

4
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The ordering of norms is standard. For example,

‖f‖L∞ω L∞[0,T ]
:= ‖ ‖f‖L∞([0,T ]) ‖L∞(Ω).

We denote by 〈·, ·〉 the scalar product in L2(R),

〈u, v〉 =

{
Re
∫
R uv, u, v ∈ L2(R,C)∫

R uv, u, v ∈ L2(R,R)
.

– We denote by

Hs(R) := {u ∈ S ′(R) : F−1(1 + |k|2)
s
2Fu ∈ L2(R)},

s ∈ R,

where F stands for the Fourier transform. The space Hs is equipped with the norm

‖u‖Hs = ‖F−1(1 + |k|2)
s
2Fu‖L2 , u ∈ Hs(R),

which makes it a (real or complex) Banach space.
– For 1 ≤ p ≤ ∞ and s ∈ N, the (real or complex) Sobolev space is given by

W s,p(R) := {u ∈ S ′(R) : ∂αx u ∈ Lp(R), |α| ≤ s},

where S ′(R) is the space of tempered distributions. We equip W s,p with the norm

‖u‖W s,p =
∑

α,|α|≤s

‖∂αx u‖Lp ,

which makes it a Banach space.

2. Preliminaries

2.1. Modified KdV equation

We now recall some of the properties of the modified KdV equation (1.2); see, for example, [5], [6] and [7].
In what follows, we denote Ω ⊂ Ω, with P(Ω) = 1, the set over which the realizations of b are uniformly
bounded in ω and are in C∞0 (R2).

2.1.1. Hamiltonian and symplectic structure

The Hamiltonian functional associated with (1.2) is

Hb(v) =
1

2

∫
R
[(∂xv)2 − 2v3 + bhv

2]dx. (2.1)

Since bh is time-dependent, Hb is not conserved. In particular,

∂tHb(v) =
1

2

∫
R
∂tbhv

2, P− a.s.. (2.2)

Furthermore, since translational symmetry is broken when b 6= 0, the momentum m(v) = 1
2‖v‖

2
L2 is no

more conserved, and

∂tm(v) =
1

2

∫
R
∂xbhv

2, P− a.s.. (2.3)

5
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Let J = ∂x, then

J−1v(x) =
1

2
(

∫ x

−∞
v(x′)dx′ −

∫ +∞

x

v(x′)dx′)

defines a symplectic form on H1(R,R) that is given by

ω(v, w) = 〈v, J−1w〉.

The modified KdV equation can be regarded as the Hamiltonian flow generated by Hb :

∂tv = JH ′b(v),

where the prime stands for the Fréchet derivative.

2.1.2. Well-posedness

Under assumptions (1.3) and (1.4), the modified KdV equation (1.2) is P-a.s. globally well-posed in
H1(R,R). This follows directly from the well-posedness result in the deterministic case in the presence
of a bottom, see [5, 7]. For fixed ω ∈ Ω, local well-posedness follows from smoothing estimates of
Kenig-Ponce-Vega [21]. When b 6= 0, the momentum m(v) and the Hamiltonian Hb(v) are not conserved.
However, it follows from (2.2) and (2.3) that they are almost surely approximately conserved. This implies
that (1.2) is almost surely globally well-posed in H1(R,R). Since the term with the highest derivative is
linear, and b is almost surely in C∞0 (R2), the analysis can be extended to Hk(R,R), k ≥ 1, for any time
interval [−T, T ] ∈ R.

2.1.3. Internal wave manifold

When b = 0, (1.2) admits solitary wave solutions of the form

vσ(x, t) = Q(x, a+ 4c2t, c) = 2c2 cosh−2(x− 4c2t− a), a ∈ R, c > 0.

Let M⊂ H1 denote the two-dimensional soliton manifold

M = {vσ| σ = (a, c) ∈ R× R+}.

The symplectic form ω when restricted to the soliton manifold is

ω|M = 8c2da ∧ dc,

and the Hamiltonian restricted to M is

Hb|M = −32

5
c5 +

1

2

∫
R
bhv

2
σdx.

In the deterministic case, it was shown in [7] that the effective dynamics of the centre of mass of the
soliton is approximately given by the Hamiltonian flow generated by Hb|M. A similar result holds in the
case when b is random, yet slowly varying.

2.1.4. Long-time dynamics of internal wave

Since b ∈ C∞0 (R2) when ω ∈ Ω, the result of Theorem 2 in [7] holds almost surely.

Theorem 2.1 (Effective dynamics of internal wave). Consider equation (1.2), such that bh satis-
fies (1.3) and (1.4). Let (A(t), C(t))t≥0 be the stochastic process given by (1.10), and define τ =
min(h−1τ∗, h−1δ| log h|). Suppose that

v(0) = vσ(0),

6
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where the stable wave vσ is given in (1.5). Then there exists positive constants h0 and α such that, for
t ≤ τ,

E(‖v − vσ(t)‖L∞
[0,t]

H1
x
) . h1/2eαht,

〈w, vσ(t)〉 = 〈w, (x− a)vσ〉 = 0 P− a.s.,

for h ∈ (0, h0]. Here, σ(t) = (a(t), c(t)) satisfy

‖a(t)− h−1A(ht)‖L∞ω L∞[0,t] . e
αht,

‖c(t)− C(ht)‖L∞ω L∞[0,t] . he
αht.

The proof in [7] relies on the geometric approach to study effective dynamics of solitons as developed in
[22] for the case of the nonlinear Schrödinger equation, see also [5, 6] for earlier results. When v is close
enough (in H1 norm) to the soliton manifold M, the implicit function theorem implies that there exists
a unique orthogonal decomposition

v = vσ + w,

where the fluctuation w satisfies the orthogonality conditions

〈w, vσ〉 = 〈w, (x− a)vσ〉 = 0.

The equation of motion for w is

∂tw = −∂x(∂2xw + 6vσw − bw + 3w2) + F0, (2.4)

where

F0 = −(∂ta− 4c2)∂avσ − (∂tc)vσ + ∂x(bvσ).

Control of the fluctuation is achieved using the Martel-Merle local virial identity, [23], and energy esti-
mates. Assumption (1.4), almost sure well-posedness in Hk, k ≥ 1, (2.4) and the orthogonality conditions
imply that

a, c ∈ L∞(Ω,W 2,∞(R)). (2.5)

2.2. The surface equation

In this subsection, we review some of the properties of (1.1). Suppose that the hypotheses of Theorem
2.1 hold, and let

Hσ(t) = −∂2x −
1

2
gvσ(t), t ≤ τ.

Since vσ is almost surely bounded and smooth, Hσ(t) is P-a.s. ess. self-adjoint with fixed common core.
Let

H(t) = −∂2x −
1

2
gv(t) = Hσ(t) −

1

2
gw(t).

It follows from the well-posedness of (1.2) with initial data vσ0 ∈ Hk(R), k ≥ 1, that 1
2gw(t) is P-a.s.

bounded perturbation, and hence, H(t) is P-a.s. self-adjoint on a fixed dense domain D. Furthermore, the
discrete spectrum of H(t) is obtained from that of Hσ(t) using standard perturbation theory. We denote

by Pn(t) = |χ̃n(t)〉〈χ̃n(t)| the eigenprojection corresponding to the isolated simple eigenvalue λ̃n(t) of

H(t), n < −1+
√
1+4g

2 . Furthermore, we let

R(t, z) = (z −H(t))−1,

7
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the resolvent of H(t). Well-posedness of (1.2) and (2.5) imply that R(t, i) is P-a.s. bounded and differ-
entiable as a bounded operator, and that H(t)∂tR(t, i) is P-a.s. bounded. Note that one can define Pn
using the resolvent and contour integration,

Pn(t) =
1

2πi

∫
γ

R(t, z)dz,

where γ is a contour that encloses λ̃n(t). It follows that Pn(t) is P-a.s. twice differentiable as a bounded
operator. In what follows, we denote by U the a.s. unitary operator that is given by

iε∂tU(t, t′) = H(t)U(t, t′), U(t, t) = 1.

3. Adiabatic evolution of surface waves

3.1. Adiabatic evolution of bound surface waves

In this subsection, we study the dynamics of the surface wave when the initial condition is close to a stable
bound state. Following the analysis of Kato [11], we introduce the generator of the adiabatic evolution
Ua(t, t′) that satisfies the intertwining property

Ua(t, 0)Pn(0) = Pn(t)Ua(t, 0) P− a.s.. (3.1)

Let
Ha(t) = H(t) + iε[Ṗn(t), Pn(t)],

where ḟ = ∂tf. This operator is P-a.s. self-adjoint and differentiable in t. Furthermore, using the fact
that

Pn(t)Ṗn(t)Pn(t) = 0, P− a.s.,

one can directly verify that Ha(t) generates Ua(t),

iε∂tUa(t, t′) = Ha(t)Ua(t, t′), Ua(t, t) = 1.

Ua is P-a.s. unitary.

Theorem 3.1. Suppose that the hypotheses of Theorem 2.1 hold. Then

‖U(t, 0)− Ua(t, 0)‖ . εt, P− a.s.,

uniformly in h ∈ (0, h0].

Proof. We want to compare Ua(t, 0) to U(t, 0). Let ω ∈ Ω and

δ(t) = U∗a (t, 0)U(t, 0).

Then

∂tδ(t) =
i

ε
U∗a (t, 0)(Ha(t)−H(t))U(t, 0)

= −U∗a (t, 0)[Ṗn(t), Pn(t)]U(t, 0).

Let

X(t) =
1

2πi

∫
γ

R(t, z)Ṗn(t)R(t, z),

8
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where γ is a contour in the complex plane that encloses λ̃n(t), t ∈ [0, τ ]. Note that X is P-a.s. differen-
tiable in t as a bounded operator. It also satisfies the commutator equation

[H(t), X(t)] = [Ṗn(t), Pn(t)], P− a.s..

It follows that

∂tδ(t) = U∗a (t, 0)[X(t), H(t)]U(t, 0)

= U∗a (t, 0)(X(t)H(t)−Ha(t)X(t))U(t, 0) +O(ε)

= −iε[(∂tU∗a (t, 0))X(t)U(t, 0)− U∗a (t, 0)X(t)(∂tU(t, 0))] +O(ε)

= −iε[∂t(U∗a (t, 0)X(t)U(t, 0))− U∗a (t, 0)(∂tX(t))U(t, 0)] +O(ε).

Since X and ∂tX are P−a.s. bounded,

‖∂tδ(t)‖ . ε, P− a.s.,

uniformly in t ∈ [0, τ ]. This yields

‖δ(t)− 1‖ . εt, P− a.s..

�

3.2. Adiabatic evolution of metastable surface waves

We now assume that the resonance condition (1.8) holds for some m ∈ N, and that the initial condition of
(1.1) is the approximate metastable state u0 = χm,σ0

(0). We have a weaker form of the adiabatic theorem
compared to that of the bound state.

Let

H0(t) = H(t)− 1

2
δgvσ(t).

Then, for each fixed t ∈ [0, τ ] and ω ∈ Ω, λ̃m(t) is a simple isolated eigenvalue of H0(t). Let
Pm(t) = |χ̃m(t)〉〈χ̃m(t)|, the eigenprojection corresponding to λ̃m(t). We introduce the generator of
the approximate adiabatic evolution

H0
a(t) := H(t) + iε[Ṗm(t), Pm(t)], (3.2)

which is P-a.s. self-adjoint with the same common dense domain D of H(t). The propagator corresponding
to the approximate adiabatic evolution is given by

iε∂tU
0
a (t, t′) = H0

a(t)U0
a (t, t′), U0

a (t, t) = 1. (3.3)

U0
a is a P-a.s. unitary operator.

Theorem 3.2. Suppose that the hypotheses of Theorem 2.1 and (1.8) hold. Then, for t ∈ [0, τ ],

U0
a (t, 0)Pm(0)U0

a (0, t) = Pm(t) +O(δgε
−1t), P− a.s., (3.4)

and

‖U(t, 0)− U0
a (t, 0)‖ . [ε1/2 + δgε

−1/4 + l(ε1/4)]t, P− a.s., (3.5)

uniformly in h ∈ (0, h0], where l(x) is a positive function of x ∈ R such that limx→0 l(x) = 0.

9
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Proof. Let ω ∈ Ω and define
h(t, t′) = U0

a (t, t′)Pm(t′)U0
a (t′, 0).

Then

∂s′h(t, t′) = iε−1U0
a (t, t′){H0

a(t′)Pm(t′)− Pm(t′)H0
a(t′)}U0

a (t′, 0)

= iε−1U0
a (t, t′){λm(t′)Pm(t′) + iεṖm(t′)Pm(t′)− λm(t′)Pm(t′)

+ iεPm(t′)Ṗm(t′) +O(δg)}U0
a (t′, 0)

= O(δgε
−1), ω ∈ Ω,

where we have used the definition of the generator of the adiabatic evolution and the property that

Ṗm(t)Pm(t) + Pm(t)Ṗm(t) = 0, P− a.s..

It follows that h(t, 0) = h(t, t) +O(δgε
−1t), P− a.s., and hence claim (3.4).

For ψ ∈ D and ω ∈ Ω, we have

(U(t, 0)− U0
a (t, 0))ψ = −

∫ t

0

dt′∂t′(U(t, t′)U0
a (t′, 0))ψ

= −iε−1
∫ t

0

dt′U(t, t′)[H(t′)−H0
a(t′)]U0

a (t′, 0)ψ

= −
∫ t

0

dt′U(t, t′)[Ṗm(t′), Pm(t′)]U0
a (t′, 0)ψ.

Since the domain of definition D is dense, it follows that

‖U(t, 0)− U0
a (t, 0)‖ = ‖

∫ t

0

dt′U(t, t′)[Ṗm(t′), Pm(t′)]U0
a (t′, 0)‖, P− a.s..

For ω ∈ Ω, let

Xη(t) := R(λm(t) + iη, t)Ṗm(t)Pm(t) + Pm(t)Ṗm(t)R(λm(t)− iη, t). (3.6)

Note that

[H(t), Xη(t)] = [H(t)− λm(t)− iη, R(λm(t) + iη, t)Ṗm(t)Pm(t)]

+ [H(t)− λm(t) + iη, Pm(t)Ṗm(t)R(λm(t)− iη, t)]
= [Ṗm(t), Pm(t)] + iηXη(t) +O(δg/η).

Furthermore,

∂t′(U(t, t′)Xη(t′)U0
a (t′, 0)) = iε−1U(t, t′)[H(t′), Xη(t′)]U0

a (t′, 0)

+ U(t, t′)Xη(t′)[Ṗm(t′), Pm(t′)]U0
a (t′, 0)

+ U(t, t′)Ẋη(t′)U0
a (t′, 0).

This yields

‖
∫ t

0

dt′U(t, t′)[Ṗm(t′), Pm(t′)]U0
a (t′, 0)‖

≤ sup
t
{ε[‖Xη(t)‖(1 + 2‖Ṗm(t)Pm(t)‖) + ‖Ẋη(t)‖] + η‖Xη(t)‖}+ Cδg/η,

10
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for ω ∈ Ω, where C is a finite constant independent of h, ε and δg. We claim that the following estimates
are P-a.s. true for small enough η and δg,

(i) ‖Xη(t)‖ < C/η P− a.s., (3.7)

(ii) ‖Ẋη(t)‖ < C/η2 P− a.s., (3.8)

(iii) η‖Xη(t)‖ < B(η) + Cδg/η, P− a.s., (3.9)

where limη→0B(η) = 0, and C is a finite constant independent of h, ε and δg.
Estimates (i) and (ii) follow from our knowledge of the spectrum of H(t) when ω ∈ Ω and the resolvent

identity. We now compare the L.H.S. of (3.9) to the “unperturbed case”. Let R0(t, z) = (z −H0(t))−1,
where the “unperturbed” Hamiltonian H0 = H − 1

2δgvσ. Let

X̃η(t) := R0(λm(t) + iη, t)Ṗm(t)Pm(t) + Pm(t)Ṗm(t)R0(λm(t)− iη, t). (3.10)

By the second resolvent identity,

‖Xη(t)‖ ≤ ‖X̃η(t)‖+ Cδg/η
2,P− a.s.

uniformly in h, ε and δg. We claim that

lim
η→0

η2‖X̃η(t)‖2 = 0. (3.11)

Consider φ ∈ D, then ψ(t) = Ṗm(t)Pm(t)φ ∈ Ran(1− Pm(t)). Using the spectral theorem for H0(t), we
have the following for every ω ∈ Ω,

lim
η→0

η2‖R0(λm(t) + iη, t)Ṗm(t)Pm(t)φ‖2

= lim
η→0

η2〈ψ(t), R0(λm(t)− iη, t)R0(λm(t) + iη, t)ψ(t)〉

= lim
η→0

η2
∫
dµψ(t)(λ)

1

(λ− λm(t))2 + η2

= µ(ψ(t) ∈ Ran(Pm(t))) = 0,

and hence claim (3.11). Therefore,

‖U(t, 0)− U0
a (t, 0)‖ ≤ C1

ε

η2
+ C2

δg
η

+ l(η),

where C1,2 are finite constants, and limη→0 l(η) = 0. Choosing η = ε1/4 yields (3.5). �

4. Proof of main result

Proof. of Theorem 1.1. The main theorem follows directly from Theorems 2.1, 3.1 and 3.2.

(i) It follows from Theorem 3.1 that

‖u(t)− χ̃n(t)‖ = ‖(U(t, 0)− Ua(t, 0))χn,σ0(0)‖
. εt, P− a.s.,

uniformly in h. Together with Theorem 2.1, this implies (i).

11
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(ii) It follows from Theorem 3.2 that

‖u(t)− χ̃m(t)‖ . ‖(U(t, 0)− U0
a (t, 0))χm,σ0

(0)‖+O(δgε
−1t)

. (ε1/2 + δgε
−1 + f(ε))t, P− a.s.,

uniformly in h. Together with Theorem 2.1, this implies (ii).

�

Acknowledgements. The financial support of a Discovery grant from the Natural Sciences and Engineering Re-
search Council of Canada is gratefully acknowledged.

References

[1] W. Craig, P. Guyenne, C. Sulem. Coupling between internal and surface waves, Natural Hazards, Special Issue on
“Internal waves in the oceans and estuaries: modeling and observations”, (2010), doi:10.1007/s11069-010-9535-4, 26pp.

[2] W. Craig, P. Guyenne, C. Sulem. A Hamiltonian approach to nonlinear modulation analysis. Wave Motion 47 (2010),
552–563.

[3] E. van Groesen, S. R. Pudjaprasetya. Uni-directional waves over slowly varying bottom. I. Derivation of a KdV-type
of equation. Wave Motion 18 (1993), 345–370.

[4] S. B. Yoon, Philip L.-F. Liu. A note on Hamiltonian for long water waves in varying depth. Wave Motion 20 (1994),
359–370.

[5] S.I Dejak, I.M. Segal. Long time dynamics of KdV solitary waves over a variable bottom. Comm. Pure Appl. Math.
59 (2006), 869–905.

[6] S.I. Dejak, B.L.G Jonsson. Long time dynamics of variable coefficient mKdV solitary waves. J. Math. Phys. 47 (2006),
072703, 16pp.

[7] J. Holmer. Dynamics of KdV solitons in the presence of a slowly varying potential. IMRN (2011),
doi:10.1093/imrn/rnq284, 31pp.

[8] J. Holmer, G. Perelman, M. Zworski. Effective dynamics of double solitons for perturbed mKdV. Commun. Math.
Phys. 305 (2011), 363–425.

[9] C. Munoz. On the soliton dynamics under a slowly varying medium for generalized KdV equations. arxiv.org
arXiv:0912.4725 [math.AP] (2009). To appear in Analysis and PDE.
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