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Adiabatic index of hot and cold compact objects
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- Florianópolis - SC - Caixa Postal 476 - CEP 88.040-900 - Brazil
(Received on 16 September, 2009)

In the present work we calculate the adiabatic index of neutron stars formed by hadronic or quarkionic matter,
under two possible conditions, with and without trapped neutrinos, and for two values of the entropy per baryon
S = 0,2 kB/ baryon. We use the nonlinear Walecka model to describe hadronic stars, and the MIT bag model to
describe quark stars. Particle fractions for each case are obtained and the appearance of particles are compared
with drops in the adiabatic index, whenever possible.

Keywords: Neutron stars; Quark stars; Adiabatic index

1. INTRODUCTION

The adiabatic index (Γ) is an important thermodynamical
quantity. In a classical theory it is related to both the spe-
cific heat at constant pressure and the specific heat at constant
volume (Γ = Cp/Cv).

Compact stars are objects whose constituents can be used
to build their equations of state (EOS) and consequently their
adiabatic index, used to infer their stability [1, 2]. The compo-
sition of neutron stars remains a source of speculation. Three
of the possibilities are that 1) the stars are formed by hadrons
plus leptons (hadronic stars) [3], 2) they are formed by quarks
plus leptons (strange or quark stars) [4] and 3) that they are
hybrid, formed by hadrons plus leptons and quarks plus lep-
tons, bearing [5] or nor a mixed phase [6].

Polytropes are equations of state for which the adiabatic
index is constant. A free Fermi non-relativistic (relativistic)
gas can be described by an EOS with Γ = 5/3 (4/3). If the
fermions are electrons, the resulting polytropic EOS can be
used to describe white dwarfs. If they are neutrons, they de-
scribe neutron stars [7, 8].

In [9, 10] piecewise polytropic EOSs are used to describe
neutron star properties. In [10], a 4-parameter polytrope is
used to fit hybrid star EOS obtained with more fundamental
models, where the crust has an index Γ1, the hadronic phase
Γ2, the mixed phase an index Γ3 and the core constituted by
quarks an index Γ4. This piecewise EOS is then used in a
study of constraints placed by astrophysical observations on
neutron stars.

In the present work we calculate the adiabatic index for
hadronic and quark stars both for zero temperature and fixed
entropy per baryon. The non-linear Walecka model [11] is
used to obtain the EOS for hadronic matter and the MIT bag
model [12] for quark matter.

The paper is organized as follows: in Section II the ba-
sic formalism used to describe hadronic and quark matter
is briefly described. In Section III the results are presented
and discussed and in the Section IV the final conclusions are
drawn.

2. THE FORMALISM

We next describe the basic equations for the relativistic
models used in the present work.

2.1. Hadronic stars

The Lagrangian density for the non-linear Walecka model
can be written as [11]:

LH = LNLWM +Ll , (1)

where
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and
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l=e−,µ−

ψl (ıγµ∂
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with ΣB extending over the eight baryons and where giB and
mi are respsctively the coupling constants of the mesons i =
s,υ,ρ,δ with the hyperons and their masses. Self-interacting
terms for the σ-meson are also included, k and λ denoting the
corresponding coupling constants and τ is the isospin opera-
tor. The set of coupling constants of the baryons of the octect
and the mesos are gsB = xsB gs, gυB = xυB gυ, gρB = xρB gρ,
and xsB, xυB and xρB are equal to 1 for the nucleons. We
have chosen xsB = 0.7 and xυB = xρB = 0.783 and assumed
that the couplings to the Σ and Ξ are equal to those of the
Λ hyperon[11].As parameters we have used [11] g2

s /m2
s =

11.79 f m2, g2
υ/m2

υ = 7.148 f m2, g2
ρ/m2

ρ = 4.410 f m2, k/M =
4.1684, λ = −41.3685, for which the binding energy is
−16.3 MeV at the saturation density ρ0 = 0.153 f m−1, the
symmetry coefficient is 32.5 MeV and the compression mod-
ulus is 300 MeV [11]. M∗B = (MB−gsBφ) = 0.70 M at the sat-
uration density represents the effective mass of each baryon.
This parametrizations is often called GM1 in the literature.

After the application of the Euler-Lagrange equations to
the Lagrangian density, the equations of motion for the nu-
cleons and mesons read
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where:
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The distribution functions for baryons and anti-baryons
are:

fB± =
1
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with
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The expressions for the energy density ε and pressure P for
the hadronic model are given by [11]:

ε = εNLWM + εl (10)
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the energy density of the leptons is:
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the pressure of the leptons is:

Pl =
1

3π2 ∑
l

∫ p4d p√
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l

( fl−+ fl+) , (15)

with the lepton distribution functions given by:

fl± =
1

1+ e[(εl∓µl)/T ] , (16)

where µl is the chemical potential of the leptons and:

εl =
√

p2
l +m2

l . (17)

From the thermodynamic potential the entropy density of
the system can be written as:

s =
1
T

(
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)
, (18)

where the density of the leptons is:

ρl = 2
∫ d3 p

(2π3)
( fl+− fl−) . (19)

The condition of chemical equilibrium implies that:

µn = µp +µe− +µνe−
.

The neutrino term in the above equation refers to an initial
stage of the neutron star, when the neutrinos are still trapped
in its interior. After this stage the chemical equilibrium con-
dition becomes:

µn = µp +µe− , (20)

µΣ0 = µΞ0 = µΛ = µn,

µΣ− = µΞ− = µn +µe− ,

µΣ+ = µp = µn−µe− ,

µµ− = µe− . (21)

The charge neutrality implies that:

∑
B

qBρB = ρe− +ρµ− . (22)

2.2. Quark stars

The MIT bag model [12] is used to describe quark matter.
In this model the quarks are considered to be free in a bag.
The energy density for the bag model can be written as:

ε = εMIT + εl , (23)

with
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where the value 3 represents the number of colors, 2 repre-
sents the spin degeneracy, mq is the mass of each quark and
the term B represents the bag pressure [12]. The expression
for εl is given by the equation (12) and the pressure can be
written as:

P = PMIT +Pl , (25)

with

PMIT =
1
π2 ∑

q=u,d,s

∫ d p p4√
p2 +m2

q

( fq+ + fq−)

−B, (26)

and the term Pl is given by the equation (15). The density of
the quarks is given by:

ρq =
2×3
2π2

∫
p2d p [ fq+− fq−] , (27)

and the distribution function for the quarks and anti-quarks
are given by the Fermi distribution:

fq± =
1(

1+ e[(ε∓µq)/T ]
) , (28)

with ε =
√

p2 +m2
q, µq or (−µq), being the values of the

chemical potentials of the quarks or (anti-quarks) of type
q. We have used mu = md = 5.5 MeV , ms = 150 MeV ,
B = (150 MeV )4.

The relations between the chemical potential of the differ-
ent particles imposed by chemical equilibrium are:

µs = µd = µu− +µe− ,

µe− = µµ− .

For the charge neutrality we have imposed:

ρe +ρµ =
1
3

(2ρu−ρd−ρs) . (29)

2.3. Adiabatic Index

For stars, the stability is related with the value of the adi-
abatic index in its interior that has to be larger than 4

3 [13].
Our goal in the present work is to study the behavior of this
parameter of the matter that constitutes the star. We use the
expression [14]:

Γ =
ε

P
dP
dε

, (30)

where P and ε stand respectively for the pressure and energy
density of the model under consideration.

3. RESULTS

In the following we discuss the results obtained for
hadronic and quark stars. Not only the adiabatic index, but
also the corresponding particle fractions are displayed for
each case. Whenever possible a correlation between the ap-
pearence of the particles and the maxima and minima in the
adiabatic index is established.

3.0.1. Hadronic stars

Figs. 1 and 2 show the particle fractions versus density for
entropies S = 0 kB/baryon (upper panel) and S = 2 kB/baryon
(lower panel), for the nonlinear Walecka model.

Fig. 1 shows the fractions of hyperons, nucleons, and lep-
tons in a system with trapped neutrinos and fixed lepton frac-
tion Yl = 0.4. In the upper panel all species appear up to
ρ ∼ 0.8 f m−3. For S = 2 kB/baryon the baryons Ξ− and Ξ0

already emerge at ρ∼ 0.4 f m−3. At this point it is important
to emphasize that the case S = 0 and trapped neutrinos is dis-
played for academic purpose and for the sake of comparison
with the other cases. It is well known that at zero temperature
no trapped neutrinos are left in the star because their mean
free path would be larger than the compact star radius.
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FIG. 1: Particle fractions for a hadronic star whit trapped neutrinos.

In Fig. 2 the particle fractions in a system without trapped
neutrinos are shown. In the upper panel, even after ρ ∼
0.8 f m−3 baryonic species are emerging. In the lower panel,
one can see that all species emerge before ρ∼ 0.5 f m−3 and
the baryonic distribution stabilizes after ρ ∼ 1.0 f m−3. In
both cases we can see that the electric charge neutrality is
conserved, while positively charged particles appear, the neg-
ative hyperons have their population increased.

As expected the heaviest hyperons emerge at higher densi-
ties. These species populate the inner regions of neutron stars.
As entropy increases, hyperons turn up at lower densities.
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FIG. 2: Particle fractions for a hadronic star whitout trapped neutri-
nos.

Fig. 3, shows the behavior of the adiabatic index Γ versus
the baryonic density ρ for S = 0 kB/baryon (upper panel) and
for S = 2 kB/baryon (lower panel) for stars with and without
trapped neutrinos. For S = 0 kB/baryon, we can identify the
apperance of particles with deflections in the curves of the
adiabatic index. For S = 2 kB/baryon the identification is not
possible.
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FIG. 3: The adiabatic index Γ versus density ρ.

The horizontal line sets the threshold of stability. As indi-
cated in the upper pannel, the adiabatic index drops at densi-
ties that correspond to specific hyperon thresholds. After the
thresholds the equation of state is softened because of the new
hyperon. The case with trapped neutrinos presents a region
(ρ ∼ 0.85 f m−3) where the adiabatic index becomes lower
than the stability threshold 4

3 . Notice that this only happens
in the case referred to the non physical situation of zero tem-
perature and trapped neutrinos.

In the lower pannel with higher entropy the behavior of the
adiabatic index seems to be always stable no matter the value
of the density.

3.0.2. Quarkionic stars

Figs. 4 and 5 show particle fractions for entropies S =
0 kB/baryon (upper panel) and S = 2 kB/baryon (lower
panel), for the MIT bag model.

In Fig. 4 we display a system consisting of quarks u,d,s and
leptons e− and νe. For both cases the particle fractions are
practically the same. The neutrino content increases at lower
densities and then reaches a maximum value and stabilizes.

The electron fraction has a little decrease till it stabilizes,
and its presence restricts the s quark content due to the electric
charge conservation.

Fig. 5 shows the u,d,s quarks and e− fractions, without
trapped neutrinos. For the two entropies considered the elec-
tron content decreases quickly.

In Fig. 6 we plot the adiabatic index Γ versus density ρ

for S = 0 kB/baryon (upper panel) and for S = 2 kB/baryon
(lower panel) and the limit of stability. For both values of en-
tropy, Γ shows practically the same behavior for stars with
and without trapped neutrinos, decaying slowly but never
crossing the threshold of stability.
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FIG. 4: Particle fractions for a quarkionic star whit trapped neutri-
nos.

4. CONCLUSIONS

In the present work we have studied the adiabatic index of
neutron stars with and without trapped neutrinos formed by
hadronic or quarkionic matter for two values of the entropy
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FIG. 5: Particle fractions for a quarkionic star whitout trapped neu-
trinos.

 

FIG. 6: The adiabatic index Γ versus density ρ, for

S = 0,2 kB/baryon. We have used the NLWM and the MIT
bag model to describe these systems.

We have concluded that for hadronic stars and zero temper-
ature (S = 0), there is a clear correlation between the appear-
ance of particles and the behaviour of the adiabatic index. For
larger entropies and for quark stars the correlation does not
exist or is not obvious.

An obvious continuation of the present work would be the
calculation of the adiabatic index for various values of the
entropy between zero and 2 in order to mimic a protoneutron
star evolution. The results could help the understanding of its
stability during the deleptonization and cooling processes.

Once the adiabatic index for hadronic and quarkionic stars
was obtained, the same procedure can be repeated in the in-
vestigation of Γ for hybrid stars. Contrary to what was done
with piecewise polytropic EOS in [10], a continuous EOS as
obtained in [5] can be used for the calculation of the adiabatic
index. This work is under investigation.
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