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Perturbation to Noether symmetry and adiabatic invariants are investigated for the generalized fractional Birkhoffian system
with the combined Riemann-Liouville fractional derivative and the combined Caputo fractional derivative, respectively. Firstly,
differential equations of motion for the generalized fractional Birkhoffian system are established. Secondly, Noether symmetry
and conserved quantity are studied. Thirdly, perturbation to Noether symmetry and adiabatic invariants are presented for the
generalized fractional Birkhoffian mechanics. And finally, several applications are discussed to illustrate the results and methods.

1. Introduction

Compared with the integer order model, the fractional order
model can describe the mechanical and physical behavior
of the complex system more accurately. Miller and Ross [1]
once pointed out that almost every field of science and engi-
neering involves fractional calculus. Fractional calculus has
been widely used in mathematics, physics, chemistry, signal
processing, engineering, and so on [2]. Riemann-Liouville
fractional derivative and Caputo fractional derivative are
in common use. Cresson [3] presented two more general
fractional derivatives in 2006, i.e., the combined Riemann-
Liouville fractional derivative and the combined Caputo
fractional derivative.

The study of the fractional calculus of variations was
started in 1996, when Riewe [4, 5] was considering how to
deal with the friction force and other forms of dissipative
force in the classical mechanics and the quantum mechanics.
Since then, Agrawal [6, 7], Atanackovi¢ [8], Almeida [9,
10], and some other scholars [11, 12] also studied fractional
variational problems. However, all of the results were related
to Lagrangian system or Hamiltonian system. As a matter of
fact, there is a more general system called Birkhoffian system,
which was introduced in 1927 [13]. Birkhoffian mechanics is a
generalization of Hamiltonian mechanics, which is described
in detail in [14]. Birkhoffian dynamics has gained significant

headways [15, 16]. Recently, in [17], Luo first established
Birkhoffian mechanics with the combined Riemann-Liouville
fractional derivative and the combined Caputo fractional
derivative.

There is a set of unique integral theory in analytical
mechanics, which is useful in solving differential equations
of motion. Besides, symmetry and conserved quantity can
help to reveal the intrinsic physical properties of the dynamic
system. The commonly used symmetry methods [18] are
Noether symmetry method, Lie symmetry method, and
Mei symmetry method. Noether symmetry refers to the
invariance of the Hamilton action under the infinitesimal
transformations [19]. Lie symmetry refers to the invariance of
the differential equations of motion under the infinitesimal
transformations [20]. Mei symmetry means the invariance
of the forms of the differential equations of motion when
the dynamical functions, such as the kinetic energy, the
potential energy, the generalized forces, the Lagrangian, the
Hamiltonian, and the Birkhoftian, are replaced by the trans-
formed functions under the infinitesimal transformations.
Many important research results have been achieved in terms
of symmetry and conserved quantity of the constrained
mechanical systems [21].

The fractional symmetry and conserved quantity were
first studied by Frederico and Torres [22]. Based on the
Riemann-Liouville fractional derivative, they established the
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fractional Noether theorem. Bourdin et al. [23] presented a
new expression of the fractional conserved quantity and took
the fractional harmonic oscillator as an example. Based on
the Caputo fractional derivative, Muslih [24] extended the
fractional Noether theorem of finite degree of freedom to the
fractional field theory and presented the conserved quantity
of the fractional Dirac field. In recent years, Zhang [25, 26],
Jia [27], and Zhang [28] studied the Noether symmetry
and conserved quantity of the fractional Birkhoffian system.
Fu [29] investigated the Lie symmetry of the fractional
nonholonomic Hamiltonian system and the corresponding
inverse problem. Luo [30] presented the Mei symmetry and
conserved quantity of the generalized fractional Hamiltonian
system.

When the system suffers small disturbance, the original
conserved quantity will change. Perturbation to symmetry
and adiabatic invariants are closely related to the integrability
of the system, and they have been widely used in many fields,
such as mathematics, physics, and mechanics. The classical
adiabatic invariant refers to a slower physical quantity [31]
when a parameter changes slowly in the system. In 1981,
Djuki¢ [32] discussed the disturbed Hamiltonian system and
gave the corresponding adiabatic invariant. In 1996, Zhao and
Mei [33] pointed out that adiabatic invariant was not just the
product of the Hamiltonian system. Thereafter, perturbation
to symmetry and adiabatic invariants were studied in many
constrained mechanical systems such as the Lagrangian
system [34], the Hamiltonian system [35], the nonholonomic
system [36], and the Birkhoffian system [37], as well as
the fractional constrained mechanical system [38, 39]. It is
worth mentioning that [39] presented conserved quantity
and adiabatic invariant for the fractional generalized Birkhof-
fian system on the basis of Riemann-Liouville fractional
derivative, where Riemann-Liouville fractional derivative is
one of the special cases of the combined Riemann-Liouville
fractional derivative.

Because the generalized fractional Birkhoffian system and
the combined fractional derivatives are general, generalized
fractional Birkhoft equation, Noether symmetry and con-
served quantity, and perturbation to Noether symmetry and
adiabatic invariant with the combined Riemann-Liouville
fractional derivative and the combined Caputo fractional
derivative will be studied here. Then several special cases
of this paper will be discussed. This paper is organized
as follows. In Section 2, fractional derivatives and their
properties are reviewed. In Section 3, generalized fractional
Birkhoftf equation is established through the generalized
fractional Pfaff-Birkhoff-d’Alembert principle. Noether sym-
metry and conserved quantity for the generalized fractional
Birkhoffian system are presented in Section 4. Perturbation
to Noether symmetry and adiabatic invariant are investigated
in Section 5. And in Section 6, several applications are dis-
cussed.

2. Some Preliminaries on
Fractional Derivatives

Some fractional derivatives and their properties are listed in
this section [17, 40].
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Let f(t) be continuous and integrable, then the left and
the right Riemann-Liouville fractional derivatives are
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where « and f3 are the orders of the fractional derivatives with
n-1<a,pf<n

The combined Riemann-Liouville fractional derivative
and the combined Caputo fractional derivative are defined as
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where tlDf and tDﬁ can help deal with dynamical systems
exhibiting the arrow of time and y determines the different
quantity of information from the past and the future to keep
track of the past and the future of the dynamics.

When f = «, y = 1/2, formulae (7) and (8) reduce to for-
mulae (5) and (6), respectively. That is, the Riesz-Riemann-
Liouville fractional derivative and the Riesz-Caputo frac-
tional derivative are the special cases of the combined
Riemann-Liouville fractional derivative and the combined
Caputo fractional derivative.

Besides, when a, § — 1, we have
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The formulae for fractional integration by parts are
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3. Generalized Fractional Birkhoffian System

Generalized fractional Birkhoff equations in terms of the
combined Riemann-Liouville fractional derivative and the
combined Caputo fractional derivative are established in this
section.

Case 1. Based on the combined Riemann-Liouville fractional
derivative, the fractional Pfaff action and the generalized
fractional Pfaft-Birkhoff principle have their forms as follows:
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where a* = a*(t) is the Birkhoft’s variable, B = B(t,a’) is the
Birkhoffian, R, = R#(t, a’) is the Birkhoff’s function, 8'W =
ALt a’)éa”, u,v = 1,2,--+,2n, § is the isochronous varia-
tion,n — 1 < a, § < n, and Einstein summation convention
is used in this text.

When 0 < «, § < 1, it follows from
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From the arbitrariness of the integration interval [¢,,t,],
we have
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Formula (21) is called generalized fractional Pfaft-Birkhoff-
d’Alembert principle with the combined Riemann-Liouville
fractional derivative.
Due to the independence of da”, we get
OB
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Equation (22) is called generalized fractional Birkhoft equa-
tion with the combined Riemann-Liouville fractional deriva-
tive.
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Case 2. Based on the combined Caputo fractional derivative,
the fractional Pfaff action and the generalized fractional Pfaft-
Birkhoff principle have their forms as follows:
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Equation (25) is called generalized fractional Birkhoff equa-
tion with the combined Caputo fractional derivative.

Remark 1. When f8 = a, y = 1/2, from (22) and (25), we have
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Equations (26) and (27) are called generalized fractional
Birkhoft equations with the Riesz-Riemann-Liouville frac-
tional derivative and the Riesz-Caputo fractional derivative,
respectively.
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Remark 2. When A, = 0, 4 = 1,2,--+,2n, from (22), (25),
(26), and (27), we have
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Equations (28)-(31) are consistent with the results in [17].

Remark 3. When 0 < «, 8 < 1, the relationships between
the Riemann-Liouville fractional derivative and the Caputo
fractional derivative can be deduced from their definitions
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Substituting formulae (33) and (34) into formulae (18) and
(19), we get
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Using formulae (35) and (36), another form of the generalized
fractional Birkhoff equation with the combined Riemann-
Liouville fractional derivative can be achieved
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Similarly, another form of the generalized fractional
Birkhoft equation with the combined Caputo fractional
derivative can be achieved
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Remark 4. When 5 = a, y = 1/2, from (37) and (38), we can
get other forms of the generalized fractional Birkhoft equa-
tions with the Riesz-Riemann-Liouville fractional derivative
and the Riesz-Caputo fractional derivative
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Remark 5. When y = 1, it follows from (37) that
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Equation (41) is the generalized fractional Birkhoft equation
with the Riemann-Liouville fractional derivative [39].

Remark 6. When y = 1, A# =0,u =12, ,2n, it follows
from (37) that
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Equation (42) is the fractional Birkhoff equation with the
Riemann-Liouville fractional derivative [41].

Remark 7. When «, f — 1, (22), (25), (26), and (27) all
reduce to the classical generalized Birkhoff equation [21]
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The following discussions are all carried out under the
condition 0 < a, § < 1.

4. Noether Symmetry and Conserved Quantity

Assuming the infinitesimal transformations are
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where ¢ is an infinitesimal parameter and fg and ES are
infinitesimal generators, o(e) will be ignored in the following
calculation.

The fractional Pfaftf actions (16) and (23) will change
under the infinitesimal transformations (44); we denote them
as ASp; = Spr(@’(£)) — Sgr(a’(t)) and ASe = Sc(@' (1)) -
Sc(@’(t)), respectively.

Definition 8. The infinitesimal transformations (44) are
called Noether symmetric transformations if and only if
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metric transformations.
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Formula (48) is called Noether identity with the combined
Riemann-Liouville fractional derivative.
Similarly, we have
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Formula (49) is called Noether identity with the combined
Caputo fractional derivative.
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Remark 9. When 8 = «a, y = 1/2, from formulae (48) and
(49), we get

iDL (8- '8)

+ <Rya tlD;"za” + aty tlD;"z a - )EO

) <aRy "peg - a—B>Ef,

dat i oat

20 (1 - ) dt

+(R, ffo‘z a’ -B)&

Tawa Tl )& (et (1)

+GO+A#(E2—d“E8)=

- t2|_‘X a’(t,) Eg (tya* (t,)) (50)

and

RCHa v

v d
-a Eg) + (Rya D a

aRv RC
+ at tlDaZ = )50

R RCD (E

Vv ot

R

o Bl )8 @,

a(t,))

(51)
aRv RCHa v

@ )8 (e 1) + (5 Dt

0 o 1/
-2 )+ (R D5
_ dl‘gg) —
Formula (50) and formula (51) are called Noether identities

with the Riesz-Riemann-Liouville fractional derivative and
the Riesz-Caputo fractional derivative, respectively.
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Definition 10. A quantity I is called a conserved quantity if
and only if (d/df)I = 0.

Therefore, we have the following.

Theorem 11. If there exists a gauge function G° such that &)
and & satisfy the Noether identity (48) for the generalized
fractional Birkhoffian system (22), then this system has a
conserved quantity
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Theorem 12. If there exists a gauge function G° such that &

and & satisfy the Noether identity (49) for the generalized
fractional Birkhoffian system (25), then this system has a
conserved quantity
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Theorem 13. If there exists a gauge function G° such that &
and &) satisfy the Noether identity (50) for the generalized

fractional Birkhoffian system (26), then this system has a
conserved quantity
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Theorem 14. If there exists a gauge function G° such that
&9 and &° satisfy the Noether identity (51) for the generalized
fractional Birkhoffian system (27), then this system has a
conserved quantity

Ipco = (Rv th Dia’ - )50
o[ R (- a) + (8- o)

t R
Ra v _ —a
tlthRv] dr + L TO-a) “T |

-d” (t,) & (0" (t,)) -
<& (tpat (1)

o —t,[“a”(t,)
] dr + G° = const..

(55)
When o, — 1, we can get the classical conserved

quantity [21].

Theorem 15. If there exists a gauge function G° such that &)
and &° satisfy the Noether identity
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Remark 16. Let G® = 0, A, =0,p=12,---,2nin Theorems
11-14; then we can get the conserved quantity for the
fractional Birkhoffian system with the combined Riemann-
Liouville fractional derivative, the combined Caputo
fractional derivative, the Riesz-Riemann-Liouville fractional
derivative, and the Riesz-Caputo fractional derivative,
respectively. And these results are consistent with the results
in [26].

5. Perturbation to Noether Symmetry and
Adiabatic Invariants

If a small disturbance is imposed on a mechanical system,
then the conserved quantity for the original mechanical
system may also change. In this section, we discuss the per-
turbation to Noether symmetry for the generalized fractional
Birkhoftian system.

Definition 17. If 1, is a quantity with a small parameter ¢
whose highest power is z for a mechanical system, and dI, /dt
is in direct proportion to £, then I, is called a z-th order
adiabatic invariant for this system.

For the generalized fractional Birkhoffian system, assume
it is disturbed by the small force of eQ, (4 = 1,2,---,2n).
Under the small disturbance, suppose the gauge function G
and the infinitesimal generators &, and E# for the disturbed
system are expressed as

G=G"+eG' +G* + -,

=8 +ely+e8+--, (59)
_ 0 1, 2¢2
Eﬂ—£M+sfﬂ+s£M+ .

Then we have the following.
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Theorem 18. For the disturbed generalized fractional Birkhof- n (aRv RLpaf v 92 ) f] R,
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d . R R adiabatic invariant when the system is disturbed.
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q 3B - fian system with the combined Riemann-Liouville fractional
j RL ~o, B v j RL ~o, 8 v . j 1 1
& D}fa +Ryfé£ D}Fa’ - (Wﬂﬂ + _)gé derivative
" aRv RL zxﬁ v _ RLBe OB
+R D“ﬁ(EJ a E]) (5.7 a 51) le ” v S ]/ - D1 yRM - W + A Ql‘ (64)
SR iy () at v=1,2,---,2n
Ti-o’dt t—ty) "a (t) & (t,a" () (1, 2,+,2n),
R, d - i u if there exists a gauge function G’ (j = 0,1,2,--,z, z is
—(1-y)= (-t t t,, t i ;
" r(1-p) (1-7) dt (t=1) a (1) § (120" (1)) (63) an integer) such that the infinitesimal generators & and &/
satisfy
+ Gj] '
(-5
= I (R 0B »
_ s][ < vRLDaﬁv_ DMR——+A>EJ d OR OB ;
j;) Oat Y I=y™8 au ( I3 (R d_ RLD;c,ﬁav + a_v RLD;c,ﬁav _ _) E(J)
~a)) +Q, (87 - dw%-fl)] _ Zgj [-eQ, (&) . <8Rv RLpp, OB ) o R,
J=0 oat 4 v VT (1-a)

—d'g) +Q (&7 —a'E)] = —Q, (& - a"E).

d ey J H
— (-t t t» t
This proof is completed. O dt( ) (0) & (b ()

Because the generalized fractional Birkhoffian system ( R, RLDa By ) E‘j (1-y) —2r R,
with the combined Riemann-Liouville fractional derivative BRENY (1 -B)
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d B v . L.
cg (=) T a (1) & (1,0 (1)) + &

Ay (Ei - aﬂfé) -Q (Eft_l - ‘iﬂfé_l) =0,

(65)

where Ei;_l = Eé_l = 0 when j = 0, then a z-th order adiabatic
invariant exists as follows:

z ) t ) .
hua = £ (8 205+ [ [R5 (20

+ (8 -a’g)) " DR, dr - Jt [—F(leoc)

’Yd%(f—tl)a a’ (t,) & (t,,a" (t,)) (66)

T (1) (- 0 ()8 (e (1)) | e

r(1-g)

+Gj]>.

When y = 1, we can get special theorem from Theorem 19
as follows.

Theorem 20. For the disturbed generalized fractional Birkhof-
fian system

OR, RL & v | RLy« 0B
St o, Dia + (D R, — Jak A, =eQ, (67)
(wv=1,2,---,2n),
if there exists a gauge function G (j = 0,1,2,--- ,z, z is an

integer) such that the infinitesimal generators fé and &/ satisfy

R RLD (Ei B dvfé)

vVt

oR
+<R di "Dia” + =/ ¥Dfa V——)f’

aR‘V RL~a v 0B j
(5 ot - 5 )8

R, d .
T -a)dt t—t,) " a’(t) & (t.a" (1))
+ (R, Dt~ B) &) + &+ A, (£ - E))

(5 -)-

(68)

where 5{;‘1 = fé_l = 0 when j = 0, then a z-th order adiabatic
invariant exists as follows:

Ipin = ZZ:Sj {(Rv R:D?av - B) 53
=0

of ot (- a)

9
+ (& -a’g)) DL R,] dr
EmRia) T (-t)"a (1)
'fé(tl)a”(tl))dT+Gj}.
(69)

Remark 21. Whena’(t;) =0 (v = 1,2,---
is consistent with the results in [39].

,2n), Theorem 20

Theorem 22. For the disturbed generalized fractional Birkhof-
fian system with the combined Caputo fractional derivative

aRv C o ﬁ v _ RLyBa 0B
DR, —=— +A,
aaﬂ }’ 1-y~u aaﬂ Ql‘ (70)

(wv=1,2,---,2n),

if there exists a gauge function G’ (j = 0,1,2,---,z, z is an

integer) such that the infinitesimal generators Eé and &l satisfy
R, Dy (& - a'%)

dc B v aRvC B v 0B j
+(Rv& D]/ a +¥ D]/ a —E EO

aRV o, v aB :
+<chyﬁa _W>Eil
R w
_yr(l 1“) (t_tl) ( )50 (tl’a (tl)) (71)

+(R,“DSFa’ - B)E

F(1-)) = (1 - 6P () E (1 (1)

r(1-p)
1, (- -0, (" - ) o

where Ei;_l = (J)_l = 0 when j = 0, then a z-th order adiabatic
invariant exists as follows:

- isj {(RV CDz’ﬁaV - B) E{)
=)

f] (D (- ()

LACRL

t
DR R, | dr - J [

R,
T(1-

'dv(fl)gé (t,a" () - (1-y)

RV
)
(- () E (1 (rz»] ar + Gf} .

Remark 23. The generalized fractional Birkhoflian system
with the combined Caputo fractional derivative has another
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form (38), so we can also present another form of the
adiabatic invariant when the system is disturbed just like
Theorem 19.

When 3 = &, y = 1/2, we can get the adiabatic invariants
for the disturbed generalized fractional Birkhoffian system
with the Riesz-Riemann-Liouville fractional derivative and
the Riesz-Caputo fractional derivative from Theorems 18 and
22, respectively.

Theorem 24. For the disturbed generalized fractional
Birkhoffian system with the Riesz-Riemann-Liouville fractional
derivative

aRv Ry v 0B
Jan % D R = 3 Ay =eQ, (73)
(w,v=1,2,---,2n),
if there exists a gauge function G’ (j = 0,1,2,---,2, z is

an integer) such that the infinitesimal generators fé and &
satisfy

Iy, = i {(RMID“a" -
j=0

+Jt Li“,_”
(20 (1 - @) dr :

Theorem 25. For the disturbed generalized fractional Birkhof-
fian system with the Riesz-Caputo fractional derivative

aRv RCpHa v 0B

Dia’ - 'DIR, - — +A,
ogt b [ > a u Qﬂ (76)
(v =1,2,---,2n),
if there exists a gauge function G’ (j = 0,1,2,---,z, z is an

integer) such that the infinitesimal generators fé and &l satisfy

. d
th(ll D* (E] ano) (R &Rt(llDzav

aR’V o v (X 1/
+ at RCth _ _) E] ( RC )EO

"(t,) Eo (tya" (t,))

Mathematical Problems in Engineering

RHID (8 -a {0)

d r
+ (R”E Dra’+

aRv RDoc v _)E]

ot nion?
+<g§; 2Dy ”—aa#)ﬁf
R e g ) 7
+ (R, 1Da" ~B) & + A, (& - a"E))
_%%Hra EACACY)

£, (-4 <o

where E;;_l = Eé_l = 0 when j = 0, then a z-th order adiabatic
invariant exists as follows:

D) [ (120 (- 08) (8- 8) SDrR ] ar 6

(75)

-t | (tl)gé (ty,a" (fl))] d'r}.
R, e

+ m [lt —t,| a” (t,) & (t,,a" (1))
_ lt - tll"x a’ (tl) {é (tl’a# (tl))]
*(ZRZREDZ’:V )»zf A, (8 -aE)
-Q (& -a'g )+ G =0

(77)

where ffl_l = (])_1 = 0 when j = 0, then a z-th order adiabatic
invariant exists as follows:

o= S (R0 - 8) 8 [ (1501 (8- 08 (-8 ot

l

“T_tzl “a’ (1) f] (ty,a"

t R,
+j b
oI (1 -

(78)

—lr-t|%a

()8 (o ()] dr 4 6T}
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Remark 26. When «, 3 — 1, since I['(0) =

00, we can get

the classical adiabatic invariant for the classical generalized

Birkhofhian system [42].

6. Applications

Application 1. The fractional Lotka biochemical oscillator
model in terms of combined Riemann-Liouville fractional

derivative has the form [17]

RL a2 1
Dzﬁ Dﬁ“a —a,—fyexpa =0,

RLpyaf 1

N = N

ya Dﬁ“a —a,-B,expa’ =0,
where the Birkhoffian and Birkhoff functions are
B=a,a' —aa’ - B expa’ + By expa’,

Ry =-=a’,

14
R,=-a.
)

Formula (48) gives

I JRLaf(z0 170
-5 Dj (El—a£0)+

1 5dpreap1 . 1 1 dro ocﬁZ)O
+|—-=a"— "D "a +—-a x— "D "a
(2 dt 7 2 e 7 %

12 1 d —a 1
—Y[ > mdt(t t) "a (t)

<& (ty,a" (tl))] -y [lal X

2 I'd-ow)

)R OB (e )]+ (1-7)

1, 1 d 51
-[2 a0 xd ()
1, 1

&t ()| +(1-9) [ 3a

2 I(1-p)

d , 1
5 (-t ) a® (t,) & (t,, a" (tz))] (_5

2RL B 1
-a D;ﬁ

1
JRn 5al RL o, 2

Y

'expaz—ﬁzexpa )EO+E1< “‘6 2 -a,

1
—ﬁzexpal>+fz< p “ﬁa1+ocl+[31expa2>

+G° =

L IRLaf (g0 270
54 D, (EZ_QEO)

1 2
a’ —owa +oa +

(79)

(80)

(81)

where
d
aRtI;D?ay = RtI;D:Xay
1 d —a
+——(t- t),
I‘(l—oc)dt( 1) a’ ()
d RL v RL .Y
" :Dfa’ ="Dla

R S T
r(1-p)dt"?

Taking calculation, we have

&=1
8=5=0
G’ =o.

It follows from Theorem 11 that

1 1
IRLO——EaZRL z’ﬁa1+5alRL “ﬁaz—ocza +aa’
t
2 1 1 5d rpap 1
+ B,expa - f,expa + —a"— D a
Biexpa” - B, exp L(z w Dy
lal d RLpyof 2 1cD/3a 2
2 dr 4 2
1
_ ZCD[izx l)dT
2

11

(82)

(83)

(84)

(85)

Assume this system is disturbed by eQ, = ea?, eQ, = eal;

then from formula (61), we have

1 3RLaf (el o171\, 1 IRLjaf (gl s2¢1
--a D;‘ﬁ(fl—afo)+§a Dzﬁ(ﬁz—aﬁo)

2

N (_lazi Ryl Lon ERLDa,ﬁ 2

1
27 dt Y 2 dt Va>£°

v e ) e )

(e (1)) -7 |30

2 I'l-ow)

S -0 @ )8 (e ()] + (1)

Fxal (t2)

d
[ ragat

B 6]+ 00| 30 7y

d 8 5 1 ¢ 1
E(fz—f) Fa (t) & (troa (tZ))] +<_5

2RLawf 1 . L 1RLap 2 1 2
@M D + —a' D’ — et + aya” + B

Y 2 Y
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epal = fyespal &+ 81 (3 7D0Ha - a,
—ﬁzexpal)+fz< ;“Bal+oc1+ﬁ1
')
-expa” |,
+a’a' +a'a* + G =
(86)
Solving formula (86), we get
&=1
g =£&=0, (87)
G' = -a'd*

From Theorem 18, we obtain

1 7R 1 1RL
Lypy = ——a*®pial 4 Ly
RL1 2 y 2 y

2 2
D*a* - a,a' + aja

‘(1 ,d
+pexpa’ - Byexpa + J; (Eaza RLDz’ﬁa1

_1qd d RL yof 2 lachﬁa 2 1
2 dr 4 2 2

1
e CD/f’_‘xyal> dr+e [—Eaz RLDz’ﬁa1 +
(88)

- RLD;,ﬁaz _

‘(1 ,d
expa' —a'a’ + J <—a2— RLpahg!
t 2 dr v

oya' +aa’ + Bexpa’ -,

1 ;d g @B 2
- —a D
2" dr 4 2

1
- " CpPe al) dr] .
2 4
When «, § — 1, we obtain the classical adiabatic invariant

Ill

ICDﬁoc 2

= oya' —aya’ - P expa’ + Byexpa’ (89)
+€ ((xzal ~aa’ - Bexpa’ + Byexpa’ — alaz) .
Application 2. The fractional Whittaker model in terms of

Riesz-Riemann-Liouville fractional derivative has the form [17]
1r Dfa LRy 4

IRCra /1 4
_2t1 t, +51 ty _Etlth(a —a):O,
Irepu 2, Lrepa 3

1 1
~DYa*+ - DY’ - a +

_ztl t, Hytih 5 hit 5 hih
—a'+a*=0, (90)
IR a 2 lRCha 2 4
Etltha +5 tltha —a =0,
lrRa 4 lRCha 4 3
--,Dia --"D,a +a =0,
St 5 t'h

Mathematical Problems in Engineering

where the Birkhoffian and Birkhoff functions are

B= ; [2a1a4 - (a3)2 - (a4)2] )

R, = —%az,
R, = % (al - a4) , (91)
R; = %a4,
15 5
R, = 3 (a -a )

From formula (50), we have

_l 2R (51_“50)

3 (o' -a") D% (&

3@ -a)

R 0 440 lzdR 1
.tlDZ(E4—aEO)+[ E dttlD“a

I\Jlr—‘

_a253)+ D F(8-a'8) +

L/ d g I 4dr o 3
+E(a _a)dttltha Ea EHD%
1,5 d g D% gt D% 22
+E<a _a)dttl 1% EO El(

4 of IR IR 4
—a>+€2< 2tD +5tD“a>

1 1
+8 (-3 pgat +a’) v &) (-5 Aot

IR a3 1 4) 1, 1 d
+ i x|
T &

_tzl - 1 t2)€0 (tyat (t;)) + = (a _‘14)

1

m& |t = 6] @ (82) ¥ & (t2,0" (1))

! 1

1 (%
"2 de =" a (1) & (10" (1)

1,, 1
+E(a _a)X72F(1— )dt| ~t,| “a* (t,)
1

8 (1)) + |54 D!
+l(al—a4) Rpe 2 L oarpa 3

5 1t 5% un

1 1 2
*3 (a2 - a3)§Df‘2a4 —a'a*+ 3 (a3)

L/ 4 1 d “a
- —  x—t-t
2(a) &+ 27 2r(1 )thI 1
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R

% |t -t a® (t,) x & (t,,a" (1)) - %a4

. ;iv_
2T (1 — &) dt

t1|_a a’(t) Eg (ty,a" ()
t| " a (1)

1oy, 1 dy
3 (@ a)XZF(l—a)dt|t

'Eg (t,a" (t))) + G’ =0,

(92)
where
d R~ v R~a v 1
atltha =t1Dt2a +72F(1—oc)
(93)
d _ _
% [lt-t,]“a" (1) - |t - t,] “a’ ()]
Taking calculation, we have
& =1,
H=8=8=8=0, (94)
G’=0
Theorem 13 gives
1,7r 1oL/ 1 a\Rr 2 1
IR0=—§a . Dra +§(a -a )tlDf‘za *3
atRpegty L (a2 - a3) Rpogs_ 1 [2a1a4
6, 2 6t 2
312 4)2 I 5d p o1
(@) (@) [ [0 hpta
d 1 4d
1 4 Rp~a 2 4 R~ 3
- (a -a )atltha -39 ar}tha (95)
2 3 R I .1rc 2
- (a —a)d—tlDf‘ +2a tlDZa

.2RC 1 4y l.are 4
a D“(a —a)——a D%a
2 [ )

a* RCD‘:‘Z (a2 - a3)] dr.

ty

Assuming this system is disturbed by eQ, = 0, eQ, = 0,

eQ; = ea®, eQ, = ea’, then formula (74) gives

A GE es>+§<al—a4>ffr>z<s;

—d253)+ - (a —a3)
. : d R«

.:?th (Ei —a4fé) + [_E Zdt :?D a'

Lor oy d rpa 2
+§(a —a)atltha +

D, (53 —a 50)

1 4d R a 3
Ea atltha

13

1 d De D*
+5(a —a)dttl? % 4]50 51( a’

4 1 Ir l R o 4
—a>+€2<—zt1Dt +EtD‘txa>

1
+ ;( 2tD a +a>+£i(—§§Df‘2a2

LR o« 3 1 4) 1, 1 dlt
2 r-a)

~ 6 (1) 8 (10 (1)) + 5 (a' - o)
1
Ar(1-a)dt

4;& |t
2T (1 — &) dt

a’ (t,) x & (tp,a" (1))

l -t

+2a 5 () E (ta (1)

1,, 1
+5 (@ -a))x (- dt

| — 6| a'(t,)

1 7R 1
——a” . D%
27 LTk

& (tya" (1)) +

1 1

*3 (al - a4)§DZa2 + Ea4 EDZ&P

1 1 2

*3 (az —a3)tRDZa4 —a'a*+ 3 (a3)
Lay2] 12 1 i -
+2(‘1) % 3% 0w X g le-nl

a' (1) & (tna” (1)) - % (a' -a*) m

Sl (1) % & (o (1)) - 3

1 d - 1/
|t -t t, t
zr(l_“)dt| ll ( )go(la (1))
1,5 3 1 d —a
-—(a* - —_ —|t-t t
2(“ a )XZF(I—a)dtl i mat ()
& (tpat () +a'd® +a’a* + G =
(96)
Taking calculation, we have
Eé =1,
E=6=5=¢§=0, (97)
G'=-d'a*.

From Theorem 24, we get
l orpe 1, 11 ayRpa 2, 1
Iy ==5a"; Dya +§(a -a') Dia )

1 1
4Rpa 3 2 3\Rpa 4 14
-a tltha +E(a -a )tltha —5[2aa
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(98)

When o« — 1, we obtain the classical adiabatic invariant

(@) ()

[2a1a4 - (a3)2 - (a4)2 - a3a4] .

L, = 2a'a

(99)

Application 3. The fractional Hojman-Urrutia model in

terms of combined Caputo derivative has the form [17]

B 2 ﬁoc 3
Dly + R D =0,
CDz’ﬁal—aszo,

CraB 1 RLBa 4 3 2
Dzﬁa -"D5a —(a +a)=0,
CDz’ﬁa3+a4:0,

where the Birkhoffian and Birkhoff functions are

p-4[(@) v2ae - o],

2 3
Ry =a"+a’,

2 3
+2a"a

(100)

Mathematical Problems in Engineering

R; = a4,
R, =0
From formula (49), we have
(a?+a’) PP (8 - a'5)) + a* DY (- ')
+ [(a2 + a3) 4 Cp*Pat + 614i CD“’ﬁa3] &
dt 7 e 7 0
+EZ( "“81 )+E2(CD —az)
0 ap 3 2, 3 )4
+&, x ( D}"a +a) (a +a)7f(1—oc)(t
~0) @ ()8 (e (0)) -a' % s (0
—1) " a (6) & (61,0 (1))

+[(a2+a) “ﬁl+a D“ﬁ3 %(cﬁ)z

a1 3
a —a
Y

~da* v (a")’

20 2 o3y 1
EO+(a +a)m

—t) Pl (t2) x & (£, (1)) + 4%

~07F @ (1) 8 (0" (1) + 6" =

where

d 1 _
G DR = DL s s (1)
(04

a (),

dt bt ra-
< <pfa’ =SDfa + T 60",
Taking calculation, we have
&=1,
& =0
&=1
& =0,
&=1,
G’ =o.

It follows from Theorem 12 that
1 2
- 2+ D(xﬁ 1+ 4CD0¢[§3 23
Co ({1 a ) a 2 (a )

—da + % (a4)2 - Jtl [(a2 + a3) X % CD;"‘Ba1

t

d
4d Ccraf 3, ARLNBa (2 3
+a T Dy a +a Dl_y(a +a)

T

i a

(101)

(102)

(103)

(104)

(105)
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Assume this system is disturbed by eQ, = ¢a’, ,eQ, = 0, When o, 3 — 1, we obtain the classical adiabatic
eQ, = ea', eQ, = 0. invariant
From formula (71), we have 1 1 2
(71) b= (@) +a*a’ - ; (a*)
2 3\ CphaB (gl _ 1 1
(a?+a’) “DYF (81 - d'Gy) + a* "D} (& - ') (110)

+ &

1(3)2 2 3 1(4)2 13
deap1 . 4, dcrapa]|sa p\@) raamala) maa |
+ (a2+a3)— Dy%a +a x —"D)a” | &,
dt dt Application 4. The fractional Hénon-Heiles model in terms
o D of Riesz-Caputo derivative has the form [17
+& (CD}/’ﬁa1 —a3)+5§( ‘B '—a —az) P (7}

RCpa 3 1 12
tlDZa +a +2aa° =0,

+& (¢ “ﬁa3+a) (a’+a°) Y (t

Il -ow) RCDaa4+a2_(a2)2+(al)2:0
1t >
—a .1 1 (111)
-t t t,,a t
1) a (0)& (ke (1)) - al"(l )( :?D‘xal—a -0,
t,) “a’ (t,) x Eé (ty,a"(t,)) (107) :?DZaZ —a*=o0,
2 txﬁ 1 o ;3 L/ 3\2 where the Birkhoffian and Birkhoff functions are
+[(a +a) +a* D E(a) ) , , , ; ,
) ) B= 3 (al) +(a2) +(a3) +(a4) +2a° (al)
—dd s (o)) (@) L
2 F(l—ﬁ) _g(a2)3
3 bl
-B .1 1 u 4 1-y
-t t t), t 112
7 ()8 (e (0) ' s P (1)
—6) P& (t,) x & (tyoa” (1)) + a’d" +a'd® + G Ry =-a',
=0. R, = -d’.
From formula (107), we obtain Formula (51) gives
Eé = 1, - IRC (E3 -a fo) 2RC (64 Eg)
1 1 1 1
= = = = 0’ 108 d o d OC
§-8-5-4 g [_alakgaﬁaaa aRC o [g -
G' =-d'd’
1 “a o
From Theorem 22, we achieve x 2r (1 - [It_ f| t2)€° (t,0" (1)) - |t
(2 B 1, 4CHap 3 L1 3\2 —a .
ler = (a*+a”) “Djfa’ +a* “DYfa’ - 2 () -4 @ ()8 (o ()] - 5= x [
—a’a’ + 1 (a4)2 - Jt [(az + a3) X d Cp*a! -5, %a it (t,) & (t,,a" (t,)) - lt-6,|™ a*(t,)
2 . @ v (113)
-Eg (t,,a" (t1))] - E(l) (REDZ(f +a'+ 2a1a2)
+ a4di CD;"‘Ba3 +a' RLD‘IB’_O; (a2 + a3) , ,
T
_gz[RCD at+a +( ) —(az) ]— gas
SR ﬁzx 4 2, 3\ Cprap 1
D, ]d1+s{(a +a) D,"a g0 IRCDoc3 2RCpa 4 L[/ 132
4a + a—-a Doa - (a)
1 2 1 2 (109) >
4Crap 3 LNz 53 L,y
+a "D)"a 2(a ) aa +2(a ) +(a2)2+(a3)2+(a4)2+2a2(a1)2—%(azf]}
_t(2+3)i DR 4 icDa,/s3 0,30 o
ty @ dr Dy"a ad‘r v @ G +G =0,
where
IRLABa (2, 3 3RL B 4
+a Dl_y (a +a )+a Dl_ya ]dr %thlD:xzav _ thlD;xzav
. (114)
13 - . - .
—aa } +m[|t—t1| av(tl)—|t—t2| av(tz)].
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From formula (113), we have
L=8=5=1,
8=8=o, (115)
G’ =o.

From Theorem 14, we obtain

LT

P (@) 4 (@) + (@) 2 (@) -2 (@)]

1RC 3 2RC 4 1 1\2
Inco=—-a . D¥a’ —a” " "D%" — = (a)
RCO 1, P, >

(116)

Assume this system is disturbed by eQ; = €Q, = 0,eQ; =
eat, eQ, = ea’.
From formula (77), we have

1RC (E3_u zo)_aZRt(? (54 a4£é)
d d o
N [ 1dt thlD 2 _azdt thl:D 4] Eo 4
1 —a .3 1
X T-a [lt —6,| "a (t,) & (ta" () - |t
a3 2
—t] (1) & (8.0 (1)) - W [|¢
[ )8 e W) - 6
& (tpa” (1)) - & (Rgchf +a' +2a'a’)
—52 [RCD a*+a +( )2 - (az)z] - ;a3
« o 1 2
5461 + { 1Rf‘thza3 -a? REDt2a4 -5 [(al)
2\2 3\2 2 2 2 2, 9\3
#(@) (@) + (a) w20 (@) - 2 (o))}
G ratd’ vadt+ G =0
Calculating formula (117), we obtain
& =1,
§=5=85=§=0, (118)
G'=-d’a".

From Theorem 25, we get

_ IRCpHa 3  2RCha 4 L[/ 132
Igcr=-a ,Doa —a” ", D ,a -3 (a)

# (@) + (@) (@) 20 (@) - 2 (a2)]
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19 RCHe 3, 29 RCpya 4
+J. (a = nDpa +a = 1, Dy, a
D a +a tD“a2>dT
+e {—al RtCIDZ(f —a’x RtCIDZa4 - =
N2 (3N (a2 2 12 22 3]
+(a”) +(a) + a) +2a(a) —<(a
() + (o) + (') +20° (') - S (o)
1 d
dr

: Lﬁ (

D a ) tD“a2>dT a3a4}.

d
RCD(x 3+a2_RCD(x 4

4Lt dr bt

(119)

When o« — 1, we obtain the classical adiabatic invariant
I, = (al)2 + (a2)2 + (a3)2 + (a4)2 +2a (a‘)2
- % (a2)3 +e (a‘)2 + (az)2 + (613)2 + (a4)2

+2a® (a1)2 - % (a2)3 —a’at].

(120)

7. Conclusions

Differential equations of motion, Noether symmetry, con-
served quantity, perturbation to Noether symmetry, and adia-
batic invariants are investigated for the generalized fractional
Birkhoffian system with the combined Riemann-Liouville
fractional derivative, the combined Caputo fractional deriva-
tive, the Riesz-Riemann-Liouville fractional derivative, and
the Riesz-Caputo fractional derivative, respectively. The clas-
sical conserved quantity and the classical adiabatic invariant
are all discussed as special cases.

The fractional Lotka biochemical oscillator model
with  the combined Riemann-Liouville fractional
derivative, the fractional Whittaker model with the Riesz-
Riemann-Liouville fractional derivative, the fractional
Hojman-Urrutia model with the combined Caputo
fractional derivative, and the fractional Hénon-Heiles
model with the Riesz-Caputo fractional derivative are
discussed, and their first order adiabatic invariants are
obtained.

The main results obtained in this paper can help under-
stand the internal properties and dynamical behaviors of the
systems. Since generalized fractional Birkhoffian mechanics
plays an important role in many fields of modern science and
engineering, more research is worth doing.
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