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Adiabatic Invariants in Stellar Dynamics:II. Gravitational shocking1Martin D. Weinberg2Department of Physics and AstronomyUniversity of Massachusetts/AmherstABSTRACTA new theory of gravitational shocking based on time-dependent perturbationtheory shows that the changes in energy and angular momentum due to a slowlyvarying disturbance are not exponentially small for stellar dynamical systems ingeneral. It predicts signi�cant shock heating by slowly varying perturbationspreviously thought to be negligible according to the adiabatic criterion. Thetheory extends the scenarios traditionally computed only with the impulseapproximation and is applicable to a wide class of disturbances. The approachis applied speci�cally to the problem of disk shocking of star clusters.1. IntroductionA wide variety of astronomical problems require solving for the evolution of a boundstellar system in the external gravitational �eld of a larger embedding system. Examplesinclude globular clusters on eccentric orbits in the Galaxy, infalling satellite galaxies,galactic star clusters in the disk, and the evolution of young associations in molecularclouds.In many cases, the characteristic time scale for the external perturbation is neitherslower or faster than all orbital periods of the bound cluster, but somewhere in between.Slow orbits may be assumed to be static in the time frame of the perturber which leadsto the impulse approximation. In the opposite extreme, the perturber is nearly static inthe orbit's time frame which is the adiabatic limit. Most studies appeal to the harmonicoscillator model to argue that all orbits with time scales greater than that of the external1A PostScript �le of this paper including �gures can be obtained by anonymous FTP(ptolemy.phast.umass.edu:pub/shock2.ps.Z)2Alfred P. Sloan Foundation Fellow



{ 2 {variation will be invariant; precisely, if the perturbing frequency � is smaller than theoscillator frequency 
 then the net change in energy of a random phase ensemble ofoscillators is exponentially small in their ratio, e.g. proportional to e�
=�. Accordingly,orbits with 
 < � receive a kick by the perturbation computed using the impulseapproximation, but the actions of orbits in the adiabatic limit, 
 > �, are assumed to beconserved. The seminal study of globular cluster evolution by Ostriker et al.(1972) wasbased on impulse heating and the adiabatic criterion. This paradigm of a \gravitationalshock" is now ubiquitous. Cherno� et al.(1986, see also Cherno� and Shapiro 1987) makethe harmonic model explicit, extending the impulse approximation using Spitzer's (1958)treatment of tidal distortions using the linear oscillator model directly.This paper presents a theory which allows the evolution to be computed for a generaltime-dependent perturbation regardless of rate. The investigation predicts signi�cantevolution in both the adiabatic and impulsive regimes. The explanation for this surprisingresult is discussed in the preceding companion paper (Paper I) which shows that theharmonic oscillator model does not apply to the general nonlinear multidimensional orbitand describes the failure of adiabatic invariants. To summarize, all stellar systems aremultidimensional systems with at least two degrees of freedom. Each independent degreeof freedom has a frequency of oscillation, 
j = _wj . Since any quantity, Q, describinga smooth quasi-periodic orbit is well-represented by a rapidly converging Fourier series,Q = PlQl exp(il �w), the evolution of an orbit is equivalent to the evolution of a set ofpendula whose frequencies are l �
 where l is a vector of integers. As long as the frequencyof the perturbation remains small compared to l �
, each pendulum will be adiabaticallyinvariant and the constants of motion (actions) for the original orbit will be conserved.However, if one of those frequencies l �
 is zero or nearly so, then this term will receive akick from the perturbation. Since one of the Fourier coe�cients will change the originalorbit will no longer conserve its actions.For a de�nite physical example, take a two-dimensional system which has two distinctfrequencies, 
1 and 
2. If there exists two integers l1 and l2 with l1
� l2
2 = 0, then forevery l2 periods in degree of freedom 1, the orbit will have executed l1 periods in degree offreedom 2, returning to its original con�guration. Since the perturbation frequency is smallcompared to either 
1 and 
2, the perturbation \hits" the orbit repetitively at the samephase, cumulatively producing a measurable change in the trajectory. This is similar to aresonance but with arbitrarily small resonant frequency. Now, a realistic stellar system hasfrequencies continuously distributed in some range. For many orbits, l �
 will be far fromzero for relatively small values of lj and these orbits will be adiabatically invariant. However,there will almost always be some combinations of small integers for which l �
 = 0 andthose orbits will not be adiabatically invariant. Averaging over the whole stellar system,



{ 3 {the orbits with broken invariants can give an appreciable overall change with magnitudesimilar to the impulsive contribution.The large fraction of this paper describes a general method for applying these ideas tostellar systems (x2). We begin with a general statement of the time-dependent perturbationtheory for spherical stellar systems and, for a concrete example, apply the scheme to thegravitational shocking of globular clusters by disk passage (x3). Although gravitationalshocking is the targeted application, this development holds for any �nite-durationperturbation to a spherical stellar system. The approach could be easily extended to disks.The long-term change in energy, action and distribution function are speci�cally computed.The special cases of binary star evolution and very slow perturbations are discussed (x4).The e�ects of the new disk shocking formalism presented here on globular cluster evolutionis illustrated in Paper III which applies it to Fokker-Planck models.2. Problem statementAssume a spherical background with the distribution function fo(I) where I is theaction vector. Let the perturbing potential which causes shocking be given by Vp(r; t). Inaction-angle variables, the linearized collisionless Boltzmann equation may be written:@f1@t + @Ho@I � @f1@w � @fo@I � @H1@w = 0 (1)where H1 = Vp and w is the vector of angles conjugate to the action vector, and thesubscripts `0' and `1' indicate unperturbed and perturbed quantities and H is Hamilton'sfunction.This equation may be solved for f1 by Fourier transforming equation (1) in angles andLaplace transforming in time. The Fourier transform of a phase space quantity Q is givenby: Q = Xl Ql(I)eil�w; (2)Ql = 1(2�)3 Z dwe�il�wQ(I;w); (3)where l is a triple vector of integers whose values range over all integers unless otherwisenoted. Denote the Laplace transform of a quantity Q by Q̂. Now assume that theperturbation vanishes at some time in the past|that is, the cluster used to be far from theperturbation|so that fl(t!�1) = 0. Then we may solve for f̂l:f̂l = il � @fo=@Is+ il �
(I) V̂p l: (4)



{ 4 {The perturbed distribution function then follows from the inverse Laplace transform, andmay be written as f1 =Xl fl(I; t)eil�w: (5)Physically, f1 may be thought of as the \wake" in the cluster induced by the perturbation.Most of the work in solving for f1 is in the step between equation (4) to (5). Thiscalculation does not include the self-consistent change implied by the new distributionfunction; this could be done (e.g. Weinberg 1989) but only with considerably morecomputational work. In the next section, we will consider the case of disk shocking andperform the inversion explicitly. 3. Disk shockingLet us consider a globular cluster passing through an one-dimensional slab,representing the disk. More general perturbations may be done similarly; in particular, thetime dependent forcing of a cluster on an eccentric orbit will be the subject of a later paper.Let vz be the velocity perpendicular to the slab; clearly the transverse velocity isirrelevant. To determine the acceleration relative to the cluster center, the perturbingpotential may be expanded about the cluster center of mass to get the tidal strain:Vp ' 12 d2Vpdz2 �����zc(t) z2 (6)where zc(t) is the center of the cluster relative to the slab at time t and z is the verticalposition in the cluster relative to its center. The truncation error in equation (6) due tothis tidal expansion is O([r1=2=h]2). Since r1=2=h � 1=60, this error is roughly � 0:3%.The development below will treat a Gaussian vertical disk pro�le,�(z) = �0e�(z+vz t)2=h2 (7)where h is the scale height of the slab. The cluster center then crosses the disk's midplanet = 0. The Laplace transform (two-sided, e.g. van der Pol & Bremmer 1955) for theGaussian pro�le yields V̂p = z22 Vovzp�eh2s2=4v2zeszo=vz : (8)The constant quantity Vo � 4�G�oh2 follows from Poisson equation (see Appendix foradditional details). Other slab pro�les may be treated similarly. The exponential slab,�(z) = �0e�jz+zo+vz tj=h; (9)



{ 5 {will be briey discussed below for contrast. Although the exponential slab is pathological,having a density cusp at z = 0, both models yield similar overall heating rates, remarkably.However, the exponential disk does have di�erent asymptotically behavior than aneverywhere smooth model.To complete the calculation de�ned in x2, we need the expansion of z2 in action-anglevariables. Assume the spatial part of Vp may be expanded in a harmonic series in sphericalcoordinates: Vp(r; �; �) = PYnm(�; �)fnm(r). Using Tremaine & Weinberg (1984 eqn. 54,hereafter TW), each term in the sum may be expanded in action-angle variables:Vp(r; �; �) = 1Xl=0 1Xl1=�1 lXl2=�l lXl3=�l Vl l2 l3(�)W l1l l2 l3(I)eil�w (10)where W kn lm = 12� Z ��� dw1e�ikw1fnm(r)eil( �w2) (11)and � is the inclination of the orbital plane (using the notation of TW). The functionf1(w1) �  � w2 is the di�erence between the mean azimuthal angle w2 and the azimuthalangle in the orbital plane (cf. TW eq. 38). The fact that m = 0 for all terms abovedemands that l3 = 0. The quantity Vn lm = 0 for jlj > n or jmj > n and non-zero onlywhen n + l is even. For example, if n = 0 then l = 0 and the only non-vanishing term isW l10 00. Since z2 = r2 cos2 �, fnm(r) = r2 which is independent of n and m. We may thereforesimplify the notation for W , de�ning X l1l2 = W l1l l2 l3 and writez2 = 1Xl=�1 2423s4�5 V2 l2 0(�) + 12p4�V0 l2 0(�)35X l1l2 eil�w: (12)The inverse Laplace transform of equation (8) may now be straightforwardly performedusing equations (4) and (12) and retaining only lowest order contributions to get fl(t);details are given in the Appendix.4. Phase-averaged perturbationsMost commonly, the long-term (t!1) change in a moment or the distribution itselfis desired. The former will be explored in this section. The moment changes are expectationvalues over a speci�ed ensemble. For example, an ensemble of orbits with energy E initiallywill have a spread of energies after the disk passage; the quantity computed in this sectiontells us the average change per orbit in the ensemble. On the other hand, the overallevolution is best indicated by the change in the distribution itself. However, equations (4)



{ 6 {and (5) show that the phase average of f1 vanishes; the second-order contribution, f2, doesnot and will be considered in the next section.Equation (5) and the explicit form of fl(t) allows us to determine the mean change ofany constant of the motion using Hamilton's equations. For any function of phase space,we have (e.g. Goldstein 1950) dQdt = @Q@t + [Q;H] (13)where [ ] are Poisson brackets. The �rst term on the right-hand-side vanishes if Q is aconstant of the motion. On expanding the previous expression, the lowest order termsvanish by assumption. Retaining only �rst-order terms yieldsdQdt = @Q@w � @H1@I � @H1@w � @Q@I : (14)The angle or phase average of _Q is then:D _Q(I)E = 1(2�)3 Z dw dQdt f1 =Xl "@Q@w � @Vpl@I � il � @Q@I Vpl# f�l(I; t): (15)In particular, for a component of action we haveD _Ij(I)E =Xl �iljVplf�l(I; t) =Xl iljVp�lfl(I; t); (16)and since E = Ho(I) we haveD _E(I)E =Xl �il �
Vplf�l(I; t) =Xl il �
Vp�lfl(I; t): (17)Finally, the phase-averaged change in Q for an ensemble of �xed action I may then be foundby integration: h�Qi = R10 dt h _Q(I; t)i:4.1. Change in energyAs an example, let us evaluate h�Ei explicitly. For the spherical system discussedhere, I1 is the standard radial action, I2 = J and I3 = Jz where J and Jz are the totaland z projection of the angular momentum. If the system has no net rotation then thedistribution function will be independent of Jz and we may integrate over I3 keeping I2�xed. This motivates changing variables from I3 to inclination � de�ned by cos � = I3=I2.Then, dI = dI1dI2I2d� sin� and we may de�ne:hhQii = Z �0 d� sin�hQi: (18)



{ 7 {We now evaluate hh�Eii resulting from the passage through the slab using theexpression for fl and Vp l(t) and �nd (see Appendix)hh�Eii = �(2�)34 V 2oh4 1Xl �l3 0 � 115 + 4390�l2 0� jX l1l2 j2� l � @fo@I l �
2(vz=h)2�e�h2(l�
)2=2v2z : (19)The analogous expression for the exponential disk is also derived in the Appendix:hh�Eii = �(2�)34 V 2oh4 1Xl �l3 0 � 115 + 4390�l2 0� jX l1l2 j2� l � @fo@I 2 (l �
) (vz=h)2[(vz=h)2 + (l �
)2]2 : (20)If the distribution function depends on energy alone, fo = f(E), thenl � @fo@I = l � @E@I dfodE = l � @H@I dfodE = l �
(I)dfodE : (21)Upon substituting into the expression for hh�Eii, we �nd that to lowest order, diskshocking increases the energy for all E if dfo=dE < 0.4.2. Comparison of Gaussian and exponential disksFeatures of the expressions for hh�Eii are worth noting. Both equations (19)and (20) scale explicitly as hh�Eii / [(l � 
)=(vz=h)]2 in the impulsive limit[(l � 
)=(vz=h) � 1] as expected. However in the adiabatic limit, equation (20) isproportional to [(l � 
)=(vz=h)]�2 while equation (19) appears to be exponentially small.However, if there are commensurabilities between frequencies, l �
 = 0, the power lawbehavior does obtain for equation (19) as well for the physical reasons described in Paper I.To see this, take an ensemble at �xed energy but isotropic in velocity. Integrating thedistribution over the ensemble requires an integration over dJJ=
1(E; J). The integrand inthis case is proportional to (l �
)22(vz=h)2 e�h2(l�
)2=2v2z :The variation of the exponent depends most strongly on the variation of the ratio offrequencies � � 
2=
1 for small vz=h. In these terms, the integral to be done is roughlyR d��3e��2(���o)2 where the weaker dependence of jX l1l2 j2 on � has been ignored. If the



{ 8 {variation of � includes �o, the integral gives a contribution proportional to ��4 and leads tothe scaling hh�Eii / [(l �
)=(vz=h)]�2 in the adiabatic limit [(l �
)=(vz=h) � 1]. Explicitnumerical evaluation shows that the Gaussian case does have a power law dependence butwith steeper slope. Figure 1 compares hh�Eii for the Gaussian and exponential slabs. Bothmodels yield very similar results suggesting that the response to the gravitational shock isweakly dependent on the disk's vertical structureConversely, the reader may be surprised that equation (20) shows no exponential cuto�for incommensurate orbits in the adiabatic regime. This is a consequence of the exponentialdisk pro�le, whose force is not smooth at z = 0. This discontinuity provides a power at alltemporal frequencies, and loosely speaking, creates resonant interactions at all frequencies.4.3. Check by simulationFigures 2{4 compare the theoretical predictions of equation (19) with restricted n-bodysimulations for a W0 = 5 King model. The integration accuracy corresponds to an absoluteerror in energy of approximately 10�7 per orbit. The parameters roughly describe a typicalglobular and Galactic disk|M = 3 � 105M�, rt = 100 pc, Rg = 8kpc, Vc = 200 km s�1,and h = 325 pc. However in order to improve signal/noise, the disk potential is arti�ciallyincreased by a factor of 3 over its realistic value; this enables the resolution of the highestfrequency encounter (Fig. 4). The bin with largest energy is undersampled due to escapingstars and the bins with the smallest energy are a�ected by the integration accuracy,indicated by the dashed horizontal line. The agreement is good for energies between thesetwo limits. 4.4. Application to binary starsThe gravitational shocking theory may be used to compute energy changes for anensemble of binary stars and is consistent with the standard results obtained for binarystar systems (Heggie 1975). In two-body problem, the orbital frequencies are degenerate,
1 = 
2 and 
3 = 0, which means that l �
 vanishes if and only if P lj vanishes. Therefore,the contribution to hh�Eii will always vanish if l � 
 = 0 and the contribution will beexponentially down in the ratio (l �
)=(vz=h) as expected for l �
 6= 0. The energy is a trueadiabatic invariant for binary stars.However, the behavior is di�erent for the changes in individual actions hh�Ijii.Equation (16) gives the change in a single action, Ij and hh�Ijii may be derived in



{ 9 {the same way as hh�Eii. The distribution function for a single orbit with action Io isf(I) = �(I� Io)=(2�)3. Integrating by parts and using the Gaussian disk perturbation forde�niteness yields:hh�Ijii = 14 V 2oh4 �2(vz=h)2 1Xl �l3 0 � 115 + 4390�l2 0� lj l � @@I"jX l1l2 j2e�h2(l�
)2=2v2z#: (22)In the limit 
=(vz=h) � 1, terms with P lj 6= 0 will be exponentially down, but unlike thecase for �E, the terms with P lj = 0 do not vanish. In fact, in this limit the previousequation becomeshh�Ijii � 14 V 2oh4 �2(vz=h)2 1Xl �l3 0 � 115 + 4390�l2 0� lj l � @@IjX l1l2 j2: (23)Evaluating jX l1l2 j2 explicitly shows that this expression for hh�Ijii does not vanish (exceptfor purely radial or circular orbits) and drives orbits to larger eccentricities even thoughenergy is adiabatically conserved (hh�I1ii = hh�Irii � 0 and (hh�I2ii = hh�Jii � 0). It isconceivable that this mechanism modi�es the primordial elements of young binaries in thedense environments in which they form and in longer lived star clusters.4.5. Evolution for very slowly changing perturbationsLet us take a general perturbation Vp(x; t) which is turned on in the past and turned o�in the future. Now if the time variation is made very slow, e.g. Vp = Vp(x; t=� ) for large � ,the scaling for the long-term change in the distribution may be computed directly (originallysuggested and computed by Scott Tremaine 1994). The calculation is straightforward andis sketched for hh�Eii in the Appendix. Integrating over the phase space for the entiremodel gives the total energy change for the system due to a gravitational shock:hhh�Eiii = �1� 4�3Xl Xl Z 1�1 ds s2 Z dI l �
 "l �
@fo@E �(l �
) � l2@fo@J �0(l �
)# j	̂l1l l2 l3j2:(24)where 	̂l1l l2 l3(I; s) = Vl l2 l3(�)W l1l l2 l3(I) is the action-angle transform of the perturbationwhich has been Laplace transformed in time and � is the Dirac delta function. Equation(24) shows that the overall change in energy for a cluster or dwarf galaxy scales as 1=� .Comparison with equation (19) and the derivation in the Appendix suggests that 1=�scaling from the peak amplitude at � � 1=
, should be roughly correct. At any rate, thisis very weak adiabatic cuto�, qualitatively and quantitatively di�erent than the expectedinvariance at large � .



{ 10 {This scaling shows that no realistic stellar systems are truly invariant to slowlychanging external perturbations. For example, the core of a galactic cluster will be modi�edby the cluster's vertical oscillations even though the oscillation period may be many timesthe stellar orbital periods. In addition, it is often assumed that a cannibalized dwarf withphase space density higher than its captor will survive disruption. However, this resultsuggests that gravitational shocking may disrupt even dense dwarf companions.5. Second-order calculation of perturbed distribution functionHere, we will compute the overall change to the distribution function directly whichrequires extending the calculation to second order. The perturbed distribution functionallows the long-term evolution of the galaxy or star cluster to be estimated. This result willbe used in the Fokker-Planck implementation in Paper III. The features of the solution areexplored below using the singular isothermal sphere.5.1. DerivationThe �rst-order distribution function was solved in x2. The Boltzmann equation to nextorder equation is: @f2@t + @Ho@I � @f2@w + @H1@I � @f1@w � @f1@I � @H1@w = 0: (25)The H2 term vanishes in the absence of self-gravity, Following x2, the Fourier-Laplacetransform of the second order equation becomessf̂2 l + l �
fl + 1(2�)3 Z dwe�il�w Z 10 dte�st(Xl0 @Vl0@I eil0�w �Xl00 il00fl00eil00�w �Xl00 @fl00@I eil00�w �Xl0 il0Vl0eil0�w) = 0 (26)where f̂2 are the expansion coe�cients of the second-order distribution function. Wemay restrict our attention to the l = 0 term which gives the only contribution to thephase-averaged secular change. The integral in w may then be done immediately, yieldingthe solution f̂2 l=0 = �1s Z 1�1 dte�stXl0 il0 � @@I (V�l0fl0) : (27)



{ 11 {Using the action-angle expansion of the Gaussian disk perturbation, the time integral maybe performed explicitly.We must now do the inverse Laplace transform to get from f̂2 l=0(I; s) to f2 l=0(I; t). Thejoint domain of convergence is <(s) > 0 and we deform the contour to the imaginary axisto perform the inverse transform for t!1. Since there is a pole along the imaginary axis,we may divide the contribution in to the principal part and residue. Changing variablesto s = iy shows that the principal part does indeed exist. However, it has a factor of theform limt!1 exp(iyt). Because the rest of the integrand is analytic on physical grounds, theprinciple part vanishes. The �nal expression consisting of the residue contribution alone is:fw l=0 = V 2o4h4 �2(vz=h)2 1Xl=�1 l � @@I(e�(l�
)2=2(vz=h)2l � @fo@I [z2]l[z2]�l) (28)having used the symmetry in l � 
 over the summation in l. The quantity [z2]l is the lFourier component of the action-angle expansion of z2 whose expansion is given in x3.Integrating over all orbital planes (�), this becomes:hfw l=0i = V 2o4h4 �2(vz=h)2 1Xl=�1 �l3 0 � 115 + 4390�l2 0� l � @@I(e�(l�
)2=2(vz=h)2l � @fo@I ���X l1l2 ���2 :) (29)Finally, we may write the distribution function in terms of E and J since this is the mostcommon form with M = (2�)3 Z dE Z dJJ 1
1(E; J)f(E; J):With these conventions, equation (29) becomes:hf2i = V 2o4h4 �2(vz=h)2 1Xl=�1 �l3 0 �16 + 736�l2 0� l �
 @@E + l2 @@J!(e�(l�
)2=2(vz=h)2  l �
dfodE + l2 @@J! ���X l1l2 ���2): (30)In practical applications, hf2i must be evaluated numerically. Most of the time in evaluatinghf2i and hh�Eii is the computation of jX l1l2 j2. An easily implemented numerical approachis described in the Appendix.



{ 12 {5.2. Isothermal modelThe singular isothermal sphere is similar to the King model over part of its energyrange but because it is scale free, the disk-shocking calculation need only be done for asingle energy over the range of desired � � vz=h. The simplicity of this model makes it agood tool for exploring the basic features of the theory.The singular isothermal sphere may be de�ned as follows. If one takes the potential tobe U(r) = 2�2 ln r (31)then from Poisson's equation �(r) = �22�Gr2 ; (32)M(r) = 2�2G r; (33)and the distribution function is f(E) = 2�2(4�)3p�e�E=�2 (34)normalized consistently with �(r). However, we will take f(E) = exp(�E=�2) forconvenience in the calculations below.Using these relations, we may de�ne scale-free quantities. De�ning � � J=Jmax(E),where Jmax(E) is the maximum orbital angular momentum at �xed energy E, it is easy toshow that Jmax(E) = Jmax(0)eE=2�2;r(E; �) = r(0; �)eE=2�2;and 
j(E; �) = 
j(0; �)e�E=2�2:The quantity r is the radius of an orbit with E and � at a particular phase, e.g. a turningpoint. Substituting these expressions into equation (30) shows that hf2i is independent ofenergy except through the factor exp[�(l �
)2=2�2]. Therefore, hf2i as a function of E for� = 1 is equivalent to hf2i evaluated at E = 0 for � = exp(E=2�2). This is also true forhh�Eii. Other quantities may be scaled similarly.Figure 5 shows the change in energy in an ensemble where orbits have single value ofE initially, hh�Eii. Note that this is not the same as the change in energy of the ensemblewith post-shock energy E. The top panel is multiplied by �2 to show the asymptotic



{ 13 {behavior in the impulsive regime, hh�Eii / ��2. The lower panel is scaled to show hh�Eiiat E = 0 as a function of ln �2. Detailed analyses show that hh�Eii / �3: in the adiabaticregime (E �< �1).The lower panel also indicates signi�cant change in energy per orbit inside of theadiabatic boundary. The features in this �gure are due to individual contributions (l1; l2).The individual contributions are shown separately in Figure 6. The terms (1; 0) and (0; 2)contribute the peak on the right hand side and comprise most of the impulsive contribution.These components have incommensurate frequencies and similar pro�les with the lowestorder having the highest amplitude. The peak on the left hand side is dominated by the(1;�2) term and is largely in the adiabatic regime; this contribution is due to the accidentaldegeneracy as discussed in Paper I. The (2;�2) term is also in this regime but is of lesserimportance. Note the di�erent pro�les for each of these and the incommensurate terms.Figure 7 shows �2hf2i as a function of E=�2 for � = 1 and hf2i at E = 0 as a functionln �2. The value of 
 is approximately 2.5 for E = 0 which corresponds to E = ln �2 � 2 atthe boundary between the adiabatic and impulsive regimes, 
=� � 1. Again, the asymptoticimpulsive behavior hf2i / ��2 is obtained for E �> 2. The overall peak contribution is inthe transition between the adiabatic and impulsive regimes. Contributions of individualterms (l1; l2) dominating hf2i is shown in Figure 8. The incommensurate terms (0; 2) and(1; 0) contribute in the impulsive regime; they are e�ectively zero for E �< 0 and decreasequickly inside of E � 2. The commensurate (1;�2) and (2;�2) terms contribute at smallerbinding energies. The (1;�2) term is the strongest of these and contributes positive density.Responses with positive pattern speed [all but (1;�2)] shift stars outward to higher energyand vice versa. Clearly the relative amplitudes of individual contributions depends on theparticular distribution and therefore the details of the isothermal model are suggestive only.As a function of passage frequency, the lower panel in Figure 7 shows that hf2i increases(decreases) in the adiabatic (impulsive) regime.Since the singular isothermal sphere has in�nite extent, it is not meaningful to computethe total heating (because of the semi-in�nite interval in energy space in the impulsiveregime). For a truncated cluster, the net e�ect of the shock on the cluster depends onthe truncation energy relative to the peak in energy transfer. We may use the singularisothermal sphere as a guide to the possible e�ects of a gravitational shock. First, if peakfeature in Figures 5 and 7 occurs at relatively large binding energies, the overall contributionwill be dominated by the impulsive interactions. However, if the feature occurs in the halo(e.g. small �), heating may be dominated by adiabatic interactions. Secondly, although theinteraction increases the energy of an initially monoenergetic ensemble (cf. Fig. 5), ther.m.s. change is large compared to the net change. In other words, individual particles are



{ 14 {both gain and lose energy. If the peak occurs at su�ciently low energy in the halo, theheated orbits may escape leaving a cluster with overall higher binding energy. It is thereforepossible to \cool" the cluster in a disk shock.6. Thick-disk and bulge shockingThick-disk shocking is a straightforward variant and somewhat easier to compute thanthe calculation above. Since the perturbation has the form Vp = g(t)z2, if the cluster isdynamically part of the disk then g(t) will be a periodic function of time and may beexpanded as a Fourier series in its vertical oscillation period, P :g(t) = 1Xk=�1 gkeik!t; (35)where ! = 2�=P . The Laplace transform of a Fourier series is trivial and in most cases, gkwill converge rapidly with increasing jkj.The calculation is analogous for bulge shocking but the potential perturbationexpansion will be more general than the z2 dependence and include all second ordermoments (Y2m terms). In addition the Fourier expansion of g(t) will have two indicescorresponding to the radial and azimuthal motions of the cluster orbit. This approach caneasily include the centrifugal potential but not the velocity-dependent Coriolis force.External heating will most likely play a di�erent role in evolving clusters whichare kinematically a halo component or a disk or thick-disk component. Eccentricityis likely to critical also, as Aguilar et al.(1988) have pointed out for bulge shocking.A detailed investigation of gravitational shocking for a globular cluster on a generalorbit|implementing disk, orbit and bulge shocking|is in progress.7. SummaryPaper I showed that adiabatic invariants are NOT exponentially controlled3 for allorbits if the number degrees of freedom for the system is greater than one. Consequentlyfor a stellar system, some orbits will be strongly perturbed even if the characteristicfrequencies 
 are much larger than the perturbing frequency �. This leads to measurable3proportional to e�!=� where ! and � are the characteristic system perturbation frequencies



{ 15 {overall heating of a star cluster or galaxy in the adiabatic regime. The change in energy ofan initially monoenergetic ensemble scales approximately as (�=
)� (2 �< � �< 3 dependingon the model) compared to (�=
)�2 for the impulsive regime; the two connect smoothly at� � 
. For a perturbation which changes slowly over time � , the total change in kineticenergy due to the gravitational shock scales as 1=� ; there is no sharp adiabatic cuto�.Heating in the adiabatic regime requires frequencies that are irrational ratios of eachother except on discrete surfaces in phase space.4 This is a very weak condition, true fornearly all commonly used cluster and galaxy models. A binary star system is counterexample since 
1 = 
2 6= 0;
3 = 0 for all energies. Nevertheless, even though the energyof a binary is adiabatically invariant, the method shows that individual actions for abinary system are not invariants. For example, a slow perturbation can change a binary'seccentricity in the adiabatic regime.In addition to energy changes, we derived the long-term change to the distributionitself which requires extending the perturbation theory to second order. The expression forthe shocked distribution is easily incorporated into a Fokker-Planck simulation, and this isthe subject of Paper III.Since the theory predicts gravitational shocking over a much wider range of encounterrates and at larger magnitude than previous estimates, a variety of scenarios in additionto standard disk shocking may require revision. First, the adiabatic criterion does notabruptly limit the heating of clusters due to the relatively slow vertical motion in the disk.The development may be modi�ed to account for a periodic perturbation appropriate toshocking a thick-disk globular cluster and by cumulative encounters with GMCs. Secondly,the time-dependent external force of a globular on an eccentric orbit is also a gravitationalshock, often called a \bulge shock" in its extreme form. This has already been discussedby Aguilar et al.(1988) among others but the current work suggests that its importancemay be even greater. The same e�ects may be important for dwarf galaxies on moderatelyeccentric orbits and may be easily applied to disks. This approach will not account forthe Coriolis force but will be correct for a radial cluster orbit and detailed simulations(Murali et al.1994) suggest the Coriolis force causes no dominant e�ects. The seminalshocking problem, the response of a star cluster to a passing molecular clouds, a point-massy by (Spitzer 1958) may be performed similarly to include the additional heating. Thedevelopment for binary star evolution is sketched in x4.4 and may be useful for computingthe e�ects of protostellar evolution.4commensurabilities l �
 = 0 where l a vector of integers



{ 16 {I thank David Cherno�, Greg Fahlman, Chigurupati Murali, Doug Richstone and ScottTremaine for stimulating discussions, and the Institute for Theoretical Physics in SantaBarbara for its hospitality. This work was supported in part by NSF grant PHY89-04035to ITP and NASA grant NAGW-2224.A. Gaussian slab pro�leThe potential for the Gaussian slab, �(z) = �o exp(�z2=h2), isV = Vo2 �e�z2=h2 � 1 +p� zherf�zh�� (A1)where Vo � 4�G�oh2. Using the tidal prescription in x3 with z = zc(t) = vzt, the (two-sided)Laplace transform is V̂p = z22 Vovzp�eh2s2=4v2z : (A2)The inverse transform required to derive the distribution function (cf. eq. 5) may beperformed by deforming the contour to the imaginary axis, since the joint domain ofconvergence is <(s) > 0. Simplifying, the required integral takes the formZ(t) = 12� Z 1�1 dy 1i(y + l �
)e�h2y2=4v2ze�iyt: (A3)We now separate the integral to the residue and principle part denoted by R and Prespectively. The residue trivial. The principle part may be computed by de�ningz � y+ l �
, splitting the integrand into the two semi-in�nite intervals (�1; 0] and [0;1),changing z ! �z in the former term and combining. Putting these together with equation(4) yields fl = Vo2h2 p�vz=hil � @fo@I hz2il e�h2(l�
)2=4v2zei(l�
)t(12 +1�i Z 10 dzz e�h2z2=4v2z "sinh l �
2v2z=h2! cos tz � i cosh l �
2v2z=h2! sin tz#): (A4)The expression [z2]l denotes the l Fourier coe�cient in the action-angle expansion of z2 (eq.12). We now evaluate hh�Eii for the using the expression for fl and Vp l(t). In particular,we need to do the integral Y � Z 1�1 dteh2(t+zo=vz)2=v2z (R+ P): (A5)



{ 17 {Performing the algebra, one �ndsY � e�h2(l�
)2=2v2z p�vz=h (1 + 1�i Z 10 dzz e�h2z2=2v2z sinh l �
v2z=h2!) : (A6)From its de�nition in TW, we have Vn l2 l3(�) = rnl2 l3(�)Yn l2(�=2; 0)il3�l2 . Using theorthogonality of the rotation matrices, R �0 d� sin�rnl2 l3(�)rn0l2 l3(�) = 2=(2l + 1)�nn0 , and therelations Vn�l�m = (�1)mVn lm and W k �n lm = (�1)mW�kn�l�m we see that only terms with thesame value n will contribute. As in x3, only the terms even in l �
 contribute to hh�Eii,which eliminates the second term in Y . So �nally, the expression becomes (eq. 19):hh�Eii = �(2�)34 V 2oh4 1Xl �l3 0 � 115 + 4390�l2 0� jX l1l2 j2� l � @fo@I l �
2(vz=h)2�e�h2(l�
)2=2v2z : (A7)To minimize the computational expense, the sum over l may be written as1Xl = 2 1X0l1=0l2=�2;0;2l3=�1 :The restriction in the limits of the sum follow from the properties of Vn lm and the prime isto remind that l2 6= �2 if l1 = 0.B. Exponential slab pro�leThe potential of the disk pro�le,�(z) = �0e�jz+vz tj=h;follows from direct integration of Poisson's equation yieldingV (z) = 4��0h2 " jzjh + e�jzj=h � 1# : (B8)Note that the third derivative of the potential or second of the force is discontinuous (seetext of a discussion of the implications).The Laplace transform iŝVp = z22 Voh2 " 1vz=h � s + 1vz=h + s# (B9)



{ 18 {with the domain of converge �vz=h < <(s) < vz=h. Using equation (4), we now take theinverse Laplace transform to get fl(t). Since the domain of convergence for fl is <(s) > 0,the joint domain is 0 < <(s) < vz=h and since the poles are explicit, the inverse is simple.To facilitate evaluation, the contour may be deformed to c !1 if t < to and c! �1 ift > to. One �ndsfl(t � to) = il � @fo@I Vo2h2 [z2]l " evzt=hvz=h+ il �
# (B10)fl(t > to) = il � @fo@I Vo2h2 [z2]l "2vz=he�il�
t�2 � e�vzt=hvz=h� il �
# ; (B11)where �2 � (vz=h)2 + (l �
)2.Proceeding as in the previous section, the time integration may be done by breaking theinterval into the two parts (�1; 0] and [0;1). Again since only terms even in l contributeby symmetry, only one term contributes. Integrating over � then yields (eq. 20)hh�Eii = �(2�)34 V 2oh4 1Xl �l3 0 � 115 + 4390�l2 0� jX l1l2 j2� l � @fo@I 2 (l �
) (vz=h)2[(vz=h)2 + (l �
)2]2 : (B12)C. hh�Eii for very slow perturbationsIn order to show hh�Eii is proportional to 1=� as � ! 1, the same steps in theprevious two appendices are repeated formally, expanding at the end in powers of t=� . Inparticular to start, we need to do the integralZ � Z 1�1 Vp�l(t)fl(t); (C13)where fl(t) is given by the inverse transform of equation (4) and the perturbed potentialis Vp(x; t) = U(x; t=� ). Assuming that the Laplace transform for Vp converges at least forRe(s) > 0, substituting the explicit expressions for inverse transforms into equation (C13)and using Cauchy's theorem givesZ = Z 1�1 dtU(x; t=� ) Z 1�1 dt0e�il�
(t�t0)�(t� t0)U(x; t0=� )= Z 10 dqe�il�
q Z 1�1 dtU(x; t=� )U(x; (t+ q)=� ) (C14)



{ 19 {where � denotes the Heavyside function and the second equality follows from the change ofvariables q = t� t0 followed by t! t + q. Finally, using the convolution theorem and theeven symmetry of the result in l givesZ = � 22 j ~U(x; l �
 � )j2: (C15)Now consider the expression Z d! !2j ~U(x; !� )j2f(!)for some arbitrary function f(!). In the limit � !1, the quantity j ~U (x; !)j2 represents apositive de�nite distribution in ! peaked at ! = 0; this may be represented as a Fouriertransform in !. Using this explicitly and after some manipulation, one �ndsZ d! !2j ~U(x; !)j2f(!) = 1� f(0) Z ds s2j ~U(x; s)j2 (C16)and therefore in the large � limit!2j ~U(x; !)j2 = 1� �(!) Z ds s2j ~U (x; s)j2: (C17)Similarly, one also �nds !j ~U(x; !)j2 = �1� �0(!) Z ds s2j ~U(x; s)j2: (C18)Putting this together giveshh�Eii = �12 1� Xl l �
 "l �
@fo@E �(l �
) � l2@fo@J �0(l �
)# Z ds s2j ~Ul(I; s)j2: (C19)D. Computational considerationsCalculation of the central equations of this paper, equation (30) in particular, should bestraightforward to anyone familiar with solving for cluster evolution using the Fokker-Planckapproach. The only new detail is the computation of the potential transform X l1l2 . Thefollowing procedure solves for all needed quantities by direct quadrature and a set ofcoupled ordinary di�erential equations.1. Given E and J , determine the turning points ra and rp by solving the standardimplicit equation 0 = 2[E � U(r)]� J2=r2.



{ 20 {Table 1: System of equations for computing potential transformsVariable Equation Initial conditionr _r = y r(t = 0) = rpy = _r _y = �dUdr + J2r3 y(t = 0) = 0f _f = Jr2 � 
2 f(t = 0) = 0w1 _w1 = 
1 w1(t = 0) = 0X l1l2 _X l1l2 = 
1� cos(l1w � l2f)r2 X l1l2 (t = 0) = 02. Determine the orbital frequencies by direct quadrature:�
1 = Z rarp dr 1q2[E � U(r)]� J2=r2 ;
2 = 
1� Z rarp dr 1q2[E � U(r)]� J2=r2 Jr2 ; (D20)3. The potential transform may now be done by simultaneously integrating the radialcomponent equations of motion for the orbit, the di�erential expressions for the radialangle, the di�erence between the true and mean azimuthal angles, and the potentialtransform itself. The set is shown in Table 1. The integration is assumed to beginat apocenter at t = 0. For a particular pair (l1; l2), the system has �ve coupledequations. However, since only a small number of terms l1; l2 contribute as shown inthe previous section and x5, all n of these may be done simultaneously, giving a set of4 + n equations.
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{ 22 {FIGURE CAPTIONSFig. 1.| Comparison of hh�Eii for a W0 = 5 King model perturbed by a Gaussian slab(solid) and exponential slab (dashed) for vz=h = 0:03; 1:0; 10:0 (labeled at right). Theamplitude is arbitrary.Fig. 2.| Comparison of direct simulation to perturbation theory calculation. The histogramshows the results of hh�Eii computed from a direct integration in a �xed potential with 200Kparticles realized from a W0 = 5 King model. The dotted line shows the mean integrationerror per orbit in each bin. The solid curve shows the predicted relation using the formulain the notes.Fig. 3.| Same as Fig. 2 but with the passage frequency decreased by a factor of 3.Fig. 4.| Same as Fig. 2 but with the passage frequency increased by a factor of 10.Fig. 5.| The energy change for ensembles whose orbits have the same value E initially.The top panel shows hh�Eii multiplied by �2 but for true E and the bottom panel scaledto E = 0.Fig. 6.| As in the lower panel of Fig. 7 but but individual contributions (l1; l2) are shown.The total is omitted for clarity.Fig. 7.| The second-order perturbed distribution function multiplied by �2 = (vz=h)2 (toppanel) and scaled to E = 0 as a function of ln �2 (lower panel). The lower scale may used toread �2hf2i as a function of E or as a function of � at E = 0.Fig. 8.| As in the upper panel of Fig. 7 but individual contributions (l1; l2) are shownalong with the total. Other terms are negligible.
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