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Abstract. We extend the adiabatic limit formula for η-invariants by
Bismut-Cheeger and Dai to Seifert fibrations. Our formula contains a new
contribution from the singular fibres that takes the form of a generalised
Dedekind sum.

As an application, we compute the Eells-Kuiper and t-invariants of cer-
tain cohomogeneity one manifolds that were studied by Dearricott, Grove,
Verdiani, Wilking, and Ziller. In particular, we determine the diffeomor-
phism type of a new manifold of positive sectional curvature.

Manifolds of positive sectional curvature are a rare phenomenon, and the
differential topological conditions for the existence of positive sectional curva-
ture metrics are not yet fully understood. For this reason, one is still inter-
ested in finding new examples of positive sectional curvature metrics. Most
known examples are quotients or biquotients of compact Lie groups. Coho-
mogeneity one manifolds constitute another potential source of examples. By
work of Grove, Wilking and Ziller [19], there are only two families (Pk), (Qk)
of seven-dimensional cohomogeneity one manifolds, which possibly allow met-
rics of positive sectional curvature and contain new examples. The space R
mentioned there does not admit a positive sectional curvature metric by [29].
Grove, Verdiani and Ziller have succeeded in [18] to construct a positive sec-
tional curvature metric on P2, the first nontrivial member of the family (Pk).
This manifold is homeomorphic to the unit tangent bundle T 1S4 of the four-
dimensional sphere. In this paper, we will specify among other things an exotic
sphere Σ such that P2 is diffeomorphic to the connected sum of T 1S4 and Σ.

The manifolds Pk are highly connected with a finite cyclic cohomology
group H4(Pk) ∼= π3(Pk) ∼= Z/kZ. By Crowley’s work [7], it suffices to compute
the Eells-Kuiper invariant µ(Pk) and a certain quadratic form q on H4(Pk)
to determine their diffeomorphism types. These two invariants are classically
defined on oriented spin manifolds N bounding Pk, but it is not clear how to
construct such a manifold N directly. On the other hands, by results of Don-
nelly [12], Kreck and Stolz [25] and Crowley and the author [9], both invariants
can equivalently be expressed as linear combinations of η-invariants of certain
Dirac operators and Cheeger-Chern-Simons correction terms on Pk itself. Hav-
ing computed these invariants, one can write the spaces Pk as connected sums of
exotic spheres and S3-bundles over S4 using the computations for these bundles
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in [8]. In order to determine the necessary η-invariants, we write the spaces Pk
as Seifert fibrations as indicated in [19]. That is, the spaces Pk are fibered by
compact manifolds over some base orbifold B.

The process of blowing up the base space of a fibrationM → B by a factor ε−1

is called the adiabatic limit. It has been shown by Bismut, Cheeger [3] and
Dai [10] that the η-invariants of a family of compatible Dirac operators DM,ε

converge in the adiabatic limit ε → 0, if the kernels of the associated vertical
Dirac operatorsDX form a vector bundleH → B. This result can be generalised
to Seifert fibrations M → B. Thus, we consider adiabatic families of Dirac
operators (DM,ε)ε as in Definition 1.6. In particular, we assume that H =
ker(DX) is a vector orbibundle on B. Let ΛB be the inertia orbifold of B and

let ÂΛB(TB,∇TB) ∈ Ω•(ΛB; Λ̃B ⊗ o(ΛB)) denote the orbifold Â-form as in
Kawasaki’s index theorem [23], see section 1.b. Let A denote Bismut’s Levi-
Civita superconnection associated with DM,ε. In Definition 1.7, we construct

orbifold η-forms ηΛB(A) ∈ Ω•(ΛB; Λ̃B) as in [3] and [15]. In Definition 1.8,
we define the effective horizontal operator Deff

B of the family DM,ε, which acts
on sections of H → B. Let (λν(ε))ν denote the finite family of very small
eigenvalues of DM,ε, see section 1.c. In [28], Rochon proved a special case of
the following theorem where B is a very good orbifold and the fibrewise operator
is invertible.

0.1. Theorem (cf. [3], [10], [28]). Let p : M → B be a Seifert fibration
and (DM,ε)ε an adiabatic family of Dirac operators over M as in Definition 1.6.
For ε0 > 0 sufficiently small, we have

lim
ε→0

η(DM,ε) =

∫
ΛB

ÂΛB

(
TB,∇TB

)
2ηΛB(A) + η

(
Deff
B

)
+
∑
ν

sign(λν(ε0)) .

With this result, one can compute the Eells-Kuiper invariant and the qua-
dratic form q and hence determine the diffeomorphism type of each space Pk.

0.2. Theorem. The Eells-Kuiper invariant of Pk is given by

µ(Pk) = −4k3 − 7k + 3

25 · 3 · 7
∈ Q/Z . (1)

The quadratic form q on H4(Pk) ∼= Z/kZ is given by

q(`) =
`(`− k)

2k
∈ Q/Z . (2)

By comparing these values with the corresponding values for S3-bundles
over S4 in [8] and [9], one can construct manifolds that are diffeomorphic to Pk.

0.3. Theorem. Let Ek,k → S4 denote the principal S3-bundle with Euler
class k ∈ H4(S4) ∼= Z, and let Σ7 denote the exotic seven sphere with µ(Σ7) =
1
28 . Then there exists an orientation preserving diffeomorphism

Pk ∼= Ek,k # Σ
# k−k3

6
7 .

In particular, Pk and Ek,k are homeomorphic.
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More generally, let Ep,n denote the unit sphere bundle of a fourdimensional
real spin vector bundle over S4 with Euler class n and half Pontrijagin class p ∈
H4(S4) ∼= Z.

0.4. Corollary. For the space Pk, there exists an S3-bundle Eak,k → S4 that is

(1) oriented diffeomorphic if and only if k is odd or 8|k, with

a2k ≡ 7k − 4k3

3
mod 224Z ;

(2) orientation reversing diffeomorphic if and only if
(a) k is not divisible by 7,
(b) k ≡ 1, mod 4 or k ≡ 2, 10 mod 32, and
(c) −1 is a quadratic remainder mod k,

with

a2k ≡ 2− 7k − 4k3

3
mod 224Z .

Some of the Pk are discussed in greater detail in Example 3.12.
The article is organised as follows. In section 1, we introduce Seifert fi-

brations and define all the ingredients of Theorem 0.1. Its proof is given in
section 2. In section 3, we introduce the family (Pk) as a subfamily of the
larger family (M(p−,q−),(p+,q+)) that was also considered in [19]. The quadratic
forms qM(p−,q−),(p+,q+)

for some of those manifolds are given in Theorem 3.3, and

their Eells-Kuiper invariants in Theorem 3.7. For the spaces Pk, we obtain the
simplified formulas of Theorem 0.2 and prove Theorem 0.3 and Corollary 0.4.
Finally, section 4 contains the computations of η-invariants needed to prove
Theorems 3.3 and 3.7.
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Svenja Dahms, Nadja Fischer, Anja Fuchshuber and Natalie Peternell for their
comments on a preliminary version of the proof of the adiabatic limit theorem,
which led to considerable improvements.

1. An Adiabatic Limit Theorem for η-Invariants of Seibert
Fibrations

A Seifert fibration is a map from a smooth manifold to an orbifold that
becomes a proper fibration over the smooth covering of each orbifold chart.
Each Seifert fibration is thus a Riemannian foliation with compact leaves. The
leaves over singular points of the orbifolds are quotients of the generic leaf over
a regular point.

We extend the adiabatic limit theorem of Bismut-Cheeger and Dai to Seifert
fibrations. We have to take care of additional terms arising at the singular locus
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of the orbifold. In some special cases, these extra terms give rise to Dedekind
sums.

1.a. Orbifolds, Orbibundles and Seifert Fibrations. We recall the def-
inition of an orbifold. By Remark 1.3 below, we may assume that the base
orbifold B is effective. This will be assumed for the rest of the paper and
makes some constructions a lot easier.

1.1. Definition. Let G be a compact Lie group together with an action on Rn.
An n-dimensional smooth G-orbifold is a second countable Hausdorff space B
with the following additional structure.

(1) For each point b ∈ B there exists a neighbourhood U ⊂ B of b, an
open subset V ⊂ Rn invariant under the action of a finite group Γ
via ρ : Γ ↪→ G→ GL(n,R), and a homeomorphism

ψ : ρ(Γ)\V → U with ψ(0) = b .

We call ψ an orbifold chart, and we call ρ the isotropy representation
and Γ the isotropy group of b in B.

(2) If b ∈ U ⊂ B and ψ : ρ(Γ)\V → U are as above, if b′ ∈ U , and
if ψ′ : ρ′(Γ′)\V ′ → U ′ are choosen analogously for b′, then there ex-
ists an open embedding ϕ : ψ′−1(U) → V and a group homomor-
phism ϑ : Γ′ → Γ, such that

ϕ ◦ ρ′γ′ = ρϑ(γ′) ◦ ϕ

for all γ′ ∈ Γ′, and

ψ
(
ρ(Γ)ϕ(v′)

)
= ψ′

(
ρ(Γ′)v′

)
.

We call ϕ a coordinate change and ϑ an intertwining homomorphism.

An oriented orbifold is an SO(n)-orbifold where all coordinate changes are ori-
entation preserving. A spin orbifold is an oriented Spin(n)-orbifold.

We will say n-orbifold shortly for O(n)-orbifold, and we will drop ρ from the
notation when the action of Γ is clear from the context. If ϕ is a coordinate
change with intertwining homomorphism ϑ as above, then ργ◦ϕ is another coor-
dinate change with intertwining homomorphism γ′ 7→ γϑ(γ′)γ−1 for each γ ∈ Γ.
We do not impose any further condition (like a cocycle condition) on the choices
of coordinate changes and intertwining homomorphisms.

1.2. Definition. Let B be a G-orbifold and let X be a smooth manifold. An
orbibundle with fibre X is a map p from a topological space M to B with the
following extra structure.

(1) For each b ∈ B, there exists an orbifold chart ψ : ρ(Γ)\V → U ⊂ B
around b, a fibre-preserving action σ of Γ by diffeomorphisms on V ×X
covering ρ and a homeomorphism ψ̄ : σ(Γ)\(V ×X)→ p−1(U) such that
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the diagram

V ×X −−−−→ σ(Γ)\(V ×X)
ψ̄−−−−→ p−1(U)y y yp

V −−−−→ ρ(Γ)\V ψ−−−−→ U

commutes.
(2) If ψ : ρ(Γ)\V → U and ψ′ : ρ′(Γ′)\V ′ → U ′ are orbifold charts as in

Definition 1.1 (2) with coordinate change ϕ and intertwining homo-
morphism ϑ, and σ, σ′ and ψ̄, ψ̄′ are as above, then there exists a
diffeomorphism ϕ̄ : ψ′−1(U)×X → V ×X such that

ϕ̄ ◦ σ′γ′ = σϑ(γ′) ◦ ϕ̄
for all γ′ ∈ Γ′, and such that the diagram

ψ′−1(U)×X −−−−→ σ′(Γ′)\(ψ′−1(U)×X)
ψ̄′−−−−→ p−1(U ∩ U ′)

ϕ̄

y y y
V ×X −−−−→ σ(Γ)\(V ×X)

ψ̄−−−−→ p−1(U)

commutes.

If all actions σ are free, then M carries the structure of a smooth manifold, and
we call p : M → B a Seifert fibration. If X is a vector space and all actions σ
and all diffeomorphisms ϕ̄ are fibrewise linear, then we call p : M → B a vector
orbibundle. If X = G is a Lie group and all σ and all ϕ̄ commute with the right
action of G on X, then G acts on M , and we call p : M → B a G-principal
orbibundle.

1.3. Remark. Alternatively, a Seifert fibration with compact fibres is a connected
manifold M with a Riemannian foliation F such that all leaves are compact. To
see this, we pick a holonomy invariant metric on M and let B = M/F denote
the space of leaves and p : M → B the quotient map.

Let L be a leaf with normal bundle NL → L. By compactness, there ex-
ists r > 0 such that the normal exponential map expL is an injective local
diffeomorphism from the disc bundle Nr to M . We use expL to construct an
orbifold chart for B and an orbibundle chart for M around L. Fix ` ∈ L
and let ρ̃L,` : π1(L, `)→ O(N`) denote the holonomy representation. Then ρ̃L,`
induces a representation

ρL,` : ΓL,` = π1(L, `)/ ker(ρ̃L,`) −→ O(N`) ,

andDrN` is a bundle chart forB around L with isotropy group ΓL,` and isotropy
representation ρL,`. The transition maps and intertwining homomorphisms are
not hard to construct, either.

Moreover, let L̃ denote the universal covering space of L, so L = π1(L, `)\L̃.
Then ΓL,` acts on

XL,` = ker(ρ̃L,`)\L̃ ,
and because M is connected, all XL,` are diffeomorphic. This way, we can
construct orbibundle charts and transition maps as in Definition 1.2.
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IfB is an orbifold, then there is a natural tangent orbibundle TB → B. There
is a natural notion of a Riemannian metric on B, and such metrics always exist.

If p : M → B is a Seifert fibration, then there exists a natural map dp : TM →
TB and a well-defined vertical subbundle TX = ker dp ⊂ TM . If gTM is a
Riemannian metric on M , let THM = (TX)⊥ → M denote the horizontal
subbundle. Then gTM is a submersion metric if there exists a Riemannian
metric gTB on B such that dp|THM is a fibrewise isometry.

1.4. Remark. Whitney sums, Whitney tensor products, dual bundles and ex-
terior powers can be defined for vector orbibundles over a base orbifold B.
However, because in general not all “fibres” of a vector orbibundle are vector
spaces, one cannot apply these constructions fibrewise. Instead, one has to
perform the respective constructions fibrewise with the bundle charts and tran-
sition maps of Definition 1.2. By functoriality, the resulting collection of bundle
charts and transition maps define another vector orbibundle on B. Similarly,
there is a natural notion of a Dirac orbibundle over an orbifold.

If W → B is a vector orbibundle with fibre kr, the space of sections is given
locally in a chart V → Γ\V ∼= U as a space of Γ-invariant maps

Γ(W |U ) ∼= C∞(V ;kr)Γ .

After these preparations, we may now write

Ω•(B;W ) = Γ(Λ•T ∗B ⊗W ) .

If W is graded, the tensor product is understood in the graded sense.
Let M → B be a Seifert fibration with fibre X, let THM denote a horizontal

subbundle, and let V →M be a vector bundle. Let Ω•(M/B;W )→ B denote
the infinite-dimensional vector orbibundle with fibre Ω•(X;W |X). Then

Ω•(M ;W ) ∼= Ω•
(
B; Ω•(M/B;W )

)
,

and this isomorphism depends explicitly on the choice of THM . This follows
by regarding the pullback of the local situation to bundle charts.

In particular, all constructions of local family index theory such as adiabatic
limits and Getzler rescaling are still well-defined for Seifert fibrations.

1.b. The Inertia Bundle and Characteristic Classes. Kawasaki’s index
theorem for orbifolds has been formulated for general elliptic differential oper-
ators. The topological index is formulated in terms of characteristic classes of
symbols. For the task at hand, we need to specialise these classes to the case
of twisted Dirac operators.

We recall the definition of the inertia orbifold ΛB of B in [23]. Its points
are given as pairs (p, (γ)), where p ∈ B and (γ) is the Γ-conjugacy class of an
element of the isotropy group Γ of p. If ψ : Γ\V → U is an orbifold chart for B
around p = ψ(0), we obtain an orbifold chart

ψ(γ) : CΓ(γ)\V γ → ψ(V γ)× {(γ)} ⊂ ΛB (1.1)

by restriction, where V γ denotes the fixpoint set of γ and CΓ(γ) is the centraliser
of γ in Γ. In general, the inertia orbifold is no longer effective. Hence, let

m(γ) = #
{
ϑ ∈ CΓ(γ)

∣∣ ρϑ|V γ = idV γ
}

(1.2)
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denote the multiplicity of (p, (γ)) ∈ ΛB. Then m(γ) defines a locally constant
function on ΛB.

Let Nγ → V γ denote the normal bundle to V γ in V , and let RNγ be the
curvature of the connection on Nγ induced by the pullback of the Levi-Civita
connection. Let γ̃ denote a lift of the action of γ on Nγ to the spin group under
the natural projection Spin(Nγ)→ SO(Nγ). If B is a spin orbifold, such a lift is
part of the orbifold spin structure. Otherwise, the lift γ̃ is determined uniquely
up to sign. Hence, the inertia orbifold has a natural double cover

Λ̃B =
{ (
p, (γ̃)

) ∣∣ γ̃ lifts γ
}
−→ ΛB . (1.3)

As in (1.1), one constructs charts for Λ̃B by

ψ(γ̃) : CΓ(γ)\V γ → ψ(V γ)× {(γ̃)} ⊂ Λ̃B . (1.4)

The equivariant Chern character form of a Hermitian vector bundle (E,∇E)
with connected, equipped with a parallel fibrewise automorphism g, is classically
defined as

chg(E,∇E) = tr

(
g e−

(∇E)2

2πi

)
. (1.5)

There exists a local spinor bundle SNγ → V γ for Nγ . Given a local orientation
of Nγ , there is a natural local splitting SNγ = S+Nγ ⊕S−Nγ . Using RNγ and

a lift γ̃ of γ as above, we can define the equivariant Â-form on V γ by

Âγ̃
(
TV,∇TV

)
= (−1)

rkNγ
2

Â(TV γ ,∇TV γ )

chγ̃(S+Nγ − S−Nγ ,∇SNγ )
. (1.6)

1.5. Remark. This construction of Âγ̃(TV,∇TV ) has the following properties.

(1) Because 1 is not an eigenvalue of γ|Nγ , the denominator is invertible
in Ω•(V γ). In fact, as explained in [2, section 6.4], one has

chγ̃(S+Nγ − S−Nγ ,∇SNγ ) = ±i
rkNγ

2 detNγ

(
id−γ e−

(∇E)2

2πi

)1
2
.

(2) The form Âγ̃(TV,∇TV ) only depends on the conjugacy class of γ̃.

(3) Replacing the lift γ̃ of γ by the lift −γ̃ changes the sign of Âγ̃(TV,∇TV ).
(4) If one changes the orientation on V γ but keeps the orientation of the

total tangent space TV |V γ , then the orientation of Nγ changes as
well, and the subbundles S+Nγ and S−Nγ are swapped. Hence the

form Âγ̃(TV,∇TV ) changes its sign. On the other hand, its integral
over the corresponding stratum of ΛB then does not depend on the
orientation chosen on V γ , only on the orientation of V .

Let us introduce the notation

Ω•
(
ΛB; Λ̃B

)
=
{
α ∈ Ω•

(
Λ̃B
) ∣∣ α|(p,(−γ̃)) = −α|(p,(γ̃))

}
,

and let us denote by Ω•
(
ΛB; Λ̃B ⊗ o(ΛV )

)
the space of forms that change sign

depending on the choice of a local orientation of ΛB. We assume that B is an
oriented orbifold. By (2)–(4), the forms Âγ̃(TV,∇TV ) in local coordinates can
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be used to construct a well-defined form ÂΛB(TB,∇TB) ∈ Ω•(ΛB; Λ̃B⊗o(ΛV ))
with

ψ∗(γ̃)ÂΛB

(
TB,∇TB

)
=

1

m(γ)
Âγ̃
(
TV,∇TV

)
, (1.7)

where m(γ) is the multiplicity of (1.2). With the choice of γ̃ given by a spin
structure, this is the integrand in Kawasaki’s orbifold index theorem [23] when
specialised to untwisted Dirac operators.

Let (E,∇E , gE , c) denote a Dirac orbibundle over V , and let γE be a com-

patible action of γ on E. Then γ̃E/S = γE · γ̃−1 commutes with Clifford mul-
tiplication and has the same sign ambiguity as γ̃. If we write E = SM ⊗W
locally, then W carries a natural connection ∇W with curvature RW = RE/S ,
and γ̃E/S acts on W , and we can define the equivariant twist Chern character
form

chγ̃(E/S,∇E) = chγ̃E/S (W,∇W ) .

Then Âγ̃(TV,∇TV ) chγ̃(E/S,∇E) is the integrand in the local Atiyah-Segal-
Singer equivariant index theorem. Berline, Getzler and Vergne propose a par-
ticular choice of the lift γ̃ in [2, section 6.4].

Because chγ̃(E/S,∇E) only depends on the conjugacy class and the sign of

the lift γ̃, there exists a well-defined class chΛB(E/S,∇E) ∈ Ω•
(
ΛB; Λ̃B

)
such

that

ψ∗(γ̃) chΛB(E/S,∇E) = chγ̃(E/S,∇E) .

Then ÂΛB(TB,∇TB) chΛB(E/S,∇E) ∈ Ω•(ΛB; o(ΛB)) is the integrand in
Kawasaki’s index theorem for orbifolds when specialised to twisted Dirac op-
erators. In particular, the integral over ΛB does not depend on the choices
above. In the special case of an untwisted Dirac operator, we have E = S,
and γE is itself a lift of γ. In this case, we simply have chγ̃(E/S,∇E) = 1 if we
take γ̃ = γE , and chγ̃(E/S,∇E) = −1 otherwise.

1.c. Adiabatic Limits. If M → B is a Seifert fibration and gTM is a submer-
sion metric as in Section 1.a, we obtain a family of submersion metrics (gTMε )ε>0

with the same horizontal bundle THM → M such that gTMε |TX = gTM |TX
and gTMε |THM = ε−2 gTM |THM . The limit ε→ 0 is called the adiabatic limit.

Let e1, . . . en and f1, . . . , fm−n be local orthonormal frames of TX and TB.
The horizontal lift of a vector field v on B will be denoted by v̄. Then a local
orthonormal frame of TM for gε is given by

eε1 = e1, . . . , eεn = en, eεn+1 = εf̄1, . . . , eεm = εf̄m−n . (1.8)

1.6. Definition. An adiabatic family of Dirac bundles for p : M → B consists of
a Hermitian vector bundle (E, gE), a Clifford multiplication c : TM → EndE,
and a family of connections (∇E,ε)ε≥0, such that

(1) The quadruple (E,∇E,ε, gE , cε) is a Dirac bundle on (M, gTMε ) for
all ε > 0, where the Clifford multiplication cε is given by cε(eεI) = c(e1

I).
(2) The connection ∇E,ε is analytic in ε around ε = 0.
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(3) The kernels of the fibrewise Dirac operators

DX =

n∑
i=1

c(ei)∇E,0ei

acting on E|p−1(b) form a vector orbibundle H → B.

We will call the associated family (DM,ε)ε>0 with

DM,ε =
m∑
I=1

cε(eεI)∇E,εeI

an adiabatic family of Dirac operators for p.

We consider the infinite dimensional vector orbibundle p∗E → B with

p∗E|b = Γ(E|p−1(b))

for all regular points b ∈ B0. It carries a fibrewise L2-metric gp∗E
L2 that is

independent of ε.
Associated to (E,∇E,0, gE , c) is Bismut’s Levi-Civita superconnection

At = t
1
2 A0 + A1 + t−

1
2 A2 , (1.9)

on p∗E → B for t > 0, see [2], [3]. Here, A0 = DX is the fibrewise Dirac
operator of (3) above. The part A1 = ∇p∗E,0 is the unitary connection on p∗E
that is induced by

∇E,0 − 1

2
h , (1.10)

where h : THM → EndTX is the mean curvature of the fibres of p, and A2 is
an endomorphism of E →M with coefficients in Λ2T ∗B.

Let γ ∈ Γ be an element of the isotropy group of b ∈ B, then γ acts on p∗E.
If SB → V γ denotes a local spinor bundle on B, then there exists a fibrewise
Dirac bundle W →M such that as vector bundles, locally

E ∼= p∗SB ⊗W −→ p−1(Vγ) and p∗E ∼= SB ⊗ p∗W −→ V γ . (1.11)

After choosing a lift γ̃ ∈ Spin(Nγ) of the action of γ on Nγ as in (1.3), we can
split γ = γ̃W ◦ γ̃, see (2.20) below. Over V γ , we consider the equivariant η-form

ηγ̃(A) =

∫ ∞
0

1√
π

(2πi)−
NV γ

2 trp∗W

(
γ̃W

∂At
∂t

e−A
2
t

)
dt ∈ Ω•

(
V γ
)

(1.12)

as in [15, Remark 3.12], where NV γ denotes the number operator on Ω•(V γ).
Again, the sign of ηγ̃(A) depends on the choice of γ̃; if B is a spin orbifold,
then this choice is natural. Note that in contrast to [15], we already eliminate
2πi-factors inside the differential form ηγ(A) and not after integration. By
assumption (3) above, the integral converges uniformly near t =∞ because the
operators DX have a uniform spectral gap around the possible eigenvalue 0.
If γ̃ = e is the neutral element, then ηγ̃(A) = η(A) is the η-form of Bismut and
Cheeger, and the integral in (1.12) also converges near t = 0 by [3]. Otherwise,
γ acts freely on the fibres, and small time convergence is not an issue.



10 SEBASTIAN GOETTE

1.7. Definition. The orbifold η-form ηΛB(A) ∈ Ω•
(
ΛB; Λ̃B

)
is defined such

that in the orbifold charts of (1.4),

ψ∗(γ̃)ηΛB(A) = ηγ̃(A) . (1.13)

This is well-defined because ηγ(A) only depends on the conjugacy class

and the sign of γ̃. Moreover, the integrand ÂΛB

(
TB,∇TB

)
2ηΛB(A) ∈

Ω•(ΛB; o(ΛB)) in the first term on the right hand side of Theorem 0.1 depends
only on the orientation of the fibres of p : M → B; in particular, the inte-
gral over ΛB only depends on the global orientation of M by Remark 1.5 (4).
Note the different normalisation of η-forms and η-invariants. The component
of 2ηγ(A) of degree 0 in Ω•(ΛB) is the equivariant η-invariant of the fibre. This
explains the additional factor 2 in the integrand in Theorem 0.1.

Locally, there exists a unique family of spinor bundles (SM,∇SM,ε, gSM , c)ε
on (M, gTMε ), and the Dirac bundle E splits as E ∼= SM ⊗W . There exists a

locally uniquely defined family of connections ∇E/S,ε = ∇W,ε such that ∇E,ε is
the tensor product connection induced by ∇SM,ε and ∇W,ε. Note that for the
family of odd signature operators BM,ε, we cannot assume that ∇E/S,ε is inde-
pendent of ε. We obtain globally well-defined endomorphism-valued differential
forms

∇E/S,ε −∇E/S,0 ∈ Ω1(M ; EndE) and RE/S,ε ∈ Ω2(M ; EndE) (1.14)

that commute with Clifford multiplication. The curvature RE/S,ε of ∇E/S,ε is
called the twisting curvature in [2]. By assumption (2) above, both ∇E/S,ε −
∇E/S,0 and RE/S,ε depend analytically on ε around ε = 0.

Let PX : p∗E → H denote the L2-orthogonal projection onto H = kerDX .

1.8. Definition. The effective horizontal operator of an adiabatic family of
Dirac bundles (E,∇E,ε, gE , c) is defined as

Deff
B = PX ◦

(m−n∑
α=1

c(f̄α)∇p∗E,0fα
+

n∑
i=1

c(ei)
d

dε

∣∣∣
ε=0
∇E/S,εei

)
◦ PX .

The operator Deff
B is selfadjoint. Its η-invariant is further investigated in

Proposition 2.4. If the fibres are odd-dimensional, we will see in section 1.d that
in important special cases, the η-invariant of the effective horizontal operator
vanishes.

Again by assumption (2) above, there exists ε0 > 0 such that the kernel
of DM,ε has constant dimension for all ε ∈ (0, ε0). By [10] and section 2.g below,
there are finitely many eigenvalues λν(ε) of DM,ε (counted with multiplicity),
called the “very small eigenvalues”, such that

λν(ε) = O(ε2) and 0 6= λν(ε) for all ε ∈ (0, ε0) . (1.15)

We have now defined all ingredients of Theorem 0.1. Its proof is deferred to
section 2.

1.d. Special cases of the adiabatic limit theorem. We consider fibres of
positive scalar curvature, and the signature operator.
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We assume first that M and B are spin, then the vertical tangent bun-
dle of p : M → B also carries a spin structure. By abuse of notation, we
write ηΛB(DM/B) instead of ηΛB(A) for the orbifold η-form associated to the
untwisted Dirac operator.

If the fibres of M → B have positive scalar curvature, then for the untwisted
Dirac operator DM,ε, the fibrewise operator is invertible, hence H = 0 and
there is neither a effective horizontal operator nor are there very small eigen-
values. In particular, DM,ε satisfies the conditions of Dai’s theorem. The same

still holds for the Dirac operator Dp∗W
M,ε that is twisted by the pullback of an

orbibundle W → B with connection ∇W .

1.9. Corollary. If the fibration M → B and B are spin, the fibres of M → B
have positive scalar curvature, and if W → B is an orbibundle, then

lim
ε→0

η
(
Dp∗W
M,ε

)
=

∫
ΛB

ÂΛB

(
TB,∇TB

)
chΛB

(
W,∇W

)
2ηΛB

(
DM/B

)
.

Proof. If W is trivial, then the corollary follows from Theorem 0.1 by the con-
siderations above. If W → B is an orbibundle, then the result follows from
remark 2.13. �

The odd signature operator BM,ε on M also satisfies the conditions of Dai’s
theorem. Here, the bundle H → B corresponds to the fibrewise cohomology,
regarded as a Z2-graded vector bundle. In contrast to [10], we regard BM,ε as
an operator on Ωeven(M), not on all forms. Note that the twisting curvature
depends on ε.

There is a natural notion of a differentiable Leray-Serre spectral sequence
of M → B, and by Mazzeo and Melrose [27], the very small eigenvalues (λν(ε))ν
of BM,ε are related to its higher differentials. The effective horizontal opera-

tor Beff
B is related to the E1-term of this sequence by results of Dai [10, sec-

tion 4.1]. Dai also constructs a signature τr ∈ Z on the r-th term Er of this
spectral sequence for all r ≥ 2.

Let NB denote the number operator on Ω•(B), then the rescaled L-class

L̂
(
TB,∇TB

)
= Â

(
TB,∇TB

)
ch
(
SB,∇SB

)
= 2

dimB−NB

2 L
(
TB,∇TB

)
has a natural general equivariant generalisation leading to L̂ΛB

(
TB,∇TB

)
∈

Ω•(ΛB). Finally, let us write ηΛB(BM/B) instead of ηΛB(A) in this setting.

1.10. Corollary (cf. Dai [10], Theorem 0.3). If the fibration M → B is oriented,
then

lim
ε→0

η
(
BM,ε

)
=

∫
ΛB

L̂ΛB

(
TB,∇TB

)
2ηΛB

(
BM/B

)
+ η
(
Beff
B

)
+
∞∑
r=2

τr .

Moreover, if dimB is even, then η(Beff
B ) = 0.

Proof. This follows from Theorem 0.1 as in Dai’s paper [10]. The first term
again arises because of Remark 2.13. The vanishing of η(Beff

B ) for even dimen-
sional base orbifolds follows from Proposition 2.5. �
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1.e. Seifert fibrations with compact structure group. We assume that
the fibres of the map p : M → B are totally geodesic submanifolds of M .

Assume for the moment that B is a connected Riemannian manifold and
that p : M → B is an ordinary Riemannian submersion. Each path in B in-
duces a parallel transport between the fibres over its endpoints. By a result
of Hermann [21], all these parallel translations are isometries if and only if the
fibres of p are totally geodesic. In this case, let X be isometric to a fibre of p
and let G denote the isometry group of X acting from the left. Then there is a
natural fibre G-principal bundle

P =
{
f : X →M

∣∣ f is an isometry onto a fibre of p
}

with a natural right G-action, and we have M = P ×G X.
If we are given an adiabatic family (E,∇E,ε, gE , c) of Dirac bundles as in

Definition 1.6, then we assume further that the parallel transport between fibres
lifts to isomorphisms between the restrictions of (E,∇E,ε, gE , c) to the fibres
of p. In this case, let G denote the automorphism group of(

(E,∇E,ε, gE , c)|X
)
−→

(
X, gX

)
,

then the family p : M → B is still associated to a G-principal bundle P → B. In
this case, we say that the adiabatic family (E,∇E,ε, gE , c) has compact structure
group G.

Let b ∈ B and identify p−1(b) with X and Ep−1(b) with E|X → X, then for v,

w ∈ TbB, the fibre bundle curvature [v, w] − [v̄, w̄] together with its natural
action on E is described by an element Ω(v, w) ∈ g. Different identifications
of E → X with E|p−1(b) give elements of g in the same AdG-orbit.

By [15, Lemma 1.14], there exists an AdG-invariant formal power se-
ries ηg(DX) ∈ C[[g]], the infinitesimally equivariant η-invariant, such that

2η(A) = η Ω
2πi

(DX) . (1.16)

Here, DX is the component of A of degree 0, regarded as an operator on a
bundle W → X such that locally, E ∼= W ⊗ p∗SB. This invariant has been
computed for the untwisted Dirac operator and the signature operator on S3

in [15, Theorem 3.9]. A more general formula for quotients of compact Lie
groups with normal metrics can be found in [16, section 2.4].

Now, let p : M → B be a Seifert fibration with generic fibre X and assume
again that all fibres are totally geodesic. Then the construction above still
applies to bundle charts as in Definition 1.2. If we trivialise p over V by parallel
translation along radial geodesics in V , then the isotropy group Γ acts on V ×X
by

σγ(v, x) =
(
ργ(v), σγ(x)

)
with σγ ∈ G for all γ ∈ Γ. Thus, we obtain a G-principal orbibundle

P =
{
f : X →M

∣∣ f is a local isometry onto a fibre of p
}
,

and again, we have M = P ×G X → B. Moreover, for γ ∈ Γ, the restricted
curvature Ω|TV γ takes values in the Adγ-invariant part of g. Thus, if (p, (γ)) ∈
ΛB \B, let ψ(γ) : CΓ(γ)\V γ → ΛB be an orbifold chart for ΛB around (p, (γ))
as in (1.1). We regard the pullback of M → B restricted to V γ and identify γ
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with σγ ∈ G acting on X and E. Then Ω|V γ takes values in the Lie algebra c(σγ)
of the centraliser CG(σγ) of σγ in G.

1.11. Theorem. Let p : M → B be a Seifert fibration, and let (E,∇E,ε, gE , c)
be an adiabatic family with compact structure group G. For each (p, (γ)) ∈ ΛB,
there exists a formal power series

ηg,c(σγ)(DX) ∈ R[[c(σγ)]]

such that the orbifold η-form is given in an orbifold chart ψ(γ̃) around (p, (γ))
as

ψ∗(γ̃)ηΛB(A) = ησγ , Ω
2πi

(DX) .

If γ = id, then ηg,c(σγ)(DX) = ηg(DX) is the infinitesimally equivariant η-
invariant. If γ acts freely on the typical fibre X, then ηγ,c(σγ)(DX) is the for-
mal power series expansion of the classical equivariant η-invariant ησγ e−Ξ(DX)

at Ξ = 0 ∈ c(σγ).

Proof. If γ = id, this is just [15, Lemma 1.14]. If γ 6= id, then γ acts freely on
the fibre X because p : M → B is a Seifert fibration, and the result is explained
and proved in [15], Remark 3.12. �

Note that over each singular stratum of B, the fibres of p are finite quotients
of X, so that we are in a situation similar to Lemma 3.11 in [15].

2. A proof of the adiabatic limit Theorem

In this section, we sketch a proof of Theorem 0.1. We will omit most of
the details, in particular those explained by Bismut, Cheeger in [3] and by Dai
in [10]. The proof is based on the well-known formula

η(DM,ε) =

∫ ∞
0

1√
πt

tr
(
DM,ε e

−tD2
M,ε

)
dt .

We define a spectral projection Pε onto the sum of the eigenspaces for the very
small eigenvalues in section 2.f, which commutes with DM,ε for each ε > 0. We
also find a small constant α > 0 and write

η(DM,ε) =

∫ εα−2

0

1√
πt

tr
(
DM,ε e

−tD2
M,ε

)
dt

+

∫ ∞
εα−2

1√
πt

tr
(

(1− Pε)DM,ε e
−tD2

M,ε

)
dt

+

∫ ∞
εα−2

1√
πt

tr
(
PεDM,ε e

−tD2
M,ε

)
dt .

The three terms on the right hand side give rise to the three expressions on the
right hand side of Theorem 0.1 by Propositions 2.12, 2.10 and 2.11, respectively,
which will be stated and proved below. Thus, Theorem 0.1 follows from the
results of this section.
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2.a. Local Computations. We will use small roman indices in {1, . . . , n} re-
ferring to coordinates of the fibres, small greek indices in {n+1, . . . ,m} referring
to coordinates of the base, and capital indices in {1, . . . ,m}. Let ∇TM,ε de-
note the Levi-Civita connection with respect to the bundle-like metric gε =
gTX ⊕ ε−2 p∗gTB.

Let ∇TB denote the Levi-Civita connection on the orbibundle TB → B.
By [3], there exists a connection ∇TX on TX → M , a symmetric ten-
sor S : TX ⊗ TX → THM and an antisymmetric tensor T : THM ⊗ THM →
TX, with coefficients sijγ and tαβk, such that

∇TM,ε
ei ej = ∇TXei ej + ε

∑
γ

sijγ e
ε
γ ,

∇TM,ε
eα ej = ∇TXeα ej − ε

∑
β

tαβj e
ε
β ,

∇TM,ε
ei eεβ = −ε

∑
k

sikαek − ε2
∑
γ

tβγi e
ε
γ ,

and ∇TM,ε
eα eεβ =

(
p∗∇TB

)
eα
eεβ + ε

∑
k

tαβk ek .

We identify the tangent bundles (TM, gε) orthogonally for different ε > 0 by
sending (e1, . . . , em) at ε = 1 to the gε-orthonormal frame of (1.8). With respect
to this identification, we obtain the limit connection

∇TM,0 = lim
ε→0
∇TM,ε = ∇TX ⊕ p∗∇TB . (2.1)

Note that this differs from the geometric limit of Levi-Civita connections de-
scribed for example in [2, section 10.1].

Let us assume for the moment that the base B and the map p are spin, which
is always true locally on M , and let SX →M be a spinor bundle for TX →M .
Then we have an isomorphism of vector bundles

SM ∼= SX ⊗ p∗SB

independent of ε, and the connection ∇SM,0 induced by ∇TM,0 is the ten-
sor product connection. To define Clifford multiplication cI by eεI on SM for
all I = 1, . . . , m, the tensor product is understood in a Z2-graded sense. The
connections ∇TM,ε induce connections ∇SM,ε on the spinor bundle SM → M
for all ε ≥ 0. We have

∇SM,ε
ei = ∇SM,0

ei +
ε

2

∑
j,γ

sijγcjcγ −
ε2

4

∑
α,β

tαβi cαcβ ,

∇SM,ε
eα = ∇SM,0

eα − ε

2

∑
i,β

tαβicicβ .

(2.2)

Let (E,∇E,ε, gE , c)ε>0 be an adiabatic family of Dirac bundles on M as in
Definition 1.6. We can now define a vertical and a horizontal Dirac operator by

DX =
∑
i

ci∇E,0ei , and DB,ε =
1

ε

(
DM,ε −DX

)
. (2.3)
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Let ∇E/S,ε −∇E/S,0 denote the one-form of (1.14). Then

DB,ε =
∑
α

cα

(
∇E,0eα +

1

2

∑
i,j

sijα cicj −
ε

4

∑
i,β

tαβi cicβ

)
+
∑
i

ci
1

ε

(
∇E/S,ε −∇E/S,0

)
ei

+
∑
α

cα
(
∇E/S,ε −∇E/S,0

)
eα

=
∑
α

cα

(
∇E,0eα −

1

2
hα

)
+
∑
i

ci
1

ε

(
∇E/S,ε −∇E/S,0

)
ei

+ ε
∑
α

cα

(
1

ε

(
∇E/S,ε −∇E/S,0

)
eα
− 1

4

∑
i,β

tαβi cicβ

)
,

(2.4)

where h ∈ THM denotes the mean curvature vector of the fibres in (M, g),
and hα denotes its component in the direction of α. Note that the connec-
tion ∇E,0 − 1

2 〈h, · 〉 for ε = 0 in the above expression for DB,ε is not unitary

on E →M in general, but it induces a unitary connection ∇p∗E,0 on the infinite
dimensional vector orbibundle p∗E → B.

2.1. Lemma. Let (E,∇E,ε, gEε )ε>0 be family of Dirac bundles on the family of
Riemannian manifolds (M, gTMε )ε>0. Decompose the associated family of Dirac
operators DM,ε = DX + εDB,ε as above. Then the anticommutator of DX

and DB,ε is the sum of a fibrewise differential operator of order one and an
endomorphism of E.

We write supercommutators as [ · , · ].

Proof. Because DX is of order one and involves only fibrewise differentiation,
supercommutators of DX with a zero order operator satisfy the assertion above.
Hence, it suffices to consider∑

α

[
DX ,∇E,0eα

]
=
∑
i,α

(
cic
(
∇TM,0
ei eα

)
∇E,0eα

+ cicα (∇E,0)2
ei,eα + cicα∇E,0[ei,eα] + cαc

(
∇TM,0
eα ei

)
∇E,0ei

)
.

Because eα is the horizontal lift of a vector field on B, we have ∇TM,0
ei eα =

(p∗∇TB)eieα = 0, and [ei, eα] is a vertical vector field. Our claim follows. �

2.b. The effective horizontal operator. We regard the infinite-dimensional
bundle p∗E → B. Together with the connection ∇p∗E,0 of (1.10), it becomes
an infinite-dimensional Dirac orbibundle on B.

Let PX ∈ End(p∗E) denote the fibrewise L2-projection on kerDX . By as-
sumption (3) in Definition (1.6), H = kerDX = imPX is a finite rank vector
bundle over B. Note that PX does not necessarily commute with the connec-
tion ∇p∗E,0. We define a connection ∇H on H by

∇H = PX ◦ ∇p∗E,0 ◦ PX = PX ◦
(
∇SM,0 − 1

2
〈h, · 〉

)
◦ PX .

2.2. Proposition. Let PX and H be as above.
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(1) The operator PX is a fibrewise smoothing operator of finite rank that
commutes with DX and with Clifford multiplication with horizontal vec-
tors.

(2) The orbibundle H → B, equipped with the restriction of the fibrewise
L2-metric and the connection ∇H , becomes a finite-dimensional Dirac
orbibundle on B.

Proof. The projection PX commutes with PX by construction, and with cα
because DX anticommutes with cα.

The connection ∇p∗E,0 respects the L2-scalar product, so its contraction ∇H
onto H respects the induced scalar product. Because PX commutes with cα,
we obtain a Dirac orbibundle. �

2.3. Remark. By Definition 1.8, the effective horizontal operator is a Dirac
operator if the family of local twist connections ∇W,ε considered in the previous
section is constant in ε. This is not the case for the odd signature operator BM,ε

on (M, gTMε ), as explained in [10, section 4.1]. The local twist bundle W is now
given by (SM,∇SM,ε). Hence, by equation (2.2), we have

d

dε

∣∣∣
ε=0
∇E/S,εei =

1

2

∑
j,γ

sijγcjcγ .

This term only depends on the second fundamental form of the fibres, in partic-
ular, for totally geodesic fibrations the effective horizontal operator is in fact the
Dirac operator on the Dirac bundle (H, gH ,∇H) of Proposition 2.2 (2) above.

2.4. Proposition. The η-invariant of Deff
B is given by a convergent integral,

η
(
Deff
B

)
=

∫ ∞
0

1√
πt

tr
(
Deff
B e−t(D

eff
B )2
)
dt .

Proof. Convergence for t→∞ is clear because we assumed that B is compact,
and hence Deff

B has discrete spectrum.
For small-time convergence, we adapt the proof of [4, section II]. We put

A = Deff
B −DH

B =
∑
i

PX ◦
(
ci
d

dε

∣∣∣
ε=0
∇E/S,εei

)
◦ PX .

Because cα commutes with PX , we find that A anticommutes with Clifford
multiplication,

[cα, A] = PX ◦
∑
i

[
cα, ci

d

dε

∣∣∣
ε=0
∇E/S,εei

]
◦ PX = 0 .

In particular,

(Deff
B )2 = (DH

B )2 +
∑
α

cα
[
∇Hfα , A

]
+A2 .

We introduce an exterior variable z that anticommutes with the Clifford
multiplication cα and is parallel with respect to ∇H . Consider the connection

∇H,z = ∇H − z

2
c( · ) (2.5)
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on the Dirac bundle H of Proposition 2.2. Then instead of the usual Bochner-
Lichnerowicz-Weitzenböck formula, one has

(Deff
B )2 + z Deff

B = ∇H,z,∗∇H,z +
κ

4
+

1

4

∑
α,β

cαcβ F
H/S
fα,fβ

+
∑
α

cα
[
∇Hfα , A

]
+A2 + zA . (2.6)

If P , Q are endomorphisms of a vector space, define trz(P + zQ) = tr(Q), then

tr
(
Deff
B e−t(D

eff
B )2
)

=
1

t
trz

(
e−t((D

eff
B )2−zDeff

B )
)
. (2.7)

We want to compute the heat kernel of e−t((D
eff
B )2−zDeff

B ) using Getzler rescal-
ing. To see that this is possible, we have to distinguish two cases.

If dimB is even, only even elements of the Clifford algebra contribute to
the trace. Hence, in the asymptotic expansion of the heat kernel, only terms
involving the operator A an odd number of times will contribute. But A acts
as τ ⊗A′, where τ denotes the Clifford volume element and A′ commutes with
Clifford multiplication. Hence, we may replace A formally by A′ and the trace
by a supertrace, so Getzler rescaling is appropriate.

On the other hand, let dimB be odd. Then dimX is even, and the bundle H
splits as H+ ⊕ H−. The splitting is preserved by DH

B , but A exchanges the
summands. Hence, in the asymptotic expansion of the heat kernel, only terms
involving the operator A an even number of times will contribute, so we have
to take the trace on the odd part of the Clifford algebra, and Getzler rescaling
is again appropriate.

Either way, we perform Getzler rescaling of the Clifford variables cα, and A
is not affected. Then the additional terms in the second line of (2.6) cause no
trouble because A and

[
∇Hfα , A

]
do not involve Clifford multiplication at all.

Hence, small time convergence follows as in [4]. �

2.5. Proposition. If dimB is even, the effective horizontal operator of the adia-
batic family of odd signature operators (BM,ε)ε on M has vanishing η-invariant.

Proof. The effective horizontal operator Beff
B acts on Ω•(B;H) and exchanges

even and odd forms by [10, section 4.1]. Thus, the odd heat kernel Beff
B e−t(B

eff
B )2

also exchanges even and odd forms, and hence, its trace is zero. Hence, the
integrand in Proposition 2.4 vanishes. �

2.c. The Dirac operator as a matrix. The following sections are inspired
by work of Bismut and Lebeau [5, chapter 9] and Ma [26, chapter 5]. We will
write operators acting on p∗E = kerDX ⊕ imDX as matrices of the form

Y =

(
PX Y PX PX Y (1− PX)

(1− PX)Y PX (1− PX)Y (1− PX)

)
=

(
Y1 Y2

Y3 Y4

)
,

in particular

1

ε
DM,ε = ε−1

(
DM,ε,1 DM,ε,2

DM,ε,3 DM,ε,4

)
=

(
DB,ε,1 DB,ε,2

DB,ε,3 ε−1DX +DB,ε,4

)
.



18 SEBASTIAN GOETTE

2.6. Proposition. As ε→ 0,

(1) the operator DB,ε,1 − Deff
B is an endomorphism of H → B of magni-

tude O(ε), and
(2) the operators DB,ε,2 and DB,ε,3 are uniformly bounded fibrewise smooth-

ing operators of finite rank.

Proof. The first claim follows from the Definition 1.8 of the effective horizontal
operator and equation (2.4).

The projection PX is a fibrewise smoothing operator of finite rank. It
commutes with Clifford multiplication cα by horizontal vectors. We conclude
from (2.4) that the commutator [DB,ε, PX ] is again a fibrewise smoothing op-
erator of finite rank. Now (2) follows because

DB,ε,2 = PX ◦DB,ε ◦ (1− PX) = −[DB,ε, PX ] ◦ (1− PX)

and DB,ε,3 = (1− PX) ◦DB,ε ◦ PX = (1− PX) ◦ [DB,ε, PX ]

are uniformly bounded fibrewise smoothing operators of finite rank. �

2.d. A resolvent estimate. Let λB denote the smallest absolute value of a
nonzero eigenvalue of the effective horizontal operator Deff

B , and let 0 < c < λB
2 .

Let Γ = Γ+ ∪̇Γ0 ∪̇Γ− denote a contour in C, where Γ± goes around ±[λB,+∞]
with distance c, and Γ0 is a circle around 0 with radius c. We choose ε0 > 0
such that Proposition 2.7 is satisfied and such that all eigenvalues of ε−1DM,ε

lie inside the area enclosed by Γ for all ε > 0.

−λB λB
c

Γ0Γ− Γ+

For λ /∈ spec(DM,ε,4), we consider the resolvent

Rε(λ) =
1− PX

λ− ε−1DM,ε,4
.

We regard the family of Schatten norms on operators acting on L2(E), given
by

‖A‖p = tr
(

(A∗A)
p
2

)1
p

for 1 ≤ p <∞, and let ‖A‖∞ denote the operator norm.

2.7. Proposition. There exist constants C and ε0 > 0, such that for all p >
dimM , all ε ∈ (0, ε0) and all λ ∈ Γ, one has

‖Rε(λ)‖∞ ≤ C , (1)

‖Rε(λ)‖∞ ≤ Cε |λ| , (2)

‖Rε(λ)‖p ≤ C |λ| . (3)
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Proof. For σ ∈ im(1− PX), we have∥∥(i− ε−1DM,ε,4)σ
∥∥2

L2

=
〈(

1 + ε−2D2
X + ε−1[DX , DB,ε,4] +D2

B,ε,4

)
σ, σ

〉
. (2.8)

The operator D2
B,ε,4 is selfadjoint with nonnegative spectrum.

The operator D2
X |im(1−PX) is a fibrewise differential operator of order 2,

hence its spectrum is contained in [λ0,∞) for some λ0 > 0. Let ∆X de-
note the fibrewise connection Laplacian acting on E → M , and let RX de-
note the curvature term in the classical Bochner-Lichnerowicz-Weitzenb”ock
formula for DX . Write A ≥ B if A − B is a nonnegative selfadjoint operator.
Because D2

X ≥ λ2
0 > 0, we find a parameter s > 0 such that

D2
X − s∆X = (1− s)D2

X + s
(κX

4
+RX

)
≥ 1− s

2
D2
X +

(1− s)λ2
0

2
− s

∥∥∥κX
4

+RX
∥∥∥
∞

≥ 1− s
2

D2
X ≥

(1− s)λ2
0

2
> 0 .

(2.9)

By Lemma 2.1, the anticommutator

[DX , DB,ε,4] = (1− PX) (DXDB,ε +DB,εDX) (1− PX)

is the projection of a fibrewise differential operator of order 1. Write

[DX , DB,ε] =
∑
ν

aν ∇Vν + b ,

where the Vν are vertical vector fields and b and the aν are endomorphisms
of E → M depending on ε. Note that Vν , aν and b are uniformly bounded
as ε→ 0. Because [DX , DB,ε] is selfadjoint,∑

ν

aν∇Vν =
(∑

ν

aν∇Vν
)∗

= −
∑
ν

(
a∗ν∇Vν + [∇Vν , a∗ν ] + (div Vν) a∗ν

)
.

Regard the nonnegative generalised fibrewise Laplace operator

0 ≤ s
(
ε−1∇+

1

2s

∑
ν

〈Vν , · 〉a∗ν
)∗(

ε−1∇+
1

2s

∑
ν

〈Vν , · 〉a∗ν
)

= sε−2∆X +
1

4s

∑
µ,ν

〈Vµ, Vν〉 aµa∗ν

− 1

2ε

∑
ν

(
(a∗ν − aν)∇Vν + (div Vν) a∗ν + [∇Vν , a∗ν ]

)
= sε−2∆X + ε−1

(
[DX , DB,ε]− b

)
+

1

4s

∑
µ,ν

〈Vµ, Vν〉 aµa∗ν .

Because b acts as a fibrewise endomorphism on E →M , we conclude that

sε−2∆X + ε−1[DX , DB,ε] ≥ −ε−1C . (2.10)
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A similar conclusion still holds if we replace DB,ε by DB,ε,4 because

[DX , DB,ε]− [DX , DB,ε,4] = DXDB,ε,3 +DB,ε,2DX

is a fibrewise smoothing operator of finite rank by Proposition 2.6 (2).
If we put (2.8)–(2.10) together, we see that

1 + ε−2D2
M,ε,4 ≥ 1 +

1− s
2ε2

D2
X +

λ2
0

4ε2
− C

ε
+D2

B,ε,4 (2.11)

We immediately find that

‖Rε(i)‖∞ ≤ C ε .
Hence there exists ε0 > 0 such that for all ε ∈ (0, ε0), the spectrum

of ε−1DM,ε,4 is contained in R \ ε−1(−c′, c′) for some constant c′ > 0. The
first estimate (1) follows from our choice of Γ.

We obtain (2) from (1) and

‖Rε(λ)‖ ≤ ‖Rε(i)−Rε(i) (λ− i)Rε(λ)‖
≤ Cε

(
1 + |λ− i| C

)
.

Moreover, (2.11) implies that there exists an ε0 > 0 such that for all ε ∈
(0, ε0), the operator 1+

(
ε−1DX+DB,ε,4

)2
differs from a fixed selfadjoint second

order elliptic operator by some selfadjoint operator with nonnegative eigenval-
ues. By the variational characterisation of eigenvalues and the definition of the
p-norm, we conclude that

‖Rε(i)‖p =
∥∥(i− (ε−1DX +DB,ε,4)

)−1∥∥
p
≤ Cε

for all ε ∈ (0, ε0) and all p > dimM . By a similar argument as above, the
proposition follows for all λ ∈ Γ. �

In particular, the resolvent Rε(λ) is uniformly bounded and of order O(ε |λ|)
for all λ ∈ Γ as ε → 0. We write Rε(λ) = O(1, ε |λ|). In particular, we may
extend this operator by 0 for ε = 0.

2.e. The Schur complement. To compute the full resolvent of ε−1DM,ε, we
consider the Schur complement Mε(λ) of λ− ε−1DM,ε,4 in the matrix represen-
tation of section 2.c. The Schur complement is given by

Mε(λ) = λ−DB,ε,1 −DB,ε,2 ◦Rε(λ) ◦DB,ε,3 .

2.8. Proposition. There exists ε0 > 0 small such that for all ε ∈ (0, ε0) and
all λ ∈ Γ, the operator Mε(λ) is invertible. Moreover, there exists C > 0 such
that for all p > dimM , ∥∥Mε(λ)−1

∥∥
∞ ≤ C , (1)∥∥∥Mε(λ)−1 − (λ−Deff

B )−1
∥∥∥
∞
≤ C min

(
1, ε |λ|

)
, (2)∥∥Mε(λ)−1

∥∥
p
≤ C |λ| (3)∥∥∥(λ−Deff

B )−1
∥∥∥
p
≤ C |λ| , (4)
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Proof. By Propositions 2.6 and 2.7,

Mε(λ) = λ−Deff
B +O(1, ε |λ|) .

As DB,ε,1 + DB,ε,2 ◦ Rε(λ) ◦ DB,ε,3 is a selfadjoint operator, its spectrum is

contained in R, and Mε(λ) is invertible with ‖Mε(λ)‖ ≤ 1
c for all λ ∈ Γ

with Imλ = ±ic.
The remaining λ ∈ Γ satisfy |λ| ≤ 2λB, so the remainder termMε(λ)−λ−Deff

B
is a bounded endomorphism of H with operator norm uniformly of order O(ε).
Then in particular, the series

Mε(λ)−1 =
1

λ−Deff
B

∞∑
k=0

((
(λ−Deff

B )−Mε(λ)
) 1

λ−Deff
B

)k
(2.12)

converges if ε > 0 is small enough. This proves invertibility of Mε(λ). Together
with the above, we obtain (1).

We deduce (2) from (1) and our choice of Γ in section 2.d because

Mε(λ)−1 − (λ−Deff
B )−1

= (λ−Deff
B )−1

(
(λ−Deff

B )−Mε(λ)
)
Mε(λ)−1 = O(1, ε |λ|) .

For (3), we use that
∥∥(i−Deff

B )−1
∥∥
p
≤ C. Moreover∥∥Mε(λ)−1

∥∥
p

=
∥∥∥(i−Deff

B )−1 − (i−Deff
B )−1

(
Mε(λ)− (i−Deff

B )
)
Mε(λ)−1

∥∥∥
p

≤
∥∥∥(i−Deff

B )−1
∥∥∥
p

+
∥∥∥(i−Deff

B )−1
∥∥∥
p

∥∥∥Mε(λ)− (i−Deff
B )
∥∥∥
∞

∥∥Mε(λ)−1
∥∥
∞

≤ C
(
1 + (|λ− i|+O(1, ε |λ|))C

)
.

The last estimate (4) is similar. �

We can now write the resolvent of ε−1DM,ε as

1

λ− ε−1DM,ε

=

(
Mε(λ)−1 Mε(λ)−1DB,ε,2Rε(λ)

Rε(λ)DB,ε,3Mε(λ)−1 Rε(λ) +Rε(λ)DB,ε,3Mε(λ)−1DB,ε,2Rε(λ)

)
=

(
1

λ−Deff
B

0

0 Rε(λ)

)
+O(1, ε |λ|) .

The remainder terms consist of the resolvent of Deff
B and one or more of the

following finite-rank endomorphisms of p∗E,(
(λ−Deff

B )−Mε(λ)
) 1

λ−Deff
B

,

DB,ε,2Rε(λ) ,

Rε(λ)DB,ε,3 .
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the behaviour of which is described in Propositions 2.6–2.8. We summarize the
results of this section.

2.9. Proposition. There exist constants C and ε0 > 0 such that for all p >
dimM , all ε ∈ (0, ε0), and all λ ∈ Γ, one has∥∥(λ− ε−1DM,ε)

−1
∥∥
∞ ≤ C ,

∥∥∥(λ−Deff
B )−1

∥∥∥
∞
≤ C , (1)∥∥(λ− ε−1DM,ε)

−1
∥∥
p
≤ C |λ| ,

∥∥∥(λ−Deff
B )−1

∥∥∥
p
≤ C |λ| , (2)∥∥∥(λ− ε−1DM,ε)

−1 − (λ−Deff
B )−1

∥∥∥
∞
≤ Cε |λ| . (3)

In particular, the resolvent of ε−1DM,ε converges to the resolvent of the

effective horizontal operator Deff
B in a certain precise sense.

2.f. Long time convergence. Define a spectral projection Pε on Γ(p∗E) by

Pε =
1

2πi

∫
Γ0

dz

z − ε−1DM,ε
.

Then Pε obviously commutes with DM,ε. By Proposition 2.9 (3) and our choice
of c and Γ0, we find that P0 = limε→0 Pε is the projection onto the kernel of
the effective horizontal operator Deff

B . In particular, imPε is of constant finite
dimension for all ε > 0 sufficiently small.

2.10. Proposition. There exists α > 0 such that

lim
ε→0

∫ ∞
εα−2

1√
πt

tr
(

(1− Pε) ◦
(
DM,ε e

−tD2
M,ε
)
◦ (1− Pε)

)
dt = η

(
Deff
B

)
.

Proof. By Proposition 2.4, we may write

η(Deff
B ) =

∫ ∞
0

1√
πt

tr
(

(1− P0) ◦Deff
B e−t(D

eff
B )2 ◦ (1− P0)

)
dt ,

because P0 projects onto the kernel of Deff
B .

We rewrite the integral on the left hand side in the Proposition as∫ ∞
εα−2

1√
πt

tr
(

(1− Pε) ◦
(
DM,ε e

−tD2
M,ε
)
◦ (1− Pε)

)
dt

=

∫ ∞
εα

1√
πt

tr
(

(1− Pε) ◦
(
ε−1DM,ε e

−tε−2D2
M,ε
)
◦ (1− Pε)

)
dt .

Using dominated convergence, we will show that this integral converges
to η(Deff

B ) as ε→ 0.
For t > 0 and each integer k ≥ 0, we define two holomorphic functions F+

k,t,

F−k,t : C→ C with

dk

dzk
F±k,t(z) = z e−tz

2
and lim

z→±∞
F±k,t(z) = 0 .

Then obviously

F±k,t(z) = t−
k+1

2 F±k,1
(√
t z
)
. (2.13)



ADIABATIC LIMITS OF SEIFERT FIBRATIONS 23

By holomorphic functional calculus,

(1− Pε) ◦
(
ε−1DM,ε e

−tε−2D2
M,ε

)
◦ (1− Pε)

=
1

2πi

∫
Γ+∪̇Γ−

z e−tz
2

z − ε−1DM,ε
dz

=
1

2πi k!

∫
Γ+

F+
k,t(z)

(
z − ε−1DM,ε

)−k−1
dz

+
1

2πi k!

∫
Γ−

F−k,t(z)
(
z − ε−1DM,ε

)−k−1
dz .

(2.14)

A similar expression holds for

Deff
B e−t(D

eff
B )2

= (1− P0) ◦
(
Deff
B e−t(D

eff
B )2
)
◦ (1− P0) .

By the Hölder inequality, ‖Xp‖1 ≤ ‖X‖
p
p. We choose k > dimM + 1. By

Proposition 2.9 (2) and (3), there exist constants C varying from line to line
such that∥∥∥∥ 1

2πi k!

∫
Γ±

F±k,t(z)
((
z − ε−1DM,ε

)−k−1 −
(
z −Deff

B

)−k−1
)
dz

∥∥∥∥
1

≤ C
∫

Γ±

F±k,t(z)
k∑
j=0

∥∥∥(z − ε−1DM,ε

)−1
∥∥∥j
k

·
∥∥∥(z − ε−1DM,ε

)−1 −
(
z −Deff

B

)−1
∥∥∥
∞

·
∥∥∥(z −Deff

B

)−1
∥∥∥k−j
k

dz

≤ Cε
∫

Γ±

F±k,t(z) |z|
k+1 dz .

(2.15)

A similar estimate also holds for the integral over Γ−. Equation (2.15) clearly
implies that

lim
ε→0

tr
(

(1− Pε) ◦
(
ε−1DM,ε e

−tε−2D2
M,ε
)
◦ (1− Pε)

)
= tr

(
Deff
B e−t(D

eff
B )2
)
. (2.16)

Let µ denote the arc length measure on Γ. Using (2.13) and (2.15), we
estimate∥∥∥(1− Pε) ◦

(
ε−1DM,ε e

−tε−2D2
M,ε

)
◦ (1− Pε)−

(
Deff
B e−t(D

eff
B )2
)∥∥∥

1

≤ Cε
∫

Γ±

∣∣∣F±k,t(z)zk+1
∣∣∣ dµ(z)

≤ Cεt−k−1

∫
Γ±

∣∣∣F±k,1(√t z) · (√t z)k+1
∣∣∣ dµ(z)

≤ Cεt−k−
3
2

∫
√
tΓ±

∣∣∣F±k,1(z) zk+1
∣∣∣ dµ(z) ≤ Cεt−k−

3
2 e−ct .

(2.17)
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Choose 0 < α < 1
k+2 . For εα ≤ t, (2.17) implies

1√
t

∥∥∥(1− Pε) ◦
(
ε−1DM,ε e

−tε−2D2
M,ε

)
◦ (1− Pε)−

(
Deff
B e−t(D

eff
B )2
)∥∥∥

1

≤ Ct
1
α−k−2e−ct .

Because t occurs with positive exponent in the last line, the integral of the
right hand side above over (0,∞) converges, and we may apply dominated
convergence and (2.16) to complete the proof. �

2.g. The very small eigenvalues. We now want to estimate the contribution
of the finite dimensional vector space imPε. The operator Pε ◦ε−1DM,ε ◦Pε de-
pends holomorphically on ε, so its eigenvalues are given by analytic functions λν
in ε. In particular, we may choose ε0 in section 2.c such that

dim ker
(
Pε ◦ ε−1DM,ε ◦ Pε

)
= dim kerDM,ε

is constant for all ε ∈ (0, ε0]. By Proposition 2.6 (1), we have λν(ε) = O(ε),
and by the above, the sign of λν(ε) does not change on (0, ε0].

2.11. Proposition. For 0 < ε < ε0, we have

lim
ε→0

∫ ∞
εα−2

1√
πt

tr
(
Pε ◦

(
DM,ε e

−tD2
M,ε
)
◦ Pε

)
dt =

dim kerDeff
B∑

ν=1

sign(λν(ε)) .

Proof. We have∫ ∞
εα−2

1√
πt

tr
(
Pε ◦

(
DM,ε e

−tD2
M,ε
)
◦ Pε

)
dt

=

∫ ∞
εα

1√
πt

tr
(
Pε ◦

(
ε−1DM,ε e

−tε−2D2
M,ε
)
◦ Pε

)
dt

=

dim kerDeff
B∑

ν=1

∫ ∞
εα

λν(ε)√
πt

e−tλν(ε)2
dt

=

dim kerDeff
B∑

ν=1

sign(λν(ε)) +O
(
ε
α
2

)
. �

2.h. Short time convergence. Let α > 0 denote the constant introduced in
Proposition 2.10 and consider∫ εα−2

0

1√
πt

tr
(
DM,ε e

−tD2
M,ε

)
dt .

We treat the limit of this integral as ε→ 0 as in [3] and [10]. Over the singular
strata of B, we get additional contributions involving equivariant η-forms, see
Definition 1.7 of the orbifold η-forms.

2.12. Proposition. For α > 0 sufficiently small, we have

lim
ε→0

∫ εα−2

0

1√
πt

tr
(
DM,ε e

−tD2
M,ε

)
dt =

∫
ΛB

ÂΛB

(
TB,∇TB

)
2ηΛB(A) .
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Proof. We introduce an exterior variable z that anticommutes with the Clif-
ford multiplication c and is parallel with respect to ∇E,ε for all ε. In analogy
with (2.5), consider the connection

∇E,ε,z = ∇E,ε − z c( · ) .

We will use the gTMε -orthonormal frame eεI of (1.8). Then as in (2.6), the
Bochner-Lichnerowicz-Weitzenböck formula implies

D2
M,ε + 2z DM,ε = ∇E,ε,z,∗∇E,ε,z +

κ

4
+

1

4

∑
I,J

cIcJ F
E/S
eεI ,e

ε
J
.

Define trz as in the proof of Proposition 2.4, then as in (2.7),

tr
(
DM,ε e

−tD2
M,ε

)
=

1

t
trz

(
e−t(D

2
M,ε−zDM,ε)

)
. (2.18)

From now on, we assume that t ≤ εα−2 for some small α > 0. We fix q ∈ B
and choose an orbifold chart ψ : ρ(Γ)\V → U ⊂ B with q = ψ(0) and a local
trivialisation ψ̄ : Γ\(V ×X)→ p−1(U) as in Definition 1.2. We assume that ψ
defines geodesic coordinates, and that ψ̄ is the trivialisation by horizontal lifts
of radial geodesics. By parallel transport along these geodesics with respect
to ∇E,ε, we also identify E|p−1(V ) with E|X × V .

As explained in [10], section 3.1, to compute the z-trace of the heat kernel
over q, we may assume that V = Rm−n, and that outside a suitably large
compact subset, the metric on V is flat and the geometry of the fibration is of
product type. It is possible to perform all these modifications in a Γ-invariant
way.

Let v denote the V -coordinates of a point in V ×X. As in [3], we consider
the operator

Hε,t =

(
1 +

zc(v)

2ε
√
t

)(
tD2

M,ε + 2z
√
tDM,ε

)(
1− zc(v)

2ε
√
t

)
.

In the trivialisations above, let

k̃ε,t((v, x), (v′, x′)) : Ex′ → Ex

denote the heat kernel of the operator e−Hε,t on V × X. The corresponding
heat kernel kε,t on Γ\(V ×X) then lifts to

kε,t([v, x], [v′, x′]) =
∑
γ∈Γ

k̃ε,t((v, x), γ(v′, x′)) ◦ γ : Ex′ → Ex .

Thus, we have

trz
(
kε,t([v, x], [v, x])

)
=
∑
γ∈Γ

trz
(
k̃ε,t((v, x), γ(v, x)) ◦ γ

)
.
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We will consider the contribution of each γ ∈ Γ over V to the overall trace

of e−t(D
2
M,ε+z DM,ε) separately in the limit ε→ 0. Moreover,∫

Γ\(V×X)
trz
(
kε,t([v, x], [v, x])

)
d(v, x)

=
1

#Γ

∫
V×X

∑
γ∈Γ

trz
(
k̃ε,t((v, x), γ(v, x)) ◦ γ

)
d(v, x) (2.19)

because each point [v, x] ∈ Γ\(V ×X) has #Γ different preimages in V ×X.
For a fixed γ ∈ Γ, let Vγ ⊂ V denote the fixpoint set of γ, which is a linear

subspace of V . Let Nγ denote its orthogonal complement. Because we have
assumed that B is orientable, dimNγ is even. Put

mγ = m− dimNγ .

The action of γ on E|X can be decomposed as

γ = γ̃E/SB ◦ γ̃SB (2.20)

such that γSB is an element in the Clifford algebra of Nγ and γE/SB commutes
with Clifford multiplication with horizontal vectors, and this decomposition is
unique up to sign.

As ε → 0, we will rescale v ∈ V by a factor ε
√
t. We will apply Getzler

rescaling by ε
√
t only to Clifford multiplication with elements of Vγ , whereas

Clifford multiplication with elements of Nγ and TX will not be rescaled. Let us
denote the complete rescaling by Gγ,ε. In particular, the action of γ commutes
with Gγ,ε.

We choose the basis in section 2.a such that fn+1, . . . , fmγ are tangent to Vγ .
Let εα denote exterior multiplication with dvα. For I ∈ {1, . . . ,m}, define

µI =

{
cI if 1 ≤ I ≤ n or mγ < I ≤ m, and

t−
1
2 εI if n < I ≤ mγ .

Bismut’s Levi-Civita superconnection can be defined as the operator

At =
√
tDX +∇p∗E,0 −

√
t

4

∑
iαβ

tαβi µiµαµβ .

Then as in [3], we can compute the limit of the rescaled operator Hε,t as

lim
ε→0

Gγ,ε(Hε,t) = −t
(
∇ei +

1

4

mγ∑
J,K=1

siJKµIµJ − t−
1
2 zci

)2

−
(
∂

∂α
+

1

8

〈
RB|Vγeα, v

〉)2

+

mγ∑
I,J=1

tRE/S,0eI ,eJ
µIµJ + t

κX
4

=

(
A2
t + tz

dAt
dt

)
−
(
∂

∂α
+

1

8

〈
RB|Vγeα, v

〉)2

.

(2.21)
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Both operators on the right hand side have coefficients in Λ•(V γ)∗. The oper-

ator A2
t + tz dAtdt acts on Γ(E → X) and commutes with Clifford multiplication

by horizontal vectors, while
(
∂
∂α

+ 1
8

〈
RB|Vγeα, v

〉)2
acts on Ω•(V ).

Let SB be a local spinor bundle on V , then there exists a fibrewise Dirac
bundle W →M as in (1.11). We continue as in [3], using the heat kernel proof
of the equivariant index theorem in order to conclude that on V ×X,

lim
ε→0

∫
V×X

trz
(
k̃ε,t((v, x), γ(v, x)) ◦ γ

)
d(v, x)

=

∫
V

trSB
(
kV (v, γv) ◦ γ̃SB

)
(2πi)−

NV γ

2 trp∗W

(
2t
dAt
dt

eA
2
t γ̃E/SB

)
dv

=

∫
V γ
Âγ̃SB

(
TV,∇TV

)
(2πi)−

NV γ

2 trp∗W

(
2t
dAt
dt

eA
2
t γ̃E/SB

)
.

From (2.19) and the above, we obtain

lim
ε→0

∫
Γ\(V×X)

trz
(
kε,t([v, x], [v, x])

)
d(v, x)

=
1

#Γ

∑
γ∈Γ

∫
V γ
Âγ̃SB

(
TV,∇TV

)
(2πi)−

NV γ

2 trp∗W

(
2t
dAt
dt

eA
2
t γ̃E/SB

)

=
∑
(γ)

1

#CΓ(γ)

∫
V γ
Âγ̃SB

(
TV,∇TV

)
(2πi)−

NV γ

2 trp∗W

(
2t
dAt
dt

eA
2
t γ̃E/SB

)

=
∑
(γ)

∫
CΓ(γ)\V γ

ψ∗(γ)ÂΛB

(
TB,∇TB

)
(2πi)−

NV γ

2 trp∗W

(
2t
dAt
dt

eA
2
t γ̃E/SB

)
in analogy with the index computations in [23]. By (2.18) and the above, we
have the global formula

lim
ε→0

tr
(√

tDM,ε e
−tD2

M,ε

)
=

∫
ΛB

ÂΛB

(
TB,∇TB

)
2 (2πi)−

NV γ

2 trp∗W

(
dAt
dt

eA
2
t γ̃E/SB

)
.

By Theorem 3.1 of [10], we have uniform convergence as ε→ 0. By (1.12) and
Definition 1.7,

lim
ε→0

∫ εα−2

0

1√
πt

tr
(
DM,εe

−tD2
M,ε γ

)
dt =

∫
ΛB

ÂΛB

(
TB,∇TB

)
2ηΛB(A) . �

2.13. Remark. We replace the vector bundle E by E ⊗ p∗W , where W → B is
a vector orbibundle. We also assume that the twist connection ∇(E⊗p∗W )/S,0

splits as the tensor product connection of ∇E/S,0 and p∗∇W in the limit ε→ 0.
A relevant special case is the case of the signature operator on M , where the
(local) spinor bundle of B plays the role of W . In this case, equation (2.21)
becomes

lim
ε→0

Gγ,ε(Hε,t) =

(
A2
t + tz

dAt
dt

)2

−
(
∂

∂α
+

1

8
〈RB|Vγeα, v〉

)2

+ p∗RW .
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This implies that now,

lim
ε→0

∫ εα−2

0

1√
πt

tr
(
DM,εe

−tD2
M,ε γ

)
dt

=

∫
ΛB

ÂΛB

(
TB,∇TB

)
2ηΛB(A) chΛB(W,∇W ) .

3. The Spaces Pk and M(p−,q−),(p+,q+)

We consider the family M(p−,q−),(p+,q+) of manifolds with a cohomogene-
ity one action of G = Sp(1) × Sp(1) that are described in [19, chapter 13].
This family contains the spaces Pk = M(1,1),(2k−1,2k+1) as well as the Berger
space SO(5)/SO(3) = M(3,1),(1,3). The manifolds M(p−,q−),(p+,q+) are two-
connected with finite cyclic third homotopy group, so by [7] and [9], it suffices
to compute the Eells-Kuiper invariants and the modified Kreck-Stolz invariants
for quaternionic line bundles of [9] to determine the diffeomorphism type.

3.a. Construction as Manifolds of Cohomogeneity One. Let (p+, q+)
and (p−, q−) be two pairs of relative prime positive odd integers. We regard
the subgroup

H =
{
±(1, 1),±

(
i, (−1)

q−−p−
2 i

)
,±
(
j, (−1)

q+−p+

2 j
)
,

±
(
k, (−1)

q−+q+−p−−p+

2 k
)}
⊂ G = Sp(1)× Sp(1) , (3.1)

which is isomorphic (in fact conjugate) to the diagonal subgroup ∆Q, with

Q = {±1,±i,±j,±k} ⊂ Sp(1) .

If a ∈ S2 ⊂ H is an imaginary unit quaternion and p, q are relative prime
odd integers as above, we consider the subgroup

Ca(p,q) =
{

(eapϑ, eaqϑ)
∣∣ ϑ ∈ R

}
⊂ G = Sp(1)× Sp(1) ,

which is isomorphic to S1. For an odd integer 2l+1, we have e
a(2l+1)π

2 = (−1)la.
This implies that {

±
(
a, (−1)

p−q
2 a
)
, ±(1, 1)

}
⊂ Ca(p,q) .

We put

K− = Ci(p−,q−) ·H and K+ = Cj(p+,q+) ·H ⊂ G . (3.2)

Then in particular H = K− ∩K+, and we have isomorphisms

K− = Ci(p−,q−) ∪
(
j, (−1)

q+−p+

2 j
)
Ci(p−,q−)

∼= Pin(2)

and K+ = Cj(p+,q+) ∪
(
i, (−1)

q−−p−
2 i

)
Cj(p+,q+)

∼= Pin(2) .

The actions of K± on S1 ∼= K+/H ∼= K−/H are R-linear.
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We now consider the cohomogeneity one manifolds M(p−,q−),(p+,q+) with
group diagram

G

↗ ↖

K− ∼= Pin(2) ∼= K+ .

↖ ↗

H

(3.3)

Thus, the generic G-orbit takes the form G/H ∼= S3 × RP 2/(Z/2Z)2, and the
two singular orbits are of the form M± = G/K±. We will study the geometry
of M(p−,q−),(p+,q+) in section 4.

3.1. Theorem ([19], Theorem 13.1). The manifolds M = M(p−,q−),(p+,q+)

are two-connected. If p−q+ = ±p+q−, then H3(M) = H4(M) = Z, other-

wise H3(M) = 0 and H4(M) = Z/kZ with k =
p2
−q

2
+−p2

+q
2
−

8 .

3.b. The t-invariant. In this section, we want to determine the homeomor-
phism type of the spaces Pk.

In [7], Crowley has constructed a quadratic form qM : H4(M)→ Q/Z for all
two-connected closed topological seven-manifolds with finite H4(M) satisfieing

lkM (a, b) = qM (a+ b)− qM (a)− qM (b)

and lkM

(
a,
p1

2
(TM)

)
= qM (a)− qM (−a)

for all a, b ∈ H4(M), where p1

2 denotes the natural refinement of the first
Pontrijagin class p1 for spin manifolds. Note that two quadratic forms with
the properties above differ by the pairing with an element of H4(M ;Z/2Z).
Crowley has then proved that two such manifolds M0, M1 are homeomorphic
(in fact almost diffeomorphic) if and only if

(
H4(M0), qM0

)
and

(
H4(M1), qM1

)
are isomorphic.

In analogy with the Kreck-Stolz invariants s2 and s3 of [25], Crowley and
the author have defined an invariant tM (E) ∈ Q/Z for a two-connected smooth
closed seven-manifolds M and a quaternionic line bundle E →M , such that

qM
(
c2(E)

)
= 12 tM (E) .

For each cohomology class a ∈ H4(M) of such a manifold M , there exist quater-
nionic line bundles E → M with c2(E). We will thus compute tM (E) for suf-
ficiently many quaternionic line bundles E → M in order to determine the
diffeomorphism type of the spaces M = Pk.

Let us recall the intrinsic definition of tM (E) in [9]. We assume that E
carries a quaternionic Hermitian metric gE and a quaternionic Hermitian con-
nection ∇E . Then there is a natural representative c2(E,∇E) ∈ Ω4(M)
of the class c2(E). If H3

dR(M) = H4
dR(M) = 0, there exists a differential

form ĉ2(E,∇E) ∈ Ω3(M) such that

dĉ2

(
E,∇E

)
= c2

(
E,∇E

)
∈ Ω4(M) ,
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and ĉ2(E,∇E) is unique up to an exact form. Let D and DE denote the un-
twisted Dirac operator on M and the Dirac operator twisted with (E, gE ,∇E),
and let h(D) = dim kerD.

3.2. Definition ([9]). For a quaternionic line bundle E → M on a compact
oriented seven-dimensional spin manifold M with H4

dR(M) = 0, put

tM (E) =
η + h

4
(DE

M )− η + h

2
(DM )

− 1

24

∫
M

(p1

2

(
TM,∇TM

)
+ c2

(
E,∇E

))
ĉ2

(
E,∇E

)
∈ Q/Z .

3.3. Theorem. Assume that p− and p+ are relatively prime. Then there exists
an isomorphism H4(M(p−,q−),(p+,q+)) ∼= Z/kZ such that Crowley’s quadratic
form qM (`) for ` ∈ Z/kZ is given by

qM (`) = `
p2
− − p2

+ + ` p2
−p

2
+

2k
+
`

2
∈ Q/Z .

This theorem will be proved in section 4.i.

3.4. Remark. More generally, suppose that a = (p2
−, p

2
+) and b = (q2

−, q
2
+) are

the greatest common divisors. Because p− and q− are relatively prime, so are a
and b. Moreover, clearly a|k and b|k.

The proof of Theorem 3.3 gives a formula for qM (`) if a|` ∈ H4(M) by
identifying the class ` with a class pulled back from the base of the Seifert
fibration p : M → B considered in Proposition 4.1. Swapping the roles of the
ps and qs gives an analogous formula for qM (`) if b|` ∈ H4(M).

To see that these two formulas determine qM uniquely, for each ` ∈ H4(M) ∼=
Z/nZ we find x, y ∈ Z such that

` = xa2 + yb2 .

Because q refines the linking form, we have

qM (`) = qM (xa2 + yb2) = qM (xa2) + qM (yb2) + a2b2 lk(x, y)

= qM (xa2) + qM (yb2) + qM (ab(x+ y))− qM (abx)− qM (aby) ,

and each of the terms on the right hand side is computable. The main difficulty
consists in determining the respective classes in the two base orbifolds.

3.5. Example. We consider the special case Pk = M(1,1),(2k−1,2k+1) and obtain

qM (`) = `
4k(1− k) + ` (2k − 1)2

2k
+
`

2
=
`(`+ k)

2k
mod Z . (3.4)

We compute

lk(i, j) = qM (i+ j)− qM (i)− qM (j) =
ij

k
(3.5)

which proves that the linking form on H4(Pk) is standard and that the class
represented by ` = 1 is a generator. We also see that p1

2 (TPk) = 0 because

lk
(p1

2
(TM), `

)
= qM (−`)− qM (`) = ` = 0 mod Z . (3.6)
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3.c. The Eells-Kuiper invariant. The Eells-Kuiper invariant µ has first been
defined in [14] for certain manifolds using zero bordisms. It distinguishes all
exotic spheres in dimension 7. Crowley has shown in [7] that two homeomorphic
two-connected closed smooth seven-manifolds with finite H4 are diffeomorphic
if and only if their Eells-Kuiper invariants agree.

We will use the intrinsic description of µ(M) by Donnelly [12] and Kreck
and Stolz [25]. Let M be an oriented spin Riemannian seven-manifold
with H3

dR(M) = H4
dR(M) = 0, and let DM denote he untwisted Dirac op-

erator on M . Let BM denote the odd signature operator, acting on ΩevenM .
Let p1(TM,∇TM ) denote the first Pontrijagin form of M , then there exists a
form p̂1(TM,∇TM ) ∈ Ω3(M) such that

dp̂1

(
TM,∇TM

)
= p1

(
TM,∇TM

)
,

and p̂1(TM,∇TM ) is uniquely determined up to an exact form. Following [25],
the Eells-Kuiper invariant of M can be computed as

µ(M) =
η + h

2
(DM ) +

η

25 · 7
(BM )

− 1

27 · 7

∫
M

(p1 ∧ p̂1)
(
TM,∇TM

)
∈ Q/Z . (3.7)

We will use Theorem 0.1 to compute the η-invariants in equation (3.7).
Again, we make use of the Seifert fibration M → B discussed in Proposi-
tion 4.1 below. In analogy with the classical Dedekind sums occurring in the
study of quadratic forms, we consider a particular family of sums over rational
functions in sines and cosines. These sums represent the contribution of the
twisted sectors of B to µ(M(p−,q−),(p+,q+)).

3.6. Definition. If p, q ∈ N are odd and relatively prime, define the generalised
Dedekind sums

D(p, q) =

p−1∑
a=1

(
14 cos 4πa

p + cos2 qπa
p

24 · 7 p2 sin2 4πa
p sin2 qπa

p

+
q cos qπap

(
14 + cos 4πa

p

)
25 · 7 p2 sin 4πa

p sin3 qπa
p

)
.

We will give explicit formulas for some of these sums in the next subsection.

3.7. Theorem. We have

µ
(
M(p−,q−),(p+,q+)

)
=

sign(q2
−p

2
+ − q2

+p
2
−)

25 · 7
+D(p−, q−)−D(p+, q+)

−
(p2

+ − p2
−)2

22 · 7 p2
−p

2
+(q2
−p

2
+ − q2

+p
2
−)
−

24(p2
+ − p2

−) + (q2
−p

2
+ − q2

+p
2
−)

28 · 7 p2
−p

2
+

.

This theorem will be proved in section 4.h.

3.8. Corollary. Assume that p and q are odd and relatively prime. Then there
is a duality of generalised Dedekind sums

D(p, q) +D(q, p)− 26 + 24(p2 + q2) + (p4 + q4)

28 · 7 p2q2
+

7

27
∈ Z .
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Proof. Swapping the ps and qs in both pairs (p±, q±) corresponds to chang-
ing the orientation on M , hence the Eells-Kuiper invariant changes its sign.
Let A(p, q) denote the expression in the Corollary, then by Theorem (3.7),

A(p−, q−)−A(q+, p+) = µ
(
M(p−,q−),(p+,q+)

)
+ µ

(
M(q−,p−),(q+,p+)

)
∈ Z .

Because we can choose the pairs (p−, q−) and (p+, q+) independent of each other,
subject only to the relation p−

q−
6= p+

q+
, it is enough to check that A(1, 1) = 0 ∈

Z. �

3.d. Some Examples. Some of the manifolds M(p−,q−),(p+,q+) are diffeomor-
phic to well-known spaces by Grove, Wilking and Ziller [19]. In this subsection,
we make sure that our computations above agree with other computations of
the invariants.

Let us denote by Ep,n the unit sphere bundle of a fourdimensional real
vector bundle V → S4 with Euler class n = e(V ) and half Pontrijagin
class p = p1

2 (V ) ∈ Z ∼= H4(S4). Such a bundle exists if and only if n and p are
of the same parity, and is unique up to isomorphism in this case. It is known
that p1

2 (TEp,n) ≡ p ∈ Z/nZ ∼= H4(Ep,n). The bundles Ep,n and E−p,n are
oriented diffeomorphic, and E±p,n and E±p,−n are orientation reversing diffeo-
morphic. By [9, Proposition 2.6] and [8], we know that

qEp,k(`) =
`(p+ `)

2k
and µ(Ep,k) =

p2 − k
25 · 7 k

. (3.8)

Note that Crowley and Escher in [8] use the parameters n = k and m = p−k
2 .

3.9. Example. If p+ = p− = 1, then the base B is the manifold S4, represented
as the unit sphere in the space of real trace-free symmetric endomorphisms of R3

with its natural SO(3)-action by conjugation. The manifold M is a principal
S3-bundle over S4, and the induced R4-bundle V → B has Euler number

e(V )[B] = k =
q2
− − q2

+

8
∈ Z

by (4.21) below.
Because M is a principal bundle, we also have p1

2 = ±k. By [9], the q-
invariant is given by

qM (`) =
`(k + `)

2k
,

which agrees with Theorem 3.3.
The formula for the Eells-Kuiper invariant reduces to

µ(M(1,q−),(1,q+)) =
sign(q2

− − q2
+)

25 · 7
−
q2
− − q2

+

28 · 7
=

sign e(V )[B]− e(V )[B]

25 · 7
,

which agrees with the computations by Crowley and Escher in [8].

3.10. Example. By [19], the space M(3,1),(1,3) is diffeomorphic to the Berger

space B7 = SO(5)/SO(3). Kitchloo, Shankar and the author computed the
Eells-Kuiper invariant of this space in [17] and obtained

µ(B7) = − 27

1120
,
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which agrees with Theorem 3.7.
In [17], we concluded that M with reversed orientation is diffeomorphic to

an S3-bundle over S4 with Euler number 10 and half Pontrijagin number 8. By
Theorem 3.3, we find

qM(3,1),(1,3)
(`) =

`(2 + 9`)

20
≡ `(2 + 9`)

20
− `(`+ 1

2
= −`(8 + `)

20
mod Z ,

which agrees with [9], see (3.8) above.

3.e. The Spaces Pk. It is shown in [19] that among the M(p−,q−),(p+,q+), only
the Berger space M(3,1),(1,3) and the spaces

Pk = M(1,1),(2k−1,2k+1)

can carry a metric of positive sectional curvature. So far, such metrics have
been found on P1

∼= S7, the manifold P2, and the Berger space. In this sec-
tion, we determine the diffeomorphism type of the Pk. In particular, we prove
Theorems 0.2, 0.3 and Corollary 0.4.

We start by evaluating the Dedekind sums of Definition 3.6. For q = p + 2,
these sums simplify as follows.

D(p, p+ 2) =

p−1∑
a=1

(
14 cos 4πa

p + cos2 2πa
p

24 · 7 p2 sin2 4πa
p sin2 2πa

p

+
(p+ 2) cos 2πa

p

(
14 + cos 4πa

p

)
25 · 7 p2 sin 4πa

p sin3 2πa
p

)

=
1

24 · 7 p2

p−1∑
a=1

(
15

4 sin4 2πa
p

− 14

sin2 4πa
p

)

+
p+ 2

25 · 7 p2

p−1∑
a=1

(
15

2 sin4 2πa
p

− 2

2 sin2 2πa
p

)

=
15(p+ 3)

26 · 7 p2

p−1∑
a=1

1

sin4 2πa
p

− p+ 30

25 · 7 p2

p−1∑
a=1

1

sin2 2πa
p

.

As Zagier pointed out to us, the sums above can be computed by substi-

tuting z for e
4πa
p . Because the resulting rational function in z vanishes to

sufficiently high order at z =∞, we obtain

p−1∑
a=1

1

sin2` 2πa
p

=
∑
ζp=1
ζ 6=1

Resz=ζ

(
(−4z)`

(z − 1)2`
· p

zp − 1
· 1

z

)

= −Resz=1

(
(−4)`

(z − 1)2`+1
· p z

`−1 (z − 1)

zp − 1

)
.

For ` = 1 and 2, we obtain

p−1∑
a=1

1

sin2 2πa
p

=
p2 − 1

3
,

and

p−1∑
a=1

1

sin4 2πa
p

=
p4 + 10 p2 − 11

45
.
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We combine the above and find that

D(p, p+ 2) =
15(p+ 3)

26 · 7 p2
· p

4 + 10 p2 − 11

45
− p+ 30

25 · 7 p2
· p

2 − 1

3

=
(p2 − 1)(p3 + 3 p2 + 9 p− 27)

26 · 3 · 7 p2
.

Proof of Theorem 0.2. With Theorem 3.7 and the above, we compute

µ
(
M(1,1),(p,p+2)

)
=

sign(p2 − (p+ 2)2)

25 · 7
+D(1, 1)−D(p, p+ 2)

− (p2 − 1)2

22 · 7 p2(p2 − (p+ 2)2)
− 24(p2 − 1) + (p2 − (p+ 2)2)

28 · 7 p2

= − 1

25 · 7
− (p2 − 1)(p3 + 3 p2 + 9 p− 27)

26 · 3 · 7 p2

+
(p2 − 1)(p− 1)

24 · 7 p2
− 4(p2 − 1)− (p+ 1)

26 · 7 p2

= −p
3 + 3 p2 − 4 p

26 · 3 · 7
∈ Q/Z .

With p = 2k − 1, we have

µ(Pk) = µ
(
M(1,1),(2k−1,2k+1)

)
= −4 k3 − 7 k + 3

25 · 3 · 7
∈ Q/Z .

We also compute qPk using Theorem 3.3 as

qPk(`) =
`((2k + 1)2 − 1 + `(2k + 1)2)

2k
− `

2
=
`(k + `)

2k
∈ Q/Z . �

Having computed the Eells-Kuiper invariant and Crowley’s quadratic form q,
we can now compare the spaces Pk with the principal S3-bundles Ek,k over S4.

Proof of Theorem 0.3. By [7], highly connected seven-manifolds are classified
up to oriented diffeomorphism by their Eells-Kuiper invariants and the qua-
dratic function q on H4. These invariants have been computed for Ek,k in [8]
and [9], see (3.8).

By Theorem 0.2 (2) and equation (3.8), the quadratic forms qPk and qEk,k
are isomorphic. Hence, the spaces Pk and Ek,k are homeomorphic, and even
almost diffeomorphic.

Comparing the value of µ(Pk) from Theorem 0.2 (1) with (3.8), we find

µ(Pk)− µ(Ek,k) = −
4k3−7k

3 + 1

25 · 7
− k − 1

25 · 7
=

4k−k
3

3

25 · 7
=
k − k3

6
· 1

28

with k−k3

6 ∈ Z. Because both q and µ are additive under connected sums

and qΣ7 is trivial whereas µ(Σ7) = 1
28 , we conclude again by [7] that Pk

and Ek,k # Σ
# k−k3

6
7 are oriented diffeomorphic. �

3.11. Remark. Grove, Verdiani and Ziller have already observed in [18] that P2

is homeomorphic to the unit tangent bundle T1S
4 of S4. The group Sp(1)
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acts with isolated fixpoints on S4, so this action induces a free action on T1S
4,

hence T1S
4 is diffeomorphic to E2,2. Of course, this fits with our result above.

Proof of Corollary 0.4. We start with case (1). We already know that Crowley’s
form q for Pk is the quadratic form of the principal sphere bundle Ek,k → S4.
This implies that the Pontrijagin number of a sphere bundle Ep,k homeomorphic
to Pk must be of the form p = ak with a odd if k is even, see equation (3.8).

It thus remains to solve µ(Pk) = µ(Eak,k) ∈ Q/Z depending on p = ak.
By [8], we know that

µ(Eak,k)− µ(Pk) =
a2k2 − k
25 · 7 · k

−
7k−4k3

3 − 1

25 · 7
=
a2k − 7k−4k3

3

25 · 7
mod Z .

In other words,

a2k ≡ 7k − 4k3

3
mod 224Z .

It suffices to solve this equation modulo 7 and 32.
Modulo 7, the equation is trivial if 7|k. Otherwise, we can clearly solve

a2 ≡ 7− 4k2

3
≡ k2 mod 7Z .

Modulo 32, we start with the case that k is odd. Because 3 × 11 ≡ 1, we
have to solve

a2 ≡ 7− 4k2

3
≡ 77− 44k2 ≡ 13− 12k2 mod 32Z .

The right hand side equals 1 mod 8 and hence is a quadratic remainder mod-
ulo 32. Next, if k is even but not divisible by 8, then we would have at least

a2 ≡ 77 ≡ 5 mod 8Z ,

but 5 is not a quadratic remainder mod 8. Finally, if 8|k, we can clearly solve

a2 ≡ 1 mod 4Z .

In particular, if k is even then a will be odd, so the quadratic forms q agree as
well. This settles (1).

In case (2), let n = k be as above. Then p = ak because we still have

lkPk(b, p) = qPk(b)− qPk(−b) = 0 ∈ Q/Z
by Theorem 0.2 (1). We will first try to solve µ(Pk) +µ(Eak,k) = 0 ∈ Q/Z. We
find that

224(µ(Eak,k) + µ(Pk)) = a2k +
7k − 4k3

3
− 2 mod 224Z .

Modulo 7, there is no solution if 7|k. On the other hand, a case-by-case check
reveals that

2

k
− 7− 4k2

3
≡ 2

k
− k2 mod 7Z

is a quadratic remainder for k ∈ {1, . . . , 6} mod 7. Thus, a solution mod 7
exists if and only if (2a) is satisfied.

Modulo 32, if k is odd, we have k3 ≡ k modulo 8. Hence we have to solve

a2k ≡ 2− 13 k + 12 k3 ≡ 2− k mod 32 .
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The inverse of k = 4`± 1 mod 16 is −4`± 1, hence we obtain

a2 ≡ −8`± 2− 1 mod 32 ,

which is a quadratic remainder if and only if k = 4` + 1 ≡ 1 mod 4. If k = 2`
is even, then 12 k3 ≡ 0 mod 32, and we are left with

a2` ≡ 1− 13 ` ≡ 1 + 3 ` mod 16 ,

and ` has to be odd. The inverse of ` = ±1 + 4m is ±1− 4m, and

a2 = ±1− 4m+ 3

is a square if and only if ` = 1 + 4m ∈ {1, 5} modulo 16, hence k ∈ {2, 10}
modulo 32. This gives (2b).

Finally, we have

− lkEak,k = lkPk(b · , b · )
for some b ∈ Z/kZ if and only if b2 ≡ −1 mod k. Because the half Pontrija-
gin forms vanish and the topological Eells-Kuiper invariants satisfy 28µ(Pk) +
28µ(Eak,k) ∈ Z by the above, it follows from [7] that then the quadratic forms q
are isomorphic as well. Thus by [7], there exists an orientation reversing diffeo-
morphism Eak,k → Pk if and only if the conditions (2) hold. �

3.12. Example. (1) We have P1 = S7, which of course fibres over S4, inde-
pendent of the orientation. More precisely, P1 is diffeomorphic to Ea,1
if and only if

a2 − 1

224
≡ 0 ∈ Q/Z ,

that is, if and only if a ∈ {±1,±15} mod 112.
(2) There is an orientation reversing diffeomorphism from P2 to E4,2. In-

deed,

qP2(1) =
3

4
= −qE4,2(1) and µ(P2) = − 1

32
= −µ(E4,2) ∈ Q/Z .

More generally, P2 is orientation reversing diffeomorphic to E2a,2 if and
only if a ≡ ±2 mod 28.

(3) There is an orientation preserving diffeomorphism of P3 with E51,3 be-
cause

µ(P3) = − 15

112
≡ 433

112
= µ(E51,3) ∈ Q/Z .

More generally, P3 is oriented diffeomorphic to E3a,3 if and only if a ≡
±17, ±31 mod 112.

(4) For k = 4, there exists no diffeomorphic sphere bundle, regardless of
the orientation.

(5) For k = 5, we have oriented diffeomorphisms with E5a,5 if and only if a ≡
±33, ±47 mod 112. We also have orientation reversing diffeomorphisms
with E5a,5 if and only if a ≡ ±11, ±53 mod 112. For example,

µ(P5) = −156

224
≡ 5444

224
= µ(E165,5)

≡ −604

224
= −µ(E55,5) mod Z .
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Because −1 ≡ 22 is a quadratic remainder mod 5, we can compare the
quadratic forms in the latter case and find that

qP5(2`) =
2`(2`− 5)

10
≡ −`(`− 55)

10
= −qE55,5(`) mod Z .

4. Computation of the invariants

We write the spaces M(p−,q−),(q−,q+) as Seifert fibrations so that we can apply
Theorem 0.1 to compute their Eells-Kuiper invariants and t-invariants.

4.a. Description as a Seifert Fibration. Recall the construction of the
spaces M = M(p−,q−),(p+,q+) as manifolds of cohomogeneity one with group
diagram (3.3), with the groups H and K± ⊂ G = Sp(1) × Sp(1) described
in (3.1) and (3.2).

The subgroups Sp(1)× {e} and {e} × Sp(1) ⊂ G act freely from the left on
the generic orbit G/H. We focus on the group L = {e} × Sp(1) and consider
the quotient map

M −→ B = L\M .

The group L acts on the singular orbits G/K± with finite stabilizer

LgK± = L ∩ gK±g−1 = gΓ±g
−1 ⊂ L ,

at the point gK± ∈ G/K±, where

Γ− = 〈γ−〉 ∼= Z/p−Z with γ− =

(
1, e

2πi
q−
p−

)
∈ K−

and Γ+ = 〈γ+〉 ∼= Z/p+Z with γ+ =

(
1, e

2πj
q+
p+

)
∈ K+ .

(4.1)

The quotient L\M has a cohomogeneity one action by the group SO(3) ∼=
Sp(1)/ ± 1. It is induced by the action of Sp(1) × {e} ⊂ G on M , with group
diagram

SO(3)

↗ ↖

p1K− ∼= O(2) ∼= p1K+ .

↖ ↗

p1H

(4.2)

Here p1 denotes the projection

G = Sp(1)× Sp(1) −→ (Sp(1)/{±1})× {e} ∼= SO(3) .

In particular, p1H ∼= Q/{±1} ∼= (Z/2Z)2 is the subgroup of diagonal matrices
in SO(3).

If a is an imaginary unit quaternion, let S1
a ⊂ Sp(1) denote the one-parameter

subgroup generated by a. Because

p1K− = (S1
i + jS1

i )/{±1} ∼= O(2) and p1K+ = (S1
j + iS1

j )/{±1} ∼= O(2) ,

the singular orbits of B are given by

B± = L\M± ∼= SO(3)/O(2) ∼= RP 2 .
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We want to understand the geometry of p : M → B near the singular orbits.
The action of K− on S1 ∼= K−/H extends to C ⊃ S1 by(

eip−ϑ, eiq−ϑ
)
z = e4iϑz and

(
eip−ϑj, (−1)

q−−p−
2 eiq−ϑj

)
z = e4iϑz̄ , (4.3)

and there is a similar action of K+ on C. Thus, the singular orbits M± = G/K±
have neighbourhoods M \M∓ diffeomorphic to the normal bundles

N± = G×K± C −→ G/K± . (4.4)

For the generator γ± ∈ Γ± of (4.1), we have the angle ϑ = 2π
p±

in (4.3). So γ±

acts on the fibre of N± by multiplication with e
8πi
p± ∈ µp± , where µp± denotes

the group of p±th roots of unity.
Projecting down to B, neighbourhoods of B± are given by

B \B∓ ∼= SO(3)×O(2) C/µp± , (4.5)

where the action of O(2) ∼= (S1
i ∪ jS1

i )/{±1} on C/µp± is given by

± eiϑ : z 7→ e4iϑz and ± eiϑj : z 7→ e4iϑz̄ . (4.6)

We fix an origin o = (p1K−) in B− and consider a path gt from g0 = e to g1 =
{±j} ∈ O(2), then gto describes a nontrivial loop in B− ∼= RP 2. The stabiliser
of gto ∈ B− is given by gΓ−g

−1, and a get a path of generators γ−,t = gtγ−g
−1
t

from γ− = γ−,0 to

γ−,1 =
(
1, j e2πiq−/p− (−j)

)
= γ−1

−,0 .

We conclude that the twisted sectors of B are diffeomorphic to the universal
covering spaces B̃± ∼= S2 of B±. Let us summarize our results so far.

4.1. Proposition. The map p : M → B = L\M is a Seifert fibration and a left
Sp(1)-principal orbibundle.

The inertia orbifold ΛB of the base orbifold B is diffeomorphic to

ΛB = B t
(
B̃− ×

{
1, . . . ,

p− − 1

2

})
t
(
B̃+ ×

{
1, . . . ,

p+ − 1

2

})
. (1)

Elements (p, (γk±)) ∈ ΛB \ B are represented by (p, `) ∈ B̃± × {`} with ±k ≡ `

mod p± and ` ∈
{

1, . . . , p±−1
2

}
. The components B̃± × {k} have multiplicity

m(γk±) = #Γ± = p± . (2)

In a suitable orbifold chart around p, the element γk± acts by

ρ(γk±) =

(
1 0

0 e
8πik

1
p±

)
∈ U(2) , (3)

and the fibrewise action on S3 is conjugate to

e
2πik

q±
p± ∈ Sp(1) . (4)
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Proof. From the discussion above, it is clear that p is both a Seifert fibration
and an Sp(1)-principal bundle, where the group L ∼= Sp(1) acts from the left.
Assertion (1) follows from the considerations above, and (2) follows from the
definition of multiplicity in (1.2).

We construct an orbifold chart by taking a neighbourhood of p in B± ∼= RP 2

that is diffeomorphic to C with trivial action of γk±. The normal bundle of B±
in B is represented by another copy of C on which γk± acts as in (4.6). This

proves (3). Finally, the action of γk± on S3 follows from (4.1) and is conjugate
to the expression in (4). �

4.b. The geometry of the Seifert Fibration. We want to study the met-
ric structure on M and B. In particular, we want to derive formulas for the
curvature of the horizontal and vertical tangent bundles of the Seifert fibra-
tion M → B. By integration over B, we can determine the Pontrijagin num-
bers and the Cheeger-Simons numbers that are necessary to compute the Eells-
Kuiper invariant.

Recall that as a cohomogeneity one manifold, we may write

M =
(
[−1, 1]×G/H

) /
∼ .

Let τ : M → [−1, 1] denote the natural projection, and define a curve c : [−1, 1]
→M joining G/K− to G/K+ by

c(t) = [t, eH] .

We define G-invariant vector fields e0, . . . , e3 and f1, f2, f3 on M \(M+∪M−) =
τ−1(−1, 1) by specifying them along c. Therefore put e0(c(t)) = ċ(t) and

e1(c(t)) =
d

dt

∣∣∣
t=0

(
eit, 1

)
(c(t)) , f1(c(t)) =

d

dt

∣∣∣
t=0

(
1, eit

)
(c(t)) ,

e2(c(t)) =
d

dt

∣∣∣
t=0

(
ejt, 1

)
(c(t)) , f2(c(t)) =

d

dt

∣∣∣
t=0

(
1, ejt

)
(c(t)) ,

e3(c(t)) =
d

dt

∣∣∣
t=0

(
ekt, 1

)
(c(t)) , f3(c(t)) =

d

dt

∣∣∣
t=0

(
1, ekt

)
(c(t)) .

(4.7)

We regard the vector fields e0, . . . , e3 as horizontal and f1, f2, f3 as vertical
fields with respect to the Seifert fibration M → B. All Lie brackets between
these vector fields vanish except

[e1, e2] = 2e3 , [e2, e3] = 2e1 , [e3, e1] = 2e2 ,

[f1, f2] = 2f3 , [f2, f3] = 2f1 , [f3, f1] = 2f2 .
(4.8)

Let ϕ : [0, 1] denote a cutoff function with ϕ|[0,ε) = 0 and ϕ|(1−ε,1) = 1
for some small ε > 0. For x ∈ M , let t = τ(x), and define functions f ,
g : τ−1((−1, 0])→ R by

f =
4 + 4τ · ϕ(−τ)

4 + (p− − 4) · ϕ(−τ)
and g =

q−
4
f ′ (4.9)
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These functions satisfy

f |(−1,ε−1) =
4

p−
(1 + τ) , f |(−ε,0] = 1 ,

g|(−1,ε−1) =
q−
p−

, and g|(−ε,0] = 0 .
(4.10)

Let gTM be a G-invariant metric such that for t ≤ 0, the vectors e0, e2, e3,
f2 and f3 are orthonormal and perpendicular to the subspace spanned by e1,
f1, and such that on this subspace, gTM is given by the matrix

gTM |span{e1,f1} =

(
f2 + g2 −g
−g 1

)
. (4.11)

This metric extends to a smooth metric around G/K− = τ−1(−1) by Theo-
rem 6.1 in [18]. The orbits of L = {e}×Sp(1) are all quotients of round spheres
with the standard metric.

A gTM -orthonormal frame on τ−1(−1, 0] is given by (ē0, . . . , f̄3), where f̄i =
fi and ēi = ei except

ē1 =
1

f
e1 +

g

f
f1 (4.12)

By (4.8), the Lie brackets between the vector fields ē0, . . . , f̄3 vanish except

[ē0, ē1] = −f
′

f
ē1 +

g′

f
f̄1 , [ē1, f̄2] =

2g

f
f̄3 , [ē1, f̄3] = −2g

f
f̄2 ,

[ē1, ē2] =
2

f
ē3 , [ē2, ē3] = 2f ē1 − 2g f̄1 , [ē3, ē1] =

2

f
ē2 ,

[f̄1, f̄2] = 2f̄3 , [f̄2, f̄3] = 2f̄1 , and [f̄3, f̄1] = 2f̄2 .
(4.13)

For t ≥ 1, we can proceed similarly. We extend f and g to τ−1[0, 1) by

f =
4− 4τ · ϕ(τ)

4 + (p+ − 4) · ϕ(τ)
and g = −q+

4
f ′ , (4.14)

such that

f |[0,ε) = 1 , f |(1−ε,1) =
4

p+
(1− τ) ,

g|[0,ε) = 0 , and g|(1−ε,1) =
q+

p+
.

(4.15)

We then modify the metric similarly, such that we obtain a gTM -orthonormal
frame ē0, . . . , f̄3 that differs from e0, . . . , f3 only by

ē2 =
1

f
e2 +

g

f
f2 .

Again, this metric extends smoothly over τ−1[0, 1], and it is also compatible
along τ−1(0) with the metric chosen above on τ−1[−1, 0].
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4.c. Orbifold Characteristic Numbers of the Base Space. The base orb-
ifold B = L\M has a principal cohomogeneity one action by SO(3), see (4.2).
We define τ : B → [−1, 1] similar as above. Then we can describe τ−1(−1, 1)
as a product (−1, 1) × Sp(1)/Q. The projection M → B becomes a Rie-
mannian submersion with respect to an invariant Riemannian metric gTB

on (−1, 1)× Sp(1)/Q that degenerates over {−1, 1}.
By abuse of notation, let ē0, . . . , ē3 also denote the projection of the vector

fields above to B, then these vector fields form a gTB-orthonormal frame every-
where, and their nonzero Lie brackets on τ−1[−1, 0] are completely described
by

[ē0, ē1] = −f
′

f
ē1 , [ē1, ē2] =

2

f
ē3 ,

[ē2, ē3] = 2f ē1 , and [ē3, ē1] =
2

f
ē2 .

The Christoffel symbols of the Levi-Civita connection on B with respect to
these fields over τ−1((−1, 0]) ⊂ B are given by

Γ1
10 = −Γ0

11 =
f ′

f
, Γ3

12 = −Γ2
13 =

2

f
− f ,

Γ1
23 = −Γ3

21 = f , and Γ2
31 = −Γ1

32 = f ,

those Γkij not listed above vanish. The Riemannian curvature tensor as a 4× 4-
matrix is given by

R =

 0 − f
′′
f
ē01+2f ′ ē23 f ′ ē13 −f ′ ē12

f ′′
f
ē01−2f ′ ē23 0 −f ′ ē03+f2 ē12 f ′ ē02+f2 ē13

−f ′ ē13 f ′ ē03−f2 ē12 0 2f ′ ē01+(4−3f2) ē23

f ′ ē12 −f ′ ē02−f2 ē13 −2f ′ ē01−(4−3f2) ē23 0

 ,

(4.16)
with ēij shorthand for ēi∧ ēj . Over τ−1[0, 1), the matrix looks similar, but with
the matrix indices and the form indices 1, 2, 3 permuted cyclically.

The Euler and Pontrijagin forms are thus given by

p1

(
TB,∇TB

)
=

1

8π2
tr(R2) =

1

π2

(
f ′f ′′

f
+ 4f ′f2 − 4f ′

)
ē0123 ,

and e
(
TB,∇TB

)
=

1

4π2
Pf(R) =

1

4π2

(
6f ′2 + 3f ′′f − 4f ′′

f

)
ē0123 .

(4.17)

The fibre RP 3/(Z/2Z)2 over t has volume π2

4 f(t). By (4.10), (4.15), and (4.17),
we get the orbifold characteristic numbers∫

B
p1

(
TB,∇TB

)
=
f ′(t)2 + 2f(t)4 − 4f(t)2

8

∣∣∣1
t=−1

=
2

p2
+

− 2

p2
−
,∫

B
e
(
TB,∇TB

)
=

3f ′(t)f(t)2 − 4f ′(t)

16

∣∣∣1
t=−1

=
1

p−
+

1

p+
.

(4.18)
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4.d. Characteristic Numbers of the Seifert S3-Fibration. The Seifert
Fibration M → B is a principal bundle with structure group Sp(1). Let TX =
ker p∗ denote the vertical tangent bundle.

A connection ω ∈ Hom(TM, TX) acts as the identity on TX and is Sp(1)-
invariant. It is uniquely described by its horizontal bundle THM = kerω. We
define ω such that

THM = span{ē0, ē1, ē2, ē3} ,
then by (4.13), its curvature Ω is given by

Ω =


(
−g′

f ē
01 + 2g ē23

)
f̄1 for t ∈ [−1, 0], and(

−g′

f ē
02 − 2g ē13

)
f̄2 for t ∈ [0, 1].

(4.19)

The Seifert fibration M → B is the unit sphere orbibundle of the vector
orbibundle

V = M ×Sp(1) H→ B .

The vectors f̄1, f̄2 correspond to the elements i, j ∈ sp(1) ⊂ H. These act
on H ∼= R4 with Pfaffian Pf(i) = Pf(j) = 1, hence the Euler form of the
connection ∇V on V induced by ω is given by

e(V,∇V ) = − g′g

π2f
ē0 ∧ ē1 ∧ ē2 ∧ ē3 . (4.20)

As in (4.18), integration over B gives the characteristic number∫
B
e(V,∇V ) = −

∫ 1

−1

g′(t)g(t)

4
dt = −g(t)2

8

∣∣∣1
t=−1

=
q2
−

8p2
−
−

q2
+

8p2
+

. (4.21)

With these computations, we can now compute the first term in the adiabatic
limit of formula (3.7) for the Eells-Kuiper invariant. Recall that B ∼= B×{e} ⊂
ΛB.

4.2. Proposition. For the Seifert fibration p : M(p−,q−),(p+,q+) → B, we have

1

2

∫
B
ÂΛB

(
TB,∇TB

)
2ηΛB

(
DS3

)
+

1

25 · 7

∫
B
L̂ΛB

(
TB,∇TB

)
2ηΛB

(
BS3

)
= − 1

27 · 7

∫
B
e
(
V,∇V

)
=

1

210 · 7

(
q2

+

p2
+

−
q2
−
p2
−

)
.

Proof. Let V → B be the induced vector bundle with connection ∇V as above.
The η-form of the untwisted fibrewise Dirac operator and the fibrewise signature
operator are given by

2ηΛB

(
DS3

)
|B = η Ω

2πi

(
DS3

)
= − 1

960
e
(
V,∇V

)
and 2ηΛB

(
BS3

)
|B = η Ω

2πi

(
BS3

)
= − 1

30
e
(
V,∇V

)
∈ Ω4(B)

by Theorem 1.11 and [15, Theorem 3.9].
Because both η-forms are homogeneous of degree 4, we only need the degree

zero components of Â and L̂, which are given by

Â
(
TB,∇TB

)[0]
= 1 and L̂

(
TB,∇TB

)[0]
= 2

dimTB
2 = 4 .
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From the above and (4.21), we obtain our result because

1

2

∫
B
Â
(
TB,∇TB

)
η Ω

2πi

(
DS3

)
=

1

210 · 3 · 5

(
q2

+

p2
+

−
q2
−
p2
−

)
and

1

25 · 7

∫
B
L̂
(
TB,∇TB

)
η Ω

2πi

(
BS3

)
=

1

27 · 3 · 5 · 7

(
q2

+

p2
+

−
q2
−
p2
−

)
. �

4.e. The Contributions from the Twisted Sectors. To compute the con-
tribution from the twisted sectors, we need some equivariant characteristic num-
bers and the equivariant η-forms of the pullback of M to B̃±. Let (p, (γa±)) ∈
ΛB \B, let N± → B± the normal bundle of B± ∼= RP 2 in B, and let Ñ± denote

its pullback to B̃± ∼= S2.

In an orbifold chart, the elements γa± for a = 1, . . . , p±−1
2 act on Ñ±

by multiplication with e
8πia

1
p± ∈ S1 ∼= SO(2), see Proposition 4.1 (3). Be-

cause Γ± ∼= Z/p±Z is an odd cyclic group, this action has a unique lift
to Spin(2), represented by

γ̃a± = e
4πia

1
p± ∈ S1 ∼= Spin(2) .

This lift provides us with a unique section of the bundle Λ̃B → ΛB of (1.3).

All forms in Ω•(ΛB; Λ̃B) and in Ω•(ΛB; Λ̃B ⊗ o(ΛB)) will be computed with

respect to this lift and with respect to the orientation of B̃± ∼= S2 with volume
form ē23 or ē31, respectively.

The curvatureRÑ− can be computed as the limit of 〈Rē0, ē1〉|span{ē2,ē3} as t→
−1, so by (4.16) and (4.10) we have

RÑ− =

(
0 2f ′ ē23

−2f ′ ē23 0

)
= − 8i

p−
ē23

with ē1 = iē0. The induced curvature of the spinor bundle at the origin is

RS
±Ñ− = ∓ 4i

p−
ē23

and similarly for Ñ+. By (1.5)–(1.7), the orbifold Â-form on B̃− × {a} ⊂ ΛB
is represented by

ÂΛB

(
TB,∇TB

)
= − Â(TB−,∇TB−)

m(γ̃a−) chγ̃a−(S+Ñ− − S−Ñ−,∇SÑB− )

= − 1

p− · 2i sin
(

4
p−

(
πa+ ē23

2πi

)) ∈ Ω•
(
B̃−
)

(4.22)

A similar computation gives the orbifold L̂-form

L̂ΛB(TB,∇TB) = ÂΛB(TB,∇TB) chΛB

(
S+B− + S−B−,∇SB−

)
=

2i

p−
cot

(
4

p−

(
πa+

ē23

2πi

))
∈ Ω•

(
B̃−
)
. (4.23)
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We also need the equivariant η-forms of G|B± → B±. We know by Proposi-

tion 4.1 (4) that γa± act on the fibres S3 as

γa− = e
2πi

aq−
p− and γa+ = e

2πj
aq+
p+ ,

and the curvatures at B± are given by (4.10) and (4.19) as

Ω− = −2q−
p−

ē23 f̄1 and Ω+ = −2q+

p+
ē31 f̄2 .

We note that both the curvature and the action of Γ± are L-invariant, so both
act from the same side on the generic fibre S3 ∼= Sp(1).

We compute the mixed equivariant η-invariant, from which we derive the
orbifold η-form of Definition 1.7 using Theorem 1.11. We use the formulas for
the equivariant η-invariants of the untwisted Dirac operator DS3 in [20] and

of the odd signature operator BS3 in [1]. On B̃− × {a} ⊂ ΛB, we obtain in
particular

2ηΛB(DS3) = η
γ̃a− e

−
Ω−
2πi

(DS3) = − 1

2 sin2
( q−
p−

(
πa+ ē23

2πi

))
and 2ηΛB(BS3) = η

γ̃a− e
−

Ω−
2πi

(BS3) = − cot2

(
q−
p−

(
πa+

ē23

2πi

)) (4.24)

We can now compute the contribution from the singular orbits M± to the
adiabatic limit of the η-invariants and the Eells-Kuiper invariant and relate it
to the generalised Dedekind sums D(p, q) of Definition 3.6.

4.3. Proposition. The singular orbits M± contribute to the Eells-Kuiper in-
variant by the generalised Dedekind sums

∫
B̃−×

{
1,...,

p−−1

2

}
(

1

2
ÂΛB

(
TB,∇TB

)
2ηΛB(DS3)

+
1

25 · 7
L̂ΛB

(
TB,∇TB

)
2ηΛB(BS3)

)
= D(p−, q−) ,

∫
B̃+×

{
1,...,

p+−1

2

}
(

1

2
ÂΛB

(
TB,∇TB

)
2ηΛB(DS3)

+
1

25 · 7
L̂ΛB

(
TB,∇TB

)
2ηΛB(BS3)

)
= −D(p+, q+) .

Proof. The twisted sectors B̃± × {a} are spheres of sectional curvature 4
by (4.16), in particular, their volume is π. We combine (1.7) and (1.13)
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with (4.22)–(4.24) and find that∫
B̃−×{a}

(
1

2
ÂΛB

(
TB,∇TB

)
2ηΛB(DS3) +

1

25 · 7
L̂ΛB

(
TB,∇TB

)
2ηΛB(BS3)

)
=

∫
B̃−

(
1

p− · 8i · sin
(

4
p−

(
πa+ ē23

2πi

))
· sin2

( q−
p−

(
πa+ ē23

2πi

))
− i

24 · 7 p−
· cot

(
4

p−

(
πa+

ē23

2πi

))
· cot2

(
q−
p−

(
πa+

ē23

2πi

)))

=
d

dx

∣∣∣∣
x=πa

(
1

8i p− sin 4x
p−

sin2 q−x
p−

− i

24 · 7 p−
cot

4x

p−
cot2 q−x

p−

) ∫
B̃−

ē23

2πi

=
14 cos 4πa

p−
+ cos2 q−πa

p−

23 · 7 p2
− sin2 4πa

p−
sin2 q−πa

p−

+
q− cos q−πap−

(
14 + cos 4πa

p−

)
24 · 7 p2

− sin 4πa
p−

sin3 q−πa
p−

.

To obtain the first equation above, we note that the summands for a and p−−a
in Definition 3.6 are identical. The second equation is proved similarly. �

4.f. Cheeger-Simons terms. For the computation of µ(M(p−,q−),(p+,q+)) us-
ing formula (3.7), it remains to compute the Cheeger-Simons correction term
in the adiabatic limit.

If we regard the limit of the Levi-Civita connections on (M, gε) as in (2.1),
we find that

lim
ε→0

p1

(
TM,∇TM,ε

)
= p1

(
TX,∇TX

)
+ p∗p1

(
TB,∇TB

)
.

The form p1

(
TB,∇TB

)
has already been determined in (4.17). By the variation

formula for Cheeger-Simons classes, it is clear that

lim
ε→0

∫
M

(p1 ∧ p̂1)
(
TM,∇TM,ε

)
=

∫
M

(
p1

(
TX,∇TX

)
+ p∗p1

(
TB,∇TB

))
∧
(
p̂1

(
TX,∇TX

)
+ p̂1

(
p∗TB,∇p∗TB

))
, (4.25)

where again

dp̂1

(
TX,∇TX

)
= p1

(
TX,∇TX

)
and dp̂1

(
p∗TB,∇p∗TB

)
= p∗p1

(
TB,∇TB

)
.

Note that since H4
dR(B) 6= 0, we cannot expect to construct p̂1

(
TB,∇TB

)
∈

Ω3(B).
We start by computing p1(TX,∇TX). The connection ∇TX is defined as

the compression of the Levi-Civita connection ∇TM on M to TX. Hence, we
can compute it with respect to the basis f̄1, f̄2, f̄3 of TX using (4.13). Its
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connection one-form is given by

ωTX =

 0 −f̄3 f̄2

f̄3 0 −2g
f ē

1 − f̄1

−f̄2 2g
f ē

1 + f̄1 0

 .

The corresponding curvature is then given by

ΩTX = dωTX + ωTX ∧ ωTX

=

 0 f̄12 f̄13

−f̄12 0 −g′

f ē
01 + 2g ē23 + f̄23

−f̄13 g′

f ē
01 − 2g ē23 − f̄23 0

 .

Note that since the group G = SO(3) × SO(3) does not act freely
on τ−1{−1, 1}, the basis (f̄1, f̄2, f̄3) does not extend over M±. Hence, the
form ωTX and its curvature ΩTX are not necessarily smooth at t = ±1. Never-
theless, the Pontrijagin form p1(TX,∇TX) will be smooth. It is given by

p1

(
TX,∇TX

)
=

1

8π2
tr
(
(ΩTX)2

)
=

1

4π2

(
4gg′

f
ē0123 +

2g′

f
ē01f̄23 − 4g ē23f̄23

)
. (4.26)

The forms p1(TX,∇TX) and p∗p1(TB,∇TB) are clearly G-invariant. We
will now construct G-invariant forms p̂1(TX,∇TX) and p̂1(p∗TB,∇p∗TB). The
complex of smooth G-invariant forms on M can be described as

Ω•(M)G =
(
C∞([−1, 1])⊗ Λ•R7

)
∩ Ω•(M) ,

where R7 is spanned by the dual basis ē0, . . . , f̄3 to the basis ē0, . . . , f̄3 of
section 4.b. Smoothness at the singular orbits gives boundary conditions. In
particular, functions on [−1, 1] extend to smooth G-invariant functions if and
only if they are even at ±1, and among others, the monomials fē0, fē1, ē01, ē23,
f̄1, f̄23 are smooth at M−, and fē0, fē2, ē02, ē31, f̄2, f̄31 are smooth at M+.

From (4.13) and Cartan’s formula for the exterior derivative, we deduce that
on τ−1(−1, 0],

dh = h′ ē0 , dē0 = 0 ,

dē1 =
f ′

f
ē01 − 2f ē23 , df̄1 = −g

′

f
ē01 + 2g ē23 − 2 f̄23 ,

dē2 =
2

f
ē13 , df̄2 =

(
2g

f
ē1 + 2 f̄1

)
f̄3 ,

dē3 = − 2

f
ē12 , and df̄3 = −

(
2g

f
ē1 + 2 f̄1

)
f̄2 ,

for functions h of τ . Similar formulas with the indices 1, 2, 3 rotated hold
over τ−1[0, 1).

From this we conclude that

d

(
1

f
ē123

)
= 0 and df̄123 =

(
−g
′

f
ē01 + 2g ē23

)
f̄23 . (4.27)
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We also find that over [−1, 0],

d

(
g′

f
ē01 − 2g ē23 − 2f̄23

)
= d
(
−df̄1 − 4f̄23

)
= 0 ,

d

((
g′

f
ē01 − 2g ē23 − 2f̄23

)
f̄1

)
=

(
g′

f
ē01 − 2g ē23 − 2f̄23

)
·
(
−g
′

f
ē01 + 2g ē23 − 2f̄23

)
=

4gg′

f
ē0123 .

(4.28)

Similarly over [0, 1], we have

d

((
g′

f
ē02 − 2g ē31 − 2f̄31

)
f̄2

)
=

4gg′

f
ē0123 . (4.29)

Thus, if we put

p̂1

(
TX,∇TX

)
=

1

4π2

{
g′

f ē
01f̄1 − 2g ē23f̄1 − 4f̄123 on [−1, 0], and

g′

f ē
02f̄2 − 2g ē31f̄2 − 4f̄123 on [0, 1],

then the form p̂1(TX,∇TX) is smooth on M because near τ−1(0), only the
term −4f̄123 is present. From (4.26)–(4.29), we immediately find that

dp̂1

(
TX,∇TX

)
= p1

(
TX,∇TX

)
. (4.30)

For the next step, we assume that q+p− 6= q−p+, because H4(M ;R) = 0 in
this case by Theorem 13.1 in [19]. Recall that by (4.9) and (4.14), we have

f ′(t) f ′′(t) =


16
q2
−
g(t) g′(t) if t ∈ [−1, 0], and

16
q2
+
g(t) g′(t) if t ∈ [0, 1].

We now consider the form

p̂1

(
p∗TB,∇p∗TB

)
=

4

π2

p2
+ − p2

−
q2
−p

2
+ − q2

+p
2
−

(
g′

f
ē01 − 2g ē23 − 2f̄23

)
f̄1

+
1

2π2

(
f ′2 − 16

p2
+ − p2

−
q2
−p

2
+ − q2

+p
2
−
g2 − 16

q2
− − q2

+

q2
−p

2
+ − q2

+p
2
−

+ 2f4 − 4f2

)
1

f
ē123

(4.31)

over [−1, 0] and similarly over [0, 1] using (4.29). Using (4.9), (4.10), (4.14)
and (4.15), we can check that the coefficient of ē123 vanishes to first order
near ±1, so the form above is indeed smooth. By (4.17) and (4.27)–(4.29), we
conclude that

dp̂1

(
p∗TB,∇p∗TB

)
=

1

π2

(
f ′f ′′

f
+4f2f ′−4f ′

)
ē0123 = p∗p1

(
TB,∇TB

)
. (4.32)

We can now compute the Cheeger-Simons correction term in the Eells-Kuiper
invariant.
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4.4. Proposition. The adiabatic limit of the Cheeger-Simons term is given by

1

27 · 7
lim
ε→0

∫
M

(p1 ∧ p̂1)
(
TM,∇TM,ε

)
=

(p2
+ − p2

−)2

22 · 7 p2
−p

2
+(q2
−p

2
+ − q2

+p
2
−)

+
26(p2

+ − p2
−) + 3(q2

−p
2
+ − q2

+p
2
−)

210 · 7 p2
−p

2
+

Proof. The forms p1

(
TX,∇TX

)
|τ−1[−1,0] and p∗p1

(
TB,∇TB

)
do not con-

tain the exterior variable f̄1 by (4.17) and (4.26). Hence only the terms
in p̂1

(
p∗TB,∇p∗TB

)
containing the exterior variable f̄1 contribute to the in-

tegral over τ−1[−1, 0] ⊂M . Using (4.25), we find that

lim
ε→0

∫
τ−1[−1,0]

p1

(
TM,∇TM,ε

)
p̂1

(
TM,∇TM,ε

)
=

∫
τ−1[−1,0]

(
p∗p1

(
TB,∇TB

)
+ p1

(
TX,∇TX,0

))
∧
(
p̂1

(
p∗TB,∇p∗TB

)
+ p̂1

(
TX,∇TX,0

))
=

∫
τ−1[−1,0]

1

4π2

((
4f ′f ′′

f
+ 16f2f ′ − 16f ′

)
ē0123

+
4gg′

f
ē0123 +

2g′

f
ē01f̄23 − 4g ē23f̄23

)

· 1

4π2

((
16 p2

+ − 16 p2
−

q2
−p

2
+ − q2

+p
2
−

+ 1

)(
g′

f
ē01 − 2g ē23 − 2f̄23

)
f̄1 − 2f̄123

)
,

and a similar formula gives the integral over τ−1[0, 1]. Recall that the generic
fibres of p have volume vol(S3) = 2π2, and that the slices τ−1(t) ⊂ B have

volume f(t) vol(RP 3/(Z/2Z)2) = f(t) π
2

4 . Hence we have

vol
(
τ−1(t)

)
= f(t)

π4

2
. (4.33)

Combining this with the above, we obtain

lim
ε→0

∫
M
p1

(
TM,∇TM,ε

)
hε

= −
∫ 1

−1

((
p2

+ − p2
−

q2
−p

2
+ − q2

+p
2
−

+
1

8

)(
4f ′f ′′ + 16f3f ′ − 16ff ′ + 4gg′

)
(t)

+

(
p2

+ − p2
−

q2
−p

2
+ − q2

+p
2
−

+
1

16

)(
4gg′

)
(t)

)
dt

= 32
(p2

+ − p2
−)2

p2
−p

2
+(q2
−p

2
+ − q2

+p
2
−)

+
8

p2
−
− 8

p2
+

+
3q2
−

8p2
−
−

3q2
+

8p2
+

. �
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4.g. The Leray-Serre Spectral Sequence. The adiabatic limit of the η-
invariant of the odd signature operator consists of terms that correspond to the
various terms in the Leray spectral sequence. The E0-term gives the integral of
the η-form of the fibre against a characteristic form on the base. The E1-term
contributes by an η-invariant of the base orbifold. This invariant vanishes here
because the base is even-dimensional. The higher terms contribute by the signs
of the corresponding eigenvalues. There are no similar contributions for η(D)
because the fibres have positive scalar curvature and hence the fibrewise oper-
ator does not admit harmonic spinors.

To see that the Leray spectral sequence does not degenerate at E2, we note
that the fibrewise cohomology forms a trivial bundle over B with generators 1
and f̄123, so we have

Ep,q2 = Ep,q3 = Ep,q4
∼=

{
R if p ∈ {0, 4} and q ∈ {0, 3}, and

0 otherwise,

whereas E0,3
n = E4,0

n = 0 for n ≥ 5 if the Euler class of (4.20) does not vanish.

4.5. Proposition. In the adiabatic limit, we have

1

25 · 7
lim
ε→0

∑
λ0=λ1=0

signλε =
sign(q2

−p
2
+ − q2

+p
2
−)

25 · 7
.

Proof. From Theorem 0.3 in [10], we know that it is sufficient to study the
signature of the quadratic form

〈α, β〉 = (α ∧ d4β)[M ]

on E0,3
4 . Since dimE0,3

4 = 1, we only have to compute the sign of (α∧ d4α)[M ]

for one α ∈ E0,3
4 \ {0}. As a representative of α, we may choose

α =

{
g′

f ē
01f̄1 − 2g ē23f̄1 − 2f̄123 on [−1, 0], and

g′

f ē
02f̄2 − 2g ē31f̄2 − 2f̄123 on [0, 1].

By (4.28), we know that

dα =
4gg′

f
ē0123

is of horizontal degree 4 as required. Moreover, integration over the generic
fibre of p : M → B shows that α represents a nontrivial class in E0,3

2
∼= E0,3

4 .
The proof is completed by the computation of the sign of∫
M
αdα = −

∫
M

8gg′

f
ē0123f̄123 = −

∫ 1

−1
4π4 g(t)g′(t) dt

= −2π4 g(t)2
∣∣1
t=−1

= 2π4

(
q2
−
p2
−
−
q2

+

p2
+

)
. � (4.34)
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4.h. The Eells-Kuiper Invariant. We combine Propositions 4.2–4.5 and
prove Theorem 3.7 by computing the Eells-Kuiper invariants of the spaces M =
M(p−,q−),(p+,q+).

Proof of Theorem 3.7. Using Donnelly’s formula for the Eells-Kuiper invari-
ant and the formulas of Bismut-Cheeger and Dai for the adiabatic limit of
η-invariants, we find that

µ
(
M(p−,q−),(p+,q+)

)
=
η(B)

25 · 7
+
η + h

2
(D)− 1

27 · 7

∫
M

(p1 ∧ p̂1)
(
TM,∇TM,0

)
=

1

210 · 7

(
q2

+

p2
+

−
q2
−
p2
−

)
+

sign(q2
−p

2
+ − q2

+p
2
−)

25 · 7
+D(p−, q−)−D(p+, q+)

−
(p2

+ − p2
−)2

22 · 7 p2
−p

2
+(q2
−p

2
+ − q2

+p
2
−)
−

26(p2
+ − p2

−) + 3(q2
−p

2
+ − q2

+p
2
−)

210 · 7 p2
−p

2
+

. �

4.i. Quaternionic Line Bundles. In this subsection, we will prove Theo-
rem 3.3. We will compute the t-invariant of [9] for sufficiently many vector
bundles on M to determine Crowley’s quadratic form q : H4(M) → Q/Z. To
keep computations simple, we only consider bundle p∗E → M where E is a
honest vector bundle over the base orbifold B, which becomes trivial after re-
striction to B− and B+. This will turn out to be sufficient if p− and p+ are
relatively prime.

To construct E, we regard a map B → S4 of degree one, where the coordi-
nate τ introduced in section 4.b is mapped to the hight function R5 ⊃ S4 → R,
and where B0

∼= S3/Q is mapped to the equator S3 ⊂ S4 by a map of degree
one. In particular, for each ` ∈ Z, there is a quaternionic bundle E → B, pulled
back from S4 by the map above, such that

c2(E)[B] = ` .

We choose a connection ∇E on E that is flat near the singular strata of B.
To compute class c2(p∗E), we have to study the map

p∗ : Z ∼= H4(B)→ H4(M) ∼= Z/kZ .

We consider the following commutative diagram.

H3(S3 × S3)
η∗←−−−− H3(M0)

δ−−−−→ H4(M)

(id,0)

x xp∗0 xp∗
H3(S3)

η̄∗←−−−− H3(B0)
δ̄−−−−→ H4(B) ,

where η : S3 × S3 → (S3 × S3)/H ∼= M0 and η̄ : S3 → S3/Q ∼= B0 are quotient
maps, and δ and δ̄ are the connecting homomorphisms from the Mayer-Vietoris
sequences for the decompositions

M = (M \M+) ∪ (M \M−) with (M \M+) ∪ (M \M−) ∼M0 ,

B = (B \B+) ∪ (B \B−) with (B \B+) ∪ (B \B−) ∼ B0 .
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From [19, section 13], we know that η∗ is injective with

im η∗ =
{

(a, b)
∣∣ a+ b ≡ 0 mod 8

}
⊂ Z2 ∼= H3(S3 × S3) .

Similarly,

η̄∗ = 8 · : Z ∼= H3(B0)→ H3(S3) ∼= Z .

It follows that η∗ maps im p∗0 to 〈(8, 0)〉. By [19], we also know that δ is surjective
with

η∗ ker δ = 〈(−q2
−, p

2
−), (−q2

+, p
2
+)〉 ⊂ Z2 ∼= H3(S3 × S3) .

Similarly, δ̄ is an isomorphism.
Let us determine the subset im p∗ ⊂ H4(M). All our computations will be

done in the standard coordinates on H3(S3 × S3) ∼= Z × Z. Then p∗ maps a
generator of H4(B) to the image of (8, 0), and δ(8`, 0) = 0 ∈ H4(M) if and
only if

(8`, 0) = a (−q2
−, p

2
−) + b (−q2

+, p
2
+) .

If c denote the greatest common divisor of p− and p+, then (8`, 0) ∈ ker δ if

and only if we can choose a = n
p2

+

c2
and b = −n p2

−
c2

, so

` = n
p2
−q

2
+ − p2

+q
2
−

8c2
= ±nk

c2
.

Note that c2 divides k. In particular, the image of p∗ has index c2 in H4(M) ∼=
Z/kZ. If p− and p+ are relatively prime, then p∗ is the isomorphism referred
to in Theorem 3.3.

By [9], see Definition 3.2,

t(p∗E) =
η + h

4

(
Dp∗E
M

)
− η + h

2

(
DM

)
− 1

24

∫
M

(p1

2

(
TM,∇TM

)
+ c2

(
p∗E,∇p∗E

))
∧ ĉ2

(
p∗E,∇p∗E

)
.

Because the fibres are of positive scalar curvature, we can apply Corollary 1.9.
Hence,

lim
ε→0

(
η + h

4
(Dp∗E

M,ε)−
η + h

2
(DM,ε)

)
=

1

4

∫
ΛB

ÂΛB

(
TB,∇TB

)
ηΛB(A)

(
ch
(
E,∇E

)
− 2
)

= 0 .

Here, the singular strata do not contribute because ch
(
E,∇E

)
−2 vanishes near

the singular strata. Over the regular stratum, the degree 0 part of the η-form
is the η-invariant of the untwisted Dirac operator on the fibre, which vanishes
because the fibre is a spin symmetric space. Hence both η(A) and ch

(
E,∇E

)
−2

are of degree 4, so the whole integrand vanishes for degree reasons.
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In order to determine ĉ2

(
p∗E,∇p∗E

)
, we first check that

∫
B

4`

π2

p2
−p

2
+

p2
−q

2
+ − p2

+q
2
−

2gg′

f
ē0123 = `

p2
−p

2
+

p2
−q

2
+ − p2

+q
2
−

∫ 1

−1
2g(t)g′(t) dt

= `
p2
−p

2
+

p2
−q

2
+ − p2

+q
2
−

(
q2

+

p2
+

−
q2
−
p2
−

)
= `

because vol(τ−1(t)) = f(t) π
2

4 . Because we have chosen∇E flat near the singular
strata, we conclude that

c2

(
E,∇E

)
=

4`

π2

p2
−p

2
+

p2
−q

2
+ − p2

+q
2
−

2gg′

f
ē0123 + dγ

for some form γ ∈ Ω3(B) that is supported away from the singular set B−∪B+.
By (4.28), we may put

ĉ2

(
p∗E,∇p∗E

)
|τ−1[−1,0] =

2`

π2

p2
−p

2
+

p2
−q

2
+ − p2

+q
2
−

(
g′

f
ē01 − 2g ē23 − 2f̄23

)
f̄1 + p∗γ ,

and similarly on τ−1[0, 1].
As in the proof of Proposition 4.4, we compute the Cheeger-Simons term in

the adiabatic limit ε → 0. We have computed the Pontrijagin forms of TB
and TX in (4.17) and (4.26). Over τ−1(−1, 0), we have(p1

2

(
TX,∇TX

)
+ p∗

p1

2

(
TB,∇TB

)
+ p∗c2(E,∇E)

)
· ĉ2

(
p∗E,∇p∗E

)
=

1

4π2

((
2f ′f ′′

f
+ 8f2f ′ − 8f ′

)
ē0123

+
2gg′

f
ē0123 +

g′

f
ē01f̄23 − 2g ē23f̄23

+ 16`
p2
−p

2
+

p2
−q

2
+ − p2

+q
2
−

2gg′

f
ē0123 + 4π2 p∗dγ

)

·

(
2`

π2

p2
−p

2
+

p2
−q

2
+ − p2

+q
2
−

(
g′

f
ē01 − 2g ē23 − 2f̄23

)
f̄1 + p∗γ

)

= − 2`

π4

p2
−p

2
+

p2
−q

2
+ − xp2

+q
2
−
·

((
f ′f ′′

f
+ 4f2f ′ − 4f ′ +

2gg′

f

+ 16`
p2
−p

2
+

p2
−q

2
+ − p2

+q
2
−

gg′

f

)
ē0123 + 2π2 p∗dγ

)
f̄123

Over τ−1(0, 1), we obtain the same right hand side. By partial integration
and (4.27), we see that there is no contribution from p∗γ and p∗dγ.
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By (4.33), we compute

t(p∗E) = − lim
ε→0

1

24

∫
M

(p1

2

(
TM,∇TM,ε

)
+ p∗c2(E,∇E)

)
· ĉ2

(
p∗E,∇p∗E

)
=

`

24

p2
−p

2
+

p2
−q

2
+ − p2

+q
2
−

∫ 1

−1

(
f ′f ′′ + 4f ′f3 − 4f ′f + 2gg′

+ 16`
p2
−p

2
+

p2
−q

2
+ − p2

+q
2
−
gg′
)

(t) dt

=
`

24

p2
−p

2
+

p2
−q

2
+ − p2

+q
2
−

(
8

p2
+

− 8

p2
−

+
q2

+

p2
+

−
q2
−
p2
−

+ 8`

)
=
`

3

p2
− − p2

+ + ` p2
−p

2
+

p2
−q

2
+ − p2

+q
2
−

+
`

24
. �
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