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ABSTRACT: We present an experimental demonstration of a new class of hybrid gap plasmon 

waveguides on the silicon-on-insulator (SOI) platform. Created by the hybridization of the plasmonic 

mode of a gap in a thin metal sheet and the transverse-electric (TE) photonic mode of an SOI slab, 

this waveguide is designed for efficient adiabatic nanofocusing simply by varying the gap width. For 

gap widths greater than 100 nm, the mode is primarily photonic in character and propagation lengths 

can be many tens of micrometers. For gap widths below 100 nm, the mode becomes plasmonic in 

character with field confinement predominantly within the gap region and with propagation lengths of 

a few microns. We estimate the electric field intensity enhancement in hybrid gap plasmon waveguide 

tapers at 1550 nm by 3-photon absorption of selectively deposited CdSe/ZnS quantum dots within the 

gap. Here, we show electric field intensity enhancements of up to 167±26 for a 24 nm gap, proving 

the viability of low loss adiabatic nanofocussing on a commercially relevant photonics platform. 
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Photonic integrated circuits have integration densities that are restricted by the weak 

nonlinear optical interactions necessary for electro-optic modulation and all-optical signal processing. 

Plasmonic waveguides will play a crucial role in the merger of photonics and electronics by combining 

speed at optical frequencies with chip-level device integation
1
. For example, plasmonic modulators 

with deep sub-wavelength optical confinement can be considerably smaller than their photonic 

counterparts
2
 by enhancing naturally weak nonlinear responses of materials

3
. The capability to focus 

optical signals far below the vacuum wavelength using plasmonics, to the scale of just tens of 

nanometres, provides a route to enhancing the weak optical nonlinearity in natural materials
4
 when 

short interaction lengths are required; e.g. within photonic systems where high device integration 

density is required. Indeed, extreme nanofocusing
5
 has been explored in antennas

6–8
 and 

waveguides
9–12

 for sensing
13

 and nonlinear optics
14,15

; however, it remains unclear how existing 

photonics technologies
16,17

 can incorporate this capability. While extreme nanofocusing is now 

becoming recognized as a method to generate intense optical fields
5,11,18

, it still remains a challenge 

to move beyond proof-of-principle to technologically relevant implementations. The difficulty stems 

from the fact that semiconductor materials, used in established photonic technologies, exacerbate the 

loss inherent with plasmonic-based confinement
19

. And yet semiconductors have evolved in tandem 

with nanophotonics as they not only provide exceptional optoelectronic functionality but also the 

means to confine and route optical signals over a photonic chip. 

This challenge of high ohmic loss in semiconductor plasmonics has been partially mitigated 

by the introduction of hybrid plasmonics
20

. Hybrid plasmonic waveguides incorporate a low index 

dielectric layer between the metal film and the high index semiconductor core region. This reduces 

propagation losses without sacrificing high modal confinement through the creation of a capacitor-like 

confinement mode in the low index dielectric region. Though hybrid plasmonic waveguides have been 

proposed for integration with silicon photonics
21–24

, obtaining and utilizing the strong confinement via 

nanofocusing is still a challenge.  This letter presents an experimental demonstration of efficient 

adiabatic nanofocusing by a silicon hybrid gap plasmon waveguide
25

. The plasmonic waveguide is 

lithographically defined on a silicon-on-insulator (SOI) platform to achieve optical localisation within 

gaps as small as 24 nm, comparable to gate sizes in current transistor technology. 

Photoluminescence of three-photon excited CdSe/ZnS quantum dots within the 24 nm gap 

determines the electric field intensity enhancement of 167±26.  
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Figure 1. (a) Schematic of the demonstrated hybrid silicon gap plasmon waveguide. (b) SEM image 

of a 120 nm wide waveguide with coupling tapers and gratings. (c) Fraction of mode in either the gap 



or the silicon layer as a function of gap width. (d) Mode diagrams at (i) 250 nm, (ii) 50 nm, and (iii) 25 

nm wide gap widths showing the crossover from a primarily photonic mode to a primarily plasmonic 

mode. All three mode diagrams share the same colour scale bar. Due to the high field concentration 

in the gap at W=25 nm, the scale bar saturates the field in the 25 nm gap in order to improve visibility 

of the modes. 

 

A recent theoretical proposal showed that these hybrid gap plasmonic waveguides had 

unique advantages for nanofocusing applications
25

, along with long propagation lengths for large gap 

widths. At large gap widths, in excess of 100 nm, the mode propagates primarily in the underlying 

silicon away from the metallic films, leading to propagation lengths of tens or even hundreds of 

micrometres
25

. When the waveguide width is reduced below 100nm, the mode becomes concentrated 

in the gap, leading to sub-wavelength confined modes and allowing for extreme nanofocusing. This 

provides a new degree of freedom in waveguide dispersion engineering as the localisation of the 

mode is purely controlled by the gap width. Moreover, one can imagine filling the gap region with a 

functional nonlinear material and, with the metal films acting as natural electrical contacts, creating a 

plasmonic phase
26,27

 or absorption
28

 modulator. Moreover, the structure has also been shown to have 

promise theoretically for all-optical third order nonlinear effects such as four-wave mixing
29

. 

A schematic of the demonstrated silicon hybrid gap plasmon waveguide can be seen in 

Figure 1a. The waveguide core is composed of a standard SOI wafer comprising a 220 nm device 

layer and a 3 µm buried oxide layer with 40 nm of SiO2 and 40 nm of Au on top. An example of the 

fabricated structure can be seen in Figure 1b. Here 120 nm wide waveguides are accessed from free 

space through a simple grating coupler designed to couple into the TE mode of the underlying silicon 

slab waveguide. The grating coupler is comprised of Au strips with a 500 nm period and 50% fill 

factor. The advantage of these simple metal grating in-/out-couplers is that they can be fabricated 

along with the rest of the structure in a single lithographic step. Then a 30° taper focuses the 

waveguide from the original width of 8 µm at the grating couplers to the final waveguide width. 

 The primary advantage of this hybrid silicon plasmonic waveguide geometry over its 

counterparts
21–24

 is the transition of the mode from a photonic mode in the silicon layer to a plasmonic 

mode in the gap region when the gap width reaches a critical point. This critical width is determined 

by the spacer thickness as well as the relative refractive indices of the waveguide core, and the 

spacer/cladding materials. For the waveguide described here, this occurs around W≈50 nm. In Fig. 

1c we compare the fraction of the mode energy in the silicon and the gap region as a function of gap 

width, clearly illustrating the crossover. This crossover between photonic and plasmonic 

characteristics is accompanied by a rapid change in effective mode index, which can have 

consequences for adiabatic nanofocusing
11

 at gap widths of less than 20 nm
25

. Figure 1d shows the 

mode distribution at three separate gap widths: (i) 250 nm, (ii) 50 nm, and (iii) 25 nm. This is another 

visual demonstration of this crossover phenomena as the mode is primarily photonic at W=250 nm, 

then at W≈50 nm there is a hybridization between the plasmonic and photonic modes, and then 

finally at W=25 nm the mode is almost entirely plasmonic in character. If one was to consider 

changing the core material from silicon to a lower index photonic material such as Si3N4, not only 

would this move the critical point to wider gap widths, but it will enable the structure to be used in the 

visible regime as well.  

 In order to show the usefulness of this waveguide geometry for both nanofocusing and low-

loss waveguiding, waveguides with gaps ranging from 25 nm to 450 nm were fabricated. The cut-back 

method
30

 was used to obtain the propagation lengths for each of the waveguide widths. Several 

waveguides of the same length were measured, with lengths ranging from 0 µm (just the coupling 

tapers) all the way up to 50 µm for the wider gap widths. An example of this can be seen in Figure 2a, 

which shows the measured transmission at 1550 nm for the 25 nm wide waveguides and the resulting 

exponential fit. Figure 2b depicts the results for all the fabricated devices along with the theoretical 

values. The experimental results agree quite closely with the theoretical values, especially 

considering the inherent roughness of the fabricated Au films. Additional details of the experiment can 

be found in the Supporting Information along with details on the theoretical calculations using 



COMSOL. Broadband white light measurements of the grating coupler efficiency and waveguide 

propagation lengths can also be found in the Supporting Information. 

 

 
Figure 2. (a) An example of using cut-back method used to determine the propagation length of 

waveguides with gap widths of 25 nm from an exponential fit to the measured transmission through a 

number of waveguides of different lengths at λ=1550 nm. (b) Measured propagation lengths with the 

cut-back method compared to theoretical calculations.  

  

Since one of the primary advantages of this class of hybrid plasmonic waveguides is its direct 

low-loss nanofocusing from a silicon photonic waveguide, by filling the gap region with a nonlinear 

fluorescent material one can directly measure the electric field enhancement inherent in the structure. 

In order to maximize the proportion of mode in the gap region, new samples were fabricated with the 

SiO2 spacer layer reduced to 30 nm. Quantum dots (QDs) were then selectively deposited around the 

gratings, taper, and waveguide region through the use of a self-assembled monolayer as an adhesion 

layer in order to compare the fluorescent emission along the entire structure. Here, 655 nm emitting 

COOH-functionalised CdSe/ZnS core-shell QDs were used as they can absorb the 1550 nm signal 

through a three photon absorption process and emit away from the second and third harmonic of the 

signal, which could be produced in either the silicon or metal layers. Details of the absorbance and 

photoluminescence of the QDs, along with details of the fabrication process, can be found in the 

Supporting Information. Figure 3a shows the final result of this process for a 5 μm long waveguide 
without the cladding layer. It is possible to see the contrast depicting where the QDs were deposited, 

especially in the taper region compared to the surrounding non-metalized regions. In the inset, a 

close-up view of a 38 nm wide waveguide shows the individual QDs inside the gap region. 

 



  
Figure 3. (a) SEM image of a 5 µm long waveguide after selective deposition of quantum dots on the 

gratings, taper, and waveguide. The inset shows a close up view of the quantum dots in a 38 nm wide 

waveguide. (b) A 2-D LN-cooled Si spectrometer image of a 20 μm long, 38 nm wide waveguide 

where each pixel is 750x750 nm
2
. (c) Quantum dot photoluminescence filtered between 600-700 nm 

light from the same waveguide when 1550 nm light is focused on the top input grating as measured 

by the spectrometer. Guides to the eye have been drawn to delimitate the underlying structure. 

 

 In order to measure the electric field intensity enhancement arising from the nanofocusing of 

the hybrid plasmonic waveguide structure, the reflected and emitted light from the structure is imaged 

on a 2-D Si spectrometer. Figure 3b depicts a white light image of a 20 μm long, 38 nm wide 

waveguide on the spectrometer. Then, in Figure 3c, a spectrometer image is shown of the same 

waveguide when the 1550 nm input beam is aligned to the top input grating. Figures 3b and 3c have 

been aligned in order to show the correlation of spatial locations of the QD emission. One can see 

emission at the input grating arising from the QDs distributed there. This fades at the start of the taper 

region due to the low mode overlap of a silicon photonic TE mode with the QDs atop the spacer layer, 

before rapidly growing stronger at the end of the taper as more of the mode becomes drawn into the 

gap region containing the QDs. From the end of the taper and start of the narrowest part of the 

waveguide, the emission drops off exponentially along the waveguide as expected due to the 

propagation loss. To give a better view of this emission, Figure 4a shows the maximum pixel counts 

along 24 nm and 38 nm wide waveguide structures from top to bottom, with 0 µm set at the start of 

the waveguide and the in-coupling grating located at -10 µm. The three-photon luminescence peak 



from the QDs dispersed across the grating region differs sharply between the two waveguides due to 

the difference in input power and measurement integration time: 40 mW integrated over 60 s for the 

24 nm wide waveguide and 80 mW integrated over 600 s for the 38 nm wide waveguide.  Since the 

absorption of the 1550 nm signal is a third order process, the exponential decay constant of the QD 

emission along the waveguide is one third of the propagation length of the waveguide. Figure 4b 

shows the extracted propagation lengths using this method for waveguides of 24 nm, 38 nm, and 55 

nm gap widths compared to the calculated values. There is very good correlation between the 

experimental and theoretical values in this case, better even than those obtained through the cut-back 

method depicted in Figure 2b. Here, for a 24 nm wide waveguide, we measured a propagation length 

of 5±1 μm compared to a theoretical value of 5.3 μm. By comparing the maximum QD emission at the 

input grating against the start of the waveguide, one can estimate the normalized electric field 

intensity enhancement from the adiabatic nanofocusing from the start to end of the taper, in this case 

along a 30° taper from an initial width of 8 μm, through Equation (1). 

 𝐸𝐹 = | 𝐼𝐼𝑜| = ( 𝐶𝐶𝑜 ∗ 𝑊𝑝𝑖𝑥𝑒𝑙𝑊 )1 3⁄ ( 𝜌𝑄𝐷(𝑊)𝜌𝑄𝐷(𝑊𝑜)) /𝜂𝑔𝑟𝑎𝑡𝑖𝑛𝑔   (1) 

 

Where 𝐸𝐹 = |𝐼 𝐼𝑜⁄ | is the normalized electric field intensity enhancement or enhancement factor, 𝐶 is 

the spectrometer counts at the start of the waveguide, 𝐶𝑜 is the maximum spectrometer counts at the 

input grating, 𝑊𝑝𝑖𝑥𝑒𝑙 = 750 𝑛𝑚 is the width of a spectrometer pixel in the image, 𝑊 is the waveguide 

width, 𝜌𝑄𝐷(𝑊) is the density of QDs in the waveguide (see Supporting Information), 𝜌𝑄𝐷(𝑊𝑜) is the 

density of QDs at the input grating, and 𝜂𝑔𝑟𝑎𝑡𝑖𝑛𝑔 is the grating coupling efficiency at 1550 nm. The 

cubic root arises from this being a third order process in intensity. Figure 4b also compares the 

experimentally determined normalized electric field intensity enhancement for waveguides of widths 

24 nm, 38 nm, and 55 nm to tapering simulations. Details of the tapering simulations can be found in 

the Supporting Information.  Again, there is reasonable agreement between the experimental and 

theoretical results, with the experimental electric field intensity enhancement consistently below that 

of the simulated values. This is likely caused by the higher propagation losses in the experiment due 

to the rough metal films. The higher propagation losses also had a strong effect on the taper coupling 

efficiency, which was measured to be 65±10 %, significantly less than the predicted 95 %. For the 24 

nm waveguide, we measured an electric field intensity enhancement of 167±26 compared to a 

simulated electric field intensity enhancement of 144. At these small waveguide widths, the electric 

field intensity enhancement is strongly dependent on the gap width, with just nanometer variations in 

gap width giving rise to enhancement fluctuations consistent with our experimental errors. 

Theoretically, below 24 nm gap widths the enhancement factor rapidly increases, approaching 1600 

at a gap of 10 nm when adiabatic nanofocusing begins to break down
25

.  

 The presented silicon hybrid gap plasmon waveguide straddles the divide between low-loss 

conventional silicon photonic waveguides and high confinement plasmonic gap waveguides. 

Requiring only simple metal patterning, this new class of plasmonic waveguides is formed only of a 

thin gap in a metal film spaced above of a SOI substrate. This strategy is also compatible with the use 

of TE waveguide modes in standard silicon photonics
31

. For gap widths greater than 100 nm, the 

mode is primarily photonic in character and propagates many tens of micrometres in the silicon layer, 

enabling efficient coupling to conventional TE silicon waveguides. As the gap width is tightened below 

100 nm, the mode becomes concentrated in the gap region. We have shown that this results in 

extreme nanofocusing of the electromagnetic energy of the mode, up to an electric field intensity 

enhancement of 167±26 at a gap width of 24 nm compared to the original silicon nanophotonic mode. 

This could conceivable be improved significantly with the capability to manufacture gap size in the 10 

nm range. Such extreme nanofocusing should give rise to efficient nonlinear processes, which in turn 

could lead to a dramatic decrease in required device length scales for nonlinear modulators, a 

requirement for achieving high device integration densities in photonic integrated circuits. 

  



   
Figure 4. (a) Maximum pixel counts down the 20 μm long, (i) 24 nm wide waveguide (40 mW input 

power integrated over 60 s) and (ii) 38 nm wide waveguide (80 mW input power integrated over 600 

s) with exponential fits to the QD emission decay spatially along the waveguides. (b) Extracted 

waveguide properties using nonlinear absorption and fluorescent emission from quantum dots in the 

gap waveguides depicting normalized enhancement factor (EF) and propagation length (Lp) at 1550 

nm compared to calculated values.   

 

Supporting Information 

 Details on the fabrication procedure, white light and linear waveguide characterisation, 

numerical simulations, quantum dot characterisation, and nonlinear experiments are included in a 

supporting information file. 
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While extreme nanofocusing is becoming a recognized method to generate intense optical fields, it 
still remains a challenge to move beyond proof-of-principle to technologically relevant 
implementations. The difficulty stems from the fact that semiconductor materials, used in established 
photonic technologies, exacerbate the loss inherent with plasmonic-based confinement. And yet 
semiconductors have evolved in tandem with nanophotonics as they not only provide optoelectronic 
functionality but also the means to confine and route optical signals over a photonic chip. In this letter, 
we demonstrate a nanofocusing device integrated onto the silicon photonics platform. This 
accomplishes two outstanding difficulties with exploiting nanofocusing in modern technology. Firstly, 
we have managed to demonstrate nanophotonic waveguides with lateral dimensions down to 24 nm 
over distances of about 10 microns using electron beam lithography. This represents optical 
confinement at least 1/100th of the area of typical optical waveguide used in silicon photonics. 
Secondly, we are able to couple light from a long range photonic-like silicon waveguide mode directly 
into these tightly localized plasmonic modes by simply varying one geometrical parameter of the 
lithography. This provides us with a robust method to achieve efficient “adiabatic” nanofocusing, in 
this case, a 167±26 electric field intensity enhancement for a 24 nm wide plasmonic waveguide. 
 

 


