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Abstract

At low energy, the four-dimensional effective action of the ekpyrotic model of the universe is
equivalent to a slightly modified version of the pre big bang model. We discuss cosmological
perturbations in these models. In particular we address the issue of matching the
perturbations from a collapsing to an expanding phase in full generality. We show that,
generically, one obtains
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Adiabati perturbations in pre-big bang models:mathing onditions and sale invarianeRuth Durrer and Filippo VernizziD�epartement de Physique Th�eorique, Universit�e de Gen�eve, 24 quai E. Ansermet, CH-1211 Gen�eve 4, SwitzerlandAt low energy, the four-dimensional e�etive ation of the ekpyroti model of the universe is equiva-lent to a slightly modi�ed version of the pre-big bang model. We disuss osmologial perturbationsin these models. In partiular we address the issue of mathing the perturbations from a ollapsingto an expanding phase. We show that, under ertain physially motivated and quite generi assump-tions on the high energy orretions, one obtains n = 0 for the spetrum of salar perturbations inthe original pre-big bang model (with vanishing potential). With the same assumptions, when anexponential potential for the dilaton is inluded, a sale invariant spetrum (n = 1) of adiabatisalar perturbations is produed under very generi mathing onditions, both in a modi�ed pre-bigbang and ekpyroti senario. We also derive the resulting spetrum for arbitrary power law salefators mathed to a radiation dominated era.I. INTRODUCTIONObservational osmology has made enormous progressduring the last ouple of years. Most observations seemto agree with the fat that the total energy densityof the universe � is very lose to its ritial value �,
 � �=� = 1, and it is distributed in the form of pres-sureless dark matter �m and dark energy with negativepressure, P� <� �0:6��, 
 = 
�+
m = 1 with 
� ' 0:7and 
m ' 0:3. The lustering properties of the observeduniverse agree with a sale invariant spetrum of adia-bati salar perturbations, n ' 1, with or without a ten-sor omponent. Many reent osmologial experimentsmeasure one or several of these parameters. Most no-tably osmi mirowave bakground anisotropy experi-ments [1{3℄, supernovae type Ia measurements [4,5℄, lus-ter abundanes [6℄, analysis of the observed galaxy distri-bution [7,8℄, and of peuliar veloities [9℄ (see also [10℄).Although the presene of dark energy, 
� 6= 0, remainsvery mysterious, ination explains why 
 = 1 and n ' 1.The basi idea of ination is simple: If the energydensity in a suÆiently smooth path of spae is dom-inated by the potential energy of some slowly varyingsalar �eld, this path will expand very rapidly and evolveinto a large, very homogeneous, isotropi and at uni-verse. During this rapid expansion, the ausal horizonbeomes muh larger than the Hubble horizon, alleviat-ing the horizon problem. In addition, quantum utua-tions in the salar �eld get ampli�ed and grow larger thanthe Hubble sale, H�1. They then `freeze in' as lassialutuations in the energy density or, equivalently, in thegeometry, whih obey a sale invariant spetrum.This standard piture of ination does not emerge in adiret way from any modern high energy physis model.This makes it very exible whih is probably one of themain reasons why the basi piture has survived for solong. If a given model does not work, one is free toslightly hange the potential or other ouplings of thesalar �eld. This has lead to many di�erent models of

ination presented in the literature [11℄. This exibilitymay be onsidered either as a strong point or as a draw-bak. It is in any ase ertainly very important to inves-tigate whether there are alternative explanations of thesize and the atness of the universe and of the observedsale invariant spetrum of adiabati salar utuationsin the ontext of modern high energy physis.In this paper we disuss two attempts in this dire-tion whih are both motivated by string theory: the pre-big bang model [12,13℄ and the ekpyroti model [14{16℄.Even though the high energy pitures of these models arevery di�erent, the four dimensional low energy e�etiveations agree and the models predit the same osmol-ogy at low energy up to possible high energy 'relis'. Inthe following we all a model of the universe a 'pre-bigbang model' if it ontains a low urvature phase beforethe big bang. In this sense also the ekpyroti senario isa pre-big bang model.The original pre-big bang model onsists just of thedilaton and the metri, the two low energy degrees of free-dom whih are present in every string theory. The pres-ene of the dilaton leads to a new symmetry alled 'salefator duality' of osmologial solutions: To eah solutionfor the sale fator a(t) orresponds a solution a(t)�1, ora(�t)�1 if ombined with time reversal symmetry. If a(t)is an expanding, deelerating solution, a(�t)�1 � â(t̂) isan expanding aelerating solution, sinedâdt̂ = 1a2 dadt > 0; (1)and d2âdt̂2 = � 1a2 d2adt2 + 2a3 �dadt�2 > 0: (2)The Hubble parameter Ĥ of this 'super-inating' solu-tion [12,13℄ grows as t̂ = �t inreases. The solution ap-proahes trivial at spae and vanishing ouplings in thepast, t̂! �1, and a urvature singularity in the future,t̂! 0�.1



In this pre-big bang model, one supposes that ur-vature and strong oupling orretions of string the-ory 'bend' the evolution away from this singularity intoan expanding, deelerating radiation dominated Fried-mann model. Several studies of toy models where thisan be ahieved have been presented in the literature(see [17{20℄), but they usually just represent seond or-der orretions to the urvature and the oupling, andnot full string theory solutions.It has been shown [21℄ that a pure dilaton withoutpotential annot lead to a sale invariant spetrum ofadiabati salar utuations. For this reason it has beenproposed that utuations may be indued by axions viathe so alled seed mehanism [22℄. Axions naturally dis-play a sale invariant spetrum. However, the axion seedperturbations are of isourvature nature, whih is not inagreement with present observations. Mehanisms whihmay onvert the axioni isourvature utuations intoadiabati ones are urrently under investigation [23℄.In this paper, we will instead repeat the basi argu-ments of [21℄, but we will show that the spetrum ofperturbations whih one obtains in the radiation domi-nated post-big bang phase has the spetral index n = 0and not n = 4 as laimed in [21℄. We shall also show thatwhen adding an exponential potential to this ation, oneobtains a sale invariant spetrum, n = 1.The high energy piture behind the ekpyroti senario,the seond pre-big bang model disussed in this paper, isquite di�erent. There one starts with a �ve-dimensionaluniverse ontaining two perfetly parallel 3-branes atrest [14,15℄, in a BPS state. One then supposes that thetwo branes approah eah other with some very small ini-tial veloity. It is argued that, from the four-dimensionalpoint of view of an observer on one of the branes, thissituation orresponds to a ollapsing Friedmann universewith a salar �eld, whih is related to the distane be-tween the two branes before the ollision. After the ol-lision the solution is supposed to turn into a radiationdominated Friedmann [14,15℄ (see [24{26℄ for ritis).It is assumed that the salar �eld is minimally ou-pled and has a negative exponential potential V whihdesribes the attration of the two branes. The salar�eld potential is due to non-perturbative string orre-tions but has not been derived from any string the-ory, so far. In Refs. [15,16℄ it has been argued that,if V = �V0 exp(�') at low urvature, with  � 1, asale invariant spetrum of salar perturbations develops.This result has been ritiized in Refs. [27{32℄, where aspetral index n = 3 has been obtained. We shall showhere that, even if the detailed arguments put forwardin Refs. [15,16℄ might not be valid, under quite generi(although non trivial) assumptions one does obtain thespetral index n = 1.Like the original pre-big bang, this model starts outat low urvature and develops a singularity in the future.Like there, the belief is that string theory orretions will

hange the behavior of the sale fator and the salar �eldaway from this singular evolution. In the �ve dimensionalpiture, this apparent 'singularity' orresponds to the ol-lision of the two branes whih then should result in theprodution of radiation leading to a thermal, radiationdominated Friedmann model. We all the phase beforethe high urvature regime the 'pre-big bang phase' andthe regime after the big bang the 'post-big bang'.Even if the string theory orretions, whih must be-ome important lose to the singularity, are not fully un-derstood, these models are promising andidates for al-ternatives to ination: They ertainly do not su�er froma horizon problem sine their age an be arbitrarily largeand is not related to the Hubble time. They do not dy-namially imply atness, but this omes from very nat-ural vauum (for the original pre-big bang) or BPS (forthe ekpyroti model) initial onditions whih are posed atlow urvature. Nevertheless, it is well known that thesemodels are not very eÆient in smoothing out lassial in-homogeneities [33℄ and global anisotropies [34℄, and thismay remain a problem. In the most reent version ofthe ekpyroti model, a yli universe, atness is also aonsequene of a period of exponential expansion in theprevious yle [35℄. A quite fair omparison of the ekpy-roti senario and ordinary ination is given in Ref. [36℄.In this paper we do not address the important debate ofthe atness problem, but we investigate the spetrum ofperturbations generated during the pre-big bang phase.The aim of this paper is to learn as muh as possibleabout suh models without speifying the details of thehigh energy phase.In the next setion we write down the modi�ed pre-bigbang ation and the ation of the ekpyroti model. Weshow that they are related by a onformal transformationand we solve the equations of motion in both Einsteinand string frame. In Setions III and IV, whih are theheart of this paper, we disuss salar perturbations andthe mathing onditions between a ontrating, salar�eld dominated phase and an expanding, radiation dom-inated phase. In partiular we show that, under ertainwell de�ned onditions, without knowing the details ofthe mathing, one expets n = 1 for the modi�ed pre-bigbang and the ekpyroti model. In Setion V we gen-eralize our results to arbitrary power law sale fatorsmathed to a radiation dominated era. We end with ouronlusions and an outlook.II. THE BACKGROUNDThe low energy e�etive ation of the original pre-bigbang model is simply gravity with a dilaton �. Herewe modify it by allowing for a dilaton potential. Weassume that we have a four-dimensional e�etive theory,any extra dimensions being frozen at a very small sale.The low energy ation for this theory is therefore [37℄2



Ŝ = 12�2 Z dx4p�ĝe�� hR̂+ (r̂�)2 � 2V̂ (�)i ; (3)with �2 = 8�G = 1=M2P , where MP = 2:4 � 1018GeVis the redued Plank mass. This ation is written inthe so-alled string frame. The hat ^ indiates that theorresponding quantities have to be omputed using themetri in this frame. Therefore ĝ, R̂, r̂, and V̂ are thedeterminant of the metri, the Riemann salar, the o-variant derivative, and the dilaton potential, respetively,in the string frame. With this ation � is dimensionlessand the usual salar �eld with dimension of mass is sim-ply MP�. Correspondingly, the potential V̂ has dimen-sions of (energy)2 and the usual potential is M2P V̂ . Weuse the metri signature �+++.It is possible to rewrite the ation in Eq. (3) in a on-formally related (and physially equivalent) frame. If weperform a onformal transformation g�� = 
2ĝ�� theation is modi�ed toS = 12�2 Z dx4p�g
�2e�� �R + (r�)2++6(r ln
)2 + 6(r� � r ln
)� 2
�2V̂ (�)i : (4)When hoosing 
 = exp(��=2), we an obtain the Ein-stein frame ation,SE = 12�2 Z dx4p�g �R� 12(r�)2 � 2V (�)� ; (5)where g�� = e��ĝ�� and V (�) = e�V̂ (�) (6)are the metri and the salar �eld potential, respetively,in the Einstein frame. Eq. (5) is the ation for a min-imally oupled salar �eld. Notie that the dilaton hasnot been hanged by the onformal transformation. Wean also allow for a resaling of the salar �eld, ' = �=�,so thatSE = 12�2 Z dx4p�g �R� 12�2(r')2 � 2V (')� : (7)String osmology and, in partiular, the original pre-big bang senario, has been developed based on ation (3)with the dilaton potential set to zero. In our modi�edpre-big bang model we will allow a non-zero potential.Sine we want to obtain here the usual salar �eld a-tion presented in [14℄ starting from the string osmol-ogy ation (3), we have to require �2=2 = 1. This �xes� = �p2. In terms of the new �eld ' the Einstein frameation now beomesSE = 12�2 Z dx4p�g �R� (r')2 � 2V (')� : (8)For an exponential potentialV̂ (�) = e��V (�) = �V0e��; (9)

where � = �(1 + =�) with � 1, or equivalently forV (') = �V0e�'; (10)we obtain preisely the low energy e�etive ation ofthe ekpyroti senario [15,16℄. The interpretation of the�eld ' is however quite di�erent. There ' is related tothe brane separation [15℄. At early times when the twobranes are separated by a large distane, the salar �eld' is very big and positive, ' ! 1. Therefore the rela-tion between the string osmology dilaton � whih tendsto �1 for very early times, t ! �1, and the �eld ' ofthe ekpyroti senario is � = �p2', � = �p2. Sine � 1 and � is negative, � > 0 so that the potential (9)goes asymptotially to zero for very negative dilaton (atearly time), and does not spoil the initial onditions ofthe pre-big bang.Varying Eq. (8) with respet to ' we obtain the equa-tion of motion2'� V (');' = 2'� V0e�' = 0; (11)where 2 = r�r�. Varying the ation with respet tothe metri yields the Einstein equations,G�� = �2T��; (12)where T�� is the energy-momentum tensor of the salar�eld,�2T�� = r�'r�'� 12g�� �(r')2 + 2V (')� : (13)We want to onsider a at homogeneous and isotropiuniverse with metri ds2 = �dt2 + a2dx2. In this aseEq. (11) beomes�'+ 3H _'+ V;' = 0; (14)where the over-dot is a derivative with respet to the os-mi time t, and (12) turns into the Friedmann equation,H2 = �23 � = 16 _'2 + 13V ('): (15)Eqs. (14,15) have the `ekpyroti solution' [15℄a(t) = (�t)p; '(t) = 2 ln(�Mt); (16)with p = 22 ; M2 = V0p(1� 3p) : (17)At �rst it may seem strange that the enthalpy w � P=�and the sound speed 2s � _P= _� are muh larger than one,2s = w � 1, for small values of p (large ),w = (1=2) _'2 � V(1=2) _'2 + V = 2s = 23p � 1: (18)3



On the other hand, as long as we onentrate on a timeinterval bounded away from the singularity, we an al-ways split the potential into V = V1(')+V2, where V2 isa very negative onstant and V1 is always positive. Inter-preting V2 as a negative osmologial onstant, we have�1 < w1 = (1=2) _'2 � V1(1=2) _'2 + V1 < 1; (19)as well as�1 < 21 < 1 and w2 = 22 = �1. However, sine
1 = �1=(�1 + V2) � 1 and 
2 = V2=(�1 + V2) � �1,the 'e�etive' w = w1
1 � 
2 an beome muh largerthan 1 without implying any pathologial or even aausalbehavior of the salar �eld 'uid'.We shall see that the perturbations generated in thisollapse phase aquire a sale invariant spetrum only ifthe ollapse proeeds very slowly, i.e. when 0 < p � 1.In the ekpyroti senario the ollapse is followed by anexpanding phase. Shortly before the boune at t ! 0�,when the salar �eld, after having beome negative, goesto minus in�nity, ' ! �1, the shape of the potentialhas to hange from the exponential expression, and turnupwards in suh a way that V ! 0 for '! �1.Let us give here, for ompleteness, the equations de-rived from the string frame ation Eq. (3), where the po-tential V̂ (�) is given by Eq. (9), and their solutions. Byvarying this ation with respet to the �eld � we obtain2r̂�r̂��� (r̂�)2 + R̂� 2V̂ + 2V̂;� = 0: (20)Varying the ation with respet to ĝ�� yieldsĜ�� = �r̂�r̂��� 12 ĝ�� h(r̂�)2 � 2r̂�r̂��+ 2V̂ i :(21)For a homogeneous and isotropi universe with spatiallyat setions, Eqs. (20) and (21) redue to��+ 3Ĥ _�� _�2 + 2V̂ + 2V̂;� = 0; (22)Ĥ2 � Ĥ _�+ 16 _�2 � 13 V̂ = 0; (23)where the over-dot here refers to osmi time in the stringframe, t̂.To �nd a solution to these equations we an simplytransform the solution found in the Einstein frame usingthe relationsdt̂ = e�=2dt = e�'=p2dt; â = e�=2a = e�'=p2a: (24)The �rst relation gives�M̂t̂ = (�Mt)1�pp; (25)where M̂ = M(1 � pp). For small p, p � 1, t̂ is verylose to t and, as long as p < 1, t̂ grows from �1 to 0with t. Inserting the ekpyroti solutions in expressions(24) for â and �, we obtain

â = (�M̂ t̂)�pp; (26)and � = �p2' = � 2pp1�pp ln(�M̂ t̂); (27)up to possible integration onstants whih we have �xedto obtain â = a and t̂ = t in the limit p! 0.In this setion we have �rst shown that, from a purelyfour-dimensional point of view the ekpyroti senario isequivalent to the pre-big bang senario when the dila-ton has an exponential potential that tends to zero atsmall oupling. In doing so we have presented the equa-tions for these models, written in the string and Einsteinframes, and we have written down the solutions that holdin either frames. These solutions are useful for disussingperturbations, whih is the subjet of the next setion.III. SCALAR PERTURBATIONSWe now want to study linear perturbations of a generiuniverse dominated by a minimally oupled salar �eldwith an exponential potential or an adiabati uid withw = 2s = onstant. This last ondition is automatiallysatis�ed for a salar �eld with exponential potential.As disussed in the previous setion, pre-big bang ex-pansion in the string frame is equivalent to ontration inthe Einstein frame, where the dilaton is minimally ou-pled. Therefore, pre-big bang with a dilaton orrespondsto a ollapsing universe dominated by a minimally ou-pled salar �eld and is inluded in our study. It is im-portant to note that physial quantities, like the spetralindex or the perturbation amplitude are frame indepen-dent but they are more easily omputed in the Einsteinframe where linear perturbation theory is well established(see, e.g. the reviews [38,39℄).To disuss perturbations we work mainly in onfor-mal time �, whih is related to the physial time t byad� = dt. The derivative with respet to onformal timeis denoted by a prime, 0. For the sake of simpliity weneglet a possible urvature of the spatial setions. In aat universe dominated by a uid or a salar �eld withenergy density � and pressure P the bakground Fried-mann equations areH2 = �23 �a2; (28)H0 = ��26 (�+ 3P )a2 = �H2 1 + 3w2 ; (29)where H = a0=a.If the energy density is dominated by a salar �eld, wehave �2� = 12a2'02 + V ('); (30)�2P = 12a2'02 � V ('); (31)4



and w + 1 = '023H2 : (32)When w = 2s = onstant, the solution to the Friedmannequation is a power law. In terms of onformal time � itis given bya = ���� ��1 ����q ; q = 21 + 3w; H = q� ; H0 = � q�2 ; (33)where we have hosen the normalization onstant �1 suhthat ��1 < 0 is a very small negative time at whih(higher order) orretions to the salar �eld ation be-ome important. Sine a(�1) = 1, �1 = a(�1)�1 � t1orresponds to a physial quantity, e.g. the string salein the pre-big bang model, 1=�1 � 1017 GeV. ComparingEq. (33) with the ekpyroti solutions in terms of physialtime, we �nd q = p=(1� p).Let us now perturb the metri. In longitudinal gaugeand in absene of anisotropi stresses, as it is the ase forperfet uids and for salar �elds, salar metri pertur-bations are given byds2 = a2(�)[�(1 + 2	)d�2 + (1� 2	)Æijdxidxj ℄: (34)In this gauge, the metri perturbation 	 orresponds tothe gauge invariant Bardeen potential. Without gauge�xing the latter is given by a more ompliated expres-sions of the metri perturbations [38{40℄. The salar �eld' is also perturbed so that it an be divided into '(�)satisfying the bakground equation (14), and a perturba-tion Æ'(�;x).We now want to ompute the spetrum of metriperturbations generated from vauum initial onditions.Generially, 	 satis�es the equation [38,39℄	00 + 3H(1 + 2s)	0 +(2H0 + (1 + 32s)H2 ���)	 = 0: (35)For adiabati perturbations of a uid, one �nds � = 2s,where 2s is the adiabati sound speed, while for a simplesalar �eld one �nds � = 1 (see, e.g. Ref. [38℄). Henefor a non-vanishing potential, V 6= 0 and hene 2s 6= 1,simple salar �eld perturbations are not adiabati in athermodynami sense.If we restrit ourself to the ase, w = 2s = onstant,the mass term in Eq. (35), 2H0+(1+32s)H2, vanishes bythe use of the bakground Einstein equations, Eqs. (28)and (29). Thus, for salar perturbations we obtain nearlythe same equation as for tensor perturbations, whih wean write in terms of Fourier modes as	00 + 3H(1 + w)	0 +�k2	 = 0: (36)This equation is valid in both phases of the universe,before and after the big bang, depending on the orre-sponding value of w and �. We all 	� the solutions

obtained in the pre-big bang ollapsing phase and 	+the one obtained in the radiation dominated phase. Inthe following we will work in Fourier spae.Let us now de�ne the variable u in order to simplifyEq. (36) [38℄. We setu = MPH a	: (37)Eq. (36) an then be written in terms of u asu00 + ��k2 � a(1=a)00�u = 0: (38)Let us now suppose that the ollapsing (or pre-bigbang) phase � < ��1 is dominated by the salar �eldso that � = 1. Eq. (38) then has the general solutionu = (kj�j) 12 [C(k)H(1)� (k�) +D(k)H(2)� (k�)℄; (39)with � = q + 1=2. Here H(i)� is the Hankel funtion ofthe i-th kind and of order �. One an generalize thissolution to the ase of a uid dominated universe simplyby replaing k� by sk�. This solution has to be gener-ated from the inoming vauum, so we assume that, forkj�j � 1, lim�!�1u = e�ik�k3=2 : (40)This assumption orresponds to normalizing the anoni-al variable whih diagonalizes the perturbed seond or-der ation (alled v in [38℄) or equivalently the perturba-tion of the salar �eld, Æ', to quantum vauum utua-tions. With this normalization, the H(1)� mode, whihapproahes exp(ik�) for kj�j � 1, has to be absent,C(k) = 0, and the solution to Eq. (36) beomes	�(k; �) = qMPa�D(k)(kj�j)1=2H(2)� (k�); (41)where D(k) =p�=2k�3=2; (42)modulo some irrelevant phase.At late time kj�j � 1, this solution approahes	�(k; �) ' A�(k)Ha2 +B�(k); (43)where A� and B� are determined by the exat solution(41) (up to logarithmi orretions),A�(k) ' 2��(�)MP �q1 k���1; (44)B�(k) ' �q1MP2��(�+ 1)k��1 : (45)The result (43) an be found diretly by solving Eq. (36)negleting the k2-term. The full solution is however5



needed to determine the pre-fators A�(k) and B�(k)from the vauum initial ondition. The A�-mode growsduring the pre-big bang phase and beomes muh largerthan the onstant B�-mode.In the original pre-big bang, where the dilaton has nopotential, i.e. w = 2s = 1 and hene q = 1=2, we have � =1. The A�-mode then has an n = 0 spetrum, jA�j2k3 /k�1 / kn�1, while the B�-mode orresponds to n =4, jB�j2k3 / k3 / kn�1. If we have an exponentialpotential as for the ekpyroti model suh that p � 1,and therefore q � 1, we have � ' 1=2 and hene jA�j2k3is k-independent. The A�-mode has a sale invariantspetrum, n = 1, while jB�j2k3 / k2, whih orrespondsto a blue spetrum, n = 3.If the A�-mode has a red spetrum, as in the originalpre-big bang senario, we need to disuss its amplitude onlarge sales. It has been shown in [21℄ that a red (n = 0)A�-mode does not invalidate linear perturbation theoryduring the pre-big bang phase. Geometrially meaningfulquantities like C��ÆC��Æ=R2 � �2, where C��Æ is theWeyl tensor and R is the urvature salar, remain small.In fat �2 / j(k�)2	j2k3. We an therefore ontinueto use the Bardeen potential even though it may beomelarge for ertain k-modes. However, a red spetrum leadsto serious problems in the subsequent radiation era wherethe Bardeen potential is onstant on super horizon salesand �2 grows larger than unity at horizon entry, k� � 1,for large sales.In the modi�ed pre-big bang models disussed here,this problem does not our, sine A� has a sale invari-ant spetrum.At very early time after the big bang, in the radiationdominated phase, we an neglet the term �k2 = k2=3in Eq. (38). We then have the same type of solution forsuper horizon modes,	+(k; �) = A+(k)Ha2 +B+(k): (46)In the next setion we will work out the mathing on-ditions between this solution and Eq. (43), in order todetermine the oeÆients A+ and B+.IV. MATCHING CONDITIONSWe suppose that the solution given in Eq. (43) holdsuntil � = ��1, where higher order orretions begin toplay a role. These orretions may be quite di�erent forthe modi�ed pre-big bang model and for the ekpyrotimodel, but in both ases they are supposed to lead overto a radiation dominated Friedmann model. Here we donot want to argue about the nature of the orretionsand how to determine them from string theory (even ifthis probably has to be onsidered as the most diÆultand the main problem of these models), but we studywhih statements an be made under ertain assump-tions on the transition. For this we neglet the details

of the transition and math our pre-big bang solution at� = ��1 to a radiation dominated universe at � = +�1.In other words we suppose that the slie of spaetime`squeezed' between ��1 and �1 is so thin ompared tothe sales we are interested in, that it an be replaed bya spaelike hypersurfae. Therefore we an onsistentlyuse the thin shell formalism and apply the Israel juntiononditions [41℄ for surfae layers on the � = ��1 hyper-surfae, in order to math the spaetime manifold M�before the big bang to the spaetime manifoldM+ after.A. Mathing the bakgroundBefore speifying the mathing of the perturbations,we have to math the bakgrounds, i.e. we have to imposethe Israel juntion onditions on the sale fator a and its�rst derivative. These onditions require the ontinuityof the indued metri,q�� = g�� + n�n� ; (47)where n� is the normal to the � = onstant hypersurfae,on the mathing hypersurfae � = ��1. Thus we have[q�� ℄� = 0; (48)where we de�ne[h℄� � lim�&�1 (h(�)� h(��)) � h+ � h�; (49)for an arbitrary funtion h(�). Here � & �1 indiates theright hand limit, i.e. � is dereasing towards �1.Our onformal time oordinate � itself jumps,[�℄� = 2�1: (50)This simply means that the oordinates ofM� andM+are well de�ned only on the intervals � 2 (�1;��1℄ and� 2 [�1;1), respetively. The limit (49) is well de�nedfor every funtion whih is ontinuous, monotoni andbounded in open intervals (��2;��1) and (�1; �2), with�2 > �1, even if their value at ��1 is not de�ned.Eq. (48) implies a+ = a� = a�. Aording to our nor-malization of the sale fator, Eq. (33), a� = 1. We nev-ertheless prefer to leave a� in all the expressions whereit appears, so that its normalization an be onvenientlyhanged.The seond Israel juntion ondition onerns the ex-trinsi urvature K�� on the mathing hypersurfae withnormal n�,K�� = 12(q �� r�n� + q �� r�n�): (51)In a Friedmann universe this isKij = �� a0a2� Æij = �Ha Æij : (52)6



The derivative a0 hanges sign in the transition from aontrating to an expanding phase. Hene, the extrinsiurvature is disontinuous in the four-dimensional, lowenergy piture if we simply 'glue' the ontrating phaseto the expanding phase with opposite sign for a0 andonformal time � = +�1. On the other hand, the Israeljuntion onditions allow for the existene of a surfaestress tensor, [Kij ℄� = �2Sij ; (53)whih in our ase is non vanishing and diagonal, and itis haraterized by a negative surfae tension Ps < 0,[Kij ℄� = �H+ �H�a� Æij = �2PsÆij : (54)Within the four dimensional piture we have no expla-nation for this surfae tension; it has to be introduedby hand in order for the extrinsi urvature to jump.Eq. (54) is a possibility to 'esape' the violation of theweak energy ondition, � + P < 0, whih is needed fora smooth transition from ollapse to expansion. Thishas been one of the objetions to the ekpyroti senarioin Ref. [42℄. Of ourse for � = �1 the ombination�+P+PsÆ(���1) beomes negative, whih, in the widestsense, an also be interpreted as an 'e�etive' violation ofthe weak energy ondition. Clearly, this is the simplestway of onneting a ontrating phase to an expandingphase, but it is relatively lose to an approah motivatedfrom the �ve-dimensional piture, where the singularityat a = 0 beomes a narrow 'throat' [15℄. Here we replaethis throat by a sti� 'ollar' whose length we neglet (seealso [16℄). B. Mathing the perturbationsLet us now perturb the Israel juntion onditions (48)and (53). Instead of onsidering the � = �1 hypersurfaewe want, in general, to onsider a hypersurfae whihis linearly perturbed from it, de�ned by ~� = � + T =�1, where T is a small perturbation. The jump is nowrealized on the perturbed hypersurfae ~� = �1,[h℄� � lim~�&�1 (h(~�)� h(�~�)) � h+ � h�; (55)and in priniple we annot say anything about the on-tinuity of T , whih is also allowed to jump,[T ℄� = [~� � �℄� = 2�1 � [�℄�: (56)Nonetheless, this jump should be always small as it willbeome lear below.We assume that the old oordinates (�; xi) are those oflongitudinal gauge, so that the metri perturbations aregiven by Eq. (34), but we want to determine the pertur-bation of the Israel juntion onditions in the oordinate

system (~�; xi) on the surfaes ~� = onstant. The metriin this oordinate system is given by (see e.g. [39℄)d~s2 = a2(~�)f�(1 + 2	� 2(HT + T 0))d~�2 + 2T;i d~�dxi+(1� 2	� 2HT )Æijdxidxjg: (57)Hene the perturbation of the normal to the ~� = onstantslies is~Æn = 1af(�	+HT + T 0)�~� � T;i �ig; (58)and the extrinsi urvature is given by [43℄~ÆKij = 1a �	0 +H	+ (H0 �H2)T	 Æij + T ;i;j : (59)The mathing onditions for the perturbations are ob-tained by perturbing Eqs. (48) and (53) on the ~� = �1hypersurfae. They beome[~Æqij ℄� = 0; [~ÆKij ℄� = �2~ÆSij : (60)From the above expressions for ~Æg�� and ~Æn�, the onti-nuity of the perturbation of the indued metri Æqij onthe ~� = �1 hypersurfae leads to[	 +HT ℄� = 0: (61)For reasons that beome lear below, we assume in thefollowing that T = ~� � �, the lapse of time between thebakground value � and the perturbed value ~�, remains asmall perturbation on large sales. This implies that also[T ℄� has to remain small. What is the meaning of 'smallperturbation' in this ontext? One a gauge is �xed, theBardeen potential 	 is the only degree of freedom har-aterizing the perturbations. For dimensional reasons, itis natural to expet T to be given as a linear ombinationof 	 and 	0, in terms ofT = �P (k�)	 + �2Q(k�)	0; (62)where P and Q are polynomials of k�, whih may have�=�1 dependent oeÆients. Here we assume that thesepolynomials do not ontain any negative power of k�, i.e.thatjT=�	j � jT=�2	0j � jP (k�)j+ jQ(k�)j k!0�! �nite: (63)On large sales T grows with sale at most as 	 or 	0.The reason for this is that we want that the ~� = �1hypersurfae does not arbitrarily diverge from the � = �1hypersurfae on large sales. In other words, we requirethe time at whih the boune happens to be stable underlarge sale perturbations. It is lear that this assumptionis not entirely trivial. It limits somewhat the large salepower of the `new physis' whih is needed to onvertontration into expansion. This new physis may notindue very strong infrared perturbations, whih is veryreasonable and on�rmed by numerial examples on pre-big bang models [44℄.7



Under this assumption the anisotropi term on theright hand side of Eq. (59), �i�jT , is negligible on largesales and we shall not disuss the possible, but sub-dominant, anisotropi surfae stresses in what follows.On super horizon sales the perturbation of the extrinsiurvature is dominated by the trae part, ~ÆKij = (~ÆK)Æijwith ~ÆK = 1a �	0 +H	+ (H0 �H2)T	 : (64)The mathing onditions for the perturbations beomeEqs. (61), and�	0 +H	+ (H0 �H2)T �� = �2a�~ÆPs; (65)where ~ÆPs is the perturbation of the surfae tension.The ondition posed in Eq. (63) has the following im-portant onsequenes: from Eq. (64) we see that with Tnot being 'redder' than 	 and 	0, also ~ÆK has typiallythe same k-dependene as 	 or 	0. Therefore it remainssmall (of the same order as 	 or 	0 in k) when k�1 tendsto 0, ~ÆK=(H	); ~ÆK=	0 k!0�! �nite: (66)From Eq. (65) we then infer that ~ÆPs may as well havea non-trivial k-behavior but it remains small on largesales, ~ÆPs=(H	); ~ÆPs=	0 k!0�! �nite: (67)The k-dependene of ~ÆPs may beome important whenmathing the perturbations but it annot dominate onlarge sales.The assumptions (63) and its onsequenes (66) and(67) beome important in Se. IVD where we try toderive a general result from these mathing onditions.First, let us disuss some examples.C. Two examplesThe mathing onditions (61) and (65), whih the un-known details of the transition have to determine, �xthe oeÆients A+(k) and B+(k). So far, in the liter-ature, for ination [43℄ as well as for the ekpyroti se-nario [27{30,45℄, the hypersurfae on whih the mathinghas been performed was always hosen to be the onstantenergy hypersurfae, � + Æ� = onstant. In this ase,T = Æ�=�0.The perturbed Einstein equations give (see e.g. [39℄,Eqs. (2.45) and (2.46), and use Æ� = �Ds in longitudinalgauge), Æ�� = � 2H2 �(3k2 +H2)	 +H	0	' �2 �	+H�1	0� ; (68)

on super horizon sales. With �0 = 2�(H0 � H2)=H wehave T = Æ�=�0 ' �1H0 �H2 (H	+	0): (69)Eq. (61) then leads to�	� HH0 �H2 (H	+	0)�� � [�℄� = 0; (70)where � is the urvature perturbation introdued byBardeen [40℄. Furthermore, using Eq. (69), one �ndsthat ~ÆKij = 0 on large sales and we obtain [~ÆK℄� � 0.Hene, this mathing ondition an be satis�ed only ifthe surfae tension Ps is unperturbed, ~ÆPs � 0.These mathing onditions are often used in ination-ary models to go from the inationary phase to the Fried-mann radiation dominated phase. The di�erene with in-ationary models is that here H jumps. Furthermore, 	in general will not be ontinuous at the transition, sineeven if T is ontinuous, HT is not. Notie that, eventhough H jumps at the transition from ontration toexpansion, and hene H0 ontains a Dira delta-funtion,[T ℄� is well de�ned as it is a ontinuous, bounded, mono-toni funtion in some open intervals (��2;��1) and(�1; �2).Inserting ansatz (43) and (46) in the ontinuity ondi-tion for the metri, Eq. (70), yieldsB+�H0+ � 2H2+H0+ �H2+ � = B��H0+ � 2H2�H0� �H2� � : (71)Clearly, sine B+ ouples only to B� it inherits theblue spetrum of B�. This is the main argument ofRefs. [27{32℄ against the ekpyroti model. As we shallsee below, this is also the mathing ondition whih leadsto the n = 4 spetrum in the pre-big bang model givenin Ref. [21℄.There are two subtleties whih have been left out inthis argument. The �rst one is obvious: the surfae ten-sion Ps, the only ingredient of the high energy theoryin this approah, may well also have a perturbation ~ÆPs,requiring [~ÆK℄� = �2~ÆPs 6= 0. If this is the ase, themathing annot be de�ned on the onstant energy hy-persurfaes, T = Æ�=�0. Seondly, and more importantly,in this model where ontration goes over to expansion,a transition surfae with a physial surfae tension is re-quired and this surfae does need not to agree with the�+ Æ� = onstant!As a onrete example, let us simply assume that thismathing surfae is given by the ondition that its shearvanishes. This is atually just the � = onstant surfaein longitudinal gauge, hene we have T = 0 in Eqs. (61)and (65). The juntion onditions on super horizon salesthen beome [	℄� = 0; (72)[H	+	0℄� = a��2ÆPs: (73)8



For our general solutions (43) and (46) this givesA+ = H�H+A� + a2�H+ (B� �B+) (74)B+ = �H+(H0�=H� �H�)�H0+ +H2+2H2+ �H0+ � H�a2� A�+�1 + H�H+ �H2+2H2+ �H0+ �B�+ H+2H2+ �H0+�2a�ÆPs: (75)Alternatively, we an express the mathing onditionsin terms of � given in Eq. (70) and its anonially onju-gate variable � de�ned in Ref. [46℄, by� = 2M2P k2 a2H	: (76)On super horizons sales we have� = �1� H2H0 �H2�B(k); (77)� = 2M2Pk2�A(k) + a2HB(k)� : (78)The perturbation variable � is onstant and proportionalto the onstant B(k) while its onjugate momentum �is proportional to A(k)k2 and onstant up to a deayingpart proportional to B(k) whih will be negligible at thetime ��1, when we impose the mathing onditions.On the zero shear hypersurfae we an write the math-ing onditions of the perturbations in terms of � and �as [H�℄� = 0; (79)�(H0 �H2)� �22k2a2�� �H��� = a�2ÆPs: (80)Therefore we have�+ = H+H���; (81)�+ = H+H� �H0� �H2�H0+ �H2+� ��+ �22k2a2� �H� � H0� �H2�H0+ �H2+H+���� H+H0+ �H2+ a��2ÆPs: (82)Hene, using mathing onditions on the zero shear hy-persurfae, � aquires, in the radiation dominated era,a mode / ��k�2 / A� whih has a spetral indexn = 1 � 2q of A�. In terms of A+ and B+ this leadsagain to Eqs. (74) and (75).As A� represents the growing mode during the on-trating phase, jA�H=a2j is muh larger than jB�j, andthe spetrum of B+ inherits the sale invariant spetrumof A�. It is easy to see from pure sign onsiderationsthat the pre-fator of A� in Eq. (75) does not vanish.

D. A more general treatmentAs we have seen, the important question is to deter-mine the orret mathing hypersurfae and the pertur-bation of its tension. This an only be done by studyingthe high energy orretions of a spei� model. Neverthe-less, we now want to provide an argument why we thinkthat a sale invariant spetrum is obtained in modelswhere the ollapsing phase is haraterized by a / (��)qwith q � 1.As we have seen in the above examples, the mathingonditions are �xed by T , given as some ombinationof 	 and 	0, and determine 	+ in terms of 	�, 	0�,and of the surfae stress perturbation ÆPs. The generalresult we are about to derive is based on one importantassumption, the smallness of T , as given in Eq. (63).As explained there, this assumption preisely limits the'infrared power' of the 'new physis' needed to onvertontration into expansion. As we have seen [Eqs. (66)and (67)℄, as a onsequene the extrinsi urvature andtension perturbations, ~ÆK and ~ÆPs, have the same k-dependene as 	 and 	0.This assumption �xes ompletely the �nal spetrum,avoiding any arbitrariness suh as the one found in [31℄for the ekpyroti senario. Then, in Eqs. (61) and (65)the k-dependene is given entirely in terms of the oef-�ients A and B. As a result, the k-dependene of theoeÆients A+ and B+ is a mixture of the k-dependeneof A� and B� given by Eqs. (44) and (45),A+(k) = �Ak�(1+�) + �Ak�1+�; (83)B+(k) = �Bk�(1+�) + �Bk�1+�; (84)where the �-terms ome from the A�-mode and the �-terms ome from the B�-mode. Aording to our as-sumption, the oeÆients �� and �� generially ontaina onstant and positive powers of k�1. The A+-mode isdeaying and we may neglet it soon after the mathing.Generially we expet, aording to the amplitudes ofthe A� and B�-modes, that �A and �B are muh largerthan �A and �B . Comparing the A� and B�-modes weexpet O ��k�1��� � O �(k�1)�2� �k�1+�� ; (85)hene, for super horizon modes, k�1 � 1, we expet�k�1�� � �k�1+�, as long as � = q + 1=2 is positive.Therefore, one typially inherits the spetrum of the �-terms in the radiation era, leading toP	 = j	j2k3 = j�B j2k1�2� �/ kn�1� : (86)In this generi situation, we obtain a sale invariant spe-trum 1 ' n = 2� 2� = 1� 2q if q is lose to zero, as inthe ekpyroti and modi�ed pre-big bang ase.Only if the mathing onditions are suh that the �B-term is suppressed by a fator smaller than (k�1)2�, the�B-term omes to dominate and the spetrum beomes9



P	 = j	j2k3 = j�B j2k1+2� �/ kn�1� : (87)Then, the spetral index n = 2 + 2� = 3 + 2q results.As an estimate, for sales of order the present Hub-ble parameter, relevant for the perturbations in the os-mi mirowave bakground, k = k=a� � H0, and for1=�1 = 1=(a��1) � 1017 GeV, we have k�1 � 10�59!Hene we typially expet the �-terms to be about 1059times smaller than the �-terms on osmologially rele-vant sales, ��k�1�� � 1059��k�1+�.For the onstant energy hypersurfae we have obtained�B � 0 and hene the generi inequality �k�1�� ��k�1+� is violated. But if the mathing hypersurfaedeviates by more than about � 10�59 from the � = on-stant hypersurfae, we expet the A�-term, �k�1��, todominate in the Bardeen potential and to determine the�nal spetrum.For a salar �eld without potential, as in the origi-nal pre-big bang model, we have q = 1=2 whih in the'generi ase' leads to a spetral index n = 1�2q = 0 andonly under very speial mathing onditions, like math-ing on the onstant energy hypersurfae with ÆPs � 0,the spetral index n = 4 is obtained.In the ase of ordinary ination, q � �1, where� = 1=2 + q is negative, the situation is quite di�erent.There, the A�-mode is deaying and the Bardeen poten-tial at the end of ination is dominated by the onstantB�-mode. Hene, we generially expet to inherit in theradiation phase the spetral index from the B�-modewith n = 3 + 2q, leading to a sale invariant spetrumfor ordinary ination, q � �1. This is also the spetrumobtained when mathing on the onstant energy hyper-surfae.In Ref. [47℄, a radiation dominated ontrating phaseis onneted smoothly to a radiation dominated expand-ing phase, via a salar �eld with negative energy densitywhih omes to dominate in the high urvature regime.Here a n = �1 spetrum of perturbation is found withanalytial arguments and via numerial simulation. Thisagrees with our result. In this ase, in fat, q = 1 andaording to our argument we would generially expetn = 1�2q = �1, as obtained in Ref. [47℄. It is interestingto note that the mathing onditions of Ref. [47℄ orre-sponds to the mathing on the hypersurfaes determinedby T = �H�1	 from longitudinal gauge. Aording toEq. (57), this orresponds to the gauge with ~Ægij = 0,i 6= j, the `o�-diagonal gauge', whih has also been on-sidered in Ref. [21℄ as the gauge in whih perturbationsremain small during the pre-big bang phase.This is our main result: When mathing a ollapsinguniverse to an expanding one, we expet the Bardeen po-tential in the expanding phase to inherit the spetrum ofthe mode whih grows during the ollapse phase, leadingto P	 / k�2q ; n = 1� 2q; (88)where q is the exponent with whih the sale fator on-trats in onformal time, a / j�jq . Remind that this

result holds only if we assume, as explained in Se. IVB,that T is small on large sales [see Eq. (63)℄.V. USING 	 OR � ?In the above disussion we have used mainly theBardeen potential 	. Several authors [28{30,45℄ use theurvature perturbation � given in Eq. (70). In partiular,Ref. [45℄ has found� / j�j1=2a H(2)� (k�); � = jq � 1=2j: (89)This also follows from the de�nition of � [see Eq. (70)℄,together with the solution (41) for 	. During the pre-bigbang phase, � < ��1, this leads to the following spe-trum for � on super horizon sales, modulo logarithmiorretions,P� = j�j2k3 / � k4�2q j�j2�4q for q > 1=2;k2+2q for q < 1=2; (90)giving a spetral index for the variable �,n� = � 5� 2q for q > 1=2;3 + 2q for q < 1=2: (91)Sine in Ref. [45℄ the mathing ondition [�℄� = 0 is used,the spetral index of � translates diretly into the spetralindex of salar perturbations in the radiation era, where� and 	 essentially agree on super horizon sales. Thisis the reason why these authors obtain a sale invariantspetrum also for q = 2 (while they obtain n = 3 for theekpyroti model).We have found the following behavior of the 	 spe-trum on super horizon sales during the pre-big bangphase (see Eq. (41) in the limit kj�j � 1),P	 / � k�2qj�j�(2+4q) for q > �1=2;k2+2q for q < �1=2: (92)This leads to the spetral index of 	,n	 = � 1� 2q for q > �1=2;3 + 2q for q < �1=2: (93)Comparing Eq. (90) and Eq. (92) we see thatP� ' jk�j2P	 � P	; (94)with  =8<: 0 for q < �1=2;1 + 2q for � 1=2 < q < 1=2;2 for q > 1=2: (95)As we have mentioned above, for osmologially rele-vant sales, the fator jk�j beomes of the order of 10�59at the mathing surfae. We have argued in the previous10



subsetion that the larger variable 	 should be relevantat the mathing surfae, and only under very speial spe-ial mathing onditions the spetral index of � is inher-ited after the big bang. Generially we therefore expetn = n	 to be the spetral index in the radiation era. Ifq < �1=2, 	 and � agree up to a onstant pre-fator,and this distintion beomes irrelevant for the spetralindex. This is exatly what happens in 'ordinary ina-tion' where q � �1. The funtions n	 and n� are shownin Fig. 1.

FIG. 1. The spetral indies n	 (solid) and n� (dashed)are shown as a funtion of q = H�. As argued in the text, weexpet a resulting spetral index n = n	 in the radiation era.Finally, for ompleteness, we want to emphasize thatthe Bardeen potential in a radiation dominated universereally determines the spetral index n via P	 = j	j2k3 /kn�1. A sale invariant spetrum is de�ned as one forwhih D(ÆM=M)2Eh:: is sale independent, where thebrakets denote spatial average and the subsript h::indiates the sale of horizon rossing. Therefore, thespetral index is de�ned by D(ÆM=M)2Eh:: / kn�1, sothat n = 1 represents a sale-invariant spetrum.On the other hand*�ÆMM �2+ = k3 ����Æ�� ����2 : (96)On sub horizon sales and also at horizon rossing, Æ�=�is not strongly gauge dependent, so we may hoose what-ever gauge we please. We use omoving gauge (it is a sim-ple estimate to verify the same behavior, e.g. for longitu-dinal gauge). In omoving gauge we have the onstraintequation [39℄, k2	 = 3H22 �Æ�� �om: : (97)

Using that H ' k at horizon rossing and that 	 is timeindependent on super horizon sales, we get�����Æ�� �om:����2h:: ' j	j2; (98)hene DjÆM=M j2Eh:: ' k3j	j2 = P	 / kn�1:In the radiation dominated era � is roughly equal to 	and the above equation therefore holds also for P� .VI. CONCLUSIONSWe have disussed the mathing from a ollapsing toan expanding Friedmann universe. We have noted thata non-vanishing surfae tension at the mathing surfaeis needed to turn the pre-big bang ollapse into expan-sion. This surfae tension and its perturbation have tobe spei�ed by the high energy orretions of the theory.It is this surfae tension whih determines the orretmathing surfae and it will generially not be parallelto the �+ Æ� = onstant surfaes.We have found that, if the mathing is performed atthe � + Æ� = onstant hypersurfae, the growing modefrom the pre-big bang phase is onverted entirely into thedeaying mode in the radiation phase. In this ase thespetral index n = 3 + 2q is obtained, leading to n = 3for the ekpyroti and modi�ed pre-big bang model, andn = 4 for the original pre-big bang model. However, if themathing hypersurfae is hosen to be somewhat di�erentfrom �+ Æ� = onstant, one obtains n = 1� 2q. Hene,the ekpyroti and the modi�ed pre-big bang model anlead to a sale invariant spetrum of salar perturbations.Our result is based on the assumption that perturb-ing our bakground bouning universe does not hangeompletely the time and duration of the boune on largesales. We have formulated this requirement preisely byrestriting the allowed 'infrared power' of T .Notie that the spetral index resulting from ourmathing onditions of a pre-big bang transition, is neverblue, n � 1. This is not so surprising: On sub-horizonsales, the perturbations are in their vauum state. Theystart growing as soon as they exit the horizon until theend of the pre-big bang phase. Hene large sales, whihexit earlier, have more time to grow.Often, as a heuristi approah to obtain the spetrumof utuations, one onsidered j	j2k3 at horizon ross-ing requiring that this behaves like kn�1. Applying thisproedure during the pre-big bang at the �rst horizonrossing (exit), one obtains the blue spetra n = 3 forthe ekpyroti or the modi�ed pre-big bang model andn = 4 for the original pre-big bang respetively. However,if one determines the same quantity at the seond hori-zon rossing (re-entry), during the radiation dominated11



phase, one obtains the orret spetral indies n = 1 andn = 0 respetively. Sine in an expanding universe theBardeen potential does not grow on super horizon sales,it does not matter at whih horizon rossing, exit or re-entry, the spetrum is determined in the ase of ordinaryination. In a pre-big bang model however, this di�er-ene is ruial as we have seen.The disussion presented in this paper does not a�etthe gravity wave spetrum [48℄ whih still leads to thespetral index nT = 3 for both models and is a potentiallyimportant observable to disriminate them from ordinaryination.The main open problem when studying this boun-ing models remains the high energy transition from thepre- to the post-big bang. There, orretions should be-ome important, and we have assumed here that for su-per horizon sales they an be summarized into a ten-sion on the mathing surfae. Furthermore, it has notyet been shown from string theory that the dilaton anobtain an exponential potential (in the modi�ed pre-bigbang model) or that the brane distane simply obeys theequation of motion of a minimally oupled salar �eldwith exponential potential from the brane point of viewfor the ekpyroti model.Also the quantum prodution of other modes possiblein these models, e.g. the axions and moduli in the mod-i�ed pre-big bang, or the 'graviphoton' and 'gravisalar'oming from the extra-dimension in the ekpyroti model,have to be investigated.Nevertheless, we onlude that models where high en-ergy orretions lead a slowly ollapsing universe overinto an expanding radiation dominated phase may rep-resent viable alternatives to usual 'potential ination', ingenerating a sale invariant spetrum of perturbations.However, many open questions, espeially onerning thehigh energy orretions, and atness, still have to beproperly addressed.Aknowledgment We thank Robert Branden-berger, Cyril Cartier, Fabio Finelli, Maurizio Gasperini,David Langlois, Andrei Linde, Jerôme Martin, PatrikPeter, Jean-Philippe Uzan, and Gabriele Veneziano forstimulating and larifying disussions.
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