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Adiabatic Quantum Computing for Random Satisfiability Problems∗

Tad Hogg
HP Labs

Palo Alto, CA 94304

The discrete formulation of adiabatic quantum computing is compared with other search methods,
classical and quantum, for random satisfiability (SAT) problems. With the number of steps growing
only as the cube of the number of variables, the adiabatic method gives solution probabilities close
to 1 for problem sizes feasible to evaluate via simulation on current computers. However, for these
sizes the minimum energy gaps of most instances are fairly large, so the good performance scaling
seen for small problems may not reflect asymptotic behavior where costs are dominated by tiny
gaps. Moreover, the resulting search costs are much higher than for other methods. Variants of the
quantum algorithm that do not match the adiabatic limit give lower costs, on average, and slower
growth than the conventional GSAT heuristic method.

PACS numbers: 03.67.Lx

I. INTRODUCTION

Quantum computers [1, 2, 3, 4] can rapidly evaluate all
search states of nondeterministic polynomial (NP) prob-
lems [5], but appear unlikely to give short worst-case solu-
tion times [6]. Of more practical interest is whether their
average performance improves on conventional heuristics.
Adiabatic quantum computing, using a slowly chang-

ing time-dependent Hamiltonian, appears to give poly-
nomial average cost growth for some NP combinatorial
search problems [7]. These observations, while encourag-
ing, are limited to small problems for which other meth-
ods, both conventional and quantum, can have even lower
costs. Furthermore, although adiabatic methods appar-
ently show exponential cost scaling for set partitioning [8]
and finding the ground state of spin glasses [9], the typical
performance of adiabatic quantum computing for large
NP search problems remains an open question. Thus it
is of interest to compare the adiabatic method with other
techniques for NP problems having a well-studied class
of hard instances.
This paper provides such a comparison for k-

satisfiability (k-SAT), consisting of n Boolean variables
and m clauses. A clause is a logical OR of k variables,
each of which may be negated. A solution is an assign-
ment, i.e., a value, true or false, for each variable, satis-
fying all the clauses. An example 2-SAT instance with 3
variables and 2 clauses is v1 OR (NOT v2) and v2 OR v3,
which has 4 solutions, e.g., v1 = v2 = false and v3 = true.
For a given instance, let the cost c(s) of an assignment s
be the number of clauses it does not satisfy.
For k ≥ 3, k-SAT is NP-complete [5], i.e., among the

most difficult NP problems in the worst case. For average
behavior we use the random k-SAT ensemble, in which
the m clauses are selected uniformly at random. I.e.,
for each clause, a set of k variables is selected randomly,
and each selected variable is negated with probability
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1/2. Thus clauses are selected uniformly from among
the M =

(

n
k

)

2k possible clauses. We focus on the deci-
sion problem, i.e., finding a solution, rather than the re-
lated optimization problem, i.e., finding a minimum cost
state. This allows direct comparison with prior empirical
studies of heuristic methods for SAT. The algorithms
we consider are probabilistic, so cannot definitively de-
termine no solution exists. Thus we use soluble instances:
after random generation, we solve the instances with an
exhaustive conventional method and only retain those
with a solution. This ensemble has a high concentra-
tion of hard instances near a phase transition in search
difficulty [10, 11, 12, 13]. For 3-SAT, we generate in-
stances near this transition by using µ ≡ m/n = 4.25,
though for those n not divisible by 4, half the samples
had m = ⌊4.25n⌋ and half had m larger by 1.
The remainder of this paper describes several quantum

search algorithms in the context of satisfiability prob-
lems, and then compares their behavior.

II. ALGORITHMS

The adiabatic technique [7] is based on two Hamil-
tonians H(0) and H(c). The first is selected to have a
known ground state, while the ground states of H(c) cor-
respond to the solutions of the problem instance to be
solved. The algorithm continuously evolves the state of
the quantum computer using H(f) = (1−f)H(0)+fH(c)

with f ranging from 0 to 1. Under suitable conditions,
i.e., with a nonzero gap between relevant eigenvalues of
H(f), the adiabatic theorem guarantees that, with suffi-
ciently slow changes in f , the evolution maps the ground
state of H(0) into a ground state of H(c), so a subsequent
measurement gives a solution. The choices of H(0), H(c)

and how f varies as a function of time are somewhat
arbitrary.
In matrix form, one Hamiltonian with minimal-cost as-

signments as ground states is H
(c)
r,s = c(s)δr,s, for assign-

ments r and s, where δr,s is 1 if r = s and 0 otherwise.
This Hamiltonian introduces a phase factor in the am-
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plitude of assignment s depending on its associated cost
c(s).
For H(0), we introduce a nonnegative weight wi for

variable i, let ω ≡
∑n

i=1 wi and take

H(0)
r,s =

{

ω/2 if r = s

−wi/2 if r and s differ only for variable i

0 otherwise

(1)

This Hamiltonian can be implemented with elementary
quantum gates by use of the Walsh-Hadamard trans-
form W , with elements Wr,s = 2−n/2(−1)r·s (treating
the states r and s as vectors of bits so their dot product
counts the number of variables assigned the value 1 in
both states). Specifically, H(0) = WDW where D is a
diagonal matrix with the value for state r given by the
weighted sum of the bits:

∑n
i=1 wiri with ri represent-

ing the value of the ith bit of r. In particular, if all the
weights equal 1, Dr,r just counts the number of bits equal
to 1.
The adiabatic method is a continuous process. To com-

pare with other algorithms, we use the algorithmically
equivalent discrete formulation [14, 15] acting on the am-
plitude vector initially in the ground state of H(0), i.e.,

ψ
(0)
s = 2−n/2. This formulation consists of j steps and a

parameter ∆. Step h is a matrix multiplication:

ψ(h) = e−iτ(f)H(0)∆ e−iρ(f)H(c)∆ ψ(h−1) (2)

with the mixing phase function τ(f) = 1− f , cost phase
function ρ(f) = f and taking h̄ = 1. After these steps,
the probability to find a solution is Psoln =

∑

s |ψ(j)|2,
with the sum over all solutions s.
As a simple choice for the evolution, we take f to vary

linearly from 0 to 1. We exclude the steps with f = 0
and 1 since they have no effect on Psoln. Specifically, we
take f = h/(j + 1) for step h, ranging from 1 to j.
The expected number of steps required to find a solu-

tion is C = j/Psoln, providing a commonly used proxy
for the computational cost of discrete methods, pending
further study of clock rates for the underlying gate opera-
tions and the ability of compilers to eliminate redundant
operations. As also observed with conventional heuris-
tics, the cost distribution for random k-SAT is highly
skewed, so a few instances dominate the mean cost. In-
stead, we use the median cost to indicate typical behav-
ior. The time for the continuous formulation is T = j∆,
so the adiabatic limit is j∆ → ∞. By contrast, in the
discrete formulation, ∆ parameterizes the operators of
Eq. (2) rather than determining the time required to per-
form them.
Eq. (2) follows the continuous evolution, ψ(h+1) ≈

e−iH(f)∆ψ(h), when ∆||H || → 0 which holds when ∆ ≪
1/n [14, 15]. This last condition uses the fact that the
norm ||H || is the largest eigenvalue of H , which is O(n)
since we consider k-SAT problems with m ∝ n. As a
specific choice, we use ∆ = 1/

√
j. Other scaling choices

∆ = 1/jα with 0 < α < 1 give qualitatively similar be-
haviors to those reported here while maintaining corre-

algorithm parameters phase functions
T ∆

adiabatic T → ∞ ∆ → 0 ρ(0) = 0 = τ (1)

discrete adiabatic T → ∞ constant ρ(0) = 0 = τ (1)

heuristic constant ∆ → 0 suitable ρ, τ

TABLE I: Summary of quantum search algorithms using
problem structure. The heuristic method requires finding ap-
propriate choices for the phase functions to give good perfor-
mance and for the number of steps j to increase with problem
size n. The adiabatic methods require sufficiently large values
of T = j∆. A constant value for a parameter in this table
means it is taken to be independent of n and j.

spondence with the continuous evolution for sufficiently
large j.
The unweightedH(0) uses equal weights: wi = 1 so ω =

n. Alternatively, wi can be the number of times variable i
appears in a clause [7], as also used by some conventional
heuristics to adjust the importance of changes in each
variable. This choice gives ω = mk. By matching H(0)

to the problem instance, one might expect such weights to
improve performance. Instead, for random 3-SAT these
weights give higher costs C, requiring about n times as
many steps to achieve the same Psoln as the unweighted
choice. If instead these weights are normalized so their
average value is 1, the performance is about the same as
in the unweighted case, but still slightly worse. In light
of these observations, we use the unweighted H(0) in this
paper.
We compare the adiabatic limit with two other meth-

ods, summarized in Table I. First, for the discrete adia-

batic case we take ∆ independent of n and j, violating the
condition ∆n → 0 so Eq. (2) no longer closely approxi-
mates the continuous evolution and does not necessarily
give Psoln → 1 as j → ∞. In this case, a discrete ver-
sion of the adiabatic theorem, described in the appendix,
ensures Psoln is close to 1 if ∆ is not too large.
Second, the heuristic method, studied previously [16,

17], has ∆ = 1/j and forms for τ(f) and ρ(f) that do
not range between 0 and 1. Instead, these phase func-
tions must be selected appropriately to give good perfor-
mance. Identifying such choices and characterizing their
performance are major issues for this algorithm, though
mean-field approximations based on a few problem pa-
rameters, e.g., the ratio m/n for k-SAT, can give rea-
sonably good choices. This method does not correspond
to the adiabatic limit: Psoln has a limit less than 1 as
j → ∞.
For all these techniques, expected cost C = j/Psoln is

minimized for intermediate values of j rather than taking
j → ∞ as used in the limits listed in Table I. Identifying
parameters and phase functions, ρ(f) and τ(f), giving
minimal cost for a given problem instance depends on
details of the search space structure unlikely to be avail-
able prior to solving that instance. However, as described
below, taking j to grow only as a fairly small power of n
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FIG. 1: Log-log plot of median Psoln for the adiabatic method
vs. n with the number of steps j equal to n, the integer near-
est n3/2, n2 and n3 (solid curves, from bottom to top, re-
spectively). We use ∆ = 1/

√
j. For comparison, the dashed

curve shows Psoln for the heuristic method using at most n
steps. The error bars show the 95% confidence intervals [18,
p. 124] of the medians estimated from the random sample of
instances. The same instances were solved with each method.
We use 1000 instances for each n up to 20, and 500 for larger
n, except only 100 for j = n3 for n ≥ 16.

provides relatively modest costs, on average, for problem
sizes feasible to simulate.

III. BEHAVIOR

For the adiabatic method, Fig. 1 shows the median
Psoln for various growth rates of the number of steps.
Psoln → 1 as j increases. At least for n <∼ 20, Psoln ≈ 1
when j = n3, so median costs are O(n3), a substantial
improvement over all known classical methods if it con-
tinues for larger n. However, for smaller powers of n,
Psoln values decrease, but this is only evident for j = n2

for n > 20. This raises the possibility of such a decline,
at somewhat larger n, for larger j as well. Provided such
a decline only leads to Psoln decreasing as a power of
n, corresponding to a straight line on the log-log plot of
Fig. 1, median costs would still only grow as a power of
n. The remainder of this section describes the algorithm
behaviors in more detail.

A. Energy Gap

Asymptotically, the adiabatic method’s cost is domi-
nated by the growth of 1/G2 where G = minf g(f) and
g(f) is the energy gap in H(f), i.e., the difference be-
tween the ground state eigenvalue and the smallest higher
eigenvalue corresponding to a non-solution. Evaluation
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FIG. 2: Difference between eigenvalues of the lowest 5 excited
states and the ground state vs. f for an instance with n =
20, m = 85 and 5 solutions. The inset shows the actual
eigenvalues, with the gray curve showing the expected cost
〈c〉 in the ground state.
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FIG. 3: Lowest two eigenvalues vs. f for an instance with n =
20, m = 85, one solution and a particularly small minimum
gap. The gray curve shows the expected cost 〈c〉 in the ground
state, equal to m/2k = 10.625 at f = 0. Note the abrupt
drop at the location of the minimum gap. The ground state
for f = 1 is the solution, whose cost is zero, so 〈c〉 → 0 as
f → 1.

using sparse matrix techniques [19] for n ≤ 20 gives the
median G in the range 0.3 − 0.5, as illustrated for one
instance in Fig. 2, and, more significantly, it does not de-
crease over this range of n. This minimum is not much
smaller than other values of g(f). Hence, unlike for large
n, the cost is not dominated by the minimum gap size
and so the values of Fig. 1 may not reflect asymptotic
scaling.
By contrast, Fig. 3 illustrates the behavior of an in-

stance with a small minimum gap. One characterization
of the eigenstates of H(f) is their expected cost, i.e.,

〈c〉a =
∑

s c(s)|φ
(a)
s (f)|2 where φ(a)(f) is the ath eigen-

vector of H(f). In particular, for a = 1 this gives the
expected cost in the ground state, which we denote sim-
ply as 〈c〉. The expected cost in the ground state drops
rapidly at the minimum gap location, in contrast to the
smooth behavior for instances with larger gaps (as, for
example, in Fig. 2). We thus see a difference in behavior
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of the ground state for instances with small gaps, pre-
sumably representative of typical behavior for larger n,
and the behavior of more typical instances for n ≈ 20.
With the adiabatic method and T sufficiently large, the

actual state of the quantum computer after step h, ψ(h),
closely approximates the ground state eigenvector φ(1),
up to an irrelevant overall phase. Thus the computation
will also show the jump in expected cost.
Detailed quantitative comparison of the typical behav-

iors due to small minimum gaps and conventional heuris-
tics requires larger problem sizes. Nevertheless, we can
gain some insight from instances with small gaps for
n ≈ 20, which tend to have high costs for both the
quantum methods and conventional heuristics, such as
GSAT [20], even when restricting comparison to prob-
lems with the same numbers of variables and solutions.
For the instance shown in Fig. 3, GSAT trials readily
reach states with 1 or 2 conflicts, but have a relatively
low chance to find the solution. This behavior, typical
of conventional heuristics [21], corresponds to the abrupt
drop in 〈c〉 of Fig. 3. Thus finding assignments with costs
below this value dominates the running time of both the
quantum and conventional methods. These observations
suggest small energy gaps characterize hard problems
more generally than just for the adiabatic method, which
may provide useful insights into the nature of search
along with quantities such as the backbone (i.e., vari-
ables with the same values in all solutions [13]).
Simple problems or algorithms ignoring problem struc-

ture allow determining the gap for large n [14, 15, 22].
This is difficult for random SAT. For instance, although
random k-SAT corresponds to random costs for H(c) and
the extreme eigenvalues of random matrices can be deter-
mined when elements are chosen independently [23, 24],
the costs of nearby states for SAT instances are highly
correlated since they likely conflict with many of the same
clauses. Alternatively, upper [25] and lower [26] bounds
for eigenvalues can be based on classes of trial vectors.
For instance, vectors whose components for state s de-
pend only on c(s) give fairly close upper bounds for the
ground state of random 3-SAT, on average, as well as a
mean-field approximation for the heuristic method [16].
However, simple lower bounds for higher energy states
are below the upper bound for the ground state for
some values of f , and so do not give useful estimates
for G. Furthermore, typical soluble instances have expo-
nentially many solutions (although still an exponentially
small fraction of all states). Thus a full analysis of per-
formance based on energy values must also consider the
behavior of the many eigenvalues corresponding to solu-
tions, which can be complicated, as illustrated in Fig. 2.

B. Search Cost

Even if n <∼ 20 does not identify asymptotic behavior,
this range of feasible simulations allows comparing algo-
rithm costs. Such comparisons are particularly relevant
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FIG. 4: Log plot of median search cost vs. n for the heuristic
(diamond), unstructured search (box), GSAT with restarts
after n steps (circle) and adiabatic search with j = n2 (trian-
gle). The values are based on the same instances as in Fig. 1.
The lines are exponential fits to the unstructured (dashed)
and adiabatic (solid) methods.

for quantum computer implementations with relatively
few qubits and limited coherence times which are thus
limited to small problems and few steps. Fig. 4 compares
the median values of the expected search costs C. For
the adiabatic method, using j = n3 gives large costs, far
higher than those of conventional heuristics and other
quantum methods. Using just enough steps to achieve
moderate values of Psoln reduces cost [7], e.g., j = n2.
Alternatively, for each n, testing various j on a small sam-
ple of instances indicates the number of steps required to
achieve a fixed value of Psoln, e.g., 1/8. In our case, the
latter approach has median costs about 20% lower than
the former, but with the same cost growth rate. Because
this improvement is minor compared to the differences
with other algorithms shown in the figure, and to avoid
the additional variability due to estimating j from a sam-
ple of instances, we simply take j = n2 to illustrate the
adiabatic method.
The figure also shows Grover’s unstructured search [27]

(without prior knowledge of the number of solutions [28])
and the conventional heuristic GSAT [20]. Unlike the
quantum methods, conventional heuristics can finish im-
mediately when a solution is found rather than waiting
until all j steps are completed. For comparison with the
different choices of j in Fig. 1, the median costs at n = 20
for j = n, n3/2, n2 and n3 are, respectively, 1741, 879,
1010 and 8222. The unstructured search cost grows as
e0.32n. The exponential fit to the adiabatic method is
e0.13n. This fit gives a residual about half as large as
that from a power-law fit. The growth rate is about the
same as that of GSAT.
Fig. 4 shows the heuristic, using at most n steps, gives
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FIG. 5: Log plot of median search cost vs. n for GSAT
(circle), the heuristic method (diamond), both of which are
also shown in Fig. 4, and two versions of the discrete adiabatic
method: ∆ = 1.2 with linear phase functions (triangle) and
the cubic polynomial variation with f (gray box) described
in the text. The lines are exponential fits to GSAT (dashed)
and the two discrete adiabatic quantum methods. The figure
uses the same instances as Fig. 4.

low costs due to its fairly high values for Psoln shown in
Fig. 1. The constant ∆ scaling for the discrete adiabatic
method also gives large Psoln values for j ≈ n. Thus
both ∆ = 1/j and ∆ independent of j make better use
of quantum coherence in the discrete formulation than
the continuous adiabatic limit (with 1/j ≪ ∆ ≪ 1/n)
for hard random 3-SAT. These behaviors are shown in
Fig. 5.
Because these quantum methods and GSAT consist of

a series of independent trials, they can be combined with
amplitude amplification to give an additional quadratic
performance improvement [29]. However, this is only a
significant benefit when Psoln is fairly small, which is not
the case for the heuristic and GSAT methods for these
problem sizes.
For the adiabatic method, taking ρ(f) and τ(f) in

Eq. (2) to vary according to g(f)2 reduces costs [15, 22].
This concentrates steps at values of f close to the min-
imum gap. While g(f) is costly to evaluate for SAT in-
stances, using average values of g(f) based on a sample
of instances gives some benefit. E.g., for j = n2, Psoln

increases from around 0.4 shown in Fig. 1 to a range of
0.5 − 0.6 but this does not appear to reduce the cost’s
growth rate.
Similar improvement occurs with constant ∆. Opti-

mizing τ and ρ separately for each step on a sample of
instances gives values close to a cubic polynomial in f .
Restricting attention to such polynomials, for a set of
100 n = 12 instances the best performance was with
∆ = 1.31275, ρ(f) = p(f), τ(f) = 1 − p(f) where

p(f) = 1.92708f − 2.66179f2 + 1.73471f3. This cubic
is similar to the functional form optimizing the adiabatic
method for unstructured search [15, 22]. Fig. 5 shows the
resulting cost reduction. Hence, tuning the algorithm to
the problem ensemble is beneficial, as also suggested by
a mean-field analysis of the heuristic [16].
The simulations also show these quantum algorithms

have a large performance variance among instances with
given n and m, and no single choice for ρ and τ is best
for all problem instances. Thus portfolios [30] combining
a variety of such choices can give further improvements.

IV. CONCLUSION

In summary, for random SAT, the adiabatic method
improves on unstructured search and provides a gen-
eral technique to exploit readily computed properties
of hard search problems through the choice of Hamil-
tonians. However nonadiabatic-limit algorithms require
fewer steps, comparable to GSAT, and appear to have
slower cost growth. As a caveat, small energy gaps ap-
pear to be associated with instances difficult to solve with
both quantum and classical methods. Thus the simula-
tion results presented here, based on fairly small problem
sizes for which most instances have fairly large energy
gaps, may not reveal the asymptotic scaling of the typi-
cal search cost for hard random SAT problems. Evaluat-
ing the behavior of these algorithms and, more generally,
identifying better ways to use state costs in quantum al-
gorithms remain open questions.
Quantum computers with only a moderate number of

qubits could test algorithms beyond the range of simula-
tors, and hence provide useful insights even if the problem
sizes are still readily solved by conventional heuristics.
Such studies could help address the question of whether,
with suitable tuning based on readily evaluated average
properties of search states, the ability to operate on the
entire search space allows quantum computers to effec-
tively exploit weak correlations among state costs in ways
classical machines cannot.
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APPENDIX A: DISCRETE ADIABATIC

BEHAVIOR

When ∆ is held constant, the steps of Eq. (2) do not
approximate the continuous evolution induced by H(f),
and hence ψ(h) does not closely follow the ground state
of H(f) when T → ∞. Nevertheless, ψ(h) does closely
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follow an eigenstate of the unitary operator involved in
Eq. (2). This discrete version of the adiabatic theorem
ensures good performance of the algorithm provided the
continuous change in the eigenvector takes the initial
ground state into the final one, rather than into some
other eigenvector.

1. The Discrete Adiabatic Limit

Consider a smoothly changing sequence of unitary ma-
trices U(f) defined for 0 ≤ f ≤ 1 and vectors ψ(h+1) =
U(f)ψ(h) with f = h/j for h = 0, . . . , j − 1. Let e−iθr(f)

and êr(f) be the rth eigenvalue and (normalized) eigen-
vector of U(f).
We start with ψ(0) equal to the eigenvector ê1(0) of

U(0), which we assume to be nondegenerate for sim-
plicity. Provided the difference between eigenvalues is
bounded away from zero, for sufficiently large j, ψ(j) will
be close to an eigenvector of U(1). To see this let ǫ = 1/j
and expand ψ(h) =

∑

r cr(f)Λr(f) êr(f) in the eigenbasis
of U(f) where

Λr(h/j) ≡ exp

(

−i
h−1
∑

k=0

θr(k/j)

)

First order perturbation theory gives the change in the
cr values during one step to be O(ǫ). After j steps,
it might appear that these changes could build up to
O(ǫj) = O(1). However, this is not the case due to the
rapid variation in phases when j is large. Specifically,
the changes in coefficients for r 6= 1 are

dcr
df

= P1,r(f)Φr(f) (A1)

where Ps,r(h/j) ≡ e−ij Θs,r(f),

Θs,r(f) ≡
1

j

h−1
∑

k=0

(θs(k/j)− θr(k/j))

and

Φr ≡ 〈r| dU/df |1〉
e−iθr − e−iθ1

Since cr(0) = 0, Eq. (A1) gives

cr(f) =

∫ f

0

e−ij Θ1,r(κ)Φr(κ) dκ

As j increases, the integrand oscillates increasingly
rapidly so the integral goes to zero as j → ∞ by applying
the Riemann-Lebesgue lemma since dΘ1,r/df = θ1 − θr
is nonzero and |Φr(f)| is bounded for all f and r 6= 1, by
the assumption of no level crossing. Hence cr(f) → 0 so
ψ(j) approaches ê1(1), up to an overall phase factor, as
j → ∞.
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FIG. 6: Energy values θr(f) corresponding to the two eigen-
values of U(f) vs. f for ∆ = 1 (gray) and 4 (black). The
values are defined only up to a multiple of 2π, and we take
−π < θ ≤ π. The ground states of H(0) and H(c) corre-
spond to θ(0) = 0 and θ(1) = 0, respectively. The values
for ∆ = 1 are close to those of the combined Hamiltonian
H(f) = (1− f)H(0) + fH(c). However, the ∆ = 4 values do
not remain close to those of H(f)∆.
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FIG. 7: Psoln vs. j for ∆ = 1 (gray) and 4 (black). For
comparison, the dashed curve uses ∆ = 1/

√
j corresponding

to the continuous adiabatic limit.

2. An Example

An important caveat in applying this result to quan-
tum algorithms is that while j → ∞ suffices to ensure
ψ(h) closely follows the evolution of an eigenvector of
U(f), this evolution may not lead to the desired eigenvec-
tor of U(1), i.e., corresponding to solutions to the search
problem. This is because the eigenvalues of U(f) lie
on the unit circle in the complex plane and can “wrap
around” as ∆ increases. Hence, in addition to ensur-
ing the eigenvalue gap does not get too small, good per-
formance also requires selecting appropriate ∆. Alter-
natively, one could start from a different eigenvector of
U(0), which would be useful if one could determine which
eigenvector maps to the solutions.

One guarantee of avoiding this problem is that none of
the eigenvalues of U(f) wrap around the unit circle, i.e.,
∆||H || → 0, corresponding to the continuous adiabatic
limit. Simulations show performance remains good for
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FIG. 8: Psoln vs. j for several search methods solving a 20-
variable 3-SAT instance with 85 clauses and 5 solutions, the
same instance used in Fig. 2. The gray curve is the discrete
adiabatic method with ∆ = 1, the thick black curve is for
∆ = 1/

√
j corresponding to the continuous adiabatic limit.

For comparison, the thin black curve is the heuristic, with
∆ = 1/j, and the dashed curve is for unstructured search
(showing only the first period of its sinusoidal oscillation on
this log-log plot).

moderate values of j even if ∆ does not go to zero, pro-
vided ∆ is below some threshold value. For hard random
3-SAT problems with j ∝ n, this threshold appears to be
somewhat larger than 1.
To illustrate these remarks consider the n = 1 example

H(0) =
1

2

(

1 −1
−1 1

)

, H(c) =

(

0 0
0 2

)

so U(f) = e−iH(0)(1−f)∆e−iH(c)f∆. Fig. 6 shows the be-
havior of the two eigenvalues of U(f) for two values of
∆. For ∆ = 4 the initial ground state eigenvector, with
eigenvalue 1, evolves into the 2nd eigenvector of U(1)
rather than the eigenvector corresponding to the ground
state of H(c).

Fig. 7 shows the consequence of this behavior: when ∆
is too large, ψ(h) follows the evolving eigenvector to the
wrong state when f = 1, giving Psoln → 0 as j → ∞. As
another observation from this figure, Psoln(j) exhibits os-
cillations (though they are quite small for ∆ = 1). With
appropriate phase choices, these oscillations can be quite
large, allowing Psoln to approach 1 with only a modest
number of steps, even when Psoln approaches 0 for larger
j. This observation is the basis of the heuristic method.

To see the consequence of this behavior for search,
Fig. 8 compares the behavior of several search methods.
In this case ∆ = 1 is sufficiently large that the initial
eigenstate of the unitary operator evolves into a nonso-
lution eigenstate. Thus as the number of steps increases,
the probability to find a solution goes to zero, as with the
large ∆ case in Fig. 7. Nevertheless, for smaller j, most
of the amplitude “crosses” the gap to another eigenstate
that does evolve to a solution state. Consequently, this
discrete adiabatic method gives lower overall search cost,
using a moderate number of steps, than the continuous
adiabatic method (which has Psoln → 1 as j → ∞). By
contrast, for ∆ larger than 2 or so Psoln always remains
small.
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