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ADIABATIC QUANTUM STATE GENERATION*

DORIT AHARONOVT AND AMNON TA-SHMAF

Abstract. The design of new quantum algorithms has proven to be an extremely difficult task.
This paper considers a different approach to this task by studying the problem of quantum state
generation. We motivate this problem by showing that the entire class of statistical zero knowledge,
which contains natural candidates for efficient quantum algorithms such as graph isomorphism and
lattice problems, can be reduced to the problem of quantum state generation. To study quantum
state generation, we define a paradigm which we call adiabatic state generation (ASG) and which is
based on adiabatic quantum computation. The ASG paradigm is not meant to replace the standard
quantum circuit model or to improve on it in terms of computational complexity. Rather, our
goal is to provide a natural theoretical framework, in which quantum state generation algorithms
could be designed. The new paradigm seems interesting due to its intriguing links to a variety of
different areas: the analysis of spectral gaps and ground-states of Hamiltonians in physics, rapidly
mixing Markov chains, adiabatic computation, and approximate counting. To initiate the study
of ASG, we prove several general lemmas that can serve as tools when using this paradigm. We
demonstrate the application of the paradigm by using it to turn a variety of (classical) approximate
counting algorithms into efficient quantum state generators of nontrivial quantum states, including,
for example, the uniform superposition over all perfect matchings in a bipartite graph.
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1. Introduction. Quantum computation carries the hope of solving classically
intractable tasks in quantum polynomial time. The most notable success so far is
Shor’s quantum algorithm for factoring integers and for finding the discrete log [45].
Following Shor’s algorithm several other algorithms were discovered, such as Hall-
gren’s algorithm for solving Pell’s equation [31], Watrous’s algorithms for the group
black box model [48], and the Legendre symbol algorithm by van Dam and Hallgren
[17]. Except for [17] all of these algorithms fall into the framework of the hidden sub-
group problem and in fact use exactly the same quantum circuitry; the exception, [17],
is a different algorithm but also heavily uses Fourier transforms and exploits the spe-
cial algebraic structure of the problem. Recently, a beautiful new algorithm by Childs
et al. [13] was found which gives an exponential speed-up over classical algorithms
using an entirely different approach, namely quantum random walks. The algorithm,
however, works in the black box model and solves a fairly contrived problem.

In order to develop new quantum algorithms, it is crucial that we have a larger
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variety of quantum algorithmic techniques and approaches. In this paper we attempt
to make a step in that direction by studying the problem of quantum algorithm design
from a different point of view, that of “quantum state generation.”

It has been folklore knowledge for almost a decade already that the problem of
graph isomorphism, which is considered hard classically [37], has an efficient quantum
algorithm as long as a certain state, namely the superposition of all graphs isomorphic
to a given graph,

(1.1) lag) =Y 10(G)),

ceS,

can be generated efficiently by a quantum Turing machine (here and in the rest of
the paper we ignore normalizing constants for the sake of brevity). The reason that
generating |ag) suffices is very simple: for two isomorphic graphs Gy and Gs, the
states |ag,) and |ag,) are identical, whereas for two nonisomorphic graphs they are
orthogonal. Using a simple quantum circuit known as the SWAP test (see section
3.2), one can approximate the inner product between two given states and thus can
distinguish between the two cases of orthogonal and parallel |ag)’s.

One is tempted to assume that such a state, |ag), is easy to construct, since
the equivalent classical distribution, namely the uniform distribution over all graphs
isomorphic to a certain graph, can be sampled from efficiently. Indeed, the state
1Ba) = ses, |0) @ |0(G)) can easily be generated by this reasoning. However, |Gc)
is inadequate for our needs, as |8g,) and |Bg,) are always orthogonal. It is a curious
(and disturbing) fact of quantum mechanics that though |Gg) is an easy state to
generate, so far no one knows how to generate |ag) efficiently, because we cannot
forget the value of |o).

In this paper we systematically study the problem of quantum state generation.
We are interested in a restricted version of quantum state generation, that of gener-
ating states corresponding to efficiently samplable classical probability distributions.
To be specific, let C' be a classical circuit with n inputs and m outputs. We define the
probability distribution D¢ to be the distribution over the outputs of the classical cir-
cuit C' when its inputs are uniformly distributed, i.e., Do(2) = Pryeqo,137[C(z) = 2].
We denote

)= ST VDelz) |2

z€{0,1}m

and define the quantum sampling (QS) problem.

DEFINITION 1.1 (quantum sampling (QS;)).

Input: A description of a classical circuit C' and a constant 6 > 0.

Output: A description of a quantum circuit Q of size poly(|C|), with a marked
set of output qubits, such that on input |0) the final state p of the output qubits of the
circuit Q is close to |¢) = |C), namely,

o = 16) (o] ller < 6.

The norm above is the trace norm (see section 2). We say Q quantum samples
(or Qsamples) the output distribution of the circuit C. If § is not specified, we take 6
to be some fized small constant, say 107°.

The problem of generating the graph isomorphism state from (1.1) is an instance
of QS, that of Qsampling the uniform distribution over all isomorphic graphs. We
proceed with the study of quantum state generation as follows:
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e In section 3 we prove that any problem in the complexity class statistical
zero knowledge (SZK) can be reduced to an instance of QS. SZK contains
most problems which are considered good candidates for an efficient quantum
algorithm, or for which such an algorithm already exists. Hence, this provides
a strong motivation for the study of the QS problem. Additional results
related to SZK and to the QS problem are given.

e In section 4 we define a new paradigm for quantum state generation, called
adiabatic state generation (ASG). We show that the existence of ASG implies
the existence of a standard quantum algorithm to generate the same state,
that of polynomially related complexity. Thus, in order to design a quantum
state generator, it is sufficient to design ASG for the same state. The ASG
paradigm is strongly related in spirit to the framework of adiabatic quantum
computation and the physical terminology used therein, such as Schrédinger’s
equation and the adiabatic theorem. Nevertheless, our definition and proofs
do not require any knowledge of those notions and can be understood from
first principles.

e Section 5 shows that a fairly general class of classical approximate counting
algorithms (that use rapidly mixing Markov chains) can be transformed into
ASG algorithms that Qsample from the final distributions of the Markov
chains. This solves the QS problem for various interesting cases, such as the
uniform distribution over all perfect matchings of a given graph. This section
draws intriguing links between the ASG paradigm and Markov chains and
spectral gap analysis.

e Section 6 collects lemmas that were used in previous sections and which might
be useful when applying the ASG paradigm in other cases. These include the
Hamiltonian-to-projection and the Hamiltonian-to-measurement lemmas, the
jagged adiabatic path lemma, and the sparse-Hamiltonian lemma, and we
explain their meaning below.

The problem of QS was also considered by Grover and Rudolph [30], without a
name. They show how to apply standard techniques to construct the state ). \/p; |i)
for a probability distribution {p;} that is “integrable,” i.e., for which Zf:k p; can be
efficiently computed (approximated) given k and £. One can apply these techniques to
construct the states that we construct in section 5. This is done by exploiting the self-
reducibility of the problems corresponding to these states. We stress, however, that
the techniques we develop in this paper are qualitatively and significantly different
from previous techniques for generating quantum states and, in particular, do not
require self-reducibility. This can be important for extending our approach to other
quantum states in which self-reducibility cannot be used.

In the remainder of the introduction we provide overviews of each of the different
parts of the paper. We note that each one of these sections can be read in an almost
self-contained way.

1.1. QS and SZK (section 3). Our first observation is an interesting connec-
tion between the QS problem and the complexity class SZK (see section 3 for the
definition and background on this class).

THEOREM 1.1. If QS € BQP, then SZK C BQP.

The proof of Theorem 1.1 relies on a result of Sahai and Vadhan [44]. They
defined a problem, called statistical difference, and proved it is SZK-complete. We
provide a quantum algorithm for the statistical difference problem given a quantum
algorithm for QS.
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Theorem 1.1 shows that a general quantum algorithm for the problem of QS
implies SZK € BQP.! We note that most problems that were shown to be in BQP or
are considered good candidates for BQP, such as discrete log, quadratic residuosity,
approximating closest and shortest vectors in a lattice, graph isomorphism, and more,
belong to SZK. Theorem 1.1 thus connects the problem of QS to all these algorithmic
problems. This motivates our definition and study of the QS problem.

A possibly easier task than solving the general QS problem is to solve specific
instances of the problem. To this end, one can apply the proof of Theorem 1.1
to a specific problem in SZK. This would lead to the discovery of the relevant QS
instance to which the problem can be reduced. In the general case, this might be quite
complicated to do, since the proof of Theorem 1.1 uses the nontrivial completeness
result of [44]. In some cases, however, the specification of the relevant QS instance is
much easier. Three such cases are discrete log, quadratic residuosity, and a certain
lattice related problem. We provide in Appendix A explicit specifications of the QS
instances (namely, the quantum superpositions) to which each one of these problems
can be reduced. Note that we already know efficient quantum algorithms for the first
two problems. The case of solving the Qsampling instance associated with the lattice
problem is wide open.

It is interesting to ask whether Theorem 1.1 also holds in the other direction.
In other words, is solving QS equivalent to solving the SZK problem, or is the QS
problem harder? We show that at least for some cases, equivalence holds. It is easy
to see that the QS instance corresponding to discrete log can be solved using the
quantum algorithm for discrete log. We prove that the same is also true for the
graph isomorphism problem; namely, by trying to solve the QS problem for graph
isomorphism, we are not making the problem harder.

Finally, we also study the case of perfect Qsampling. One might hope that if
QSs—p can be solved in quantum polynomial time, this would imply that SZK lies in
quantum polynomial time with the one-sided error, RQP. We do not know how to
prove this, but we provide a slightly weaker result.

1.2. The adiabatic quantum state generation paradigm (section 4). In
the past few years, a paradigm called adiabatic quantum computation which was de-
fined in [22] attracted considerable attention. Adiabatic quantum computation is a
framework for quantum algorithms which uses, instead of the unitary gates used in
the standard quantum circuit model, the more physical language of Hamiltonians,
spectral gaps, and ground-states, which we will soon explain.

Inspired by adiabatic quantum computation, we define a paradigm for designing
quantum state generating algorithms (sometimes called quantum state generators) in
the standard quantum circuit model. We call this paradigm ASG. Our goal in the
definition of ASG is not to replace the quantum circuit model, or to improve on it, but
rather to develop a paradigm, or a language, in which the problem of quantum state
generation, and QS in particular, can be studied conveniently. The advantage in using
the language of the adiabatic computation model is that the task of quantum state
generation becomes more natural, since adiabatic evolution is cast into the language
of quantum state generation. Furthermore, as we will see, it seems that this language
lends itself more easily than the standard circuit model to developing general tools.

Our definition of ASG and results regarding this paradigm do not rely on knowl-
edge of the physical terminology on which adiabatic computation is based, such as

INote that there exists an oracle A relative to which SZK# ¢ BQP4 [1].
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Schrédinger’s equation and the adiabatic theorem. Nevertheless, since these notions,
and the adiabatic computation model in particular, provide so much of the intuition
behind our definitions and proofs, we now provide some background regarding these
notions to motivate our discussion. We refer the reader to [40, 22, 8] for more in-
formation regarding physical background, adiabatic computation, and the adiabatic
theorem, respectively.

1.2.1. Adiabatic computation: The physical motivation for ASG. In
the standard model of quantum computation, the state of n qubits evolves in discrete
time steps by unitary operations. In contrast, the underlying physical description of
this evolution is continuous. This evolution is described by Schrédinger’s equation:
4 1y(t)) = iH(t) [4(t)), where [1)(t)) is the state of the n qubits at time ¢, and H(t) is
a Hermitian 2" x 2" matrix operating on the space of n qubits. This matrix is called
the Hamiltonian. The term % [ (t)) stands for lim¢_g w
measuring the direction in which [1(t)) evolves at a given time ¢. Loosely speaking,
the integration of Schrodinger’s equation over time from time 0 to a later time ¢ gives
the discrete time evolution of the quantum state from time O to t; the fact that the
Hamiltonian is Hermitian can be shown to be equivalent to the familiar fact that the
discrete time evolution is unitary. When the Hamiltonian is independent of time, the
solution of Schridinger’s equation is easy: one can verify that Schrédinger’s equation
is satisfied by

(1.2) [%(2)) = e [1(0))

(see section 2 for exponentiation of matrices). Moreover, the fact that H is Hermitian
implies that the matrix e*f* is unitary.

From the physicist’s point of view, not every Hamiltonian can be used in the
above equation, since not every Hamiltonian can be applied on a physical system.
The physically realistic Hamiltonians are those that are local, namely, involve only
interactions between a small number of particles. More formally, such a Hamiltonian
H can be written as the sum H(t) =), Hp(t), where m is small and each H,,(t) is
a tensor product of some Hermitian matrix on a small number of qubits with identity
on the rest.

An important question in physics is the following. We are given a system which
is in some initial state |¢)(0)) at time ¢ = 0, and we let the system evolve according to
a time-dependent Hamiltonian H(¢) from time ¢t = 0 to ¢t = 7. This means that we
set 1(0)) as the initial conditions for Schrodinger’s equation and set the Hamiltonian
to be H(t). Our goal is to solve the equation and find out the state of the system at
time 7.

Adiabatic evolution is a special case of the above question in which an elegant
solution exists. In adiabatic evolution, one considers a parameterized path in the
Hamiltonian domain, H(s) for s € [0, 1], which starts at some Hamiltonian H(0) =
Hyie and ends at another Hamiltonian H (1) = Hyipa. We require that the ground-
state (the eigenstate of lowest eigenvalue) of the Hamiltonian H(s) is unique for all
s € [0,1]. To specify the adiabatic evolution, one picks the duration of the process,
namely 7. The system is initialized at time ¢ = 0 in the ground-state of H(0). The
system then evolves by Schrédinger’s equation from time 0 to time 7', under the
Hamiltonian H(t) = H(t/T). The term adiabatic means that the Hamiltonian is
modified infinitely slowly along the path; in other words, we take T — oo. In this
limit we are guaranteed by the celebrated adiabatic theorem [34, 39] that the final
state will be equal to the ground-state of the final Hamiltonian H fiynqi.

and is a vector
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Here we are interested in finite processes. Taking T to be finite introduces an
error in the final state: it is no longer exactly the ground-state of H(T') but only close
to it in Euclidean distance. How large should T be in order for the error to be small?
Two parameters turn out to be important. Denote by A(H(s)) the spectral gap
of H(s), namely the difference between the Hamiltonian’s lowest eigenvalue and the
next one. The first parameter is A, the minimal spectral gap of the time-dependent
Hamiltonian H (s), along the path from H(0) to H(1). The other parameter is related
to how fast the Hamiltonian changes in time; we set 1 to be the maximal norm of the
first derivative of H with respect to s: 7 = max, |42 (s)[|. It turns out that for the
final state to be within € Euclidean distance from the final ground-state, T" should be

(1.3) T = poly (%) .

Different versions of the theorem derive different (small degree) polynomials in the
above parameters [43, 8, 10]. In [8] the second derivative of the Hamiltonian with
respect to s also plays a role. We learn from (1.3) that if we would like to consider
processes with polynomially bounded 7', we need 7 to be polynomially bounded, and
A to be nonnegligible, namely, bounded from below by a function which is inverse
polynomial in the size of the system.

The proof of the adiabatic theorem [39] is rather nontrivial and is beyond the
scope of this paper. We refer the reader to [8] for an elementary proof of the theorem
and for further references. A very rough intuition about the proof is derived by
considering a fixed Hamiltonian H, and observing how the solution to Schrédinger’s
equation behaves when the initial state is an eigenstate of the Hamiltonian H, with
eigenvalue A. In this case, the matrix e*’* applied on the eigenstate simply multiplies
it by a scalar e?(A*mod27) This complex number, of absolute value 1, can be viewed as
a vector in the complex plane, which rotates in time faster when A is larger and slower
when A is smaller. Hence, for the ground-state it rotates the least. The fast rotations
essentially cancel the contributions of the vectors with the higher eigenvalues due to
interference effects.

Farhi et al. considered the possibility of using adiabatic quantum evolutions to
solve NP-hard optimization problems. The idea of Farhi et al. was to find the (unique)
minimum of a given function f : {0,1}" — {0,1} as follows: H;,; is chosen to be
some generic Hamiltonian. Hy;nq is chosen to be the problem Hamiltonian, namely
a 2" x 2™ matrix which has the values of f on its diagonal and zero everywhere else.
The system is then initialized in the ground-state of H;,;; and evolves adiabatically
on the convex line H(s) = (1 — s)Hinit + sHfina. By the adiabatic theorem, if the
minimal spectral gap is lower bounded by some inverse polynomial, then 7' can be
taken to be polynomially bounded, and the final state would be sufficiently close to
the ground-state of H i, which is exactly the sought after minimum of f. Despite
initial optimistic numerical results [20, 15, 21], there is now strong evidence that
the spectral gap along the Hamiltonian path for the NP-hard problems considered is
exponentially small [18, 19, 43].

The general model of adiabatic computation (see, e.g., [4]) does not require the
final Hamiltonian to be diagonal as above, but it does require the Hamiltonians to
be local. We now know that this model is in fact equivalent in computational power
to the standard quantum circuit model. The fact that adiabatic computations with
local Hamiltonians can be simulated efficiently by the standard model was shown in
[22, 18]. The other direction, showing that any standard quantum computation can
be simulated efficiently in the adiabatic model with local Hamiltonians, was recently
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shown by Aharonov et al. [4].2 Adiabatic computation is thus a quantum algorithmic
framework equivalent to the standard quantum computation model, in which compu-
tation is thought of as the process of generating (ground-) states. It is thus natural
to draw intuition from it when attempting to design frameworks for quantum state
generation.

1.2.2. An adiabatic framework for quantum state generation. We would
now like to define a paradigm for quantum state generation that is based, in spirit, on
similar ideas used in adiabatic computation. Our goal is to develop a tool that can be
used when designing quantum algorithms that generate complicated quantum states.
We therefore generalize adiabatic computation as much as we can, while maintaining
its basic structure. First, we allow the path in the Hamiltonian domain to be a
general path (with mild conditions such as smoothness). This is different from the
choice often made in adiabatic computation literature, that the path be a straight
line. Second, and very importantly, we relax the requirement that the Hamiltonians
are local and require only that the Hamiltonians are simulatable. This means that
the time evolution of the system governed by the Hamiltonian, namely the unitary
matrix e’ft, can be approximated by a quantum circuit to within any polynomial
accuracy (for a rigorous definition see Definition 4.1). An adiabatic state generator is
thus a specification of such a nicely behaved path of simulatable Hamiltonians in the
Hamiltonians domain. The running time of the adiabatic state generator is taken to
be exactly the time required for the adiabatic evolution to succeed, roughly given by
(1.3) (again, for the exact condition see section 4).

We need to show that the existence of an adiabatic state generator implies the
existence of a corresponding quantum state generator of the final state of the adiabatic
state generator.

THEOREM 1.2 (informal). Let A be an adiabatic state generator, initiated by a
quantum state |1(0)), with a final state |Y(T')), with a polynomially bounded time T.
Then, if there exists an efficient quantum algorithm that generates |1(0)), then there
exists an efficient quantum algorithm that generates |(T)).

This result means that one can use the framework of ASG as a quantum reduction
from a (presumably, difficult to generate) quantum state to another quantum state
(which is presumably easier to generate).

To prove the theorem we need to show how to simulate the adiabatic state gener-
ator efficiently using a quantum circuit, which is not too difficult, and we also need to
show that the final state is indeed close to the ground-state of the final Hamiltonian.
The second claim follows immediately from the adiabatic theorem. This provides a
natural easy proof of Theorem 1.2, based on the adiabatic theorem. In this paper we
prefer to avoid the use of the adiabatic theorem and instead provide an elementary
proof which uses only the much simpler Zeno effect [42]. We now sketch the idea.

The Zeno effect considers the following situation. We start at some vector vg
and apply a sequence of M projective measurements, each in a very close basis to
the previous one. More precisely, if the jth measurement is in a basis which includes
some vector vj, we require the vectors v; to be slowly varying; i.e., v; is close to
vj—1. In this case, the Zeno effect states that with very high probability, after M
measurements, we end up very close to vy (even though vy and vy, might be very
far away from each other). The Zeno effect resembles adiabatic computation in its

2In fact, the seeds for the result of [4] were planted in the preliminary version of the current
paper.
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slowly varying nature, with the important difference that in adiabatic computation
we have a sequence of Hamiltonians, while in the Zeno effect we have a sequence of
measurements. Our proof uses the useful Hamiltonian-to-projection lemma (Lemma
1.2), which we prove in section 6.

We thank Manny Knill [36] for pointing out to us the similarity between adiabatic
evolution and the Zeno effect, which lead to this proof. A similar connection was used
independently in [14].

1.3. ASG and Markov chains (section 5). We now proceed to show how
the ASG paradigm can be used to Qsample from the limiting distributions of vari-
ous Markov chains. This is done by converting classical approximate counting algo-
rithms, based on rapidly mixing Markov chains, to adiabatic state generators (for a
background on Markov chains see section 5).

It is well known that a Markov chain is rapidly mixing iff the second eigenvalue
gap, namely the difference between the largest and second largest eigenvalue (in ab-
solute values) of the transition matrix M, is nonnegligible [7]. This clearly bears
resemblance to the adiabatic condition of a nonnegligible spectral gap and suggests
looking at Hamiltonians of the form

Hy=1-M.

We use I — M so that the spectrum is reversed; i.e., the largest eigenvector of M
becomes the smallest of Hy; = I — H, and the second eigenvalue gap of M turns into
the spectral gap of Hy;. Hjys defined this way is a Hamiltonian if M is symmetric;
if M is not symmetric but is a reversible Markov chain [38], we can still define the
Hamiltonian corresponding to it (see section 5).

The first question is whether the resulting Hamiltonian can be used in our ASG
framework. In other words, when is the Hamiltonian arising from a Markov chain
simulatable? To this end we prove in section 6 a general lemma, called the sparse
Hamiltonian lemma, which provides a very general condition for a Hamiltonian to be
simulatable. Essentially, the condition is that the Hamiltonian be a sparse matrix.
Based on this lemma, we show that for a (very natural) class of Markov chains,
which we call strongly samplable, the Hamiltonian arising from the Markov chain is
simulatable and can be used in the ASG paradigm.

In ASG one is interested not in a single Hamiltonian but in a path in the Hamil-
tonian domain. We recall that many approximate counting algorithms [33] use a
sequence of Markov chains. Usually one starts with a simple Markov chain and slowly
varies it until it gets close to a desired Markov chain. A notable example is the recent
algorithm for approximating the permanent [32]. We show that such approximate
counting algorithms naturally translate to adiabatic state generators. More precisely,
but still informally, we have the following theorem.

THEOREM 1.3 (informal). Let A be an efficient randomized algorithm to approx-
imately count a set S, possibly with weights. Suppose A uses slowly varying Markov
chains starting from a Markov chain with a simple limiting distribution. Then there
is an efficient quantum algorithm Q that Qsamples the final limiting distribution over
Q.

We summarize the correspondence between Markov chains and adiabatic com-
putation in Figure 1.1. We stress that it is not the case that we are interested in a
quantum speed-up for sampling various distributions. Rather, we are interested in
the coherent quantum state generation of the classical distribution, namely, in the
solution for the QS problem.
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A Markov chain < A Hamiltonian
A strongly samplable Markov chain < A simulatable Hamiltonian
Slowly varying strongly samplable Markov chains < ASG

FiGg. 1.1. The correspondence between Markov chains and adiabatic computation.

The proof of Theorem 1.3 uses another general tool, which we call the jagged
adiabatic path lemma. This lemma shows how we can connect the sequence of Hamil-
tonians resulting from the sequence of Markov chains, into a continuous path, such
that if two subsequent Hamiltonians in the sequence are not too far, and all Hamil-
tonians in the sequence have nonnegligible spectral gaps, then all Hamiltonians along
the path have nonnegligible spectral gaps. We state and prove this theorem in sec-
tion 6.

We exploit this paradigm to Qsample the set of all perfect matchings of a bipartite
graph using the recent algorithm by Jerrum, Sinclair, and Vigoda [32]. Using the
same ideas we can also Qsample the set of all linear extensions of partial orders using
an algorithm by Bubley and Dyer [12], all lattice points in a convex body satisfying
certain restrictions using the Applegate-Kannan technique [9], and many more states.

1.4. Basic tools (section 6). In this section we collect several claims and
lemmas that are used in the proofs inside the paper. We separate them from the rest
of the paper, since these results are of a general flavor, and we believe they might be
useful in other work related to adiabatic state generators, adiabatic computation, and
computation with Hamiltonians in general.

We denote by «(H) the unique ground-state of a Hamiltonian H. The first claim
shows that two close Hamiltonians have close ground-states, as long as their spectral
gaps are big enough.

Coamm 1.1. Let A,B be two Hamiltonians of equal dimensions such that
|A = B|| < n. Moreover, assume that A, B have spectral gaps bounded from below:
A(A),A(B) > A. Then [{a(A)|a(B))| >1— ‘LAL;.

The norm we use is the spectral norm, also called the operator norm (see section
2). The next basic but useful claim provides a lower bound on the spectral gap of
a convex combination of two projections. For a vector |a), the Hamiltonian IT, =
I — |a){«| is the projection onto the subspace orthogonal to a.

CLAIM 1.2. Let |a),|B) be two vectors in some Hilbert space. For any convex
combination H, = (1 —n)ls + nllg, n € [0,1], we have A(H,) > |(a|B)].

Both proofs use simple algebra.

Next, we prove the Hamiltonian-to-measurement lemma, which does the following.
We are given a simulatable Hamiltonian with nonnegligible spectral gap. We design an
efficient quantum circuit which essentially simulates a measurement in a basis which
contains the ground-state of the given Hamiltonian.

LEMMA 1.1 (Hamiltonian-to-measurement lemma). Assume H is a simulatable
Hamiltonian on n qubits. For any constant d, there exists a poly(n, ﬁ)-size circuit
Og which takes |a(H)) to |a(H)) ®|y), and for any eigenstate of H |a*) orthogonal
to the ground-state, Ogla’) = |at) ® |B(at)), where |{(y|B(at))] < O(n=9).

The next lemma achieves a related task. It shows that if H is a simulatable
Hamiltonian with nonnegligible spectral gap, then the Hamiltonian II, ), which is
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the projection on the subspace orthogonal to the ground-state of H, is also simulat-
able.

LEMMA 1.2 (Hamiltonian-to-projection lemma). Assume H is a simulatable
Hamiltonian on n qubits, with nonnegligible spectral gap A(H) > 1/n° for some
constant ¢ > 0 and with a known ground-value. Then the Hamiltonian ) is
simulatable.

The proof of both lemmas is a simple application of Kitaev’s phase estimation
algorithm [35].

The next lemma we prove allows connecting a sequence of Hamiltonians with not
too far away ground-states into one adiabatic path.

LEMMA 1.3 (the jagged adiabatic path lemma). Let {H; };F::lpdy(n) be a sequence
of bounded norm, simulatable Hamiltonians on n qubits, with nonnegligible spectral
gaps, A(H;) > n~°, and with known ground-values, such that the inner product be-
tween the unique ground-states a(Hj),a(Hj41) is at least n=¢ for all j. Then there
exists an adiabatic state generator with a(Hy) as its initial state and o(Hr) as its
final state. In particular there exists an efficient quantum algorithm that takes a(Hp)
to within arbitrarily small distance from o(Hr).

The proof of this lemma is fairly simple, with one trick required. Our first attempt
would be to consider the (jagged) path in the Hamiltonian domain that connects one
Hamiltonian in the sequence to the next by a straight line. The main point is to show
that the spectral gap along the lines is not too small. In fact, this does not hold in
the general case (see section 6.4), but if instead of connecting the Hamiltonians we
actually connect the projections Il,(f)’s, we can then use Claim 1.2 to prove that the
convex combination of these projections has a nonnegligible spectral gap.

Finally, we ask which Hamiltonians can be used in the ASG framework, namely,
which Hamiltonians are simulatable. We provide a very general condition under which
we can simulate the Hamiltonian using a quantum circuit. We say that H on n qubits
is sparse if it has at most polynomially many nonzero elements in each row (and
column, as it is Hermitian). We say it is explicit if there exists an efficient classical
algorithm that given an index of a row, j, outputs an approzximation of all nonzero
elements in the jth row of the Hamiltonian.

DEFINITION 1.2 (an explicit matrix). We say an N x N matriz A is explicit if for
every d > 0 there exists an algorithm that on input j € N outputs an approximation
of all nonzero elements in the jth row of A to within n=% accuracy and whose running
time is polynomial in log(N).

LEMMA 1.4 (the sparse Hamiltonian lemma). If H is an explicit and sparse
Hamiltonian on n qubits and ||H|| < poly(n), then H is simulatable.

We note that a local Hamiltonian is in particular sparse and explicit, but sparse
and explicit Hamiltonians are not necessarily local.

The main idea of the proof is to write H as a sum of polynomially many bounded
norm Hamiltonians H,, which are all block diagonal (in a combinatorial sense) and
such that the size of the blocks in each matrix is at most 2 x 2. This is done using
some combinatorial and number theoretical tricks. We then show that each Hamil-
tonian H,, is simulatable. To simulate the sum of the Hamiltonians we use standard
techniques (namely, Trotter’s formula—see section 4.1.1).

1.5. Conclusions. This paper sets the grounds for the general study of quantum
state generation, using the paradigm of ASG. This direction points at interesting
and intriguing connections between quantum computation and many different areas:
the complexity class SZK and its complete problem SD [44], the notion of adiabatic
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evolution [34], the study of rapidly mixing Markov chains using spectral gaps [38],
quantum random walks [13], and the study of ground-states and spectral gaps of
Hamiltonians in physics. Hopefully, techniques from these areas can be borrowed
to give more tools for ASG. Notably, the study of spectral gaps of Hamiltonians in
physics is a lively area with various recently developed techniques (see [46] and the
references therein).

It seems that a much deeper understanding of the adiabatic paradigm is required
in order to solve the most interesting open question, namely to design interesting
new quantum algorithms. As an intermediate task, it would be interesting to present
known quantum algorithms, e.g., Shor’s discrete log algorithm, or the quadratic resid-
uosity algorithm, in the ASG paradigm in an insightful way.

1.6. Related work. The definition of ASG uses adiabatic evolutions along gen-
eral paths in the Hamiltonian domain, and not just straight lines. Such adiabatic
evolutions were also studied in [14].

The connection between adiabatic evolution, the Zeno effect, and measurements,
which we use in our work, was observed before. We thank Manny Knill for pointing
this out to us [36]. These connections were also considered, in a recent independent
work, in [14].

We believe that the sparse Hamiltonian lemma might have other interesting im-
plications, e.g., in the context of Hamiltonian based quantum random walks on graphs
[16, 23, 13]. For example, Childs et al. [13] use quantum random walks to provide
an exponential algorithmic speed-up over any possible classical algorithm for a cer-
tain graph reachability task. To do this, they define certain Hamiltonians and use
a method of coloring to show that these Hamiltonians can be simulated efficiently
by a quantum circuit. The sparse Hamiltonian lemma immediately implies that the
Hamiltonians used in [13] are simulatable.

After the publication of the preliminary version of this article [3], the ideas pre-
sented in it were used to make progress in two different directions.

The first direction is the characterization of the computational complexity of the
problem of approximating the shortest vector in a lattice up to v/n (GapSVP \/ﬁ) Our
reduction of this problem to a QS problem (section 3) was used in [5] to show that
the problem lies in quantum NP. This gave the first nontrivial quantum complexity
upper bound on a lattice problem. A following paper [6] improved this result and
proved that GapSVP /; lies in NP M coNP. Interestingly, this result initiated from an
attempt to design an ASG algorithm for the relevant QS problem.

The second place where these results inspired further progress is in the study of
adiabatic computation, where an important open question was the clarification of the
computational power of the model. Our results raised the question of how powerful
quantum adiabatic algorithms are and gave tools to prove some preliminary results
about their universality [2]. These results were recently improved in [4] to show that
the model of adiabatic computation using local Hamiltonians is equivalent to standard
quantum computation.

1.7. Paper organization. The paper is organized as follows. We give some
notation and general mathematical preliminaries in section 2. Background related to
particular parts of the paper is given at the beginning of each section.

In section 3 we show that the QS problem is sufficient for solving all the languages
in SZK, and we also discuss whether it is equivalent to solving SZK. The specific ex-
amples of the Qsampling instances associated with discrete log, quadratic residuosity,
and a lattice problem are given in Appendix A. We define adiabatic quantum state
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generation in section 4. We also show (using measurements and the Zeno effect)
that adiabatic state generators can be simulated by quantum circuits. In section
5 we show the connection to Markov chains, and prove that a host of approximat-
ing counting algorithms can be translated into adiabatic state generators, generating
many interesting coherent states. Finally, in section 6, we prove several lemmas that
serve as basic building blocks for our previous results, including the sparse Hamil-
tonian lemma, the jagged adiabatic path lemma, and the Hamiltonian-to-projection
and Hamiltonian-to-measurement lemmas.

2. Preliminaries. We assume the reader is familiar with the basic terminology
of quantum computation: qubits, pure states, Hilbert space, density matrix, the class
BQP, etc. For background on these notions, please consult [40]. We now give some
preliminaries relevant for the entire paper. More specific preliminaries are given at
the beginning of each section.

2.1. Distances between distributions: Fidelity and variational distance.
For two classical distributions {p(x)}, {q(z)} we define their variational distance and
their fidelity (this measure is known by many other names as well) to be, respectively,

lp—ql = % > Ip(z) — q(2)],
F(p,q) = > V/p(@)q(x).

The following fact is very useful.
FacT 2.1 (see [40]).

1—-F(p,q) <|p—q|</1-F(p,q)?

or, equivalently,

1—|p—q| <F(p,q)</1—|p—q|*

A distribution D is flat if for every z; and Zy for which D(z1), D(22) > 0 we have
D(z1) = D(22); i.e., D is uniform over all elements in its support.

2.2. Norms on matrices: Trace norm and operator norm. The trace norm
of a Hermitian matrix H with eigenvalues A1,..., A, is |[H||¢+ = Y |A\i|. Note that
the trace norm of a density matrix is 1. The trace norm satisfies that [|[A ® B¢ =
1Al I Bl

The operator norm of a linear transformation 7" induced by the I3 norm is called
the spectral norm and is defined by

IT|| = max ‘Tw‘.
vA0 1]

The operator norm satisfies that for any two matrices, | AB|| < [| 4] - | B]l-

If T is Hermitian or unitary (in general, if 7' is normal, namely, commutes with
its adjoint), then ||T'|| equals the largest absolute value of its eigenvalues. Hence, if U
is unitary, [|U|| = 1.

For any two unitary matrices A and B and any integer k, ||A* — B¥|| < k||A— B|.
This follows from the fact that ||AB — CD| < |AB — CB|| + ||CB — CD]||, which for
unitary matrices is < [[A - C|| + ||B — D|.

Finally, for a general N x N matrix 4 = (a;;) we have ||A[|oc < [ A| < N?||A|co,
where [|Al|s = max; ; |a; ;|-
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2.3. Distances between density matrices. The variational distance and the
fidelity can be generalized to density matrices, and Fact 2.1 also holds for density
matrices (see [40]).

The generalization of the variational distance is the trace norm of the difference
between the two matrices. It is a well-known fact that the two output distributions
resulting from applying the same quantum measurement on two different density
matrices, p; andps, can have variational distance at most %le — p2l|tr. For more
details we refer the reader to [40, section 9.2].

In this paper we need only define fidelity for pure states. For two vectors ¢1, ¢o
in some Hilbert space, the fidelity is simply the absolute value of their inner product:

F(1,92) = [(d1¢2)]-

2.4. Power of a matrix. If M is a Hermitian matrix, then it has an orthonormal
basis of eigenvectors {v;} with real eigenvalues {\;}. For a function f : C — C, f(M)
is the linear transformation that has {v;} as an orthonormal basis of eigenvectors with
eigenvalues {f(\;)}. In particular, this defines .

2.5. Hamiltonian terminology. The set of Hamiltonians is the set of Her-
mitian matrices. The ground-state of a Hamiltonian H is the eigenstate with the
smallest eigenvalue, and we denote it by a(H). The spectral gap of a Hamiltonian
H is the difference between the smallest and second to smallest eigenvalues, and we
denote it by A(H). If H is Hermitian, then its eigenvalues are real, and hence e~
is unitary.

3. Quantum state generation and SZK. In this section we connect the QS
problem to the class SZK. We start with some background about SZK. We refer the
interested reader to Vadhan’s thesis [47] and to Sahai and Vadhan [44] for rigorous
definitions, a discussion of their subtleties, and other results known about this elegant
class. We then proceed to prove Theorem 1.1, and in Appendix A we provide explicit
examples of interesting QS instances. We also prove that the task of QS for graph
isomorphism is not harder than solving the graph isomorphism problem itself, and
that if QS can be done with no error, then the graph isomorphism problem is in
RQP ) coRQP.

3.1. Background on SZK.

3.1.1. Interactive proofs. A pair I = (Ily.s,Iy,) is a promise problem if
Myes € {0,1}", Ty, C {0,1}7, and My, NI, = . We look at Iy as the set of
all yes instances and Ily, as the set of all no instances, and we do not care about all
other inputs. If every x € {0,1}" is in ys U Ily,, we call IT a language.

An interactive proof is a protocol in which a prover P tries to convince a verifier V'
of some fact through an exchange of messages. Formally, the prover and the verifier
are described by probabilistic Turing machines which act on their private working
spaces plus some interaction domain. The verifier is required to be polynomial time,
and the prover is assumed to be all powerful. The interactive proof is denoted by
(P, V).

We say that a promise problem IT has an interactive proof with soundness error
€s and completeness error €. if there exist V, P such that we have the following:

o If z € Ily.,, V accepts with probability at least 1 — €.
o If z € Il,, then for every prover P*, V accepts with probability at most €.

The class NP consists of one-message interactive proofs with €., e; = 0.
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When an interactive proof system (P,V) for a promise problem II is run on
an input x, it produces a distribution over transcripts that contains the conver-
sation between the prover and the verifier; i.e., each possible transcript appears
with some probability (depending on the random coin tosses of the prover and the
verifier).

3.1.2. SZK. The class SZK consists of promise problems for which there are
interactive proofs which exhibit the following remarkable property: for = € Il,.s, the
verifier learns (almost) nothing from the interaction with the prover P, other than the
fact that x is a yes instance. It is remarkable that such proof systems in fact exist.
This is captured mathematically by the concept of simulation as follows.

An interactive proof system (P, V') for a promise problem IT is said to be an honest
verifier SZK, if there exists a probabilistic polynomial time simulator S that for every
x € Ily.s produces a distribution on transcripts that is close (in the variational
distance sense; see section 2.1) to the distribution on transcripts that V' and P would
produce in their interaction. Note that the simulator has no access to the prover, and
that we require only the simulator to produce a good distribution on inputs in Ily .,
since for no instances there is no proof to learn anyway.

One might wonder whether it is possible for the verifier to deviate from the
protocol (namely, to cheat) and by this to get information from an honest prover.
Indeed, there are honest verifier SZK proofs which are not secure against a cheating
verifier. However, it was shown in [27] that whenever there exists an honest verifier
SZK proof, then there is also an interactive proof that is also secure against dishonest
verifiers. By this we mean that a simulator also exists for verifiers that deviate from
the protocol.

We denote by SZK the class of all promise problems which have interactive proof
systems which are statistically zero knowledge against an honest (or, equivalently, a
general) verifier. It is known that BPP C SZK C AM NcoAM [24, 11, 47] and that
SZK is closed under complement [41, 47]. It follows that SZK does not contain any
NP-complete language unless the polynomial time hierarchy collapses.

3.1.3. A complete problem for SZK. Sahai and Vadhan [44] found a natural
complete problem for SZK. One nice thing about the problem is that it does not
mention interactive proofs in any explicit or implicit way. We define the complete
problem for SZK.

DEFINITION 3.1 (statistical difference (SDg g)).

Input: Two classical circuits Cy, C7 with m Boolean outputs.

Promise:

e Yes: |D¢, — Do, | > a.
e No: |l)c[J - DCl| S ﬁ

Sahai and Vadhan [44] and Vadhan [47] show that for any two constants 0 < § <

a < 1 such that o > 3, SD,, g is complete for SZK.

3.2. A reduction from SZK to QS. We are now ready to prove Theorem 1.1.
We first describe a very simple, standard building block in quantum computation,
called the SWAP test.

DEFINITION 3.2 (the SWAP test). The algorithm operates on three quantum reg-
isters: A is a one qubit register, and B and C are two registers with the same number
of qubits. The algorithm applies a Hadamard on the first qubit, then conditioned on
the first control qubit swaps between the second and third registers, and, finally, applies
a Hadamard on the control qubit and measures it.
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By a direct calculation, we have the following claim.
CrAM 3.1. Let vy,vs be two vectors in the same Hilbert space. If the SWAP

test is applied on |0,v1,vs2), then the outcome of the SWAP test is 0 with probability

M and 1 with probability M

Wc now proceed to prove Theorem 1.1.

Proof of Theorem 1.1. We assume that QS is in BQP. It is enough to show that
SDg.9,0.1, which is an SZK-complete problem, is in BQP.

Indeed, let Cy, Cy be an input to SDg 9 0.1. By our assumption there is an efficient
quantum algorithm that can generate states po, p1 such that ||p; — |C;) (Ci| ||¢r < 6
for i = 0,1 and § = 107°. We can therefore apply the SWAP test on the two states
po, p1 efficiently. We now claim the test results in the outcome 1 with probability
greater than 0.4 in case |D¢, — D¢, | > 0.9 and with probability smaller than 0.1 in
case |D¢g, — D¢y | <0.1.

The BQP algorithm follows from this claim easily: To achieve error €, simply
repeat the SWAP test O(log(1)) times, generating the states each time from scratch.
Then count the number of outcomes 1. If it is more than 0.25 of the tests, accept (the
distributions are far); otherwise, reject (the distributions are close).

To prove the claim, we first write down the probability for 1 in the ideal case, in
which the BQP algorithm outputs |C;) exactly. We have

(ColCr) = > /Dc,(2)De,(2) = F(Dcy, De,).

z€{0,1}™

Claim 3.1 implies, therefore, that the SWAP test on the state |0, Cy, Cy) results

— 2
in 1 with probability M.

In fact, the state p; is within é trace distance from |C;). This implies that the
actual state on which we apply the swap test is p; ® po, which is 26-close in the
trace norm to that of the pure state |0, Cy, C1) (see section 2.2). By section 2.3, the
variational distance between the distributions resulting from applying the SWAP test

in the two cases is 6. This implies that the probability for 1 in the actual SWAP test
1-F(Dgy,Dcy)?

is 5 + 6.
Using Fact 2.1, we have the following:
2
o If |Dc, — Dc,| > a, we measure 1 with probability % +6 >

|DC()7DC71|2 O¢272§
2 -6z 2

1-F(D¢,,Dc, )?
Y Y

IN

o If | D¢, — D¢,| < B, we measure 1 with probability
2|Dgy—Dgy |- |DCO D¢, I? +6< 28— ,6 +26

Setting a = 0.9 and 8 =0.1, we get the deslred results. ]

3.3. Perfect QS and one-sided-error quantum algorithms. One might
hope that if one could perfectly solve QS (i.e., QSs_, € BQP), then SZK C RQP,
where RQP is the one-sided variant of BQP. This, however, does not follow, be-
cause SD, g is known to be SZK complete only when 8 > 0 and o < 1. Instead,
we can prove a weaker version of this general result, concerning the class honest ver-
ifier perfect zero knowledge (HVPZK), where the simulator can ezactly simulate the
transcripts distribution. This class contains the graph isomorphism and the graph
nonisomorphism problems.

LEMMA 3.1. If QSs—o € BQP, then coHVPZK C RQP.

Proof. The proof uses the fact that SDg 5 is complete for coHVPZK [47]. It is
enough to show that SDg 50 is in RQP. Indeed, let Cy, C be an input to SDg 5. By
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our assumption we can generate the superpositions |C;) for ¢ = 0,1. The quantum
algorithm proceeds as in the proof of Theorem 1.1 and accepts iff the result of one of
the measurements is 1. For yes instances, |D¢, — D¢, | > a = 0.5, and so we measure
1 with probability at least 0.12. For no instances, we never measure 1. Hence we get
an RQP algorithm. a

As both graph isomorphism and graph nonisomorphism are in HVPZK, we get
the following corollary.

COROLLARY 3.1. If QSs_, € BQP, then GI € RQP()coRQP.

3.4. Specific examples. We saw that every problem L in SZK reduces to a pair
of circuits Cf, g, Cr,1 such that if we can Qsample |Cr, ;), we can solve L in quantum
polynomial time. Unfortunately, we do not know how to solve the QS problem in
general. We would like to specify explicitly interesting instances of the QS problem,
associated with specific problems in SZK.

In theory, such an instance can be derived from the SZK proof of the promise
problem in the following way. For every problem L in SZK, one can follow the
reduction from L to SDg.g 0.1 (guaranteed by the SZK-completeness of SDg g 0.1 [44])
and find two specific circuits Cy, ; corresponding to L. Qsampling from these circuits
would be sufficient for solving L in quantum polynomial time. In practice, however,
specifying the circuits is often not easy, as the reduction to SDg.9,0.1 is quite involved.

However, it is often possible to infer two such circuits C7, ; directly from the zero-
knowledge proof of L. We already saw in the introduction such a specific example
for the graph isomorphism problem. In Appendix A we give three more examples of
particular interest for quantum algorithms: discrete log, quadratic residuosity, and a
gap version of closest vector in a lattice.

3.5. Is solving QS equivalent to solving SZK? We saw that QS € BQP
implies that SZK C BQP. A natural question is whether the QS problem is equivalent
to solving SZK or strictly harder.

We start with the simplest case. Say L is a (promise) problem such that

e for any z, (L, x) can be efficiently reduced to solving the instance |C,) of QS,

e (. is one-to-one on its inputs, and

e there exists a procedure in BQP that using L as an oracle can invert C,; i.e.,
given z, it computes a y such that C,(y) = z.

For example, the discrete log problem gives rise to such a situation (see the
problem DLP and the circuit C' given in Appendix A). We claim the following.

Cram 3.2. If L and C are as above, then L € BQP iff C is Qsamplable.

Proof. We already know that (L,x) can be reduced to solving the instance
|C) of QS. We show the other direction. Assume L € BQP. Fix some input
x. Then, given |y), we can compute |y,Cy(y)) (because the circuit C, is given
to us), and, given |C,(y)), we can compute |Cy(y),y) (because L € BQP and we
assume we can invert C, using L).> It then follows that there exists an efficient
procedure that replaces |y) with |Cy(y)) (by undoing the computation). In partic-
ular we can build the superposition Zy ly) and transform it into the superposition

Next, we consider the case where C, is not one-to-one but rather regular; i.e.,
the distribution Do = D¢, it induces is flat. Let us further assume that we have an

3In fact, we approximate only the state, since we run a BQP algorithm for the inversion procedure,
and this algorithm may err.
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efficient way to complete C, to a one-to-one function. Formally, say L is a (promise)
problem such that

e for any x, (L, z) can be efficiently reduced to solving the instance |C,) of QS,
and C, is a circuit computing a function C,, : {0,1}" — A¢ for some domain
ACa

e there exists an efficient function f, : {0,1}" — Ay, for some domain A, such
that Cy ® f, : {0,1}" — Ac x Ay (defined by (Cu ® f2)(y) = (Ca(y), f2(y)))
is one-to-one and onto, and

e there exists an efficient procedure that using L as an oracle can invert C, ® f;
i.e., given z, it computes a y such that (C, ® f;)(y) = z.

We claim the following.

Cram 3.3. If L and C are as above, then L € BQP iff C is Qsamplable.

Proof. As before, we can create the state ¢ = > |Cr(v), f2(y)). As Cp ® f2
is one-to-one and onto Ac x Ay, we have that ¢ = > _\ |2) ® ZUGAf |v). Hence
¢ is in fact a product state, and we get the state |C,) by just ignoring the second
register. |

Graph isomorphism is an example to such a situation, as we now show. A key
fact that we use is that there exists a deterministic search-to-decision reduction for
graph isomorphism (see, e.g., [37, section 1.2]). Given any two isomorphic graphs G
and G’, the reduction R gives a permutation 1 = R(G,G’) € S,, such that 7(G) = &,
where n is the number of vertices in G, and S,, is the set of all permutations on n
elements.

Then the circuit Cg : S, — Sp(G) gets m € S, as an input and outputs the
permuted graph 7(G), Cq(m) = n(G). The function fg : S, — Aut(G) is defined by
f(r) = (R(G,7(G)))~! - = (where the product is in S,,). We leave it to the reader
to show that f(m) € Aut(G), that C' ® f is one-to-one and onto, and that the above
three conditions are satisfied. Then we have the following lemma.

LEMMA 3.2. GI€ BQP iff |ag) = >, s, |0(G)) can be generated in BQP.

It is tempting to try extending the above approach in order to prove Lemma 3.2
for the SZK-complete problem SD, 3. However, we face the following problems:

e (', might not be regular; i.e., different elements C,(y) might have a different
number of preimages.

e Even worse, even if we assume C,, is regular, in fact even if C,, is a permuta-
tion, it might be possible that C; is hard to invert (and then C, is a one-way
function), and it is possible that it is hard to invert even given access to an
oracle solving L.

Thus, for this approach to work, it must be true that if L = SD (and therefore
also the whole of SZK) is easy (classically or quantumly), then there are no
one-way functions in the quantum model. We note that the question of
whether it is possible that SZK = BPP but yet one-way functions exist (in
the classical model) is a major open problem (see [47, Open problem 4.8.10]).

We therefore do not know if, in general, solving QS in BQP is equivalent to solving

SZK in BQP, and we leave it as an open problem.

4. The ASG paradigm. In this section we define the paradigm of ASG. At
the end of the section we formally state and prove Theorem 1.2, which states that
any adiabatic state generator can be simulated efficiently by a quantum circuit. This
is done using the Zeno effect. As mentioned before, our proof does not rely on the
adiabatic theorem. We start with some background on the Trotter formula, which we
need for our proofs in this section.



64 DORIT AHARONOV AND AMNON TA-SHMA

4.1. Preliminaries.

4.1.1. Trotter’s formula. Consider the sum of two Hamiltonians A and B,
A+ B. We are interested in writing the unitary matrix e?A*5)* in terms of e*4* and
e'Bt. If A and B commute, this is simple: we have e/A+B)t = ¢iAt . ¢iBt f the two

matrices do not commute, Trotter’s formula gives a way to do this:
lim (eiAt/neiBt/n)n i(A+B)t
n—oo ’

=€

In other words, it says that if we interleave short executions of A and B, then in
the limit we get an execution of A+ B. For our purpose we need to quantify the error
as a function of n, and for that we use the following variant from ([40, eq. 4.104]):

(4.1) [|e2HAHE) — 214208 24| < O((max {]|All, | BII} - 6)°).

We also need to deal with Hamiltonians of the form H =" = H,, that are sums
of m > 2 Hamiltonians. We prove the following lemma (a very similar statement
appears in [40, Exercise 4.50]).

LEmMA 4.1. Let H,, be Hermitian, m = 1,...,M, and let H = Ef‘le H,,.
Further, assume that for every 1 < k < ¢ < M we have || Zf:k H;|| < A. Define

(42) U(S — [ e&iHl . e&iHQ e eéiH[u } . [ €6iHM . elsiH}v[,1 e eéiHl ]

Then, ||Us — e || < O(M - (6A)%).
Proof. We prove by induction on M. The case M = 2 is (4.1). For the induction
step, we notice that by (4.1)
. M - - M - -
||626z it Hy e&zHleZ& Sito HieézHl H < O(((SA)J)

AISO, U5 — e&‘Hl [eéin ..... eéiH[u } . [ €6iHM e e(SZ'HQ ]eéiHl. Thus,

||U6 _ 6261'21.1‘11 H;

< ||[e51H2 ..... eéiH]u ] . [ eéiHM ..... eéiHQ } _ 62(% qui2 Hi

+O0((6A)°),

and by induction this is bounded by O(M(6A)%). O
COROLLARY 4.1. Let H, H,, satisfy the conditions of Lemma 4.1. Then, for
every t > 46,

HU}ﬁJ _ e*“HH <O -8+ MA*t- 82).
Notice that for every fixed ¢, M, and A, the error term goes down to zero with

6. In applications, we pick ¢ in such a way that the above error term is polynomially
small. We now give the proof.

Proof.
L&) ] | e
[ E M Up = e )
<P o, —eE " 21 TH"
_ — 25 26 — 2 .
Y s — € + |le e
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—+tH )
The first term ||Us —e 25 || = |[Us — e 27 || < O(M - (6A)?), by Lemma 4.1.
For the second term |le 22 —el2s! ||, we notice that both matrices (and therefore
also their difference) have the same eigenvector basis (that of H). As the norm

—it —it —1it —it
. .. . - H T H - A
is maximized at some eigenvector, |e2zs —elzl | = |e2zs —elzs! | for some
eigenvalue A with |A] < A (because H has bounded norm). We now use the identities
le=% — =91 = 2|sin(%5%)| < |0 — 0']. We see that the second term is bounded by
86°A
2,
Altogether,

A6
B
= O(MA®t6*) + O(A8). O

|uk#! — ]| < 0 <t> : [(M- (5A)%) +

4.2. Adiabatic quantum state generation. We now define our paradigm for
quantum state generation inspired by the adiabatic theorem. As explained in the
introduction, we would like to allow as much flexibility as possible and therefore allow
any Hamiltonian which can be implemented efficiently by quantum circuits. We define
the following.

DEFINITION 4.1 (simulatable Hamiltonians). We say that a Hamiltonian H on
n qubits is simulatable if for every real value t > 0 and every accuracy 0 < € < 1 the
unitary transformation

can be approzimated by a quantum circuit of size poly(n,t,1/€) to within ¢ accuracy
in the operator norm.

Corollary 4.1 implies that a local Hamiltonian is simulatable (but the other
direction is not true). If H is simulatable, then by definition so is ¢H for any
0 < ¢ < poly(n). Tt therefore follows by Trotter’s formula that any convex combi-
nation of two simulatable, polynomially bounded norm Hamiltonians is simulatable.
Also, if H is simulatable and U is a unitary matrix that can be efficiently applied by
a quantum circuit, then UHUT is also simulatable, because e~ tUHUT _ [re—itHst,
We note that these rules cannot be applied unboundedly many times in a recursive
way, because the simulation will then blow up. The interested reader is referred to
[40, 13] for a more complete set of rules for simulating Hamiltonians.

We now describe an adiabatic path, which is an allowed path in the Hamiltonian
space.

DEFINITION 4.2 (adiabatic path). A function H from s € [0,1] to the vector
space of Hamiltonians on n qubits is an adiabatic path if

e H(s) is conlinuous,

e H(s) is differentiable, except for polynomially many points,
e for all s, H(s) has a unique ground-state, and

o for all s, H(s) is simulatable given s.

Adiabatic quantum state generation is supposed to mimic the process of imple-
menting Schrodinger’s evolution along an adiabatic path, where the adiabatic condi-
tion holds.

In our case, we use simulatable Hamiltonians rather than local Hamiltonians.
The time associated with ASG is defined using similar parameters to those used in
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the adiabatic theorem (as explained in the introduction). For an adiabatic path H(s)
we define

ot = x| %9 ana
ACH() = min ACH()

where in the above, D is the set of at most polynomially many points where the
derivative is not defined.

DEFINITION 4.3 (adiabatic quantum state generation). An adiabatic quantum
state generator H,(s) is a function from x € {0,1}" to adiabatic paths {Ha(8)}sepo,1-
We require that the generator is explicit, i.e., that there is a quantum machine running
in time polynomial in its input and output length, such that

e on input x € {0,1}" outputs a(H,(0)), the ground-state of H.(0), and
e oninputz € {0,1}", s € [0,1], t > 0, and € outputs a poly(n,t,L)-size circuit
C.(s) approzimating e~*H=(*) to within € accuracy.
We define T'(x,€) = % For e > 0 we let T, = max, {T(x,€)}, and we say the
adiabatic quantum state generator H(-) takes time T. (for the given €).

4.3. Circuit simulation of adiabatic quantum state generation. We now
prove that an adiabatic quantum state generator can be simulated efficiently by a
quantum circuit.

THEOREM 1.2 (formal). Let € > 0. Let H,(s) be an adiabatic state generator
taking time T.. There exists a quantum circuit of size poly(Te, %,n) such that for
every input x, it generates a(H, (1)) to within € accuracy.

Proof. We start by an overview of the proof. The circuit is built by discretiz-
ing time to sufficiently small intervals of length § = % for some large enough R =
poly(T, %7 n). At each time step j, 7 = 1,..., R, we apply a measurement in a basis
which includes the ground-state a(H(s;)). In other words, we attempt to project
a(H(sj—1)) onto a(H(s;)). This is done using the Hamiltonian-to-measurement
lemma (Lemma 1.1). If R is sufficiently large, the subsequent Hamiltonians are very
close in the spectral norm, and their ground-states are very close in the Euclidean
norm (by Claim 1.1). Given that at time step j the state is the ground-state a(H (s;)),
the next measurement results with very high probability in a projection onto the new
ground-state a(H(s;41)). The Zeno effect [42] guarantees that the error probability
behaves like 1/R2, i.e., quadratically in R (and not linearly), and so the accumulated
error after R steps is still small, which implies that the probability that the final state
is the ground-state of H (1) is very high, if R is taken to be large enough. We now
give a formal treatment.

The description of the quantum circuit. For a given input z, the adiabatic
state generator specifies an adiabatic path H,(s). Recall that [0, 1] can be decomposed
into m = poly(n) time intervals of the form [s;, s;41] where H(-) is continuous on
[sj,8;4+1] and differentiable on (sj, sj+1). Let n =n(H,()), A = A(Hz(-)). We divide
each interval into R equal intervals, where we choose R > @(Z—z%), and we set
tik = sj+(sj+1—s;)%. For each interval, we apply the following R steps. At the kth
step, k = 1,..., R, we apply the operation Op, ) defined in the statement of the
Hamiltonian-to-measurement lemma (Lemma 1.1). Each of these applications of Oy
takes time which is poly(n,1/A), by Lemma 1.1. The complexity of the algorithm is

therefore O(%%z) times the complexity of applying the measurement from Lemma
1.1. This is indeed poly(Te,n,1/€).
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Error analysis in the case that Op is perfect. We first show the algorithm
works when we assume that the Op’s are perfect; i.e., in Lemma 1.1, (v|3(at)) = 0.
We show that starting with the state a(H(s;)), the state after the jth interval is,
with high probability, a(H(s;+1)). We first bound the relative change of H(s + ¢)
with respect to H(s). For s,s + 6 € [sj, sj+1],

5+6
/S %(s)ds

/S+5 dH
S -

ds
Hence, ||H(tjxr41) — H(t;r)|] < . Claim 1.1 implies that

1H(s +6) = H(s)|| = |

(s)||ds < n-é.

2
(@lH (i) | a(H(Ea)))] = 1= dmg

Hence the probability for successful projection at the k’th measurement, i.e., the

2 2
probability that the outcome is indeed the ground-state, is (1 — %)2 >1- %.

The probability that we err at any of the R steps in the jth interval is therefore at
most O(R"—Azz). And the probability that we err at any of the intervals is therefore at
most m times that. This is at most € by our choice of R.

Including nonperfect Opg’s. We now have to correct the fact that we can
apply the measurements with only some exponentially good accuracy but not exactly.
The above discussion showed that in the perfect measurement case, the output is
within € trace distance from the desired density matrix of the final ground-state. To
analyze the nonperfect case, we keep track of the entire system (recall that Oy adds
ancilla qubits to operate on). We now compare the overall state of the system after
the application of Oy to the overall state after the application of an ideal Oy which
simulates a perfect measurement. By Lemma 1.1, the Euclidean distance between
the states is arbitrarily small. Summing up all these errors over polynomially many
Op’s still results in an arbitrarily small distance from the state in the case of perfect
measurements. When considering the reduced state to the original subspace, this
results in a state which is arbitrarily close (in trace distance) to the state in the case
of perfect measurements. a

5. ASG for Markov chain states. Finally, we show how to use our techniques
to generate interesting quantum states related to Markov chains and approximate
counting algorithms. We give some Markov chain background below; for more back-
ground, see [38] and the references therein. For background regarding approximate
counting, see [33].

5.1. Markov chain background. We consider a Markov chain on a graph,
with nodes indexed by m bit strings. The bits strings are called states (not to be
confused with quantum states). The Markov chain is characterized by a matrix M
operating over the state space. The matrix M has eigenvalues between —1 and 1.
Under mild conditions on M (namely, M is connected and aperiodic), for any p an
initial probability distribution over the state space, the limit lim;_, ., pM? = 7 exists,
7 is called the limiting distribution, it is independent of p, and it is a left eigenvector
of M with eigenvalue 1. Also, 7; > 0 for all i.

A Markov chain is reversible if for the limiting distribution 7, for every i and j,
it holds that M, j] - m; = M{[j,1] - m;, i.e., if every directed edge has the same weight
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under the stationary distribution. We note that any symmetric Markov chain M is
reversible, and its limiting distribution must be the uniform distribution.

A Markov chain is said to be rapidly mizing if starting from any initial distribu-
tion, the distribution after poly(n, %) steps is within e total variation distance from
the limiting distribution 7. A reversible Markov chain is rapidly mixing iff its second
eigenvalue gap, namely, the difference between the first and second largest (in absolute
value) eigenvalues, is nonnegligible, namely, bounded from below by 1/poly(n).

For the sake of simplicity, we restrict our attention in this paper to Markov chains
with nonnegative eigenvalues. This is standardly done, by adding self-loops with
probability 1/2, and makes sure that no absolute values are needed in the definition
of the eigenvalue gap.

5.2. Reversible Markov chains and Hamiltonians. For a reversible Markov
chain M with a limiting distribution 7, we define

Hy; = I — Diag(y/7) - M - Diag (\/1%) ,
where Diag(y/7) is the diagonal matrix with |/7; in its diagonal ith entry. Similarly,
Dlag(ﬁ) has \/% over its diagonal.
A direct calculation shows that M is reversible iff H,; is symmetric. Thus, for
a reversible Markov chain, we denote by Hpy; the Hamiltonian corresponding to M.
The properties of Hy; and M are very much related.
Cram 5.1. Suppose M is a reversible Markov chain with limiting distribution 7.
Then
e Hys is a Hamiltonian with |[Hy|| < 2;
o the spectral gap of Hyy equals the second eigenvalue gap of M.
Let us define |) def > i/ li). Then
e the ground-state a(Hpr) of Hyy is |7) with ground-value 0.
Proof. If M is reversible, Hy; is Hermitian and hence has an eigenvector basis.
It is easy to see that v is an eigenvector of Hj; with eigenvalue A iff Diag(y/7) v
is an eigenvector of M with eigenvalue 1 — . Also, v'Diag(y/7) is a left eigenvector
of M with the same eigenvalue. It follows that if the eigenvalues of Hjs are {\,},
then the eigenvalues of M are {1 — \.}. M is a reversible Markov chain and therefore
has eigenvalues between —1 and 1, and the first two items of the claim follow. If
we denote v = (m1,...,m,) to be the (unique) left eigenvector of M with eigenvalue
1, then Diag(y/7) v is the (unique) eigenvector of Hjys with eigenvalue 0. All other
eigenvectors of M have eigenvalues strictly smaller than 1, and so all other eigenvectors
of Hys have eigenvalues strictly larger than 0. It follows that |r) = Diag(y/m) v is
the unique ground-state of Hy; with ground-value 0. a
This gives a direct connection between Hamiltonians, spectral gaps, and ground-
states on one hand and rapidly mixing reversible Markov chains and limiting distri-
butions on the other hand.

5.3. Simulating Hjps. Even if M is sparse and explicit, its corresponding Hamil-
tonian H s might not be explicit, because for approximating Hyy[i, j] = — :—]M [¢, 7]
we need to be able to approximate ;r—; Special cases are easier. For example, it is
easy to compute ;r—; when M is symmetric. For general reversible Markov chains we
define the following.

DEFINITION 5.1 (strongly samplable). A reversible Markov chain on the state

space Q with limiting distribution w is called strongly samplable if it is
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e sparse and explicit, and,
e given i,j € §2, there is an efficient way to approvimate T-.
J
Sparseness and explicitness hold in most interesting Markov chains. The second
requirement is more restrictive. Still, we note that it holds in many interesting cases
such as all Metropolis algorithms (see [29]). As Hps[i,j] = —, /:—;M[i,j] for i # j,

we see that if M is strongly samplable, then H; is sparse and explicit. As Hj; has
bounded norm, we can use the sparse Hamiltonian lemma (Lemma 1.4). This implies
the following corollary.

COROLLARY 5.1. If a Markov chain M is strongly samplable, then Hy; is simu-
latable.

5.4. From Markov chains to quantum state generation. We now consider
sequences of Markov chains and define the following.

DEFINITION 5.2 (slowly varying Markov chains). Let {Mt"}tT;T(n) be a sequence
of Markov chains on Q,, |Q,| = N = 2". Let w}* be the limiting distribution of M]".
We say that the sequence is slowly varying if there exists some ¢ > 0 such that for all
large enough n, for all1 <t <T(n) |7 — 7] <1—1/nc.

We can now state Theorem 1.3 precisely.

THEOREM 1.3 (formal). Let {M]'}1_, be a slowly varying sequence of strongly
samplable Markov chains which are all rapidly mizing, and let wf* be their correspond-
ing limiting distributions. Then if there exists an efficient quantum state gemerator
for |m), then there exists an efficient quantum state generator for |ml, ).

Proof. By Corollary 5.1, the Hamiltonians Hjsp» are simulatable. Also, Claim 5.1
implies that ||Hpz»|| < 2 and that the ground-values of all these Hamiltonians are
0. Also, the Markov chains in the sequence are rapidly mixing, which means that
they have nonnegligible spectral gaps, say > #, for some b > 0. This means that
A(Hyp) 2 # To complete the proof, we show that the inner product between the
ground-states of subsequent Hamiltonians is nonnegligible. Indeed,

(a(Hur )a(Hnr,yy)) = (melmi41)

- - 1
= Z V()1 (i) > 1= |m — mpa| > povt

where the second to last inequality follows from Fact 2.1. The theorem then follows
from the jagged adiabatic path lemma (Lemma 1.3). O
Essentially all Markov chains that are used in approximate counting algorithms
that we are aware of meet the criteria of the theorem. The following is a partial
list of states we can generate by applying this theorem. The citations refer to the
approximate counting algorithms that we use as the basis for the quantum state
generation algorithm:
1. uniform superposition over all perfect matchings of a given bipartite graph
32],
2. all lattice points contained in a high-dimensional convex body satisfying the
conditions of [9],
3. various Gibbs distributions over rapidly mixing Markov chains using the
Metropolis filter [38],
4. log-concave distributions [9],
5. all linear extensions of a given partial order [12].
Remark 5.1. We note that the second requirement in the definition of strongly
samplable Markov chains (Definition 5.1) is crucial. If this requirement can be relaxed,
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and one can prove Theorem 1.3 without it, then these techniques could have been used
to solve the QS problem related to the graph isomorphism problem and thus to give
a quantum algorithm for graph isomorphism.

We illustrate our technique with the example of how to Qsample all perfect match-
ings of a given bipartite graph.

5.5. An example: All perfect matchings of a bipartite graph. In this
section we rely heavily on the work of Sinclair, Jerrum, and Vigoda [32], who recently
showed how to efficiently approximate the permanent of any matrix with nonnegative
entries. It is well known that this can be done if one can efficiently sample a random
perfect matching of a given input bipartite graph. Sinclair et al. achieve the latter
using a sequence of Markov chains My, ..., Mp on the set of matchings of a bipartite
graph. The details of this work are far too involved to fully explain here, and we refer
the interested reader to [32] for further details.

In a nutshell, the idea in [32] is to start with M7, which is a Metropolis random
walk on the set of perfect and near perfect matchings (i.e., perfect matchings minus
one edge) of the complete bipartite graph. Since [32] is interested in a given input
bipartite graph which is a subgraph of the complete bipartite graph, they assign
weights to the edges such that weights on the edges that do not participate in the
input graph are slowly decreasing as we move from M; to M until their weights in
the final Markov chain M practically vanish. The weights of the edges are updated
from Markov chain M; to the next M;;; using data that is collected from running
the Markov chain M; with the current set of weights.

The final Markov chain M7 with the final set of parameters converges to a prob-
ability distribution which is essentially concentrated on the perfect and near perfect
matchings of the input graph, where the probability of the perfect matchings is 1/n
times that of the near perfect matching.

We would like to apply Theorem 1.3 in order to solve the quantum sampling prob-
lem for the limiting distribution of M7, namely, to generate the coherent superposition
over perfect and near perfect matchings with the correct weights.

We need to check that the conditions of the theorem hold. It is easy to check
that the Markov chains M; being used in [32] are all strongly samplable, since they
are Metropolis chains, and so the corresponding Hamiltonians are simulatable by
Corollary 5.1. Moreover, the sequence of Markov chains is slowly varying. To apply
Theorem 1.3, it remains to show that we can Qsample the limiting distribution of Mj,
the first Markov chain in the sequence.

The limiting distribution of the initial Markov chain M; is a distribution over
all perfect and near perfect matchings in the complete bipartite graph, with each
near perfect matching having weight n times that of a perfect matching, where n is
the number of nodes of the given graph. To generate this superposition we do the
following:

e We generate in the first register | ¢ |my), where m is the matching on the
complete bipartite graph induced by m € S,,. We can efficiently generate this
state because we can generate a superposition over all permutations in S,
and there is an easy computation from a permutation to a perfect matching
in a complete bipartite graph, and vice versa.

e In the second register, we generate the state [0) + /n Y ., |¢) normalized
on a log(n)-dimensional register. This can be done efficiently because any
unitary transformation on log(n) qubits can be performed efficiently.

e We apply a transformation that maps |m,i) to |0,m) when ¢ = 0, and to
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|0, m — {e;}) for i > 0, where m — {e;} is the matching m minus the ¢'th edge
in the matching. There is an easy computation from m — {e;} to m,, and
vice versa, and so this transformation can be done efficiently. We are now at
the desired state.

Thus we can apply Theorem 1.3 to generate the limiting distribution of the final
Markov chain. We then measure to see whether or not the matching is perfect, and
with nonnegligible probability we project the state onto the uniform distribution over
all perfect matchings of the given graph.

6. The basic tools.

6.1. A lemma about ground-states of close Hamiltonians.

CramM 6.1 (Claim 1.1 repeated). Let A, B be two Hamiltonians of equal dimen-
sions such that ||A — B|| < n. Moreover, assume that A, B have spectral gaps bounded
from below: A(A),A(B) > A. Then [{a(A)|a(B))| > 1— 4Ai22.

Proof. Adding ¢ - I to both matrices, for any constant g, does not affect the
spectral norm of the difference, the spectral gaps, or the inner product between the
ground-states. We can therefore assume without loss of generality that A and B are
positive, A’s ground-value is 0, and B’s ground-value, denoted by Ap, is larger than
0.

Since Ap = min,,|,—1 |Bv|, we have Ap < [Ba(A)|. Also,

(6.1) [Ba(A)] < [Aa(A)[ + |(B = A)a(A)] < n,
and so Ap < n. We now express a(4) = ca(B)+cta(B)*, with a(B)* La(B). Then
|Ba(A)| = |cBa(B) 4 ¢ Ba(B)*|
> [t A —le - Ap
(6.2) > et A=l .

Equations (6.1) and (6.2) together imply that > |ct| - A — |c| - . We see that
le| > %|cl| — 1. Equivalently, /1 — |¢1]2 > %|0L| -1

Denoting r = 2 > 0, we see that if the right-hand side is negative, then let| < %;
otherwise, solving the inequality we get

We get [(a(A)|a(B))| =|c|=/1—-]ct?>1- 5 =1- % as desired. 0

6.2. The spectral gap of a convex combination of projections. We now
prove the basic but useful Claim 1.2 regarding the convex combination of two projec-
tions. Recall that for a vector |«), the Hamiltonian I, = I — |a){«]| is the projection
onto the subspace orthogonal to a.

CLAIM 6.2 (Claim 1.2 repeated). Let |o),|5) be two vectors in some Hilbert
space. For any convex combination H, = (1 — n)Il, + nllg, n € [0,1], we have
A(H,) > |{alB)].

Proof. We observe that the problem is two-dimensional. We write |8) = ala) +
blat). We now express the matrix H, in a basis which contains |a) and |at). The
eigenvalues of this matrix are all 1, except for a two-dimensional subspace, where the
matrix is exactly

< nlal*+ (1 —n) nab* )
na*b nb|>
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Diagonalizing this matrix we find that the spectral gap is exactly /1 — 4(1 — n)n|b[2,
which is minimized for n = 1/2 where it is exactly |a| = [{«|5)|. d

6.3. The Hamiltonian-to-measurement and projection lemmas. Con-
sider a simulatable Hamiltonian H with ground-state |«). It is sometimes desirable to
apply a measurement in the basis of eigenstates of the Hamiltonian. The Hamiltonian-
to-measurement lemma provides an approximation of this procedure in the case where
the spectral gap of the Hamiltonian is nonnegligible. The lemma is based on Kitaev’s
phase estimation procedure, which we now recall.

LEMMA 6.1 (phase estimation, adapted from [35]; see also [46, section 5.2]). Let
U be a unitary transformation on n qubits, and assume U can be implemented by a
poly(n)-size circuit. Let € > 0. Then there exists a quantum procedure Q running
in time poly(n, %) which on input v, that is an eigenvector of U with eigenvalue e,
outputs Q |v,0) = |v,1) such that the following conditions hold. |¢) is exponentially
close in fidelity to another vector [¢'), F(|i),[¢")) > 1 =270 where |¢') = |N) @
|0), and X is a real number such that |\ — M| < e. The right register in |¢') consists
of the ancilla bits of the algorithm.

We can now proceed to proving Lemma 1.1.

LEMMA 6.2 (Lemma 1.1 repeated). Assume H is a simulatable Hamiltonian
on n qubits. For any constant d, there exists a poly(n, ﬁ)—size circuit Og which

takes |a(H)) to |a(H)) ® |v), and for any eigenstate of H |a*) orthogonal to the
ground-state, Ogla’) = |at) @ |B(at)), where |(y|B(at))] < O(n~9).

Proof. We would like to apply the phase estimation algorithm for the unitary
matrix e, with ¢ = A(H)/2. Suppose we could exactly simulate H; namely, we
could apply e exactly. In this case, by the above lemma, Kitaev’s phase esti-
mation algorithm does the following. For an input state which is a ground-state
of H, the output state is exponentially close to a vector of the form |A\') ® |0) for
[N — Xo| < A(H)/2, where Ag is the ground-value. For an input state which is any
other eigenvector, the output state is exponentially close to a vector of the form
[A) ® |0) for |\ — X;| < A(H)/2. For a superposition of eigenvectors not includ-
ing the ground-state, the output is a superposition of such vectors. The two output
vectors are therefore exponentially close to being orthogonal, as required.

We now need to show how to apply the phase estimation algorithm. To do that,
we recall that H is simulatable, and so we can (-approximate e~* in time polynomial
in n and ¢. We pick ¢ to be small enough, but still inverse polynomial in 7 and 1

as follows. Let m be the number of times that e’ is applied in the phase estimation
algorithm, with the above e. We set ¢ to be n=¢/m. We then apply the above phase
estimation algorithm, where every time we need to apply €', we simulate it with this
accuracy. The accumulated error due to the inaccuracies in the simulation of H is at
most n~%. The output states are therefore within n~¢ Euclidean distance from the
correct ones. This means that the inner product discussed above (between the output
state for an input which is a ground-state, and the output state in case the input is
orthogonal) is also O(n~%). d

We now prove the Hamiltonian-to-projection lemma (Lemma 1.2). Consider a
simulatable Hamiltonian H whose ground-state is a. This time we want to simulate
the Hamiltonian Il (g, rather than the original Hamiltonian H. The Hamiltonian-
to-projection lemma provides a way to do this, provided the spectral gap of H is
nonnegligible.

LEMMA 6.3 (Lemma 1.2 repeated). Assume H is a simulatable Hamiltonian on
n qubits, with nonnegligible spectral gap A(H) > 1/n° for some constant ¢ > 0 and
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with a known ground-value. Then the Hamiltonian W,y is simulatable.

Proof. As before, let us start with the assumption that we can apply e’ efficiently
and perfectly. We do the following:

e Apply Kitaev’s phase estimation algorithm for the unitary matrix e*#, us-
ing e = A(H)/2. Now, given the output ), we can write down one bit
of information on an extra qubit: whether an input eigenstate of H is the
ground-state or orthogonal to it (it is here that we use the fact that we know
the ground-value).

e Apply a phase shift of value e~* to this extra qubit, conditioned that it is in
the state |1) (if it is |0), do nothing). This conditional phase shift corresponds
to applying for time ¢ a Hamiltonian with two eigenspaces, the ground-state
and the subspace orthogonal to it, with respective eigenvalues 0 and 1, which
is exactly the desired projection Il g

e Finally, to erase the extra data written down, we reverse the first step and
uncalculate the information written on the qubits again using Kitaev’s phase
estimation algorithm.

This procedure computes the desired transformation e
1 — 2790 fidelity.

As in the proof of Lemma 1.1, we now need to take into account the fact that we
cannot apply e* exactly, but we can simulate H only approximately. We approximate
each of the applications of e’ to within ¢. To determine ¢, we note that the number
of times m we apply ¢’ in the above procedure is poly(n, ﬁH)) To get an overall

Macme on any vector, with

error of size ¢/, we simply fix ¢ to be ¢’/2m. The overall procedure is then polynomial
in ¢',n, ﬁ. d

Remark 6.1. We remark that in the two previous lemmas there is nothing special
about the ground-state of the Hamiltonian. The same techniques work for measuring
or projecting onto any eigenstate with a known eigenvalue, that is, separated from all

other eigenvalues.

6.4. The jagged adiabatic path lemma. Next, we consider the question of
which paths in the Hamiltonian space guarantee nonnegligible spectral gaps. Figure
6.1 gives an example of two Hamiltonians H;, Hy with nonnegligible spectral gaps
that can be connected through a jagged line but not through a direct line.

The jagged adiabatic path lemma (Lemma 1.3) provides a way, in a more specific
case, to connect Hamiltonians such that the spectral gaps along the path are always
nonnegligible. The additional condition in Lemma 1.3 is that the ground-state of H;
is close to the ground-state of H;yq (this condition is not fulfilled in the example
of Figure 6.1). It may seem natural that in this case the way to prove the jagged
adiabatic path lemma is to connect each pair of Hamiltonians H; and H;i; by a
straight line. However, again this does not work. To see this consider

M 0 0O M 0 0 O
0o x 00 [ 0o x 00

m=1 9 0o 20| =0 0 1 1]
0 0 0 0 0 0 1 1

where A\; and Ao are the eigenvalues of

1.5 0.5
0.5 0.5
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H3=
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01)
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Fic. 6.1. In the left side of the drawing, we see two Hamiltonians Hy1 and Hs connected by a
straight line and the spectral gaps along that line. In the right side of the drawing, we see the same
two Hamiltonians H1 and Ha connected through a jagged line that goes through a third connecting
Hamiltonian Hz in the middle and the spectral gaps along that jagged path. Note that on the left
the spectral gap becomes zero in the middle, while on the right it is always larger than one.

(they are about 0.3 and 1.7). Let us say the matrices are represented in the orthonor-
mal basis {v1,...,v4}. Then H; has |vg) as a unique ground-state with ground-value
0, and Hs has %va) — |vg)] as a unique ground-state with ground-value 0. It is
now easy to check that in %[Hl + H,] all eigenspaces have dimension two, and no
eigenvalue is separated from the others.

The problem with connecting H; and Hs by a line stems from the fact that H;
may behave arbitrarily outside the subspace containing their ground-states. This also
hints at the solution. As we are interested only in the ground-states, let us project
each H; onto the subspace orthogonal to its ground-state; i.e., if H is a Hamiltonian,
let us define IIy to be the projection onto the space orthogonal to the ground-state
of H. We then replace the sequence {H;} with the sequence of Hamiltonians {H H; },
and we connect two neighboring projections by a line.

LEMMA 6.4 (Lemma 1.3 repeated). Let {H_,»}jT::fmly(n) be a sequence of bounded
norm, simulatable Hamiltonians onn qubits, with nonnegligible spectral gaps, A(H;) >
n~°, and with known ground-values, such that the inner product between the unique
ground-states a(H;), a(Hj11) is at least n=° for all j. Then there exists an adiabatic
state generator with a(Hy) as its initial state and a(Hr) as its final state. In partic-
ular there exists an efficient quantum algorithm that takes a(Hy) to within arbitrarily
small distance from o(Hr).

Proof. We replace the sequence {H,} with the sequence of Hamiltonians {H H; },
and we connect two neighboring projections by a line. We claim the following:

e As projections, Il have bounded norms, ||IIg;| < 1. As the Hamiltoni-
ans on the path connecting these projections are convex combinations of the
projections, they also have bounded norm.

e We proved in Lemma 1.2 that the fact that H; is simulatable and has a
known ground-value implies that Ily; is also simulatable. It follows that
the Hamiltonians on the path connecting these projections, which are convex
combinations of the projections and are of polynomially bounded norms, are
also simulatable (see section 4). This means that all the Hamiltonians on the
path are simulatable.
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e The projections Iy, have the same ground-states as the Hamiltonians H;, and
as a result each two neighboring projections have nonnegligible inner product
between their ground-states. In Claim 1.2 we showed that this implies the
Hamiltonians on the line connecting Iy, and Iy, , have nonnegligible large
spectral gaps. Notice that this step is possible only when working with the
projections ITy but not with the Hamiltonians H; themselves.

Thus, we can define an adiabatic state generator in which the initial state is
a(Hp) and the final state is a(Hr). The interval [0,1] of the rescaled time s is
divided equally between the different steps of the jagged path; when we move from one
projection to the next, s increases by 1/7" (recall that T is the number of Hamiltonians
we connect). Note that this implies that the maximal norm of the first derivative
of the Hamiltonians in the adiabatic state generator, which is denoted by 7 in the
definition of ASG, is O(T'). The minimal spectral gap in the adiabatic state generator,
which we denoted by A, is bounded from below by an inverse polynomial in n, by
the arguments above. This gives us an adiabatic state generator which takes time
T. = 62—22 = poly(T,n, %) We can now apply Theorem 1.2 and get an efficient
quantum algorithm that takes a(Hp) = a(Ily,) to within arbitrarily small distance
from o(Hr) = a(Illg,). d

6.5. The sparse Hamiltonian lemma. The sparse Hamiltonian lemma (Lem-
ma 1.4) gives fairly general conditions for a Hamiltonian to be simulatable: the Hamil-
tonian need only be sparse and explicit.

The main idea of the proof is to explicitly write H as a sum of polynomially many
bounded norm Hamiltonians H,,, which are all block diagonal (in a combinatorial
sense), and such that the size of the blocks in each matrix is at most 2 x 2. We then
show that each Hamiltonian H,, is simulatable and use Trotter’s formula to simulate
H.

6.5.1. Decomposition of H as a sum of block diagonal matrices with
2 X 2 blocks.

DEFINITION 6.1 (combinatorial block). We say that A is combinatorially block
diagonal if we can decompose the set of rows of A by ROW S(A) = Ule Ry, where we
require that A(i, j) # 0 implies that there exists b such that both i € Ry and j € Ry.

We say that A is 2 x 2 combinatorially block diagonal if, for every b, either
|Rp| =1 or |Ry| = 2.

CLAIM 6.3 (decomposition lemma). Let H be a sparse explicit Hamiltonian over
n qubits, with at most D nonzero elements in each row. Then there is a way to

2,6
decompose H into H = ngjll) " H,,, where
e cach H,, is a sparse explicit Hamiltonian over n qubits, and
e cach H,, is 2 x 2 combinatorially block diagonal.
Proof. We color all the entries of H with (D + 1)?n% colors as follows. For

(i,7) € [N] x [N] and i < j (i.e., (i,7) is an upper-diagonal entry), we define
coly(i,j) = (k, imod k , jmod k , rindexy(i,j) , cindexy(i,j)),

where we have the following:

o If i = j, we set kK = 1; otherwise, we let k be the first integer in the range
[2...n2%] such that i # j (mod k). We know there must be such a k (for the
product of all primes smaller than n? is larger than 2", and by the Chinese
remainder theorem two numbers that have the same modula are equal).
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o rindexy(i,j) =0 if H; ; = 0, and otherwise it is the index of H; ; in the list
of all nonzero elements in the ith row of H. We define cindex g (i, j) similarly,
using the columns.

For lower-diagonal entries, i > j, we define colp (i, j) = colg(j,i). Altogether, we
use at most (n?)? - (D + 1)? colors.

The Hamiltonian’s entries are decomposed by their colors. For a color m, we
define H.y,[i, j] = H[i, j] - Ocoty (i j),m; i-¢., Hm is H on the entries colored by m and
zero everywhere else. Clearly, H = )" = Hp,, and each H,, is Hermitian. Also as H is
explicit and sparse, there is a simple poly(n)-time classical algorithm computing the
coloring coly (i,7), and so each H,, is also explicit and sparse. It is left to show that
it is 2 x 2 combinatorially block diagonal.

Indeed, fix a color m and consider H,,. For every nonzero element (iy,j,) of
H,,, we define a block. If i, = jp, then we set Ry = {iy}, while if i, # j, then we
set Ry = {ip,jp}. Say ip # jp (the i = jp case is similar and simpler). We know
that the elements (ip,j5) and (jp, %) are colored by the same color m, and suppose
m = (k,ip mod k, jp mod k, rindex g (ip, jp), cindex i (ip, jp)). To see that Ry = {ip, jo}
is a 2 x 2 block, we need to show that there are no other elements colored by m on
the ipth and jpth rows and columns. As the color m contains the row-index and
column-index of (ip, jp), it must be that (ip,j5) is the only nonzero element in H,,
from that row or column. Furthermore, all elements (j,a) on the jpth row have
jb mod k # i mod k and therefore are not colored by m. A similar argument shows
no element on the i,th row is colored by m, and the claim follows (see Figure 6.2). a

|
]

.g....-...

Fic. 6.2. In the upper diagonal side of the matriz Hy, the row and column of (ip,jp) are empty
because the color m contains the row-index and column-index of (i,j), and the jpth row and iyth
column are empty because m contains k, i mod k, j mod k, and i mod k # j mod k. The lower
diagonal side of Hm is just a reflection of the upper diagonal side. It follows that {ip,jp} is a 2 X 2
combinatorial block.

CLAIM 6.4. For every m, |Hy| < | H]|.
Proof. Fix an m. H,, is block diagonal, and therefore its norm || H,,|| is achieved
as the norm of one of its blocks. Now H,, blocks are either
e 1 x 1, and then the block is (H; ;) for some 7, and it has norm |H; ;|, or
e 2 x 2, and then the combinatorial block is

( 0 Ak,é )
ke 0

for some k, ¢, and it has norm |Ag g|.
It follows that max,, ||Hy,|| = maxy ¢ |Hke|.- On the other hand, ||H| > maxy ¢
|Hg. | (see section 2.2). The proof follows. 0

6.5.2. 2 X 2 combinatorially block diagonal matrices are simulatable.
CLAIM 6.5. Every 2 x 2 block diagonal, explicit Hamiltonian A is simulatable to
within arbitrary polynomial approrimation.
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Proof. The proof is standard, but we include it for completeness.
Let ¢ > 0, and let @ > 0 be an accuracy parameter.
The circuit: A is 2 x 2 combinatorially block diagonal. It therefore follows that A’s

action on a given basis state |k) is captured by a 2 x 2 unitary transformation
Uy. Formally, given k, say |k) belongs to a 2 x 2 combinatorial block {k, ¢} in
A. We set b, = 2 (for a 2 x 2 block) and miny, = min(k, £), max; = max(k,¢)
(for the subspace to which k belongs). We then set A to be the part of A
relevant to this subspace,

Amineming, Ami
Ak — < ming,ming ming,maxy ,

"4maawc,min;C Amaazk,mazk

and Uy, = e~ "4 If |k) belongs to a 1 x 1 block, we similarly define b, = 1,
mink = maxy = /{3, Ak = (Ak,k)> and Uk = (e_itAk).

Our approximated circuit simulates this behavior. We need two transforma-
tions. We define

ﬁ: |k, 0) —

bk, min, max, A, Ug, k’> ;

where ;176 is our approximation to the entries of Ay and a_; is our approxima-
tion to e~*4*, and where both matrices are expressed by their four (or one)
entries. We use O(«a) accuracy such that | U, — ka|| < 4|Us = Ugllos < .
Having @,mink,maxk,k written down, we can simulate the action of @vk
We can therefore have an efficient unitary transformation T5:

T : ‘Uk,mkln7mkax> |k) = ‘Uk,mkln,m’?x> ‘Ukk>

for |ﬁ;k> € Span{ming, maxy}. We can similarly define T5, which applies Uy,

on its input, T = |4, min, max, k) = |A, min, max, Upk).

Our algorithm applies fl‘vl, followed by ZT’; and then ’E ! for cleanup.
Correctness: Let us denote X = e~ @4 — Tl_ngTl. Our goal is to show that

[|IX|| < . We notice that X is also 2 x 2 combinatorially block diagonal, and

therefore its norm can be achieved by a vector ¢ belonging to one of its dimen-

sion one or two subspaces, say, to Span{|ming), |maxy)}. On this subspace,
. B _ —
we have a 2 x 2 operator X = e~ #Ar — Ty _ToTy. Also, e = TITOT) .

It follows that || X|| = |7y — To|| = |Ux — Ul <. O
Remark 6.2. We proved the claim for matrices with 2 x 2 combinatorial blocks.
A similar claim applies for matrices with m x m combinatorial blocks, with the same
proof technique, as long as m is polynomial in n.

6.5.3. Proving the sparse Hamiltonian lemma. We now prove the sparse
Hamiltonian lemma.

LEMMA 6.5 (Lemma 1.4 repeated). If H is an explicit and sparse Hamiltonian
on n qubits and ||H|| < poly(n), then H is simulatable.

Proof. Let H be row-sparse with D < poly(n) nonzero elements in each row, and
let ||H|| = A < poly(n). Let t > 0. Our goal is to efficiently simulate e=*# to within
Qv accuracy.

We express H = Zf‘le
Claim 6.5, for every § > 0 we can simulate e

H,, as in Claim 6.3, M < (D + 1)?>n5 < poly(n). By
—#Hm to within ﬁt/& accuracy in time
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poly(n,t, M, L L), Tt follows that we can approximate Us (see section 4.1.1) to within

180
(7

T
i/5 accuracy and U 6L25J to within § accuracy.

Also, Corollary 4.1 ensures us that Ué%J is O(MAS + MA3t82) close to e~
where A = maxy</ || Zf:k H;|| < M||H|| (because we saw that for every m, ||Hp,| <

t
||H||). Picking é small enough (inverse polynomial in M, A,t), we see that UéL%J is 5
close to e"™H  Altogether, our approximation is a close to e ®H . It follows that our
approximation has circuit size bounded by poly(n,t, M, L, L) = poly(n, t, é) O

180

Appendix A. QS instances: Specific problems in SZK. We saw in the
introduction an example of a QS problem, the solution of which implies an efficient
quantum algorithm for graph isomorphism. Here we give three more examples of
problems in SZK which are of particular relevance for quantum algorithms: discrete
log, quadratic residuosity, and a gap version of closest vector in a lattice. An efficient
QS algorithm for the lattice problem is a major open problem.

We also remind the reader that the existence of the reduction of the problems we
consider below to certain instances of QS problems already follows from Theorem 1.1.
Here we do a direct reduction and get simple QS instances sufficient for solving the
above problems.

A.1. A promise problem equivalent to discrete log.

The problem: Goldreich and Kushilevitz [25] define the promise problem DLP, as
Input: A prime p, a generator g of ZJ, and an input y € Z7.

Promise:
e Yes: x = log,(y) is in [1, cp)].
e No: z =log,(y) isin [§ + 1,5 +cp].

Goldreich and Kushilevitz [25] prove that the discrete-log problem is reducible to
DLP, for every 0 < ¢ < 1/2. They also prove that DLP. has a perfect zero knowledge
proof if 0 < ¢ < 1/6. We take ¢ = 1/6 and show how to solve DLP /6, given a certain
QS algorithm.

The reduction: We assume we can solve the QS problem for the circuit Cy =
Cp gk that computes Cy (i) = y - ¢g* (mod p) for 0 < i < 2*. The algo-
rithm generates the states }Cgp/2+1,Llog(p)Jfl> , |C 7L108(P)J—3> and proceeds as
in Theorem 1.1.

Correctness:
We have
=
(A1) [Corrann, fogmyi—1) = =5 D [67/2),
vt i=0

where ¢ is the largest power of 2 smaller than p/2. Also, as y = g* we have

t'—1

1 s
(A.2) |Gy, L1og(p))—3) = 7 > lgt),
1=0

where ¢’ is the largest power of 2 smaller than p/8. Now, comparing the
powers of ¢ in the support of (A.1) and (A.2), we see that
o if x € [1,¢p|, then |Cgp/2+17UOg(p)J_1> and ’C%Uog(p”_3> have disjoint
supports, and therefore (Cy |10g(p)| 3 Cgp/zﬂyuog(p”_l} = 0, while
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o if z € [5 4+ 1,5 4 cp], then the overlap is large and

{Cy, 10g(p)) ~31Cgr/241 10g(p) | —1)]
is a constant.

A.2. Quadratic residuosity.

The problem: The (total) language QR is to decide on input z,n whether or not
x is a square modulo n. Without loss of generality we can assume the input
2 to the problem belongs to Z*. Let us denote zRn if z is a square, i.e.,
if ¥ = y? (mod n) for some y. An efficient algorithm is known for the case
where n is a prime, and the problem is believed to be hard for n = pq, where
p,q are chosen at random among large primes p and ¢q. A basic fact that
follows directly from the Chinese remainder theorem is the following.
Fact A.1.

o If the prime factorization of n is n = p{'ps* ... ", then for every x

TRn <= Vi<,<r *Rp;.

o If the prime factorization of n is n = pips...pr with different primes

pi, then every z € Z* that has a square oot has exactly 2% square roots.

Using this fact, we show how to reduce the n = pq case to QS adopting the
zero knowledge proof of [28].

The reduction: We use the circuit C,(r) that on input r € Z* outputs z = r?a
(mod n). Suppose we know how to generate |C,) for every a. On input
integers n,x, (n,z) = 1, the algorithm proceeds as in the proof of Theorem
1.1 with the states |C1),|Cy).

Correctness: We have

|Ca:> = Z \/]TZ|Z>»
2€Z%

2

where p, = Prycz:(z = r°z), and

) =a Y |2

z:zRn

for a = m independent of z.

2

o If zRn, then z = r°x is also a square. Furthermore, p. = Pr.cz:(z =

r?x) = Pr,(r is a square root of 2), and as every square in Z has
the same number of square roots, we conclude that |C,) = |C}) and
(C]C1) = 1.

e Suppose z is not a square. For every r € ZF, z = xr? must be a

nonresidue (or else xRn as well). We conclude that C, has support only
on nonresidues, and so (C,|Cy) = 0.
We note that for a general n, different elements might have a different number
of solutions (e.g., try n = 8), and so the given construction does not work.

A.3. Approximating CVP. Here we describe the reduction to QS from a gap
problem of CVP (closest vector in a lattice), which builds upon the SZK proof of
Goldreich and Goldwasser [26]. A lattice of dimension n is represented by a basis,
denoted B, which is an n X n nonsingular matrix over R. The lattice £(B) is the set
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of points L(B) = {Bc | ¢ € Z"}, i.e., all integer linear combinations of the columns
of B. The distance d(vy,vs) between two points is the Euclidean distance ¢5. The
distance between a point v and a set A is d(v,.A) = mingea d(v,a). We also denote
[IS]| the length of the largest vector of the set S. The closest vector problem, CVP,
gets as input an n-dimensional lattice represented by a basis B and a target vector
v € R™. The output should be the point b € L(B) closest to v.

The CVP problem is NP-hard. Here we are interested in the variant of the
problem in which the distance to the lattice is approximated to within a factor g.
The approximation problem is known to be NP-hard when g is small, and on the
other hand, it is known to be easy when g is exponential (see [6] for exact parameters
and references). Here we are interested in the intermediate case, when g is about

%. In this range, the problem is not known to be in BPP, but on the other

hand, it is known to be in SZK by [26] and therefore is not likely to be NP-hard. We
use the SZK proof of [26] to give a reduction to the QS problem. We first describe
the promise problem.

The problem:

Input: An n-dimensional lattice given by a basis B, a vector v € R", and a

n
clogn

designated distance d. We set g = g(n) = for any fixed ¢ > 0.

Promise:

e Yes: Instances where d(v, £L(B)) < d.

e No: Instances where d(v, L(B)) > g - d.
We let H; denote the sphere of all points in R™ of distance at most ¢ from
the origin.

The reduction: The circuit Cj gets as input a random string, and outputs the vector

r +n, where 7 is a uniformly random point in Han|gugey) N £(B) and 7 is
a uniformly random point n € H 2.d- Reference [26] explains how to sample
such points with almost the right distribution; i.e., they give a description of
an efficient such Cj.
We remark that the points cannot be randomly chosen from the real (con-
tinuous) vector space, due to precision issues, but [26] shows that taking a
fine enough discrete approximation results in an exponentially small error.
From now on, we work in the continuous world, bearing in mind that in fact
everything is implemented by its discrete approximation. Now assume we can
Qsample from the circuit Cy. We can then also Qsample from the circuit C,,,
which we define to be the same circuit, except that the outputs are shifted by
the vector v and become r 4+ 1 4 v. To solve the gap problem, the algorithm
proceeds as in the proof of Theorem 1.1 with the states |Cp) , |Cy).

Correctness: In a No instance, v is far away from the lattice £(B), namely,
d(v,L(B)) > g -d. The calculation in [26] shows that the states |Cy) and
|C) have no overlap, and so (Cy|C,) = 0. On the other hand, suppose v is
close to the lattice, d(v,L(B)) < d. Notice that the noise  has magnitude
about gd, and so the spheres around any lattice point r and around r + v
have a large overlap. Indeed, the argument of [26] shows that if we express
|Co) = . p. |2) and |Cy,) = Y, pl |2), then ||p—p/|| < 1—n~"2¢. We see that
(Co|Cy) = F(p,p') > n=2¢. Hence, if we could generate these states, we could
iterate the above poly(n) times and get a BQP algorithm for the problem.
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