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Abstract
We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms

with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation

functions. We optimize their parameters for application in three-layer perceptron and radial basis function networks.
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Findings
Artificial neural networks (ANNs) are famous for their applica-

tion in the fields of artificial intelligence and machine learning

[1]. The future of cellular and satellite communications, radar

systems, deep sea and space exploration will likely be closely

related to the capability of ANNs to provide effective solutions

to problems such as classification and recognition of signals or

images [2-6]. The important features of receiving systems

exploited in such areas are high energy efficiency, sensitivity

and variability in signal processing. This makes the utilization

of superconducting electronic constituents a natural choice.

Superconducting digital receiving and computing are emerging

technologies in high-speed/high-frequency electronic applica-

tions markets [7]. The advantages of a superconducting digital

RF receiver [8] are high sampling rate and quantum precision of

quantization, allowing direct digitization of incoming wideband

RF signals without conventional channelization and downcon-

version. The combination of such receivers with highly sensi-

tive, tunable, active, superconducting antennas [8-11] and

ANNs provides an opportunity for the development of a cogni-

tive radio correlation receiver. Unfortunately, among supercon-
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Figure 1: (a) Principle scheme for a potential quantron. (b) Quantron flux-to-current transfer function for different values of the normalized ring induc-

tance lq; insets show the harmonic amplitudes for selected curves.

ducting ANNs [12,13], those for signal classification and recog-

nition are less developed.

A solution for the recognition problem by employing percep-

tron ANNs was sought in earlier works with SQUID-based

neuron switching [14,15] in the resistive state. In subsequent

variations [16,17], this feature was found to drastically reduce

the energy efficiency of the superconducting circuit. In another

recent approach to multilayer perceptron, SQUIDs were utilized

as nonlinear magnetic flux transducers, allowing the ANN to

persist in the superconducting state [18]. The implemented

neuron scheme is quite analogous to the quantum flux para-

metron (QFP) [19,20] – the basic cell of a superconducting

logic circuit, known for their high energy efficiency. It was ex-

perimentally shown that QFP-based circuits operated in the

adiabatic regime can outperform their semiconductor counter-

parts with respect to energy efficiency by seven orders of mag-

nitude (including the power required for superconducting circuit

cooling) [21-24]. While the activation function of the QFP

neuron was not analyzed in [18], our assay shows that it is not

well suited for the chosen type of network.

The activation function commonly has a highly nonlinear form

and is a key characteristic of a neuron. Note that semiconduc-

tor-based neurons contain at least approximately 20 transistors

due to the lack of nonlinearity between the transistor current

and voltage. The typical implementation of an ANN is based on

field-programmable gate arrays (FPGAs), making them rela-

tively slow and hardware/power consumable. The basic ele-

ment of a superconducting circuit is the nonlinear Josephson

junction, which is about three orders faster than a conventional

transistor. In contrast to semiconductor neurons, the supercon-

ducting one typically consists of just a few (two or three)

Josephson junctions. This presents a distinct opportunity for the

development of energy efficient, high density, fast supercon-

ducting ANNs for cognitive receiving systems.

It was shown that a Josephson structure (e.g., a bi-SQUID or a

SQIF) transfer function can be precisely designed by combin-

ing basic SQUID cells with known characteristics [25-28]. In

this letter we describe designs for superconducting neurons with

sigmoid- and Gaussian-like shapes for the activation functions

inspired by these works. Being based on a simple parametric

quantron cell, our neurons allow an ANN to be operated in an

extremely energy efficient, adiabatic regime. The neurons are

proposed for perceptron and radial basic function (RBF) ANNs,

which solve the signal recognition and identification problems,

respectively. The complexity of these networks could be in-

creased with further development of nanotechnology [29] with

the implementation of nanoscale Josephson junctions (e.g., on

the basis of variable thickness bridges [30]). Finally, compari-

son of the probability of error curves for RBF ANNs based on

the proposed neuron with those based on an ideal neuron with a

Gaussian activation function is presented.

Sigma-cell: the basic element for a

multilayer perceptron
A multilayer perceptron (MLP) is a feed-forward ANN model

that maps input data onto a set of outputs [1]. An MLP consists

of multiple layers of nodes in a directed graph with each layer

fully connected to the next one. Each node is treated as a neuron

whose activation function usually has a sigmoid-like shape.

We start our pursuit of the MLP artificial neuron with an analy-

sis of a simple quantron (or single-junction superconducting

interferometer, Figure 1a) transfer function. This function links
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the applied magnetic flux, ΦX, with current flowing (Iout) in a

superconducting loop of inductance, Lq. Hereafter, we use the

normalization of inductance, lq = 2πIcLq/Φ0 (where Φ0 is the

magnetic flux quantum, Ic is the junction’s critical current),

magnetic flux, φX = 2πΦX/Φ0, and current, iout = Iout /Ic.

The phase balance for the quantron loop and the relationship be-

tween the current through the Josephson junction and its phase,

φ, are as follows:

(1)

(2)

One can represent output current as a parametric function [25]

and then plot the nonlinear flux-to-current characteristic, as

shown in Figure 1b. Note that the resulting transfer function is

non-sinusoidal and amplitudes of its higher harmonics increase

with increasing inductance, lq.

A sigmoid function is most suitable mathematically for the

solution of the image or pattern recognition problems by means

of MLP. One can provide this form of a flux-to-current transfor-

mation by combining the transfer function of the quantron with

a linear dependence, which is provided by a simple supercon-

ducting ring. The principal scheme of the resulting sigma cell

(or s-cell) as a part of a three-layer perceptron is presented in

Figure 2. The magnetic flux is induced by the excitation current

IX in the control line, which is magnetically coupled to the

quantron and the linear cell through mutual inductances k1 and

k2, respectively. We shall assume for simplicity that the

quantron contains inductances lq and l/2, the superconducting

ring – lq, l/2, la. The current iT (see Figure 2) allows the oper-

ating point to be set.

For analysis of the proposed cell flux-to-current transformation,

one can write equations similar to Equation 1 and Equation 2.

Here the phase balance and Kirchhoff's rule for the circuit

considered give us the following expressions:

(3)

Figure 2: Principle scheme of a three-layer perceptron conceived as

layers of connected nodes (with different weights in the general case)

in a directed graph, and the suggested sigma cell with sigmoid-like

flux-to-current transformation on the basis of a quantron and supercon-

ducting ring. Intersecting connections can be realized in the "magnetic

domain" via an inductance lq using a technique described in [18].

(4)

Note that the expression for the output signal (Equation 4)

contains a term with linear dependence on the input current iX.

The resulting sigma cell flux-to-current transfer function is

presented in Figure 3. An increase in the normalized induc-

tance of the superconducting ring (at fixed quantron parameters)

reduces the slope of the overall characteristic. The same effect

can be obtained by decreasing the coupling of this ring with the

control line. The figure shows that the overall slope practically

disappears at la = 1, l = 0.6 and k1 = k2 = 0.1, which therefore is
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a preferred set of parameters for the physical implementation of

the MLP neuron. Consistency of the obtained flux-to-current

transformation with the sigmoid function can be tuned further

by variation of the quantron inductance lq.

Figure 3: (a), (b) Flux-to-current characteristics of the sigma cell for

different parameters of the superconducting ring la and α = k1/k2 at

l = 0.6. (c) Sigma cell flux-to-current transfer function for a set of values

of the inductance lq. The inset shows the amplitude of the transfer

function and its standard deviation from the sigmoid function (×100).

Gauss cell: the basic element for a

probabilistic network
The identification of different sources is a difficult problem in

cognitive signal processing. MLP is the most frequently

used for its solution. However, this type of neural network

does not provide a probabilistic interpretation of the classi-

fication results and requires rather lengthy training [5,6]. An

RBF-based network or a probabilistic network lack these disad-

vantages. Here, a decision requires the estimation of the proba-

bility density function for each class of radio signal sources,

and so the basic cell has to provide a Gaussian-like transfer

function.

The principal scheme of the proposed Gauss cell (or G-cell) is

presented in Figure 4. Its design can be qualitatively under-

stood as the connection of two s-cells in order to obtain a bell-

shaped transfer function from two sigmoid functions. Note that

the resulting scheme is quite analogous to the above mentioned

QFP. The cell is a two-junction interferometer with a total

normalized inductance l, composed of two Josephson junctions

J1 and J2 shunted by inductance lq. Once again, the excitation

current IX is applied to a control line, which is magnetically

coupled to the symmetrical arms of the interferometer.

Figure 4: Principle scheme of an RBF neural network (where the

output is a linear combination of radial basis functions of input x and

neuron parameters) and suggested Gauss cell with Gaussian-like flux-

to-current transformation.

One can write the equations for a Gauss cell by analogy with

Equation 1 and Equation 2 in terms of the sum and difference

phases, θ = (φ2 + φ1)/2; ψ = (φ1 − φ2)/2:
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(5)

(6)

(7)

Here, the term with a linear dependence on the input current

cancels in the expression for the output signal (Equation 7).

This results in a G-cell flux-to-current transfer function as

presented in Figure 5. It is seen that an increase of the normal-

ized inductances l and lq leads to an increase of the transfer

function amplitude and its standard deviation from a Gaussian

function.

The simulation results for the noise immunity characteristics of

an RBF ANN are shown in Figure 6. Here, the results of the

G-cell implementation (with l = 1 and lq = 0.5 taken in order to

get a relatively large output signal) are compared with the ideal

case of a true Gaussian activation function of cells in a hidden

layer of the probabilistic network.

We should note that the obtained sigmoid-like and Gaussian-

like transfer functions are periodic due to the quantization of

magnetic flux in superconducting interferometers. This limits

the ANN dynamic range. We patch this issue by input data

normalization.

In conclusion, we have proposed two superconducting neurons

for energy efficient ANNs capable of operation in the adiabatic

regime. These ANNs are the most frequently used perceptron

and probabilistic RBF network. Consideration of the networks

organization and their interface with well-developed adiabatic

superconductor logic seems straightforward and will be per-

formed in our upcoming papers.

Figure 5: (a), (b) Gauss cell flux-to-current transfer function for differ-

ent values of the interferometer and shunt inductances l and lq. Insets

show the function amplitude and its standard deviation from a

Gaussian function.

Figure 6: Simulation results for the noise immunity characteristics of a

G-cell based RBF ANN with (solid line) and without (dashed line) input

data normalization. Dots represent the simulation with an ideal

Gaussian activation function.
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