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Abstract: We study the adiabatic time evolution of quantum resonances over time scales
which are small compared to the lifetime of the resonances. We consider three typical
examples of resonances: The first one is that of shape resonances corresponding, for
example, to the state of a quantum-mechanical particle in a potential well whose shape
changes over time scales small compared to the escape time of the particle from the
well. Our approach to studying the adiabatic evolution of shape resonances is based on
a precise form of the time-energy uncertainty relation and the usual adiabatic theorem
in quantum mechanics. The second example concerns resonances that appear as isolated
complex eigenvalues of spectrally deformed Hamiltonians, such as those encountered
in the N-body Stark effect. Our approach to study such resonances is based on the
Balslev-Combes theory of dilatation-analytic Hamiltonians and an adiabatic theorem
for nonnormal generators of time evolution. Our third example concerns resonances
arising from eigenvalues embedded in the continuous spectrum when a perturbation is
turned on, such as those encountered when a small system is coupled to an infinitely
extended, dispersive medium. Our approach to this class of examples is based on an
extension of adiabatic theorems without a spectral gap condition. We finally comment
on resonance crossings, which can be studied using the last approach.

1. Introduction

There are many physically interesting examples of quantum resonances in atomic phys-
ics and quantum optics. To mention one, the state of a cold gas of atoms localized in a trap
may be metastable, since the trap may be not strictly confining. In typical Bose-Einstein
condensation experiments, the shape of the trap usually varies slowly over time scales
small compared to the lifetime of the metastable state, yet larger than a typical relaxation
time (see for example [1]). This is an example of an adiabatic evolution of shape reso-
nances. While there has been much progress in a time-independent theory of quantum
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resonances (see [2–7]), there has been relatively little work on a time-dependent theory
of quantum resonances (see [8–11]). Surprisingly, and in spite of its relevance to the
interpretation of many experiments and phenomena in atomic physics, the problem of
adiabatic evolution of quantum resonances received very litte attention, so far (but see
[12]).

In this paper, we study the adiabatic evolution of three general types of quantum
resonances. This is a first step towards a rigorous understanding of resonance- and meta-
stability phenomena, such as hysteresis in magnets and Sisyphus cooling of atomic gases
(see for example [13–15]). We first consider the adiabatic evolution of so-called shape
resonances. More specifically, we consider a quantum-mechanical particle in a potential
well, say that of a quantum dot or a locally harmonic trap, with the property that the
shape of the potential well changes over time scales which are small compared to the
time needed for the particle to escape from the well. The analysis of this problem is
based on a precise form of the time-energy uncertainty relation, see [8], and the standard
adiabatic theorem in quantum mechanics, [16]. In our approach, we obtain an explicit
estimate on the distance between the true state of the system and an instantaneous meta-
stable state. Our approach can also be applied to study the time evolution of the state
of an electron in a He+ ion moving in a time-dependent magnetic field which changes
over time scales that are small compared to the ionization time of the ion; (see [8] for a
discussion of this example in the time-independent situation).

The second class of examples concerns quantum resonances that appear as isolated
complex eigenvalues of spectrally deformed Hamiltonians, such as the N-body Stark
effect (see for example [4, 6]).1 Our analysis is based on Balslev-Combes theory for
dilatation analytic Hamiltonians, [17], and on an adiabatic theorem for generators of
evolution that are not necessarily normal or bounded, [18]. This approach, too, yields
explicit estimates on the distance between the true state of the system and an instanta-
neous metastable state.

The third class of examples concerns resonances that emerge from eigenvalues of an
unperturbed Hamiltonian embedded in the continuous spectrum after a perturbation has
been added to the Hamiltonian. Typical examples of such resonances arise when a small
quantum-mechanical system, say an impurity spin, is coupled to an infinite, dispersive
medium, such as magnons (see for example [22–24] for relevant physical models). Our
approach to such examples is based on an extension of adiabatic theorems without a
spectral gap condition, [25–29]. Our results also cover the case of resonance crossings.
Further details of applications where our assumptions are explicitly verified for various
physical models will appear in [30].

2. Adiabatic Evolution of Shape Resonances

In this section, we study the time evolution of the state of a quantum-mechanical particle
moving in Rd under the influence of a potential well which is not strictly confining. The
potential well is described by a time-dependent function on Rd ,

vτθ (x, t) ≡ θ2v(
x

θ
, s), (1)

where τ is the adiabatic time scale, t is the time, s = t
τ

is rescaled time, θ ≥ 1 is a
parameter characterizing the width and height of the well, and v(x, s) is a function on

1 For the sake of simplicity, we consider nondegenerate resonances. However, our analysis can be extended
to the case of degenerate resonances; (see [10, 11] for a discussion of the latter in the time-independent case).
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Rd × R that is twice differentiable in s ∈ R and smooth in x ∈ Rd ; see below for
precise assumptions on the potential. We assume that τ is small compared to the escape
time of the particle from the well.2 By introducing an auxiliary adiabatic evolution, we
obtain precise estimates on the difference between the true state of the particle and an
instantaneous metastable state. Our analysis is based on the generalized time-energy
uncertainty relation, as derived in [8], and on the usual adiabatic theorem in quantum
mechanics, [16].

The Hilbert space of the system is H := L2(Rd , dd x). Its dynamics is generated by
the time-dependent Hamiltonian

H τ (t) := −�/2 + vτθ (x, t), (2)

where � is the d-dimensional Laplacian.3 We make the following assumptions on the
potential vθ (x, s), for s ∈ I, where I is an arbitrary, but fixed compact interval of R.

(A1) The origin x = 0 is a local minimum of v(x, s), for all s ∈ I, and, without loss
of generality, v(0, s) = 0 for s ∈ I.

(A2) The Hessian of v(·, s) at x = 0 is positive-definite, with eigenvalues �2
i (s) >

�2
0, i = 1, . . . , d, and �0 > 0 is a constant independent of s.

(A3) Consider a smooth function g(x) with the properties that g(x) = 1 for |x | < 1
2

and g(x) = 0 for |x | > 1, where |x | :=
√∑d

i=1 x2
i . For ε > 0, we define the

rescaled function gε,θ by

gε,θ (x) := g

(
x

(εθ)1/3

)
. (3)

We assume that, for all ε > 0,

max
x∈Rd

gε,θ (x)|vθ (x, s)− 1

2
x�2(s)x | ≤ cε, (4)

uniformly in s ∈ I , where�2(s) is the Hessian of v(·, s) at x = 0 and c is a finite
constant independent of s ∈ I.

(A4) v(x, s) is smooth, polynomially bounded in x ∈ Rd , and bounded from below,
uniformly in s ∈ I. Moreover, v(x, s) is twice differentiable in s ∈ I. We also
assume that ‖H(s1)− H(s2)‖ ≤ C, ∀s1, s2 ∈ I, where C is a finite constant.

Note that under these assumptions, vθ is a potential well of diameter of order O(θ) and
height O(θ2). Let

H0(s) := −�/2 +
1

2
x�2(s)x, (5)

and
H1(s) := H0(s) + wε,θ (x, s), (6)

where4

wε,θ (x, s) := gε,θ (x)[vθ (x, s)− 1

2
x�2(s)x]. (7)

2 The escape time of the particle from the well, which is related to θ, will be estimated later in this section.
3 We work in units where the mass of the particle m = 1, and Planck’s constant � = 1.
4 H1(s) depends on the parameters θ and ε, but we drop the explicit dependence to simplify notation.
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Note that
H(s) = H1(s) + δvε,θ (x, s), (8)

where

δvε,θ (x, s) := (1 − gε,θ (x))[vθ (x, s)− 1

2
x�2(s)x]. (9)

It follows from Assumptions (A3) and (A4), and (9) that

max
s∈I

|δvε,θ (x, s)| ≤
{

0, |x | ≤ 1
2 (εθ)

1/3

θ2 P(x/θ), |x | ≥ 1
2 (εθ)

1/3 , (10)

uniformly in s ∈ I, for some polynomial P(x) of x .
Denote by Pn

1 (s), n ∈ N, the projection onto the eigenstates of H1(s) corresponding
to the nth eigenvalue of H1(s). It follows from Assumptions (A3) and (A4) that, for ε
small enough, Pn

1 (s) is twice differentiable in s as a bounded operator for s ∈ [0, 1].
Denote by U τ (s, s′) the propagator generated by H(s), which solves the equation5

∂sU τ (s, s′) = −iτH(s)U τ (s, s′), U τ (s, s) = 1. (11)

Suppose that the initial state of the system is given by a density matrix ρ0,which is a
positive trace-class operator with unit trace. Then the state of the particle at time t = τ s
is given by the density matrix ρs, which satisfies the Liouville equation

ρ̇s = −iτ [H(s), ρs] (12)

and ρs=0 = ρ0. The solution of (12) is given by

ρs = U τ (s, 0)ρ0U τ (0, s). (13)

Let P be an orthogonal projection onto a reference subspace PH, and let ps denote
the probability of finding the state of the particle in the reference subspace PH at time
t = τ s. This probability is given by

ps := T r(ρsP). (14)

We are interested in studying the adiabatic evolution of a state of a particle which
initially, at time t = 0, is localized inside the well. Such a state may be approximated by
a superposition of eigenstates of H1(0) (defined in (6)). The initial state of the particle
is chosen to be given by

ρ0 =
N∑

n=0

cn Pn
1 (0), (15)

where Pn
1 (0) are the eigenprojections onto the states corresponding to the eigenvalues

En of H1(0), cn ≥ 0, with
∑N

n=1 cn = 1, for some finite integer N .
We let U1 be the propagator of the auxiliary evolution generated by H1(s). It is given

as the solution of the equation

∂sU1(s, s′) = −iτH1(s)U1(s, s′), U1(s, s) = 1. (16)

5 Assumptions (A1)–(A4) are sufficient to show that U τ exists as a unique unitary operator with domain
D, a common dense core of H(s), s ∈ I.
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Moreover, let
W (s, 0) := U1(0, s)U τ (s, 0). (17)

Then W (s, 0) solves the equation

∂s W (s, 0) = −iτ H̃(s)W (s, 0),W (0, 0) = 1, (18)

where
H̃(s) = U∗

1 (s, 0)δvε,θ (s)U1(s, 0), (19)

as follows from (11), (6), (16) and (17). Then

ps = T r(ρsP) =
∑

n

cn pn
s , (20)

where
pn

s := T r(PU τ (s, 0)Pn
1 (0)U

τ (0, s)). (21)

We define
P̃n

1 (s) := U1(s, 0)Pn
1 (0)U1(0, s). (22)

We have the following proposition.

Proposition 2.1. Suppose Assumptions (A1)–(A4) hold. Then

pn
s
≤
≥ sin2∗(arcsin

√
T r(PP̃n

1 (s))± 2τ
∫ s

0
ds′ f (Pn

1 (0), H̃(s′)), (23)

for s ≥ 0, where pn
s is defined in (21), H̃(s) in (19), P̃n

1 (s) in (22),

sin∗(x) :=

⎧
⎪⎨
⎪⎩

0, x < 0
sin(x), 0 ≤ x ≤ π

2 ,

1, x > π
2

(24)

and
f (P, A) := √

T r(P A∗(1 − P)A). (25)

The proof of Proposition 2.1 is given in the Appendix, and it is based on the gener-
alized time-energy uncertainty relation derived in [8].

Before stating an adiabatic theorem for shape resonances, we want to estimate the
time needed for the quantum-mechanical particle to escape from the potential well if its
initial state is given by (15). Note that, for each fixed value of s ∈ I, the spectrum of
H0(s), σ (H0(s)), is formed of the eigenvalues

Es
l =

d∑

i=1

�i (s)(li +
1

2
), (26)

where l = (l1, . . . , ld) ∈ Nd , with corresponding eigenfunctions

φs
l (x) =

d∏

i=1

�
1/4
i (s)hli (

√
�i (s)xi ), (27)
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where hli are Hermite functions normalized such that

∫
dxhl(x)hk(x) = δlk .

Recall that the Hermite functions decay like a Gaussian away from the origin,

|hl(x)| ≤ cl,δe
−( 1

2 −δ)x2
, (28)

for an arbitrary δ > 0 and a finite constant cl,δ; (see for example [36]). It follows from
analytic perturbation theory (Lemma A.1 in the Appendix) that the eigenstates of H1(s)
decay like a Gaussian away from the origin. Moreover, it follows from Assumption (A3)
that δvε,θ is supported outside a ball of radius 1

2 (εθ)
1/3.

Let πn
1 (x, y; s) denote the kernel of U1(s, 0)Pn

1 (0)U1(0, s), whose modulus decays
like a Gaussian away from the origin for arbitrary finite τ ; see Lemma A.1 in the Appen-
dix. For each fixed s ∈ I, the following estimate follows from Lemma A.1, Assumptions
(A3)–(A4) and (19).

f (Pn
1 (0), H̃(s))2 = |T r(Pn

1 (0)H̃(s)
2 − Pn

1 (0)H̃(s)P
n
1 (0)H̃(s))|

= |T r([Pn
1 (0), H̃(s)]2)|

= |T r([U1(s, 0)Pn
1 (0)U1(0, s), δvε,θ (s)]2)|

=
∫

dxdy|πn
1 (x, y; s)|2(δvε,θ (x, s)− δvε,θ (y, s))2

≤ Cε,ne−µεθ2/3
, (29)

whereµε is proportional to ε2/3, Cε,n is a finite constant independent of s ∈ I (for finite
n appearing in (15) and fixed ε). Let

τl ∼ eµεθ
2/3/2, (30)

which, by (29) and (15), is a lower bound for the time needed for the particle to escape
from the well.6

We now introduce the generator of the adiabatic time evolution for each eigenpro-
jection,

Hn
a (s) := H1(s) +

i

τ
[Ṗn

1 (s), Pn
1 (s)], (31)

and the corresponding propagator U n
a (s, s′) which satisfies

∂sU n
a (s, s′) = −iτHn

a (s)U
n
a (s, s′); U n

a (s, s) = 1. (32)

By Assumptions (A1)–(A4), it follows that (32) has a unique solution, U n
a (s, s′), which

is a unitary operator. From the standard adiabatic theorem in quantum mechanics [16],

6 In other words, the particle spends an exponentially large time in θ inside the well. Note that one may
also directly use time-dependent perturbation theory to estimate the time needed for the particle to escape
from the well, see [8].
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we know that

U n
a (s, s′)Pn

1 (s
′)U n

a (s
′, s) = Pn

1 (s), (33)

sup
s∈[0,1]

‖U n
a (s, 0)− U1(s, 0)‖ = O(τ−1), (34)

for τ 
 1.7

For 1 � τ � τl , where τl is given in (30), it follows from (23), (22), (33) and (34)
that

pn
s = T r(PPn

1 (s)) + O(max(1/τ, τ/τl)). (35)

Let

ρ̃s :=
N∑

n=1

cn Pn
1 (s), (36)

the instantaneous metastable state of the particle inside the well.
By (15), (35) and (36), we have that, for

1 � τ � τl , (37)

sup
s∈[0,1]

|ps − T r(Pρ̃s)| ≤ A/τ + Bτ/τl , (38)

where A and B are finite constants. This proves the following theorem for the adiabatic
evolution of shape resonances.

Theorem 2.2. (Adiabatic evolution of shape resonances). Suppose Assumptions
(A1)–(A4) hold for some τ satisfying (37). Then

ps = T r(Pρ̃(s)) + O(max(
1

τ
,
τ

τl
)). (39)

In other words, over time scales that are small compared to the escape time τl , given
in (30), of the particle from the potential well, the true state of the particle which is
initially localized inside the well, as given by the choice (15), is approximately equal
to the instantaneous metastable state given in (36). We remark that a similar analysis
can be applied to study the adiabatic evolution of the metastable state of the electron of
an He+ ion moving in a time-dependent magnetic field (see [8] for a discussion of this
model in the time-independent case).

3. Isolated Eigenvalues of Spectrally Deformed Hamiltonians

In this section, we discuss the adiabatic evolution of quantum resonances which appear
as isolated eigenvalues of spectrally deformed Hamiltonians. Examples of such reso-
nances include ones of the Stark effect and the N-body Stark effect (see for example
[4, 6, 2, 3, 12]). Our analysis is based on Balslev-Combes theory for dilatation analytic
Hamiltonians and on an adiabatic theorem for nonnormal and unbounded generators of
evolution. The main result of this section is Theorem 3.3, which gives an estimate on the
distance between the true state and an instantaneous metastable state when the adiabatic
time scale is much smaller than the lifetime of the metastable state.

7 We work in units where a microscopic relaxation time is of order unity.
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Fig. 1.

3.1. Approximate metastable states. Consider a quantum mechanical system with
Hilbert space H and a family of selfadjoint Hamiltonians {H τ

g (t)}t∈R,which are given by

H τ
g (t) = Hg(s), (40)

with fixed dense domain of definition, where

Hg(s) = H0(s) + gV (s), (41)

and H0(s) is the (generally time-dependent) unperturbed Hamiltonian, while gV (s) is a
perturbation bounded relative to H0(s), unless specified otherwise; see the footnote after
assumption (B1) below. Here, s = t/τ ∈ [0, 1] is the rescaled time. Let U (θ), θ ∈ R,
denote the one-parameter unitary group of dilatations. For fixed g,we assume that there
exists a positive β, independent of s ∈ [0, 1], such that

Hg(s, θ) := U (θ)Hg(s)U (−θ), (42)

extends from real values of θ to an analytic family in a strip |I mθ | < β, for all s ∈
[0, 1]. The spectrum of Hg(s, θ) is assumed to lie in the closed lower half-plane for
I mθ ∈ (0, β). The relation

Hg(s, θ)
∗ = Hg(s, θ) (43)

holds for real θ and extends by analyticity to the strip |I mθ | < β.We make the following
assumptions:

(B1) λ0(s) is an isolated or embedded simple eigenvalue of H0(s)with eigenprojection
P0(s).8 We assume that, for each fixed s ∈ [0, 1] and I mθ ∈ (0, β), λ0(s) is
separated from the essential spectrum of H0(s, θ).We also assume that the corre-
sponding eigenprojection P0(s, θ) is analytic in θ for I mθ ∈ (0, β) and strongly
continuous in θ for I mθ ∈ [0, β).

(B2) For 0 < I mθ < β, let H̃g(s, θ) = Pg(s, θ)Hg(s, θ)Pg(s, θ) denote the reduced
Hamiltonian acting on Ran(Pg(s, θ)), and let λg(s) be its corresponding eigen-
value. Then

λg(s)
g→0−→ λ0(s).

We assume that λg(s) is differentiable in s ∈ [0, 1].
8 The Stark effect for discrete eigenvalues of Coulumb systems is an example where isolated eigenvalues

of the unperturbed Hamiltonian become resonances once the unbounded perturbation is turned on [32, 33].
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(B3) For each fixed s ∈ [0, 1] and fixed θ with I mθ ∈ (0, β), there is an annulus
N (s, θ) ⊂ C centered at λ0(s) such that the resolvent,

Rg(s, θ; z) := (z − Hg(s, θ))
−1, (44)

exists for each z ∈ N (s, θ) and 0 ≤ g < g0(z).
(B4) Let γ (s) be an arbitrary contour in N (s, θ) enclosing λ0(s) and λg(s), for I mθ ∈

(0, β). Then, for 0 ≤ g < g(γ (s)), the spectral projection

Pg(s, θ) :=
∮

γ (s)

dz

2π i
Rg(s, θ; z) (45)

satisfies
lim
g→0

‖Pg(s, θ)− P0(s, θ)‖ = 0. (46)

We assume that Pg(s, θ) is twice differentiable in s ∈ [0, 1] as a bounded operator,
for fixed θ, I mθ ∈ (0, β).

(B5) RS (Rayleigh-Schrödinger) Expansion. The perturbation V (s, θ), for |I mθ | < β,

is densely defined and closed, and V (s, θ)∗ = V (s, θ). We define

Hg(s, θ) := H0(s, θ) + gV (s, θ)

on a core of Hg(s, θ). For I mθ �= 0, z ∈ N (s, θ) and g small enough, the iterated
resolvent equation is

Rg(s, θ; z)P0(s, θ) =
N−1∑

n=0

gn R0(s, θ; z)An(s, θ; z) + gN Rg(s, θ; z)AN (s, θ; z),

(47)
for N ≥ 1 (depending on the model), where

An(s, θ; z) := (V (s, θ)R0(s, θ; z))n P0(s, θ). (48)

We assume that the individual terms in (47) are well-defined, and that An(s, θ; z)
defined in (48) are analytic in θ in the strip I mθ ∈ (0, β), for n = 1, . . . , N , and
z ∈ N (s, θ), and strongly continuous in I mθ ∈ [0, β). This assumption is satis-
fied for N = 1 in dilatation-analytic systems where V (s, θ) is bounded relative
to H0(s, θ), I mθ ∈ [0, β); see, e.g., [2, 3]. Moreover, this assumption holds for
arbitrary N ≥ 1, if λ0(s) is an isolated eigenvalue of the unperturbed Hamiltonian
H0(s), as in the case of discrete eigenvalues of Coulumb systems, with V (s, θ) a
perturbation describing the Stark effect, [32, 33].

The RS-expansion for Pg(s, θ) implies that, for I mθ ∈ (0, β),
Pg(s, θ) = P N

g (s, θ) + O(gN ), (49)

where P N
g (s, θ) is analytic in the strip I mθ ∈ (0, β), and strongly continuous in I mθ ∈

[0, β).
In other words, the spectral projection onto the resonance state is only defined up to a

certain order N in the coupling constant g. This is to be expected since resonance states
decay with time. We now show that, for each fixed s ∈ [0, 1], the projections P N

g (s) can
be regarded as projections onto approximate metastable states, up to an error of order
O(gN ).
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Denote by ψ0(s) the eigenstate of H0(s) with corresponding eigenvector λ0(s), and
let

ψN
g (s) = 1

‖P N
g (s)ψ0(s)‖ P N

g (s)ψ0(s). (50)

We have the following proposition for approximate metastable states, for each fixed
s ∈ [0, 1]; see [4].

Proposition 3.1. (Approximate metastable states). Assume that (B1)–(B5) hold, and
fix s ∈ [0, 1]. Let ξ ∈ C∞

0 (R) be supported close to λ0(s) with ξ = 1 in some open
interval containing λ0(s). Then

〈ψN
g (s), e−i Hg(s)tξ(Hg(s))ψ

N
g (s)〉 = aN

g (s)e
−iλg(s)t + bN

g (t), (51)

for small g, where

aN
g (s) = 〈ψN

g (s, θ), Pg(s, θ)ψ
N
g (s, θ)〉 = 1 + O(g2N ), I mθ ∈ (0, β),

and
bN

g (t) ≤ g2N Cm(1 + t)−m,

for m > 0, where Cm is a finite constant, independent of s ∈ [0, 1].
Although the proof of Proposition 3.1 is a straightforward extension of the results in [4],
it is sketched in the Appendix to make the presentation self-contained.

Choosing t = 0 in (51) gives

〈ψN
g (s), (1 − ξ(Hg(s)))ψ

N
g (s)〉 = O(g2N ). (52)

In particular, for 0 < ξ ≤ 1,

〈ψN
g (s), e−i Hg(s)tψN

g (s)〉 = e−iλg(s)t + O(g2N ). (53)

This motivates considering ψN
g (s) as approximate instantaneous metastable states, up

to an error term of order O(g2N ).

In the next subsection, we recall a general adiabatic theorem proven in [18].

3.2. A general adiabatic theorem. Consider a family of closed operators {A(t)}t∈R act-
ing on a Hilbert space H, with common dense domain of definition D. Let U (t) be the
propagator given by

∂tU (t)ψ = −A(t)U (t)ψ , U (t = 0) = 1 , (54)

for t ≥ 0; ψ ∈ D. We make the following assumptions, which will be verified in the
application we consider later in this section.

(C1) U (t) is a bounded semigroup, for t ∈ R+, i.e., ‖U (t)‖ ≤ M, where M is a finite
constant.

(C2) For z ∈ ρ(A(t)), the resolvent set of A(t), let R(z, t) := (z − A(t))−1. Assume
that R(−1, t) is bounded and differentiable as a bounded operator on H, and that
A(t)Ṙ(−1, t) is bounded, where the (˙) stands for differentiation with respect to t .
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Assume that A(t) ≡ A(0) for t ≤ 0, and that it is perturbed slowly over a time scale
τ such that A(τ )(t) ≡ A(s), where s := t

τ
∈ [0, 1] is the rescaled time. The following

two assumptions are needed to prove an adiabatic theorem.

(C3) The eigenvalue λ(s) ∈ σ(A(s)) is isolated and simple, with

dist (λ(s), σ (A(s))\{λ(s)}) > δ,

where δ > 0 is a constant independent of s ∈ [0, 1], and λ(s) is continuously
differentiable in s ∈ [0, 1].

(C4) The projection onto λ(s),

Pλ(s) := 1

2π i

∮

γλ(s)
R(z, s)dz, (55)

where γλ(s) is a contour enclosing λ(s) only, is twice differentiable as a bounded
operator.

Note that, since λ(s) is simple, the resolvent of A(s) in a neighborhood N of λ(s),
contained in a ball B(λ(s), r) centered at λ(s) with radius r < δ, is

R(z, s) = Pλ(s)

z − λ(s)
+ Ranalytic(z, s), (56)

where Ranalytic(z, s) is analytic in N .
We now discuss our general adiabatic theorem. Let Uτ (s, s′) be the propagator given

by
∂sUτ (s, s′) = −τ A(s)Uτ (s, s′) ,Uτ (s, s) = 1, (57)

for s ≥ s′. Moreover, define the generator of the adiabatic time evolution,

Aa(s) := A(s)− 1

τ
[Ṗλ(s), Pλ(s)], (58)

with the corresponding propagator Ua(s, s′), which is given by

∂sUa(s, s′) = −τ Aa(s)Ua(s, s′) ; Ua(s, s) = 1, (59)

for s ≥ s′. It follows from Assumption (C4) that

sup
s∈[0,1]

‖[Ṗλ(s), Pλ(s)]‖ ≤ C,

for some finite constant C , and hence by perturbation theory for semigroups, [35]
Chap. IX, and Assumption (C1), Ua defined on the domain D exists and is unique,
and ‖Ua(s, s′)‖ < M ′ for s ≥ s′, where M ′ = MeC . We are in a position to state our
adiabatic theorem.

Theorem 3.2. (A general adiabatic theorem). Assume (C1)–(C4). Then the following
holds:
(i)

Pλ(s)Ua(s, 0) = Ua(s, 0)Pλ(0) , (60)

for s ≥ 0 (the intertwining property).
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(ii)

sup
s∈[0,1]

‖Uτ (s, 0)− Ua(s, 0)‖ ≤ C

1 + τ
,

for τ > 0 and C a finite constant. In particular,

sup
s∈[0,1]

‖Uτ (s, 0)− Ua(s, 0)‖ = O(τ−1),

for τ 
 1.

We refer the reader to [18] for a proof of Theorem 3.2.

Remark. Assumption (C1) can be relaxed, but the result of Theorem 3.2 will be weak-
ened. Suppose A(t) generates a quasi-bounded semigroup, i.e., there exist finite positive
constants M and γ such that ‖U (t)‖ ≤ Meγ t , t ∈ R+, then (ii) in Theorem 3.2 becomes

sup
s∈[0,1]

‖Uτ (s, 0)− Ua(s, 0)‖ ≤ C
eτγ

τ
,

for 1 � τ � γ−1.

3.3. Adiabatic evolution of resonances that appear as isolated eigenvalues of spectrally
deformed Hamiltonians. We consider a quantum mechanical system satisfying Assump-
tions (B1)–(B5), Subsect. 3.1. Denote by Uτ (s, s′, θ) the propagator corresponding to
the deformed time evolution, which is given by

∂sUτ (s, s′, θ) = −iτHg(s, θ)Uτ (s, s′, θ),Uτ (s, s, θ) = 1, (61)

for 0 ≤ s′ ≤ s ≤ 1 and I mθ ∈ [0, β). We make the following assumption on the exis-
tence of the deformed time evolution, which can be shown to hold in specific physical
models; see [30, 4, 32] and [35], Chap. IX.

(B6) For fixed θ with I mθ ∈ (0, β), Uτ (s, s′, θ), 0 ≤ s′ ≤ s ≤ 1, exists and is unique
as a bounded semigroup with some dense domain of definition D.9 In particular,
there exists a finite constant M such that

‖Uτ (s, s′, θ)‖ ≤ M, 0 ≤ s′ ≤ s ≤ 1.

The generator of the deformed adiabatic time evolution is given by

Ha(s, θ) := Hg(s, θ) +
i

τ
[Ṗg(s, θ), Pg(s, θ)], (62)

and it generates the propagator

∂sUa(s, s′, θ) = −iτHa(s, θ)Ua(s, s′, θ), Ua(s, s, θ) = 1, (63)

for 0 ≤ s′ ≤ s ≤ 1 and fixed θ with I mθ ∈ (0, β).
9 We remark later how this assumption can be relaxed.
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For fixed θ with I mθ ∈ (0, β), Assumptions (B4) and (B6) and perturbation theory
for semigroups, [35], imply that Ua(s, s′, θ), s ≥ s′, exists and

‖[Ṗg(s, θ), Pg(s, θ)]‖ < ∞, I mθ ∈ (0, β) (64)

‖Ua(s, s′, θ)‖ ≤ M ′, (65)

where M ′ is a finite constant independent of s, s′ ∈ [0, 1].
Assumptions (B1)–(B6) in Subsect. 3.1 imply Assumptions (C1)–(C4) in Subsect. 3.2,

with the identification

Hg(s, θ) ↔ −i A(s),

λg(s) ↔ −iλ(s),

Pg(s, θ) ↔ i Pλ(s),

for fixed θ with I mθ ∈ (0, β).
We consider a reference subspace corresponding to a projection P which is dilatation

analytic, i.e., P(θ) = U (θ)PU (−θ) extends from real values of θ to a family in a strip
|I mθ | < β, β > 0.Moreover, we assume that the initial state of the quantum mechanical
system is

ρ0 = |ψN
g (0)〉〈ψN

g (0)|, (66)

where ψN
g (s) has been defined in (50).

We are interested in estimating the difference between the true state of the system
and the instantaneous metastable state defined in (50) when Hg varies over a time scale
smaller than the lifetime of the metastable state,

τl = min
s∈[0,1](I mλg(s))

−1 ∼ g−2.

More precisely, we are interested in comparing

pτ s := T r(PUτ (s, 0)ρ0U∗
τ (s, 0))

= T r(PUτ (s, 0)|ψN
g (0)〉〈ψN

g (0)|U∗
τ (s, 0)) (67)

to
p̃τ s := T r(P|ψN

g (s)〉〈ψN
g (s)|). (68)

This is given in the following theorem.

Theorem 3.3. (Adiabatic evolution of isolated resonances). Suppose Assumptions
(B1)–(B6) hold. Then, for g small enough and for 1 � τ � τl ∼ g−2,

|pτ s − p̃τ s | = O(max(1/τ, gN τ, τ/τl(g))). (69)

Proof. This result is a consequence of Theorem 3.2. Since Assumptions (B1)–(B6) hold,
we know that, for fixed θ with I mθ ∈ (0, β),

Ua(s, 0, θ)P N
g (0, θ) = P N

g (s, θ)Ua(s, 0, θ) + O(gN τ), (70)

sup
s∈[0,1]

‖Ua(s, 0, θ)− Uτ (s, 0, θ)‖ ≤ C

τ
, (71)
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for τ 
 1, where C is a finite constant. For 1 � τ � g−2, and I mθ ∈ (0, β), we have

pτ s = 〈Uτ (s, 0)ψN
g (0),PUτ (s, 0)ψN

g (0)〉
= 〈Uτ (s, 0, θ)ψN

g (0, θ),P(θ)Uτ (s, 0, θ)ψN
g (0, θ)〉

= 〈Ua(s, 0, θ)ψN
g (0, θ),P(θ)Ua(s, 0, θ)ψN

g (0, θ)〉 + O(1/τ)

= 〈ψN
g (s, θ),P(θ)ψ

N
g (s, θ)〉 + O(max(τ/τl(g), 1/τ, gN τ))

= p̃τ s + O(max(1/τ, gN τ, τ/τl(g))).

��
Remarks. (1) To estimate the survival probability of the true state of the system, choose

P = |ψN
g (0)〉〈ψN

g (0)|, where ψN
g (s) is defined in (50).

(2) One may also estimate the difference between the true expectation value of a
bounded operator A and its expectation value in the instantaneous metastable state,
provided the operator A is dilatation analytic. Similar to the proof of Theorem 3.3,
one can show that

〈ψN
g (0),Uτ (s, 0)∗ AUτ (s, 0)ψN

g (0)〉
= 〈ψN

g (s), AψN
g (s)〉 + O(max(1/τ, gN τ, τ/τl(g))),

for 1 � τ � g−2.

(3) The results of this section can be extended to study the quasi-static evolution of
equilibrium and nonequilibrium steady states of quantum mechanical systems at
positive temperatures, e.g., when one or more thermal reservoirs are coupled to a
small system with a finite dimensional Hilbert space; see [18, 29] for further details.
In these applications, the generator of time evolution is deformed using complex
translations instead of complex dilatations.

(4) Assumption (B6) can be relaxed. Fix θ with I mθ ∈ (0, β). Suppose that Hg(s, θ)
generates a quasi-bounded semigroup,

‖Uτ (s, s′, θ)‖ ≤ Megατ(s−s′), (72)

where M and α are positive constants and g is the coupling constant. It follows from
Assumption (B4) that

1

τ
sup

s∈[0,1]
‖[Ṗg(s, θ)Pg(s, θ)]‖ ≤ C

τ

for finite C. Together with (72), this implies that

‖Ua(s, s′, θ)‖ ≤ M ′egατ(s−s′),

where M ′ is a finite constant. Then, under Assumptions (B1)–(B6), the result of
Theorem 3.3 becomes

|pτ s − p̃τ s | = O(max(egατ /τ, gN τ, τ/τl(g))),

for 1 � τ � g−2.
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(5) The results of this section can be extended to study “superadiabatic” evolution of
quantum resonances.10 In the last decade, there has been a lot of progress in studying
superadiabatic processes (see for example [19] and references therein). Depending
on the smoothness of the generator of the time evolution, superadiabatic theorems
give improved estimates of the difference between the true time evolution and the
adiabatic one. Very recently, and after the submission of this paper, superadiabat-
ic theorems with a gap condition have been extended to evolutions generated by
nonselfadjoint operators [20]. Using superadiabatic theorems and methods devel-
oped in [21], the results of this section can be extended to longer time scales under
additional regularity assumptions on the Hamiltonian. Further details will appear in
[30].

4. General Resonances

In this section, we study the case of resonances which emerge from eigenvalues of an
unperturbed Hamiltonian embedded in the continuous spectrum after a perturbation has
been added to the Hamiltonian. Such resonances arise, for example, when a small sys-
tem, say a toy atom or impurity spin, is coupled to a quantized field, e.g. to magnons or
the electromagnetic field. The main result of this section is Theorem 4.1, which is based
on an extension of the adiabatic theorem without a spectral gap; see for example [25,
27, 29]. The results of this section are more general than Sect. 3, since the perturbation
is not restricted to be dilatation analytic.

Consider a quantum mechanical system with a Hilbert space H and a family of
time-dependent selfadjoint Hamiltonians {Hg(t)}t∈R such that

Hg(t) = H0(t) + gV (t),

where H0(t) is the unperturbed Hamiltonian with fixed common dense domain of defi-
nition D,∀t ∈ R, and V (t) is a perturbation which is bounded relative to H0(t) in the
sense of Kato[35]. We assume that the variation of the true Hamiltonian, H τ

g (t), in time
is given by H τ

g (t) ≡ Hg(s),where s ∈ [0, 1] is the rescaled time. We make the following
assumptions on the model.

(D1) Hg(s) is a generator of a contraction semigroup for s ∈ [0, 1] with fixed dense core.
Let Rg(z, s) := (z − Hg(s))−1 for z ∈ ρ(Hg(s)), the resolvent set of Hg(s). We
assume that Rg(i, s) is differentiable in s as a bounded operator, and Hg(s)Ṙg(i, s)
is bounded uniformly in s ∈ [0, 1]. This assumption is sufficient to show that the
unitary propagator generated by Hg(s) exists and is unique.

(D2) λ0(s) is a simple eigenvalue of H0(s) which is embedded in the continuous spec-
trum of H0(s), with corresponding eigenvector φ(s),

H0(s)φ(s) = λ0(s)φ(s).

Furthermore, the eigenprojection P0(s) corresponding to λ0(s) is twice differen-
tiable in s as a bounded operator for almost all s ∈ [0, 1], and is continuous in
s, s ∈ [0, 1], as a bounded operator.

10 We are grateful to an anonymous referee for indicating this possibility to us.
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(D3) Let P0(s) := 1 − P0(s), and, for a given operator A on H, denote by Âs its
restriction to the range of P0(s),

Âs := P0(s)AP0(s).

Let
F(z, s) := 〈φ(s), V (s)P0(s)(z − Ĥ0(s)s)

−1 P0(s)V (s)φ(s)〉. (73)

For each s ∈ [0, 1], we have

I m F(λ0(s) + i0, s) ≤ 0, (Fermi ′s Golden Rule). (74)

We note that

P0(s)Hg(s) = λ0(s)P0(s) + O(g),

Hg(s)P0(s) = λ0(s)P0(s) + O(g).

(D4) Instantaneous metastable states. Let ξ ∈ C∞
0 (R) be supported in a neighborhood

of λ0(s). For each fixed s ∈ [0, 1], we have

〈φ(s), e−i t Hg(s)ξ(Hg(s))φ(s)〉 = ag(s)e
−i tλg(s) + bg(t), t ≥ 0, (75)

where

λg(s) = λ0(s) + g〈φ(s), V (s)φ(s)〉 + g2 F(λ0(s)− i0, s) + o(g2),

and

|ag(s)− 1| ≤ Cg2,

|bg(t)| ≤ Cg2(1 + t)−n,

C is a finite constant independent of s ∈ [0, 1], for some n ≥ 1. Note that
I mλg(s) ≤ 0. Equation (75) uniquely defines the instantaneous resonance state,
up to an error O(g4).11

11 The latter assumption is satisfied if the following holds, for each fixed s ∈ [0, 1]; see [7] for a proof of
this claim in the s-independent case:
(1) There exists a selfadjoint operator As such that

eit As D ⊂ D,

for each fixed s ∈ [0, 1] and t ∈ R. This implies that D ∩ D(As ) is a core of H0(s).

(2) Denote by ad j
As
(·) := [As , ad j−1

As
], ad1

As
(·) := [As , ·]. For some integer m ≥ n + 6, where n appears

in (D4), the multiple commutators adi
As
(H0(s)) and adi

As
(V (s)), i = 1, . . . ,m, exist as H0(s)-bounded

operators in the sense of Kato. [35]
(3) Mourre’s inequality holds for some open interval �s � λ0(s),

E�s (H0(s))i[H0(s), As ]E�s (H0(s)) ≥ θE�s (H0(s)) + K ,

where E�s (H0(s)) is the spectral projection of H0(s) onto�s , θ is a positive constant, and K is a compact
operator.
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A physical example where Assumptions (D1)–(D4) may be satisfied is a small system
interacting with a field of noninteracting bosons or fermions, for example, a spin system
coupled to a time-dependent magnetic field; see [22–24, 30] for further details on the
relevant model of a toy atom interacting with the electromagnetic radiation field.

We are interested in the adiabatic evolution of the quantum resonance over time scales
which are much smaller than the lifetime of the resonance. We will prove an adiabatic
theorem without a spectral gap condition for quantum resonances for weak coupling g
(see [25, 27–29]).

Let Uτ (s, s′) be the propagator given by

∂sUτ (s, s′) = −iτHg(s)Uτ (s, s′), Uτ (s, s) = 1, (76)

with some dense domain of definition D. Existence of Uτ as a unique unitary operator
follows from Assumption (D1) and Theorem X.70 in [36]. Moreover, we introduce the
generator of the adiabatic time evolution

H0
a (s) := Hg(s) +

i

τ
[Ṗ0(s), P0(s)]. (77)

The propagator corresponding to the approximate adiabatic evolution is given by

∂sU 0
a (s, s′) = −iτH0

a (s)U
0
a (s, s′), U 0

a (s, s) = 1, (78)

with domain of definition D. Note that Ua exists as a unique unitary operator due to
Assumptions (D1) and (D2). We have the following theorem, which is an extension of
the results in [25, 27, 29].

Theorem 4.1. (Adiabatic theorem for embedded resonances). Suppose Assumptions
(D1)–(D4) hold. Then, for small enough coupling g and large enough τ,

U 0
a (s, 0)P0(0)U

0
a (0, s) = P0(s) + O(τg), (79)

and

sup
s∈[0,1]

‖Uτ (s, 0)− U 0
a (s, 0)‖ ≤ A

τ 1/2 + Bgτ 1/4 + C(τ−1/4), (80)

where A and B are finite constants, and C(x) is a positive function of x ∈ R such that
limx→0 C(x) = 0. In particular, choosing τ ∼ g−2/3 gives

sup
s∈[0,1]

‖Uτ (s, 0)P0(0)− P0(s)‖ ≤ Ag1/3 + C(g1/6). (81)

Proof. Let
h(s, s′) := U 0

a (s, s′)P0(s
′)U 0

a (s
′, 0). (82)

Then

∂s′h(s, s′) = iτU 0
a (s, s′){H0

a (s
′)P0(s

′)− P0(s
′)H0

a (s
′)}U 0

a (s
′, 0)

= iτU 0
a (s, s′){λ0(s

′)P0(s
′) +

i

τ
Ṗ0(s

′)P0(s
′)− λ0(s

′)P0(s
′)

+
i

τ
P0(s

′)Ṗ0(s
′) + O(g)}U 0

a (s
′, 0)

= O(gτ),



668 W. K. Abou Salem, J. Fröhlich

where we have used the definition of the generator of the adiabatic evolution and the
property that

Ṗ0(s)P0(s) + P0(s)Ṗ0(s) = 0.

It follows that h(s, 0) = h(s, s), which is claim (79).
Moreover, we are interested in estimating the difference between the true evolution

and the adiabatic time evolution. For ψ ∈ D, we have that

(Uτ (s, 0)− U 0
a (s, 0))ψ = −

∫ s

0
ds′∂s′(Uτ (s, s′)U 0

a (s
′, 0))ψ

= −iτ
∫ s

0
ds′Uτ (s, s′)[Hg(s

′)− H0
a (s

′)]U 0
a (s

′, 0)ψ

= −
∫ s

0
ds′Uτ (s, s′)[Ṗ0(s

′), P0(s
′)]U 0

a (s
′, 0)ψ.

Since the domain of definition D is dense in H, it follows that

‖Uτ (s, 0)− U 0
a (s, 0)‖ = ‖

∫ s

0
ds′Uτ (s, s′)[Ṗ0(s

′), P0(s
′)]U 0

a (s
′, 0)‖. (83)

We will now use a variant of Kato’s commutator method to express the integrand as
a total derivative plus a remainder term, see [25]. Let

Xε(s) := Rg(λ0(s) + iε, s)Ṗ0(s)P0(s) + P0(s)Ṗ0(s)Rg(λ0(s)− iε, s). (84)

Note that

[Hg(s), Xε(s)] = [Hg(s)− λ0(s)− iε, Rg(λ0(s) + iε, s)Ṗ0(s)P0(s)]
+ [Hg(s)− λ0(s) + iε, P0(s)Ṗ0(s)Rg(λ0(s)− iε, s)]

= [Ṗ0(s), P0(s)] + iεXε(s) + O(g/ε).

Furthermore,

∂s′(Uτ (s, s′)Xε(s′)U 0
a (s

′, 0)) = iτUτ (s, s′)[Hg(s
′), Xε(s

′)]U 0
a (s

′, 0)

+ Uτ (s, s′)Xε(s′)[Ṗ0(s
′), P0(s

′)]U 0
a (s

′, 0)

+ Uτ (s, s′)Ẋε(s′)U 0
a (s

′, 0).

Therefore,

‖
∫ s

0
ds′Uτ (s, s′)[Ṗ0(s

′), P0(s
′)]U 0

a (s
′, 0)‖ ≤ sup

s∈[0,1]
{ 1

τ
[‖Xε(s)‖(1 + 2‖Ṗ0(s)P0(s)‖)

+ ‖Ẋε(s)‖] + ε‖Xε(s)‖} + Cg/ε, (85)

where C is a finite constant independent of s ∈ [0, 1]. We claim that the following
estimates are true for small enough ε and g:

(i) ‖Xε(s)‖ < C/ε, (86)

(i i) ‖Ẋε(s)‖ < C/ε2, (87)

(i i i) ε‖Xε(s)‖ < B(ε) + Cg/ε, (88)

where limε→0 B(ε) = 0, and C is a finite constant, uniformly in s ∈ [0, 1].
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Estimates (i) and (i i) follow from our knowledge of the spectrum of Hg(s) and the
resolvent identity. To prove estimate (i i i),we compare the LHS of (88) to the case when
g = 0. Let

X̃ε(s) := R0(λ0(s) + iε, s)Ṗ0(s)P0(s) + P0(s)Ṗ0(s)R0(λ0(s)− iε, s). (89)

Then, by the second resolvent identity,

‖Xε(s)‖ ≤ ‖X̃ε(s)‖ + Cg/ε2,

uniformly in s, for some finite constant C. We claim that

lim
ε→0

ε2‖X̃ε(s)‖2 = 0. (90)

Consider φ ∈ D, then ψ(s) = Ṗ0(s)P0(s)φ ∈ K er(P0(s)). Using the spectral theorem
for H0(s), we have the following result:

lim
ε→0

ε2‖R0(λ0(s) + iε, s)Ṗ0(s)P0(s)φ‖2 = lim
ε→0

ε2〈ψ(s), R0(λ0(s)− iε, s)R0(λ0(s)

+iε, s)ψ(s)〉
= lim

ε→0
ε2

∫
dµψ(s)(λ)

1

(λ− λ0(s))2 + ε2

= µ(ψ(s) ∈ Ran(P0(s))) = 0,

and hence claim (90). Therefore,

sup
s∈[0,1]

‖Uτ (s, 0)− U 0
a (s, 0)‖ ≤ C1

τε2 +
C2g

ε
+ C(ε), (91)

where C1,2 are finite constants, and limε→0 C(ε) = 0. Choosing ε = τ−1/4 gives (80).
By choosing τ ∼ g−2/3, (81) follows from Assumption (D4), (79) and (80). ��

Remarks. (1) We note that, using an argument due to Kato, [16], the case of finitely
many resonance crossings is already covered by Theorem 4.1, since the latter holds
for P0(s) twice differentiable as a bounded operator for almost all s ∈ [0, 1] and
continuous as a bounded operator for s ∈ [0, 1]. Suppose that at time s0 ∈ [0, 1], a
crossing of λ0(s) with an eigenvalue of H0(s) happens. It follows from continuity
of P0(s) that, for small ε > 0, Ran(P0(s0 − ε)) and Ran(P0(s0 + ε)) are close up
to an error which is arbitrarily small in ε, and hence our claim follows.

(2) Further knowledge of the spectrum of H0(s) will yield a better estimate of the con-
vergence of ε‖X̃ε‖ to zero as ε → 0. For example, it is shown in [25–27] that if the
spectral measureµφ(s), φ(s) ∈ Ran(P0(s)), isα-Hölder continuous, forα ∈ [0, 1],
uniformly in s ∈ [0, 1], then12

sup
s∈[0,1]

ε‖R0(λ0(s) + iε, s)Ṗ0(s)P0(s)‖ ≤ Aεα/2, (92)

for ε small enough, where A is a finite constant, and hence estimate (81) becomes

sup
s∈[0,1]

‖Uτ (s, 0)P0(0)− P0(s)‖ = O(gα/12) (93)

for g small enough.

Acknowledgements. WAS is grateful to an anonymous referee for pointing out references [12, 19–21].

12 A measure µ is α-Hölder continuous, α ∈ [0, 1], if there exists a finite constant C such that, for every
set ε with Lebesgue measure |ε| < 1, µ(ε) < C |ε|α , see, e.g., [35].
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5. Appendix

Proof of Proposition 2.1, Sect. 2.

Proof of Proposition 2.1 . This proposition effectively follows by integrating the
Liouville equation and applying the Cauchy-Schwarz inequality. It is a special case
of the generalized time-energy uncertainty relations derived in [8]. Consider an orthog-
onal projection P and selfadjoint operators A and B acting on a Hilbert space H. Then
it follows from a direct application of the Cauchy-Schwarz inequality that

T r(P[A, B])2 ≤ 4T r(P A2 − P AP A)T r(P B2 − P B P B), (94)

with equality when there exist a, b ∈ R\{0} such that

[a A + ibB, P]P = 0. (95)

We use inequality (94) to derive upper and lower bounds for pn
s . Let

pn
s,s′ := T r(PUτ (s, s′)Pn

1 (0)Uτ (s
′, s)). (96)

Then

|∂s′ pn
s,s′ | = |iτT r(PUτ (s, s′)[H(s′), Pn

1 (0)]Uτ (s′, s))|
= |τT r(Pn

1 (0)[Uτ (s′, s)PUτ (s, s′), H(s′)])|
≤ 2τT r(Uτ (s, s′)Pn

1 (0)Uτ (s
′, s)P2

− Uτ (s, s′)Pn
1 (0)Uτ (s

′, s)PUτ (s, s′)Pn
1 (0)Uτ (s

′, s)P)1/2

× T r(Pn
1 (0)H(s

′)2 − Pn
1 (0)H(s

′)Pn
1 (0)H(s

′))1/2

≤ 2τ
√

pn
s,s′ − (pn

s,s′)2 f (Pn
1 (0), H(s′)),

where f (P, A) := √
T r(P A∗(1 − P)A). It follows that

|
∫ s

0
ds′ ∂s′ pn

s,s′√
pn

s,s′ − (pn
s,s′)2

| = |arcsin
(√

pn
s,0

)
− arcsin

(√
pn

s,s

)
|

≤ 2τ
∫ s

0
ds′ f (Pn

1 (0), H(s′)),

and hence

pn
s = pn

s,0
≤
≥sin2∗

(
arcsin

(√
T r(PPn

1 (0))± 2τ
∫ s

0
ds′ f (Pn

1 (0)), H(s′)
))

. (97)

We note that

pn
s = T r(PUτ (s, 0)Pn

1 (0)Uτ (0, s)) = T r(U1(0, s)PU1(s, 0)W (s, 0)Pn
1 (0)W (0, s)).

(98)

Together with (97), and the identification

P ↔ U1(0, s)PU1(s, 0)

H(s) ↔ H̃(s),
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where H̃(s) is the generator of the auxiliary propagator W , as defined in (19), we have

pn
s
≤
≥sin2∗(arcsin

√
T r(PU1(s, 0)Pn

1 (0)U1(0, s))± 2τ
∫ s

0
ds′ f (Pn

1 (0), H̃(s′))).
(99)

Proof that the eigenstates of H1, Sect. 2, decay like a Gaussian in space. It follows
from Assumption (A3) that ‖wε,θ (x, s)‖ defined in (7) is uniformly bounded by cε, for
s ∈ I. Therefore, the spectrum of H1(s), for each fixed s ∈ I, can be computed by
applying analytic perturbation theory (see, e.g., [35, 36]). Also using analytic perturba-
tion theory, one can show that the eigenstates of H1(s), for each fixed s, decay like a
Gaussian away from the origin (see [31, 32]). To prove the last claim, choose E > 0.
There exist finitely many sequences l(1), . . . , l(kE ), such that

Es
l( j) < E, j = 1, . . . , kE , (100)

where

kE ≤ A(
E

�0
),

A is a finite geometrical constant, �0 appears in Assumption (A2), and Es
l( j) is given in

(26). Let |l| := max li . Then |l( j)| < E
�0

for j = 1, . . . , kE . Choose a contour γE in the
complex plane surrounding σ(H0(s)) ∩ [0, E), such that

dE := min
s∈I

dist[γE , σ (H0(s))] = 1

2
min
s∈I
(Es

l(kE +1) − Es
l(kE )

) > 0. (101)

For each fixed time s ∈ I , we define the spectral projection of H1(s),

Pθ,εE (s) := 1

2π i

∮

γE

dz(z − H1(s))
−1. (102)

Let P0
E (s) be the orthogonal projection of H0(s) onto the subspace HE(s) spanned by

the eigenfunctions {φl(1) , . . . , φl(kE )}, and choose ε such that

εc <
d2

E

3(E +�0)
, (103)

where c is a finite constant appearing in Assumption (A3). It follows from analytic
perturbation theory, with ε satisfying (103), that

T r(Pθ,εE (s)) = T r(P0
E (s)) = kE , (104)

and
‖Pθ,εE (s)− P0

E (s)‖ < 1. (105)

We have the following lemma.

Lemma A.1. Suppose Assumptions (A2) and (A3) hold. Choose ε satisfying (103), and
fix s ∈ I.Furthermore, suppose thatψ s ∈ Ran Pθ,εE (s). Then there exist finite constants
C > 1 and α > 0 (depending on ε) such that, for sufficiently small α,

‖eα|x |2ψ s‖ ≤ C‖ψ s‖. (106)

Furthermore,
‖eα|x |2U1(s, s′)ψ s′ ‖ ≤ C‖ψ s′ ‖, (107)

for τ < ∞ and α small enough.
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Proof. It follows from (105) that there exists φs ∈ HE(s), the subspace spanned by the
eigenfunctions {φl(1) , . . . , φl(kE )}, such that

ψ s := Pθ,εE φs, (108)

and hence
‖ψ s‖ ≤ C‖φs‖, (109)

for some finite constant C. Moreover, it follows from (102) and (108) that

eα|x |2ψ s =
∮

γE(s)

dz

2π i
eα|x |2(z − H1(s))

−1e−α|x |2 eα|x |2φs . (110)

For α small enough, we know from (27) and (28) that

‖eα|x |2φs‖ ≤ C ′‖φs‖, (111)

for some finite constant C ′.Moreover, for z ∈ γE , it follows from analytic perturbation
theory, [35], that

‖eα|x |2(z − H1(s))
−1e−α|x |2‖ = ‖(z − H1(s))

−1)‖ < ∞, (112)

for α small enough (depending on ε), where

H1(s) := H1(s) + 2αd − 4α2|x |2 + 4αx · ∇.
The claim (106) follows from (110), (111) and (112). Now,

eα|x |2U1(s, s′)ψ s′ = U 1(s, s′)eα|x |2ψ s′
,

where U 1 = eα|x |2U1(s, s′)e−α|x |2 is the propagator generated by H1(s). By applying
analytic perturbation theory, it follows that

‖U 1(s, s′)eα|x |2ψ s′ ‖ ≤ eM(α)τ‖eα|x |2ψ s′ ‖,
where M(α) is a positive constant such that M(α) → 0 as α → 0. Together with (106),
this implies (107) for α small enough. ��
Proof of Proposition 3.1, Sect. 3.

Proof of Proposition 3.1 . Fix θ, with 0 < I mθ < β. By Assumptions (B1) and (B3),
there exists an open interval I ⊂ N (s, θ) ∩ R, with λ0(s) ∈ I. Choose ξ ∈ C∞

0 (I ).
Then

F(s, t) := 〈ψN
g (s), e−i Hg(s)tξ(Hg(s))ψ

N
g (s)〉

= lim
ε→0

∫

I

dz

2π i
e−i ztξ(z)〈ψN

g (s), (Rg(s, z − iε)

− Rg(s, z + iε))ψN
g (s)〉. (113)

Let

f (θ, s, t) := 1

2π i

∫

I
dze−i ztξ(z)〈ψN

g (s, θ), Rg(s, θ; z)ψN
g (s, θ)〉, (114)
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where ψN
g (s, θ) := U (θ)ψN

g (s). Then

F(s, t) = f (θ, s, t)− f (θ, s, t).

The resolvent in N (s, θ) can be decomposed into a singular and regular part,

Rg(s, θ; z) = Pg(s, θ)

z − λg(s)
+ Ranalytic

g (s, θ; z), (115)

where Ranalytic
g (s, θ; z) is analytic in z. Note that

Ranalytic
g (s, θ; z)Pg(s, θ) = Pg(s, θ)R

analytic
g (s, θ; z) = 0. (116)

Using (116), the contribution of the regular part to f (θ, s, t) defined in (114) is

〈uN
g (s, θ),

1

2π i

∫

I
dze−i ztξ(z)Ranalytic

g (s, θ; z)uN
g (s, θ)〉,

where

uN
g (s, θ) := 1

‖P N
g (s)ψ0(s)‖[P N

g (s, θ)− Pg(s, θ)]ψ0(s, θ),

is of order gN . Since ξ ∈ C∞
0 (I ), the last integral is bounded by Cmt−m for any m ≥ 0,

and hence the contribution of the regular part is bounded by g2N Cmt−m .The contribution
of the singular part of the resolvent to F(s, t) is

aN
g (s)

1

2π i

∫

I
e−i ztξ(z)(z − λg(s))

−1 − aN
g (s)

1

2π i

∫

I
dze−i ztξ(z)(z − λg(s))

−1.

(117)

Using the fact that ξ = 1 in some open interval I0 � λ0, one may deform the path I into
two contours, C0 and C1, in the lower complex half-plane, as shown in Fig. 2.

The term in (117) corresponding to the path C0 picks the residue aN
g (s)e

−iλg(s)t . It
follows from the identity

P N
g (s, θ)Pg(s, θ)P

N
g (s, θ)

= (P N
g (s, θ))

2 + [P N
g (s, θ)− Pg(s, θ)][Pg(s, θ)− 1][P N

g (s, θ)− Pg(s, θ)],
and from the fact that

‖P N
g (s, θ)− Pg(s, θ)‖ = O(gN ),

that
aN

g (s) = 1 + O(g2N ). (118)

Fig. 2.
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Using (118), one may write the remainder term in (117) due to the path C1 as

I mλg(s)
∫

C1

dz

π i
e−i ztξ(z)(z − λg(s))

−1(z − λg(s))
−1

+ O(g2N )

∫

C1

dze−i zt (z − λg(s))
−1 +

+ O(g2N )

∫

C1

dze−i zt (z − λg(s))
−1,

which is of order O(g2N ). ��
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