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1. INTRODUCTION

There is a nice topology on Z, highlighted in reference [2], which enables
a very elegant proof to be given that the number of rational primes is
infinite. In this paper we develop properties of this topology, define a class
of metrics which generate it, establish a natural family of topologies (the
adic topologies) of which this is the finest and which includes the p-adic
topologies, and give some examples from number theory.

The motivation behind this work is to provide some tools which will
assist with the description and comparison of sets of integers, which are of
number theoretic interest.
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2. TOPOLOGIES FOR Z

Definition of (Z, τ): for each a ∈ Z and b ∈ Z with b ≥ 1, let

Na,b = {a + nb : n ∈ Z}

Then for each a and b1 ≥ 1, b2 ≥ 1

Na,b1b2 ⊂ Na,b1 ∩Na,b2

so the family (Na,b) is a base for the neighbourhoods of each point a and
generates a topology, τ on Z, called here the full topology.

Now generalize this idea. For each a ∈ Z let Ga be a multiplicative
sub-semigroup of N with 1 and let G = (Ga : a ∈ Z). Then let τG be the
topology on Z generated by B = (Na,b : a ∈ Z, b ∈ Ga), which is a sub-base.

If G ⊂ G′ then τG ⊂ τG′ . Therefore τG ⊂ τ for all families G. Therefore,
in this class of topologies on Z, the topology τ , with Ga = N for all a, is
the finest. Hence the designation “full” topology for τ .

We call topologies in this family “adic” topologies.

Example 2.1. If Ga = {1} for each a, we obtain the indiscrete topol-
ogy. In what follows, by the term semigroup we mean a sub multiplicative
semigroup of N with 1 which, unless otherwise stated, is non-trivial in that
it contains an element b > 1.

Example 2.2. Let p be a rational prime and, for each a ∈ Z, let Ga

be the semigroup generated by p, i.e. Ga = {pn : n = 0, 1, 2, · · · }. Then τG
is the classical p-adic topology.

Example 2.3. Examples where the semigroup Ga depends on a would
include the semigroup generated by the prime divisors of a, by the maximal
prime powers dividing a, by the powers of a, and by the multiples of a (with
in each case special definitions being made for special values like a = 0).

All adic topologies make the multiplication · continuous.

Definition 2.1. If Ga = G is independent of a ∈ Z, we say τG is flat
and write τG instead of τG .

Definition 2.2. We say the semigroup G is divisor dense if for all
n ∈ N there is a b ∈ G such that n | b. If each Ga is divisor dense we say
G is divisor dense.
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Definition 2.3. If the semigroup G is such that a ∈ G and b | a
implies b ∈ G we say G is divisor complete. This is equivalent to G being
generated by its prime elements. If each Ga is divisor complete we say G
is divisor complete.

Flat topologies make addition + continuous. If G is divisor dense, then
B is a base for τG .

The semigroup collection G which generates the topology τm is neither
divisor complete nor flat. However the corresponding B is still a base. To
see this let m > 1 and let x ∈ Na,b ∩Na′,b′ = Nx,b ∩Nx,b′ . Let (x, b) = mr

and (x, b′) = mr′ . There are positive integers r, r′ such that βmr = b and
β′mr′ = b′. Therefore ( x

mr , β) = 1, ( x
mr′ , β

′) = 1 so if r′ ≥ r, ( x
mr′ , ββ′) = 1

and hence, if c = ββ′mr′ , (x, c) = mr′ . But c is a common multiple of b
and b′ and Nx,c ∈ B. Hence B is a base.

Theorem 2.1. If the shift maps f±(n) = n ± 1 are continuous and G
divisor complete, then G is flat.

Proof. If b ∈ Ga then f−1
± (Na,b) is open so there is a b′ with b | b′ such

that b′ ∈ Ga+1. But this implies b ∈ Ga+1 so Ga ⊂ Ga+1. Using the left
shift we obtain the reverse implication, so Ga = Ga+1. Since this holds for
all a, G is flat.

If m = 1 so Ga = {b ≥ 1 : (a, b) = 1} we generate the so-called coprime
topology τ1. Note that in this case, each G is divisor complete.

Theorem 2.2. The space (Z − {0}, τ1) is T2, second countable, non-
compact space, with no isolated points.

Proof. The topology is T2: If x < y let p be a prime number with
y − x < p. Then Nx,p ∩Ny,p = ∅ since, if not, y − x = np for some integer
n, which is impossible. It is second countable, being a first countable
topology on a countable set. Since, for all primes p:

Z \N0,p =
p−1⋃
a=1

Na,p

and each (a, p) = 1 when 1 ≤ a ≤ p− 1, each N0,p is closed in the coprime
topology. If (pi) is an enumeration of all primes, (N0,pi) has the finite inter-
section property, with empty intersection. Hence τ1 is not compact. There
are no isolated points since the topology is weaker than the full topology.
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Note that G0 = {1} and N0,1 = Z, so Z is the only open set containing
0 and (Z, τ1) fails to be T1.

Example 2.4. In the coprime topology the set of prime integers
is dense, i.e. P = Z. This follows directly from Dirichlet’s theorem [1].
Indeed the result P = Z in τ1 is equivalent to Dirichlet’s theorem.

Theorem 2.3. The space (Z, τG) is T1, first countable and makes Z a
topological ring in which the usual operations are continuous. It is also
metrizable and has Ind(Z) = 0.

Proof. 1. τG is T1: Given x and y in Z with x 6= y let b be an element of
Gx = G with b > x−y. (Such an element exists because of the assumption
G 6= {1}.) Then y 6∈ Nx,b.

2. Z is first countable: (Na,b : b ∈ G) is a countable base for the
neighbourhoods of a.

3. Z is a topological ring: This follows directly because, for all x and
y ∈ Z and b ∈ G:

Nx,b + Ny,b ⊂ Nx+y,b and Nx,b ·Ny,b ⊂ Nxy,b.

4. Since Z is countable and first countable, it is second countable. Since,
for every b ∈ G

Z =
⋃

0≤a<b

Na,b

and the union is disjoint, each Na,b is closed as well as open. Therefore
the topology has small inductive dimension zero and is T2. Therefore [3]
Ind(Z) = 0, so the space is also normal. Hence by Urysohn’s metrization
theorem, the topology is metrizable.

Theorem 2.4. The space (Z, τG) is homeomorphic to Q with its usual
topology.

Proof. By the theorem of Sierpinski [9], the rationals are characterized
topologically by the properties metric, countable and having no isolated
points. The only property to prove is the last, which follows immediately
because every non-empty open subset of τG contains a set Na,b so is infi-
nite.
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3. COMPLETIONS

A non-archimedean quasi-valuation on a ring R is a function v : R →
[0,∞) such that, for all a and b in R:

(1) v(0) = 0,

(2) v(a) > 0 for a 6= 0,

(3) v(a + b) ≤ max{v(a), v(b)},
(4) v(ab) ≤ min{v(a), v(b)}.

A pseudo-valuation has (4) replaced by v(ab) ≤ max{v(a), v(b)} and a
valuation by v(ab) = v(a)v(b),[5].

Below we will refer to a non-archimedean quasi-valuation as simply a
valuation.

Note that if a | b then v(b) ≤ v(a) and that for each strictly positive real
number δ, {x ∈ R|v(x) ≤ δ} is a closed ideal in R in the topology induced
by v.

Construction of the completion of a ring with a quasi-valuation proceeds
in the normal manner, [5].

Let G be a semigroup. Define a particular quasi-valuation on Z as follows:
let 1 = n0 < n1 < n2 be a strictly increasing sequence of elements of G
with n1|n2|n3 · · · and such that for all i ∈ G there is a j such that i|nj .
For example, G = N, ni = i!.

If a = 0 let v(a) = 0. Otherwise let 〈a〉 = max{ni : ni|a} and then set
v(a) = 1/〈a〉.

Theorem 3.1. The function v is a non-archimedean quasi-valuation on
Z such that the associated metric d(x, y) = v(x− y) generates the topology
τG.

Proof. Since both topologies are homogeneous we need only consider
neighbourhoods of 0. Because B(0, 1/nj ] = njZ, each B(0, 1/nj ] is open
in τ . Conversely, given i ∈ G there is a j with i | nj | nj+1 and therefore

B(0,
1
nj

) = N0,nj+1 ⊂ N0,i.

Definition 3.1. Let G be a semigroup. We say a sequence (xn)
of integers is G-Cauchy if for all i ∈ G there is an Ni such that for all
n,m ≥ Ni, i | xn − xm. By Cauchy we mean N-Cauchy.
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Definition 3.2. If (xn) and (yn) are two G-Cauchy sequences we say
they are equivalent if for all i ∈ G there is an Ni such that for all n ≥ Ni,
i | xn − yn.

Definition 3.3. If (xn) is a sequence of integers and xo an integer we
say (xn) converges to xo if for all i ∈ G there is an Ni such that for all
n ≥ Ni, i | xn − xo. When this is so we write xn → xo.

Example 3.1. Let (αi) be any sequence of integers and for each n ∈ N
let xn =

∑n
j=1 j!αj . Then (xn) is Cauchy.

Definition 3.4. If G is a semigroup, ZG is the completion of Z with
respect to the valuation vG.

Theorem 3.2. The ring ZG can be identified with (1) the set of equiva-
lence classes of G-Cauchy sequences, with (2) the completion of (Z, τG) as
a topological ring, with (3) the inverse limit

ZG ≈ lim←
b∈G

Z/bZ,

and, if G is divisor complete, with (4)

ZG ≈
∏

p∈G

Zp

where the product is of rings of p-adic integers, one for each rational prime
p in G.

Proof. (1) Let (xn) be G-Cauchy. Given b = ni ∈ G there is an Nb ∈ N
such that b | xn − xm for all n,m ≥ Nb. Then v(b) ≥ v(xn − xm). But
< b >= ni which can be made arbitrarily large. Hence (xn) is v-Cauchy.

Conversely, given N ∈ N, let (xn) be such that v(xn − xm) < 1/N for
all sufficiently large n,m. Then < xn − xm >≥ N so there is an ni with
ni ≥ N and ni | xn − xm. The result now follows because given b ∈ G we
can chose N so b | ni.

(2)This follows directly from (1) since vG induces the topology τG on Z.
(3)If (xn) is a G-Cauchy sequence in Z and b ∈ G is given, then for all

n,m sufficiently large, xn ≡ xm mod b. So each sequence maps to a well
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defined class in Z/bZ. It is easy to see that this map is independent of the
representative for each element of the completion ZG and that these maps
commute with the natural surjections Z/bZ→ Z/cZ when b | c. Hence the
completion may be identified with the inverse limit

ZG ≈ lim←
b∈G

Z/bZ,

with the ordering for the limit being induced by divisibility.
(4) The given inverse limit can be specified with a compatible system of

residue representatives (xb), i.e. such at xm ≡ xn mod m whenever m | n.
To specify an element of Zp, a similar compatible system (xpn) must be
given. If G is divisor complete, then all prime powers appear and the identi-
fication follows as an application of the ring theoretic version of the Chinese
Remainder Theorem.

Corollary 3.1. The space ZG, is homeomorphic to the Cantor set
{0, 1}ℵ0 .

Proof. Since vG gives rise to a non-archimedean metric, the comple-
tion also is non-archimedean, so is totally disconnected. It is also totally
bounded since Z is a dense totally bounded subset. Hence the completion
is metric and compact. It is also infinite and has no isolated point, since the
same is true of Z. These properties characterise the Cantor set, see e.g.
[8].

Theorem 3.3. The completion ZG has no nonzero nilpotent elements.
Each element b ∈ G is a non-zero-divisor in ZG. If G is divisor dense,
then ZG has characteristic zero.

Proof.
1. ZG has no non-zero nilpotent elements x: Let xm = 0 where x =

[(xn)]. Then for all i ∈ G there is an Ni such that im | xm
n for all n ≥ Ni,

since G is a semigroup. Hence i | xn for all n ≥ Ni and therefore x = 0.
2. Let b ∈ G and let a be an element of Ẑ such that b · a = 0. Let

a = [(ai)] where (ai) is Cauchy. Then bai → 0 so for all i ∈ G there is an
Ni such that i | baj for all j ≥ Ni. Applying this to bi implies i | aj and
hence aj → 0 so therefore a = 0. Hence b is a non-zero-divisor.

3. ZG has characteristic zero: let p be a prime number and let a be an el-
ement of ZG such that p ·a = 0. Since G is divisor complete there is a b ∈ G

such that p | b. Then b · a = 0 so a = 0.

The following is a concrete realization of the result [4] for zero dimen-
sional compact rings:
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Theorem 3.4. Let G be a semigroup. There exists a family (In : n ∈ G)
of ideals in ZG, that consists of sets that are both open and closed (hence
compact), satisfies a | b =⇒ Ib ⊂ Ia for all a, b ∈ G, and is a basis of
neighborhoods of 0 in ZG.

Proof. If b ∈ G let Ib = N0,b, where the closure is taken in ZG and
Na,b is the same doubly infinite arithmetic progression in Z defined above.
Since N0,b is an ideal, so is Ib.

Claim: ZG = ∪b
a=1N0,b where the union is disjoint. To see this note

firstly that ∪b
a=1N0,b = Z = ZG. If x ∈ Na,b ∩Na′,b, then there are Cauchy

sequences (xn) and (x′n) such that a+xnb → x and a′+x′nb → x. But this
means that for all i ∈ G, i | a+xnb−x and i | a′+x′nb−x for all n ≥ Ni so
i | a−a′+(xn−x′n)b. Choosing i = b we get b | a−a′ so a = a′. Therefore
the union is disjoint. This implies each Ib is open as well as closed.

We can write Ib = bZG (since if (bxn) is Cauchy so is (xn)), and therefore
a | b implies Ib ⊂ Ia.

Finally note that, for each b ∈ G, Ib = {x ∈ ZG : v(x) ≤ 1/nj} where nj

is the integer appearing in the definition of v with nj = max{ni : ni | b}, so
the (Ib) are a basis of neighborhoods of 0 and generate the topology on
ZG.

Theorem 3.5. Let p ∈ G be a rational prime. Then p is prime in ZG.

Proof. Let p = xy where x = [(xn)] and x = [(xn)] where (xn) and (yn)
are Cauchy. Since p | xnyn − p for all n ≥ N1, p | xnyn so p | xn or p | yn,
and thus either p | xn or p | yn for an infinite number of integers n ∈ N.

Suppose p | xn for an infinite number of n ∈ N. Then, since (xn)
is Cauchy, p | xn for all n ≥ N2. Let pzn = xn for these n. Then
(zn) is Cauchy, and if we let z = [(zn)], p = pzy in ZG. Therefore
ip | pznyn − p for all i ∈ G with i ≥ N3, so i | znyn − 1 and hence
1 = zy in ZG. Therefore x = pz where z is a unit, so x is prime in ZG.

Example 3.2. Let p ∈ G be a rational prime and I = N0,p = pẐ
be the principal ideal generated by p. It follows of course from the above
theorem that I is maximal. However we illustrate these ideas with a direct
proof: Let M be an ideal such that I ⊂ M and x ∈ M \ I. Since x 6∈ I,
p - x so x = [(xn)] where (xn) can be chosen such that p - xn for all n.
For each n ∈ N, let y1

n and y2
n be integers satisfying y1

nxn + py2
n = 1. Since

ZG is sequentially compact, there exists a subsequence (nj) of N such that
y1

nj
→ y1,y2

nj
→ y2, and xnj → x in Ẑ. If follows that yx + py = 1 so

1 ∈ M . Hence I is maximal.
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4. CLOSED SUBSETS AND MAPPINGS FOR (Z, τ )

In this section the topology is always the full topology τ .

Theorem 4.1. For k = 1, 2, 3, · · · let Sk = {nk : n ∈ N ∪ {0}}. If k is
even then Sk is closed. If k is odd then

Sk = Sk ∪ {−Sk}.

In both cases the closure of Sk is perfect in (Z, τ).

Proof. 1. Let k = 2l be even and suppose a ∈ Sk \ Sk. Then Na,3a2 ∩
Sk 6= ∅ so there exist integers x, y such that

a + 3xa2 = a(1 + 3xa) = yk.

But (a, 1 + 3xa) = 1 so, for some b | y with b ≥ 1, a = −bk. Then
y2l + b2l = 3xa2 and

(
y

b
)2l + 1 = 3xa.

But this is impossible since the left hand side is congruent to either 1 or 2
mod 4 and 3 divides the right hand side.

2. Let k > 2 be odd and let a ≥ 1, b ≥ 1 be given. Note that there is a
c ∈ N with ak + ak(b− 1)k = bc, so if d = a(b− 1), d ≥ 0 and b | ak + dk.
Therefore −ak + bc = dk so N−ak,b ∩ Sk 6= ∅. Therefore −ak ∈ Sk.

Conversely, if a 6∈ Sk and for all b ≥ 1, Na,b∩Sk 6= ∅, then Na,a2∩Sk 6= ∅,
so a + a2x = yk for integers x, y and therefore a = −dk for some d ≥ 1.

3. To show Sk is perfect, observe that since n! → 0, (−n! + a)k → ak

so every k’th power is a limit of distinct k’th powers. Hence Sk has no
isolated points.

4. If k = 1 then Z = S1 = S1 ∪ −S1.

Note that the result does not of course apply when k = 1.

Theorem 4.2. The closure of the set of prime integers in (Z, τ) is

P = P ∪ {−1, 1}.

Proof. If x ∈ Z\{−1, 0, 1} then Nx,2|x|∩P is {x} if x ∈ P and ∅ otherwise,
since x + 2n|x| = x(1± 2n). Thus P includes none of its cluster points and
no point in the complement of P∪{−1, 0, 1} is in P. By Dirichlet’s theorem,
for all b ≥ 1, N±1,b ∩ P 6= ∅ so ±1 ∈ P. Finally 0 6∈ P since N0,4 ∩ P = ∅.
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Theorem 4.3. If k ≥ 1 let Pk be the set of integers with absolute value
having exactly k prime factors (including multiplicity). Let Po = {−1, 1}.
Then, for all k ≥ 0:

(a) Po ∪ · · · ∪ Pk = Pk,
(b) Pk ∪ Pk+1 = Pk+1,
where the unions in each case are disjoint.

Proof. First two observations. For each a ∈ Z:
(1) for all b ≥ 1 there is a c ∈ Na,b with the number of prime factors

Ω(c) = Ω(a) + 1, namely c = a + 2nab, where n has been chosen so that
1 + 2nb is prime,

(2) if Ω(a) = k then all elements c of Na,2|a| have Ω(c) ≥ k.
(a) By (1), Pk ⊂ Pk+1 so the left hand side is a subset of the right hand

side. By (2), for j > k, Pk+1 ∩ Pj = ∅. Since

Z =
∞⋃

k=0

Pk ∪ {0}

it follows that

Pk+1 ⊂ Po ∪ · · · ∪ Pk+1 ∪ {0}.
But 0 is not in Pk+1 since every element c of N0,b \ {0} has Ω(c) ≥ Ω(b),
and Ω(b) can be made arbitrarily large. Hence the right hand side is a
subset of the left hand side and (a) follows.

(b) This is really just a restatement of (a).

Another way to express (a): the set of integers with less than or equal
to k prime factors is closed in (Z, τ).

Theorem 4.4. For all a, b ∈ Z the maps x → ax+b are closed and open
for (Z, τ).

Proof. Since the maps x → −x and x → x + b are homeomorphisms,
we need only show that for a ≥ 1 the map x → ax is closed.

Let F ⊂ Z be closed and let xn ∈ F be such that axn → α in τ . Then
for all i ≥ 1 there is an Ni ≥ 1 such that for all n ≥ Ni, i | axn−α. Choose
i = a to show a | α. Let α = aβ so i | a(xn − β). Now choose i = aj to see
that j | xn − β so xn → β. Hence β ∈ F so the mapping is closed.

For all non-zero a, aNr,s = Nar,|a|s so the maps are open also.

Theorem 4.5. Let p ∈ Z[x] be a polynomial. Then p : (Z, d) → (Z, d)
is uniformly continuous.
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Proof. If ni | x− y then ni | p(x)− p(y) so 〈p(x)− p(y)〉 ≥ x− y.

The potential domain of application of this result is clear: first show
it is true for a multinomial p : Z[x1, · · · , xn] → Z. (Note that multi-
nomials are continuous, but not necessarily uniformly continuous.) Use
uniform continuity to extend each multinomial to a continuous mapping
p̂ : Ẑ[x1, · · · , xn] → Ẑ, so the set F = p̂−1{0} is a compact subset of Ẑn.
Then use compactness of study properties of F , for example its size.

5. EXAMPLES

If F is a compact subset of P, then F is a finite set. This is because
compact subsets are closed and have no cluster points.

Dirichlet’s theorem on primes in an arithmetic progression was used in
Theorem 4.1 to show that P = P ∪ {−1, 1}. Conversely, this relationship
implies a special case of Dirichlet’s theorem, usually proved using cyclo-
tomic polynomials, namely that there exist an infinite number of primes in
every arithmetic progression of the form an+1 and an− 1 for every a ≥ 1.
To see this consider the case an +1. Since N1,a ∩P 6= ∅ there is a prime p1

and integer n1 such that p1 = an1 + 1. The result now follows inductively,
first replacing N1,a by N1,a \ {p1} etc.

Now let the set of primes be divided into two disjoint subsets, P = AtB.
Let 〈A〉 represent the symmetric multiplicative semigroup in Z generated
by A, i.e.

〈A〉 = {±p1
α1 · · · pm

αm : m ∈ N, αi ≥ 0, pi ∈ A}.
Theorem 5.1. The interior of 〈A〉 is empty in (Z, τ) if and only if the

number of primes in B is infinite.

Proof. Let |B| < ∞ so F = ∪p∈BN0,p is closed in (Z, τ). If P = Z \ F
then P is open and non-empty, because if q 6∈ B is prime, then q ∈ P . If
n ∈ P

n = ±
∏

pαi
i

where no pi ∈ B. Hence n ∈ 〈A〉. Therefore P ⊂ 〈A〉 so the interior is not
empty.

Now let 〈A〉 6= ∅ so some Na,b ⊂ 〈A〉. Then Na,b = (a, b)(α + βZ) where
(α, β) = 1. But given p ∈ P, p | β implies that for all n ∈ Z, p - α + nβ,
and p - β implies there is an n ∈ Z such that p | α + nβ. Hence the
only primes which can be missing from A are among prime divisors of
β, which are finite in number. Hence B has a finite number of elements.
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We say a subset A of a topological space X is discrete if all points of A
are isolated in X. In the theorem below, the metric d is the same as that
defined in Theorem 3.1 above.

Theorem 5.2. Let A be a non-empty subset of Z with 0,±1 6∈ A and
(a, b) = 1 if a, b ∈ A with a 6= b. If A is complete in (Z, d), then A is finite.

Proof. For each a ∈ A, Na,2|a| ∩A = {a}, so the derived set A′ = ∅ and
A is discrete. Embed A in the completion Ẑ using the standard embedding
a goes to the class of the constant sequence with value a. Then A is closed
hence compact in the completion, hence squentially compact in the comple-
tion, therefore in Z, so it is compact in Z. Since A is discrete and compact it
must be finite.

Example 5.1. For n = 0, 1, · · · let fn = 22n

+ 1 so F = {fn} is the
Fermat numbers. Then F is closed and discrete in (Z, τ): Let fni → α 6= 0
with n1 < n2 < · · · . Since |α| | fni

− α for ni sufficiently large, α | fni
.

Therefore α | (fni , fni+1) = 1 so α = ±1. But 1 6∈ F since 3 | 22nj is false.
Also 0 6∈ F since N0,2∩F = ∅, and finally,−1 6∈ F since 4 - 22ni +1−(−1).

Hence F is closed in (Z, τ). It is discrete since (fn, fm) = 1 for n 6= m.

Example 5.2. Let M = {mp = 2p − 1 : p ∈ P} be the Mersenne
numbers. Then M is closed and discrete in (Z, τ).

We assume the following well known property of divisors of the Mersenne
number mp: If n | mp then n ≡ ±1 mod 8 and n ≡ 1 mod p, see for
example [7].

Firstly 0 6∈M since mp ∈ N0,2 ∩M implies 2 | mp but 2 6≡ ±1( mod 8).
If α 6= 0 is such that mpi → α then α | mpi so α ≡ 1 mod pi. But we can

choose p1 < p2 < · · · and in particular such that |α| < pi, so necessarily
α = 1. If then mp ∈ N1,4∩M, there is an integer n such that 2p−1 = 1+4n
which is impossible for p ≥ 2. Hence M is closed.

Let p1 < p2 < · · · < pn be all the primes up to pn and suppose mpn is a
cluster point of M. Then

M ∩Nmpn ,2p+1 \ {2p1 − 1, · · · , 2pn − 1} 6= ∅.

Therefore there is a prime q > pn with 2p − 1 + n2p+1 = 2q − 1 so 2q =
2p(2n + 1) which is impossible. Therefore M is discrete.

Example 5.3. Let Sf = {±n : n ≥ 2 squarefree}. Then Sf is perfect
in (Z, τ): Sf is closed since if the squarefree sequence ni → α then α | ni
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so α is squarefree. Every point of Sf is a cluster point because if a is
squarefree and b ≥ 1 then Na,b \ {a} contains a square free element: write
a + nb = (a, b)(α + nβ) where (α, β) = 1. Since the arithmetic progression
α + nβ has an infinite number of prime values, chose one which does not
divide (a, b) so that the corresponding a+nb will be square free and distinct
from a.

Example 5.4. Let U = {un : n = 0, 1, 2, · · · } be the Fibonacci
numbers where u0 = 0, u1 = 1 and un+2 = un+1 + un for all n ≥ 0. Then

1. The point 0 is a cluster point of U , i.e. 0 ∈ U ′. This is because for all
b ≥ 1, there is an n such that b | un.

2. Every point congruent to 4 mod 8 is not in U : If for some n and l,
un = 4 + 8l, then 4 | un so 6 | n which implies 8 = u6 | un, so 8 | 4 which
is impossible. This can be written U ∩N4,8 = ∅.

3. Similarly it may be shown that U∩N6,12 = ∅ and also that U∩N7,21 =
∅.

4. More generally, it follows from Proposition 5.1 following this summary
, that if (i, j) = 1 or 2 then there is a b ≥ 1 such that a = uiuj implies
U ∩Na,b = ∅.

5. Summary: It follows from 2,3 and 4 above that the following points
of Z \ U are not in U : {−6,−4, 4, 6, 7, 10, 12}.

6. Finally we show the point −1 is in the closure of U : To see this use the
identity um+n + (−1)num−n = umvn, where (vn) are the Lucas numbers.
Let b ≥ 1 be given. As in 1. above chose m such that b | um. If m is even
let n = m− 1, and if m is odd let n = m− 2. Then in both cases n is odd
and m − n = 1 or m − n = 2, so b | umvn = um+n − 1. In other words
U ∩N−1,b 6= ∅ so −1 ∈ U .

7. Conjecture: The closure of U in (Z, τ) is U ∪ V where V =
{(−1)n+1un : n ∈ N}.

Some numerical evidence for the truth of this conjecture comes from
consideration of the intersection of the compliment of the basic open sets
Na,b with the following given values of a and b, all being such that their
intersection with U is empty:
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a ∈ {4, 6}, b = 8,

a ∈ {4, 6, 7, 9}, b = 11,

a ∈ {6}, b = 12,

a ∈ {4, 6, 7, 9}, b = 13,

a ∈ {4, 6, 10, 12, 14}, b = 16,

a ∈ {6, 7, 10, 11}, b = 17,

a ∈ {4, 6, 7, 9, 11, 12, 14}, b = 18,

a ∈ {4, 6, 7, 9, 10, 12, 14}, b = 19,

a ∈ {4, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 19}, b = 21,

a ∈ {4, 7, 16, 19}, b = 23,

a ∈ {4, 6, 9, 11, 12, 14, 15, 18, 19, 20, 22}, b = 24,

a ∈ {4, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27}, b = 29

To check these, simply consider the values of the Fibonacci numbers
modulo b for one complete period. The intersection of their compliments
exactly identifies {U ∪ V } ∩ [−1000, 1000].

The following proposition is used in item 4. above.

Proposition 5.1. (a) Let (i, j) = 1, i, j ≥ 3. Then

un = uiuj + uiujuij l

has no solution in integers n ≥ 3 and l ∈ Z.
(a) If (i, j) = 2, i, j ≥ 3. Then

un = uiuj + uiujuij/2l

has no solution.

Proof. (a) Let n ≥ 3, i, j ≥ 3, (i, j) = 1, and l ∈ Z be such that

(1) un = uiuj + uiujuij l

Then ui | un and uj | un and therefore i | n and j | n and therefore ij | n
so uij | un. Equation (1) then implies uij | uiuj . But (ui, uj) = u(i,j) =
u1 = 1, so uij = uiuj .
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If α = 1+
√

5
2 then we can write un = [ αn√

5
+ 1

2 ] therefore

αij

√
5
− 1

2
≤ (

αi

√
5

+
1
2
)(

αj

√
5

+
1
2
)

so

(2) αij ≤ ai+j

√
5

+
αi + αj

2
+

3
√

5
4

.

But 1 < α and therefore αij ≤ cαi+j where c = 1√
5
+ 1

2 + 3
√

5
4 . Therefore

ij ≤ log c

log α
+ i + j.

where 2 < i, j. This equation has no solutions, hence neither does (1).
(b) Let n ≥ 3, l ∈ Z and i, j ≥ 4 be such that (i, j) = 2. Let

(3) un = uiuj + uiujuij/2l.

Using a similar argument to that given in (a) it follows that

(4) uij/2 = uiuj .

Let i = 2r and j = 2s so u2ru2s = u2rs. Therefore

α2rs

√
5
− 1

2
≤ (

α2r

√
5

+
1
2
)(

α2s

√
5

+
1
2
).

Using the same argument as that given in (a), but replacing α by α2, we
obtain the inequality

rs ≤ log c

2 log α
+ r + s

where r, s ≥ 2, so rs < 2 + r + s. The only solution to this inequality is
(r, s) = (2, 3) or (3, 2). In that case

uiuj = u4u6 = 24 6= 144 = u12

so equation (4) is never true. Therefore (3) has no solutions.
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soi, Fundam. Math. 1, (1920), 11-16.


