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ABSTRACT 

The numerical methods employed in the solution of many scientific computing problems 

require the computation of derivatives of a function I : R" ~ Rm. Both the accuracy and 

the computational requirements of the derivative computation are usually of critical 

importance for the robustness and speed of the numerical solution. Automatic Differen­

tiation of FORtran (ADIFOR) is a source transformation tool that accepts Fortran 77 

code for the computation of a function and writes portable Fortran 77 code for the 

computation of the derivatives. In contrast to previous approaches, ADIFOR views 

automatic differentiation as a source transformation problem. ADIFOR employs the 

data analysis capabilities of the ParaScope Parallel Programming Environment, which 

enable us to handle arbitrary Fortran 77 codes and to exploit the computational context 

in the computation of derivatives. Experimental results show that ADIFOR can handle 

real-life codes and that ADIFOR-generated codes are competitive with divided-differ­

ence approximations of derivatives. In addition, studies suggest that the source transfor­

mation approach to automatic differentiation may improve the time to compute deriva­

tives by orders of magnitude. © 1992 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

The methods employed for the solution of many 

scientific computing problems require the evalua­

tion of derivatives of some function. Probablv best 

known are gradient methods for optimization [1], 

Newton's method for the solution of nonlinear 

systems [ 1, 2], and the numerical solution of stiff 

ordinary differential equations [3, 4 J. Other ex­

amples can be found in a report by Corliss [ 5]. In 

the context of optimization, for example, given a 

function 
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one can find a minimizer x. of f using variable 

metric methods that involve the iteration 

for i = 1, 2, . . . . do 

end for 
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for suitable step multipliers a; > 0. Here 

Vf(x) = 

a 
ax1 f(x) 

a 
axnj(x) 

(1) 

is the gradient off at a particular point xo, and B; 

is a positive definite matrix that may change from 

iteration to iteration. 

In the context of finding the root of a nonlinear 

function 

Newton's method requires the computation of the 

Jacobian matrix 

a a 
ax1 / 1(x) ax /1(x) 

n 

f'(x) = (2) 

a 
ax1 fn(x) 

a 
axnfn(x) 

Then, we execute the following iteration: 

fori = 1, 2, . . . . do 

Solve f '(x; )s; = - f(x;) 

Xi+1 = X;+ S; 

end for 

Another important application is the numerical 

solution of initial value problems in stiff ordinary 

differential equations. Methods such as implicit 

Runge-Kutta [6] and backward differentiation 

formula (BDF) [7] methods require a Jacobian 

which is either provided by the user or approxi­

mated by divided differences. Consider a system 

of ODEs 

y' = f(t, y), y(to) =yo. (3) 

System (3) is called stiff if its Jacobian J = aj! ay 

(in a neighborhood of the solution) has eigen­

values A; with Re(A.;) << 0 in addition to eigen­

values of moderate size. Equations of this type 

arise frequently in chemical reaction models, for 

example. They can be of arbitrarily large dimen­

sion, because they also arise as discretizations of 

partial differential equations, where J is large and 

sparse. If explicit methods (multistep, Runge­

Kutta, Taylor, or extrapolation) are applied, the 

step size must be very small in order to retain de­

sirable stability properties of the method. That is 

why authors as early as the 1920s [8] and again in 

the late 1940s [9] were led to consider implicit 

methods in which the approximate solution Y;+ 1 at 

t = t;+ 1 is given by the solution to some nonlinear 

system 

which is solved by a Newton-type iteration requir­

ing the Jacobian a <I> I a y. The exact form of <I> dif­

fers from one implicit method to another, but for 

many methods. 

+ terms not involving Yi+ 1 , 

so the user is asked to supply the Jacobian J = 

aj!ay. 

These methods are examples of a large class of 

methods for numerical computation, where the 

computation of derivatives is a crucial ingredient 

in the numerical solution process. The function f 
is not usually represented in closed form, but in 

the form of a computer program. 

For purposes of illustration, we assume that f: 

x ERn H y E Rand that we wish to compute the 

derivatives of y with respect to x. We call x the 

independent variable and y the dependent vari­

able. While the terms "dependent," "indepen­

dent," and "variable" are used in many different 

contexts, this terminology corresponds to the 

mathematical use of derivatives. There are four 

approaches to computing derivatives [10]: 

1. By hand: Hand coding is increasingly diffi­

cult and error-prone, especially as the prob­

lem complexity increases. 

2. Divided differences: The derivative of f 
with respect to the ith component of x at a 

particular point xo is approximated by ei­

ther one-sided differences 

aj(x) I = f(xo ± h * e;) - f(xo) 

ax; x~xo ±h 

or central differences 



_ l(xo + h * e;) - l(xo - h * e;) 
- 2h 

Here e; is the ith Cartesian basis vector. 

Computing derivatives by divided differ­

ences has the advantage that we need only 

the function as a "black box." The main 

drawback of divided differences is that their 

accuracy is hard to assess. A small step size 

h is needed for properly approximating de­

rivatives, yet may lead to numerical cancel­

lation and the loss of many digits of accu­

racy. In addition, different scales of the x;'s 

may require different step sizes for the vari­

ous independent variables. 

3. Symbolic differentiation: This functional­

ity is provided by symbolic manipulation 

packages such as Maple, Reduce, Mac­

syma, or Mathematica. Given a string de­

scribing the definition of a function, sym­

bolic manipulation packages provide exact 

derivatives, expressing the derivatives all in 

terms of the intermediate variables. For ex­

ample, if 

l(x) = x(1) * x(2) * x(3) * x(4) * x(5), 

we obtain 

a1 = x(2) * x(3) * x(4) * x(5) 
ax1 

a1 = x(1) * x(3) * x(4) * x(5) 
ax2 

a1 = x(1) * x(2) * x(4) * x(5) 
ax3 

a1 = x(1) * x(2) * x(3) * x(5) 
ax4 

a~~ = x(1) * x(2) * x(3) * x(4). 

This is correct, yet it does not represent a 

very efficient way to compute the deriva­

tives, since there are a lot of common sub­

expressions in the different derivative ex­

pressions. Symbolic differentiation is a 

powerful technique, but it may not derive 

good computational recipes, and it may run 

into resource limitations when the function 

description is complicated. Functions in-
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volving branches or loops cannot be readily 

handled by symbolic differentiation. 

4. Automatic differentiation: Automatic dif­

ferentiation techniques rely on the fact that 

every function, no matter how complicated, 

is executed on a computer as a (potentially 

very long) sequence of elementary opera­

tions such as additions, multiplications, 

and elementary functions such as sin and 

cos. By applying the chain ruie 

:tl(g(t)) lt=to = (:S l(s) ls=g(to)(:t g(t) lt=J 
(4) 

over and over again to the composition of 

those elementary operations, one can com­

pute derivative information of I exactly and 

in a completely mechanical fashion. ADI­

FOR transforms Fortran 77 programs using 

this approach. For example, if we have a 

program for computing I= llf=1 x(i) 

subroutine prod5 (x, f) 

real x(5), f 

f = x(l) * x(2) * x(3) * x(4) * x(5) 

return 

end 

ADIFOR produces a program whose com­

putational section is shown in Figure 1. 

Symbolic differentiation uses the rules of calcu­

lus in a more or less mechanical way, although 

some efficiency can be recouped by back-end op­

timization techniques [ 11, 12 J. In contrast, auto­

matic differentiation is intimately related to the 

program for the computation of the function to be 

differentiated. By applying the chain rule step by 

step to the elementary operations executed in the 

course of computing the "function," automatic 

differentiation computes exact derivatives (up to 

machine precision, of course) and avoids the po­

tential pitfalls of divided differences. The tech­

niques of automatic differentiation are directly 

applicable to functions with branches and loops. 

ADIFOR is a tool to provide automatic differen­

tiation for programs written in Fortran 77. Given a 

Fortran subroutine (or collection of subroutines) 

for a function I, ADIFOR produces Fortran 77 

subroutines for the computation of the derivatives 

of this function. ADIFOR differs from other ap­

proaches to automatic differentiation (see 
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r$1 x(1) * x(2) 

r$2 r$1 • x(3) 

r$3 r$2 * x(4) 

r$4 x(5) * x(4) 

r$5 r$4 * x(3) 

r$1bar = r$5 * x(2) 

r$2bar = r$5 * x(1) 

r$3bar = r$4 * r$1 

r$4bar = x(5) * r$2 

do g$i$ = 1, g$p$ 

g$f(g$i$) = r$1bar * g$x(g$i$, 1) + r$2bar * g$x(g$i$, 2) 

+ r$3bar * g$x(g$i$, 3) + r$4bar * g$x(g$i$, 4) 

+ r$3 * g$x(g$i$, 5) 

end do 

f = r$3 * x(5) 

FIGURE 1 ADIFOR-generated code. 

Juedes [1 :3] for a survey) by being based on a 

source translator paradigm and by having been 

designed from the outset with large-scale codes in 

mind. ADIFOR provides several advantages: 

1. Portability: ADIFOR produces vanilla For­

tran 77 code. ADIFOR-generated derivative 

code does not require any run-time support 

and can easily be ported between different 

computing environments. 

2. Generality: ADIFOR supports almost all of 

Fortran 77. including arbitrary calling se­

quences, nested subroutines. conunon 

blocks. and equivalences. Fortran 77 func­

tions and statement functions will be sup­

ported in the next version of ADIFOR. \\ e 

do not anticipate support for input/ output. 

alternate returns for subroutines. or Pntr; 

statements. 

:3. Efficiency: ADIFOR-generated derivative 

code is competitive with codes that compute 

the derivatives bv divided differences. In 

most applications wP have run. the ADI­

FOR-generated code is faster than the di­

vided-difference code. 

4. Preservation of software development 

effort: The code produced by ADIFOR re­

spects the data flow structure of thP original 

program. That is. if the user invested the 

effort to develop code that vectorizes and 

parallelizes welL then the AD IF OR -gener­

ated derivative code also vectorizes and 

parallelizes well. In fact. the derivatiw code 

offers more scope for vectorization and par­

allelization. 

o. Extensability: ADIFOR employs a consis-

tent subroutine-naming scheme that allows 

users to supply their own derivative rou­

tines. In this fashion. users can exploit 

domain-specific knowledge, exploit ven­

dor-supplied libraries. and reduce compu­

tational bottlenecks. 

6. Ease of use: ADIFOR requires the user to 

supply the Fortran source code for the sub­

routine representing the function to be dif­

ferentiated and for all lower-level subrou­

tines. The user then selects the variables (in 

either parameter lists or common bloch) 

that correspond to the independent and de­

pendent variables. ADIFOR then deter­

mines which other variables throughout the 

program require derivative information. 
7 Intuitive interface: An X-windows inter­

face for ADIFOR (called '·xadifor") makes 

it easy for the user to set up the ASCII script 

file that ADIFOR reads. This functional di­

vision makes it easy both to set up the prob­

lem and to rerun ADIFOR if changes in the 

code for the target function require a new 

translation. 

Lsing ADIFOR. one then need not worry about 

the accurate and efficient computation of deriva­

tives. even for complicatPd '·functions ... As a 

resulL the computational scienti,;t can concen­

trate on the more important issues of alf(orithm 

design or system modeling. 

In the next section. we shall give a brief intro­

duction to automatic differentiation. Section :3 de­

scribes how ADIFOR provides this functionality in 

the context of a source transformation environ­

ment. and gives the rationale for choosing such an 



approach. Section 4 gives a brief introduction into 

the use of ADIFOR-generated derivative codes, 

including the exploitation of sparsity structure in 

the derivative matrices. In Section 5, we present 

some experimental results which show that the 

run-time required for ADIFOR-generated exact 

derivative codes compares very favorably with 

divided-difference derivative approximations. 

Lastly, we outline ongoing work and present evi­

dence that the source transformation approach to 

automatic differentiation may reduce the time to 

compute derivatives by orders of magnitudes. 

2 AUTOMATIC DIFFERENTIATION 

We illustrate automatic differentiation with an ex­

ample. Assume that we have the sample program 

shown in Figure 2 for the computation of a func­

tion f : R 2 ~ R 2 . Here, the vector x contains the 

independent variables, and the vector y contains 

the dependent variables. The function described 

by this program is defined except at x(2) = 0 and 

is differentiable except at x(1) = 2. 

By associating a derivative object V't with every 

variable t, we can transform this program into one 

for computing derivatives. Assume that V't con­

tains the derivatives oft with respect to the inde­

pendent variables x, 

V't = (':~ 1 
)) . 

ilx(2) 

We can propagate those derivatives by using ele­

mentary differentiation arithmetic based on the 

chain rule (see Rall [ 14 J for more details). For 

example, the statement 

a= x(1) + x(2) 

if x(1) > 2 then 

a = x(1)+x(2) 

else 

a .. x(1)•x(2) 

end if 

do i = 1, 2 

a = a•x(i) 

end do 

y(l) = a/x(2) 

y(2) = sin(x(2)) 

FIGURE 2 Sample program for a functionf:x ~ y. 
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implies 

V'a = V'x (1) + V'x (2). 

The chain rule, applied to the statement 

y(1) = a/x(2), 

implies that 

V' ( 1 l = ay ( 1) * V' a + ay ( 1 l * V'x ( 2 l 
Y aa ax(2) 

= 1. 0/x(2) * V'a + (-a/ (x(2) * x(2))) 

* V'x(2). 

Care has to be taken when the same variable ap­

pears on both the left- and the right-hand sides of 

an assignment statement. For example, the state­

ment 

a=a*x(i) 

implies 

V' a = x ( i) * V' a + a * V'x ( i) . 

However, simply combining these two statements 

leads to the wrong results, since the value of "a" 

referred to in the right-hand side of the V'a assign­

ment is the value of a before the assignment a = 
a*x(i) has been executed. We avoid this difficulty 

in the ADIFOR-generated code by using a tempo­

rary variable as shown in Figure 3. 

if x(l) > 2.0 then 

a = x(l)+x(2) 

Va = Vx(l) + Vx(2) 

else 

a = x(1)•x(2) 

Va = x(2) • Vx(l) + x(l) • Vx(2) 

end if 

do i = 1, 2 

temp = a 

a = a • x(i) 

Va = x(i) * Va + temp • Vx(i) 

end do 

y(l) = a/x(2) 

Vy(l) = 1.0/x(2) • Va- a/(x(2)•x(2)) • Vx(2) 

y(2) = sin(x(2)) 

'V'y(2) = cos(x(2)) • Vx(2) 

FIGURE 3 Sample program of Figure 2 augmented 
with derivative code. 
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tl - - y 
t2 .. z • z 
t3 .. t2 • z 

v = tt I t3 

FIGURE 4 Expansion of w = -y I (z*z*z) in unary and 
binary operations. 

Elementary functions are easy to deal with. For 

example, the statement 

implies 

Vy(2J 

y(2) = sin(x(2)) 

= ay (2 ) * Vx (2) 
ax (2) 

= cos (x (2)) * Vx (2). 

Straightforward application of the chain rule in 

this fashion then leads to the pseudo-code shown 

in Figure 3 for computing the derivatives of y(1) 

and y(2). 

This mode of automatic differentiation, where 

we maintain the derivatives with respect to the 

independent variables, is called the forward mode 

of automatic differentiation. 

The situation gets more complicated when the 

source statement is not just a binary operation. 

For example, consider the statement 

w = -y I (Z * z * Z)' 

where y and z depend on the independent vari­

ables. We have already computed Vy and Vz and 

now wish to compute Vw. By breaking up this 

compound statement into unary and binary state­

ments as shown in Figure 4, we could simply ap­

ply the mechanism that was used in Figure 3 and 

associate a derivative computation with each bi­

nary or unary statement (the resulting pseudo­

code is shown in the left half of Figure 6). 

There is another way, though. The chain rule 
tells us that 

aw aw 
Vw=ay*Vy +az*Vz. 

Hence, if we know the "local" derivatives ( aw I ay, 

aw I az) of w with respect to z and y, we can easily 

compute Vw, the derivatives ofw with respect to x. 

The "local" derivatives (aw I ay, aw I az) can be 

computed efficiently by using the reverse mode of 

automatic differentiation. Here we maintain the 

derivative of the final result with respect to an 

intermediate quantity. These quantities are usu­

ally called adjoints. They measure the sensitivity 

of the final result with respect to some intermedi­

ate quantity. This approach is closely related to 

the adjoint sensitivity analysis for differential 

equations that has been used at least since the late 

1960s, especially in nuclear engineering [15, 16], 

in weather forecasting [ 17], and even in neural 

networks [ 18 J . 

In the reverse mode, let tbar denote the ad­

joint object corresponding to t. The goal is for 

tbar to contain the derivative aw I at. We know 

that wbar = aw 1 aw = 1. o. We can compute ybar 

and zbar by applying the following simple rule to 

the statements executed in computing w, but in 

reverse order: 

if s = f (t) , then tbar 

+= sbar * (df I dt) 

if s = f (t, u) , then tbar 

+= sbar * (df I dt) 

ubar += sbar * (df 1 du) 

Using this simple recipe [10, 14], we generate the 

code shown in Figure 5 for computing w and its 

gradient. 

In Figure 6, we juxtapose the derivative compu­

tations for w = -y I (Z*Z*Z) based on the pure 

forward mode and those based on the reverse 

mode for computing Vw. For the reverse mode, we 

performed some simple optimizations such as 

I• Compute function values •I 
tl - y 

t2 = z • z 

t3 = t2 • z 

w = tt I t3 

I• Initialize adjoint quantities •I 
wbar = 1.0; t3bar = 0.0; t2bar = 0.0; 

t1bar = 0.0; zbar = 0.0; ybar = 0.0; 

I• Adjoints for w = t1 I t3 •I 
t1bar = t1bar + wbar • (1 I t3) 

t3bar = t3bar + wbar • (- t1 I t3) 

I• Adjoints for t3 = t2 • z •I 
t2bar = t2bar + t3bar • z 

zbar = zbar + t3bar • t2 

I• Adjoints for t2 = z • z •I 
zbar = zbar + t2bar • z 

zbar = zbar + t2bar • z 

I• Adjoints for t1 = - y •I 
ybar = - ttbar 

V' w = ybar • V' y + zbar • V' z 

FIGURE 5 Reverse mode computation of Vw. 



Forward Mode: 

t1 = - y 
\7 t1 = - \7 y 

t2 = z * z 

\7 t2 = \7 z * z + z * \7 z 

t3 = t2 * z 

\7 t3 = \7 t2 * z + t2 * \7 z 
v = t1 I t3 

\7 v = (\7 t 1 - \7 t3 * v) 1 t3 

ADIFOR 17 

Reverse Mode: 

t1 ,. - y 

t2 = z * z 

t3 = t2 * z 
v = t1 I t3 

t1bar = (1 I t3) 

t3bar • (- t1 I t3) 

t2bar = t3bar * z 

zbar = t3bar * t2 

zbar = zbar + t2bar * z 
zbar = zbar + t2bar * z 

ybar '"' - t1bar 

\7 v "' ybar * \7 y + zbar * \7 z 

FIGURE 6 Forward versus reverse mode in computing derivatives of w 

-y I (Z*Z*Z) . 

eliminating multiplications by 1 and additions to 

0. 

The forward mode code in Figure 6 requires 

that space be allocated for three auxiliary gradient 

objects, and the code contains four gradient com­

putation loops. In contrast, the reverse mode code 

requires only five scalar auxiliary derivative ob­

jects and has only one gradient loop. In either 

case, the storage required by automatic differenti­

ation is at most the amount of storage required by 

the original function evaluation times the length of 

the gradient objects computed. 

Figures 5 and 6 illustrate a very simple example 

of using the reverse mode. The reverse mode re­

quires fewer operations if the number of indepen­

dent variables is larger than the number of depen­

dent variables. This is exactly the case for 

computing a gradient, which can be viewed as a 

Jacobian matrix with only one row. This issue is 

discussed in more detail in other papers [ 10, 19, 

20]. 

Despite the advantages of the reverse mode 

with regard to complexity, the implementation of 

the reverse mode for the general case is quite com­

plicated. It requires the ability to access in reverse 

order the instructions performed for the computa­

tion of f and the values of their operands and 

results. Current tools achieve this by storing a 

record of every computation performed [13]. 

Then an interpreter performs a backward pass on 

this "tape." The resulting overhead often annihi­

lates the complexity advantage of the reverse 

mode in an actual implementation [21, 22]. 

ADIFOR uses a hybrid approach. It is generally 

based on the forward mode, but uses the reverse 

mode to compute the gradients of assignment 

statements, since for this restricted case the re­

verse mode can easily be implemented by a 

source-to-source translation. We also note that 

even though we showed the computation only of 

first derivatives, the automatic differentiation ap­

proach can easily be generalized to the computa­

tion of univariate Taylor series or multivariate 

higher-order derivatives [ 14, 23, 24 J. 
The derivatives computed by automatic differ­

entiation are highly accurate, unlike those com­

puted by divided differences. Griewank and Reese 

[25] showed that the derivative objects computed 

in the presence of round-off correspond to the ex­

act result of a nonlinear system whose partial de­

rivatives have been perturbed by factors of at 

most ( 1 + e )2 , where e is the relative machine 

precision. 

3 ADIFOR DESIGN PHILOSOPHY 

The examples in the preceding section have 

shown that the principles underlying automatic 

differentiation are not complicated: we just asso­

ciated extra computations (which are entirely 

specified on a statement-by-statement basis) with 

the statements executed in the original code. As a 

result, a variety of implementations of automatic 

differentiation have been developed over the years 

(see Juedes [13] for a survey). 

Most of these implementations implement au­

tomatic differentiation by means of operator over­

loading, which is a language feature in C++, Ada, 

Pascal-XSC, and Fortran 90 [26]. Operator over­

loading provides the possibility of associating 

side-effects with arithmetic operations. For exam­

ple, with an addition "+" we now could associate 

the addition of the derivative vectors that is re­

quired in the forward mode. Operator overloading 
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also allows for a simple implementation of the re­

verse mode, since as a by-product of the compu­

tation off we can store a record of every computa­

tion performed and then have an interpreter 

perform a backward pass on this "tape." The 

only drawback is that for straightforward imple­

mentations, the length of the tape is proportional 

to the number of arithmetic operations performed 

[20, 27]. Recently, Griewank [19] suggested an 

approach to overcome this limitation through 

clever checkpointing. 

Nonetheless, for all their simplicity and ele­

gance, operator overloading approaches present 

two fundamental drawbacks: 

1. Loss of context: Since all computation is 

performed as a by-product of an elementary 

operation, it is very difficult, if not impos­

sible, to perform optimizations that tran­

scend one elementary operation (such as 

the constant folding techniques that simpli­

fied the reverse mode shown in Figure 5 into 

that shown in Figure 6). Another disadvan­

tage is the difficulty associated with the ex­

ploitation of parallelism [28]. 

2. Loss of efficiency: The overwhelming ma­

jority of codes for which computational sci­

entists want derivatives are written in For­

tran, which does not support operator 

overloading. While we can emulate operator 

overloading by associating a subroutine call 

with each elementary operation, this ap­

proach slows computation considerably, 

and usually also imposes some restrictions 

on the syntactic structure of the code that 

can be proeessed. Examples of this ap­

proach are DAPRE [29, 30], GRESS/ 

ADGEI\ [31, 32], and JAKEF [33]. Experi­

ments with some of those svstems are 

described elsewhere [ 34]. 

The lack of efficiency of previously exrstmg 

tools has prevented automatic differentiation from 

becoming a standard tool for mainstream high­

performance computing, even though there are 

numerous applications where the need for accu­

rate first- and higher-order derivatives essentially 

mandated the use of automatic differentiation 

techniques and prompted the development of 

custom-tailored automatic differentiation systems 

[35]. For the majority of applications, however, 

automatic differentiation techniques were sub-

stantially slower than divided-difference ap­

proximations, discouraging potential users. 

The issues of ease of use and portability have 

received scant attention in software for automatic 

differentiation as well. In many applications, the 

"function" of which we wish to compute deriva­

tives is a collection of subroutines, and all that 

really should be expected of the user is to specify 

which of the variables correspond to the indepen­

dent and dependent variables. In addition, the 

automatic differentiation code should be easily 

transportable between different machines. 

ADIFOR takes those requirements into ac­

count. Its user interface is simple, and the ADI­

FOR-generated code is efficient and portable. Un­

like previous approaches, ADIFOR can deliver 

this functionality because it views automatic dif­

ferentiation from the outset as a source transfor­

mation problem. The goal is to automate and op­

timize the source translation process that was 

shown in very simple examples of the preceding 

section. By taking a source translator view, we can 

bring the many man-years of effort of the compiler 

community to bear on this problem. 

ADIFOR is based on the ParaScope program­

ming environment which combines dependence 

analysis with interprocedural analysis to support 

the semi-automatic parallelization of Fortran pro­

grams [36 J. While our primary goal is not the par­

allelization of Fortran programs, the ParaScope 

environment provides us with a Fortran parser, 

data abstractions for representing Fortran pro­

grams, and tools for constructing and manip­

ulating those representations. In particular, 

ParaScope tools gather data flow facts for scalars 

and arrays; dependence graphs for array ele­

ments; control flow graphs; and constant and 

symbolic facts. 

The data dependence analysis capabilities are 

critical for determining which variables need to 

have derivative objects associated with them, a 

process we call variable nomination. Only those 

variables z whose values depend on an indepen­

dent variable x and influence a dependent vari­

able v need to have derivative information associ­

ated with them. Such a variable is called active. 

Variables that do not require derivative informa­

tion are called passive. lnterprocedurally, variable 

nomination proceeds in a series of passes over the 

program call graph by using an "interaction ma­

trix" for each subroutine. Such a matrix repre­

sents a bipartite graph. Input parameters or vari­

ables in common blocks are connected with 



output parameters or variables in common blocks 

whose values they influence. This dependency 

analysis is also crucial in determining the sets of 

active/passive variable binding contexts in which 

each subroutine may be invoked. For example, 

consider the following code for computing 

Y = 3. 0 *X* X: 

subroutine threexx (x, y) 

call prod(3. O,x, t) 

call prod (t, x, y) 

end 

subroutine prod (x, y, z) 

Z =X* y 

end 

In the first call to prod, only the second and third 

of prod's parameters are active, whereas in the 

second call, all variables are active. ADIFOR rec­

ognizes this situation and performs procedure 

cloning to generate different augmented versions 

of prod for these different contexts. The decision 

to do cloning based on active/passive variable 

context will eventually be based on an assessment 

of the savings made possible by introducing the 

cloned procedures, in accordance with the goal­

directed interprocedural transformation approach 

being adopted within ParaScope [37]. 

Another advantage of a compiler-based ap­

proach is that we have the mechanism in place for 

simplifying the derivative code that has been gen­

erated by application of the simple statement-by­

statement rules. For example, consider the reverse 

mode code shown in Figure 5. By applying con­

stant folding and eliminating variables that are 

used only once, we eliminate multiplications by 

1.0 and additions to 0, and we reduce the number 

of variables that must be allocated. 

In summary, ADIFOR proceeds as follows: 

1. Users specify the subroutine that corre­

sponds to the "function" for which they 

wish derivatives, as well as the variable 

names that correspond to dependent and 

independent variables. These names can be 

subroutine parameters or variables in com­

mon blocks. In addition to the source code 

for the function subroutine, users must sub­

mit the source code for all subroutines that 

are directly or indirectly called from this 

subroutine. 

2. ADIFOR parses the code, builds the call 
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graph, collects intra- and interprocedural 

data flow information, and determines ac­

tive variables. 

3. Derivative objects are allocated in a 

straightforward fashion: derivative objects 

for parameters are again parameters; deriv­

ative objects for variables in common blocks 

and local variables are again allocated in 

common blocks and as local variables, re­

spectively. 

4. The original source code is augmented with 

derivative statements-the reverse mode is 

used for assignment statements, the forward 

mode overall. Subroutine calls are rewritten 

to propagate derivative information, and 

procedure cloning is performed as needed. 

5. The augmented code is optimized, eliminat­

ing unnecessary arithmetic operations and 

temporary variables. 

The resulting code generated by ADIFOR can 

be called by users' programs in a flexible manner 

to be used in conjunction with standard soft­

ware tools for optimization, solving nonlinear 

equations, or for stiff ordinary differential equa­

tions. Bischof and Hovland discuss calling the 

ADIFOR-generated code from users' programs 

[38]. 

4 THE FUNCTIONALITY OF 
ADIFOR-GENERATED DERIVATIVE CODES 

The functionality provided by ADIFOR is best un­

derstood through an example. Our example is 

adapted from problem C2 in the STDTST set of 

test problems for stiff ODE solvers [39]. The rou­

tine FCN2 shown in Figure 7 computes the right­

hand side of a system of ordinary differential 

equations y' = f(x, y) by calling a subordinate 

routine FCN. In the numerical solution of the or­

dinary differential equation, the Jacobian ajl ay is 

required. 

Nominating Y as independent and YP as de­

pendent, ADIFOR produces the code shown in 

Figures 8 and 9. We use the dollar sign$ to indi­

cate ADIFOR-generated names. In practice, 

ADIFOR generates variable names which do not 

conflict with any names appearing in the original 

program. 
We see that the derivative codes have a gradient 

object associated with every dependent variable. 

Our convention is to associate a gradient g$(var) 
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SUBROUTIIE FCI2(M,X,Y,YP) 

IITEGER I 
DOUBLE PRECISIOI X, Y(M), YP(M) 
IITEGER ID, IWT 
DOUBLE PRECISIOI W(20) 
COMMOI /STCOM5/W, IWT, I, ID 

CALL FCI(X,Y,YP) 
RETURI 
EID 

SUBROUTIIE FCI(X,Y,YP) 

C ROUTIIE TO EVALUATE THE DERIVATIVE F(X,Y) CORRESPOIDIIG TO THE 
C DIFFEREITIAL EQUATIOI: 
C DY/DX = F(X,Y) . 
C THE ROUTIIE STORES THE VECTOR OF DERIVATIVES II YP(•). THE 
C DIFFEREITIAL EQUATIOI IS SCALED BY THE WEIGHT VECTOR W(•) 
C IF THIS OPTIOI HAS BEEI SELECTED (IF SO IT IS SIGIALLED 
C BY THE FLAG IWT). 

DOUBLE PRECISIOI X, Y(20), YP(20) 
IJTEGER ID, IWT, I 
DOUBLE PRECISIOI W(20) 
COMMOI /STCOM5/W, IWT, I, ID 
DOUBLE PRECISIOI SUM, CPARM(4), YTEMP(20) 
IJTEGER I, IID 
DATA CPARM/1.D-1, 1.DO, 1.D1, 2.D1/ 

IF (IWT.LT.O) GO TO 40 
DO 20 I= 1, I 

YTEMP(I) = Y(I) 
Y(l) = Y(I)•W(I) 

20 COITIIUE 
40 liD = MOD(ID,10) 

C ADAPTED FROM PROBLEM C2 
YP(1) • -Y(1) + 2.DO 
SUM = Y(1)•Y(1) 
DO 50 I = 2, I 

YP(I) = -10.0DO•I•Y(I) + CPARM(IID-1)•(2••I)•SUM 
SUM = SUM + Y(I)•Y(I) 

50 COITIIUE 

IF (IWT.LT.O) GO TO 680 
DO 660 I = 1, I 

YP(I) = YP(I)/W(I) 
Y(I) = YTEMP(I) 

660 COITIIUE 
680 COITIIUE 

RETURI 
EID 

FIGURE 7 Original code for problem C2. 

of leading dimension ldg$(var) with variable 

(var). The calling sequence of g$foo$n is derived 

from that of f oo by inserting an argument g$p$ 
denoting the length of the gradient vectors as the 

first argument, and then copying the calling se­

quence of foo, inserting g$(var) and ldg$(var) 

after every active variable (var). Passive variables 

are left untouched. 

Subroutine g$fcn2$6 relates to the Jacobian 

ilyp1 ayp1 

ay1 aym 

Jyp = 
aypm aypm 

ay1 aym 



subroutine g$fcn$6(g$p$, x, y, g$y, ldg$y, yp, g$yp, ldg$yp) 
c 
C ADIFOR: runtime gradient index 

integer g$p$ 
C ADIFOR: translation time gradient index 

integer g$pmax$ 
parameter (g$p~ax$ = 20) 

C ADIFOR: gradient iteration index 
integer g$i$ 

c 
integer ldg$y 
integer ldg$yp 

C ROUTIIE TO EVALUATE THE DERIVATIVE F(X,Y) CORRESPOIDIIG TO THE 
C DIFFEREITIAL EQUATIOJ: 
C DY/DX • F(X,Y) . 
C THE ROUTIIE STORES THE VECTOR OF DERIVATIVES II YP(•). THE 
C DIFFEREJTIAL EQUATIOI IS SCALED BY THE WEIGHT VECTOR V(•) 
C IF THIS OPTIOI HAS BEEI SELECTED (IF SO IT IS SIGIALLED 
C BY THE FLAG IVT). 

c 

double precision x, y(20), yp(20) 
integer id, ivt, n 
double precision v(20) 
common /stcomS/ v, ivt, n, id 
double precision sum, cparm(4), ytemp(20) 
integer i, iid 
data cparm /1.d-1, 1.d0, 1.d1, 2.d1/ 

C ADIFOR: gradient declarations 
double precision g$y(ldg$y, 20), g$yp(ldg$yp, 20) 
double precision g$sum(g$pmax$), g$ytemp(g$pmax$, 20) 
if (g$p$ .gt. g$pmax$) then 

print •, "Parameter g$p$ is greater than g$pmax." 

stop 
end if 
if (ivt .lt. 0) then 

goto 40 
end if 
do 99999, i • 1, n 

C ytemp(i) '" y(i) 
do g$i$ = 1, g$p$ 

g$ytemp(g$i$, i) • g$y(g$i$, i) 

enddo 
ytemp(i) • y(i) 

C y(i) • y(i) • v(i) 
do g$1$ • 1, g$p$ 

g$y(g$i$, i) = v(i) • g$y(g$i$, i) 

enddo 
y(i) = y(i) • v(i) 

20 continue 
99999 continue 
40 iid = mod(id, 10) 
C ADAPTED FROM PROBLEM C2 
c yp(t) • -y(t) + 2.d0 

do g$i$ = 1, g$p$ 

FIGURE 8 ADIFOR-generated code for problem C2 (part 1 ). 
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as follows: Given input values for g$p$, m, x, y, 

g$y, ldg$y, and ldg$yp, the routine g$fcn2$6 

computes yp and g$yp, where 

g$yp(1 : g$p$, 1 : m) 

= (lyp(g$y(1: g$p$,1: mf))T 

The superscript T denotes matrix transposition. 

While the implicit transposition may seem awk­

ward at first, this is the only way to handle 

assumed-size arrays (like real a(*) ) in subrou­

tine calls. It is the responsibility of the user to allo­

cate g$yp and g$y with leading dimensions 

ldg$yp and ldg$y that are at least g$p$. 
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g$yp(g$i$, 1) • -g$y(g$i$, 1) 
enddo 
yp(1) a -y(1) + 2.d0 

C sum = y(1) • y(1) 

do g$i$ • 1, g$p$ 

g$sum(g$i$) = y(1) • g$y(g$i$, 1) + y(1) • g$y(g$i$, 1) 
enddo 

sum = y(1) • y(1) 
do 99998, i = 2, n 

C yp(i) • -10.0d0 • i • y(i) + cparm(iid - 1) • (2 •• i) • sum 
do g$i$ = 1, g$p$ 

g$yp(g$i$, i) = cparm(iid- 1) • (2 •• i) • g$sum(g$i$) + -1 
•O.OdO • i • g$y(g$i$, i) 

end do 

yp(i) = -10.0d0 • i • y(i) + cparm(iid - 1) • (2 •• i) • sum 
C sum = sum + y(i) • y(i) 

do g$i$ = 1, g$p$ 

g$sum(g$i$) • g$sum(g$i$) + y(i) • g$y(g$i$, i) + y(i) • g$y 
•(g$i$, i) 

end do 

sum = sum + y(i) • y(i) 
50 continue 
99998 continue 

if (iwt .lt. 0) then 

goto 680 
end if 

do 99997, i = 1, n 
C yp(i) = yp(i) I w(i) 

do g$i$ = 1, g$p$ 

g$yp(g$i$, i) = (1 I w(i)) • g$yp(g$i$, i) 
enddo 

yp(i) = yp(i) I w(i) 
C y(i) = ytemp(i) 

do g$i$ = 1, g$p$ 
g$y(g$i$, i) = g$ytemp(g$i$, i) 

enddo 

y(i) "' ytemp(i) 
660 continue 
99997 continue 

680 continue 

return 
end 

FIGURE 8 

For example, to compute the Jacobian of yp 

with respect toy, we initialize g$y to be an m X m 

identity matrix and set g$p$ to m. After the call to 

g$fcn2$6, g$yp contains the transpose of the Ja­

cobian of yp with respect toy. If we wish to com­

put only a matrix-vector product (as is often the 

case when iterative schemes are applied to solve 

equation systems with the Jacobian as the coeffi­

cient matrix), we set p = 1 and g$y to the vector 

by which the Jacobian is to be multiplied. 

From the forementioned discussion, ADIFOR­

generated code is well suited for computing dense 

Jacobian matrices. We will now show that it can 

also exploit the sparsity structure of Jacobian ma­

trices. Remember that the forward mode of auto­

matic differentiation upon which ADIFOR is 

mainly based requires roughly g$p$ operations 

(part 2). 

for every assignment statement in the original 

function. Thus, if we compute a Jacobian] with n 

columns by setting g$p$ = n, its computation will 

require roughly n times as many operations as the 

original function evaluation, independent of 

whether] is dense or sparse. However, it is well 

known [ 40, 41 J that the number of function eval­

uations that are required to compute an approxi­

mation to the Jacobian by divided differences can 

be much less than n if] is sparse. The same idea 

can be applied to greatly reduce the running time 

of ADIFOR-generated derivative code as well. 

As an example, consider the swirling flow prob­

lem, which comes from Parter [ 42] and is part of 

the Mll\'P ACK- 2 test problem collection [ 43 J. The 

problem is a coupled system of boundary value 

problems describing the steady flow of a viscous, 



subroutine g$fcn2$6(g$p$, m, x, y, g$y, ldg$y, yp, g$yp, ldg$yp) 
c 
C ADIFOR: runtime gradient index 

integer g$p$ 
C ADIFOR: translation time gradient index 

integer g$pmax$ 
parameter (g$pmax$ = 20) 

C ADIFOR: gradient iteration index 

integer g$i$ 

c 
integer ldg$y 
integer ldg$yp 
integer n 
double precision x, y(m), yp(m) 
integer id, iwt 
double precision w(20) 

common /stcom5/ w, iwt, n, id 
c 
C ADIFOR: gradient declarations 

double precision g$y(ldg$y, m), g$yp(ldg$yp, m) 

if (g$p$ .gt. g$pmax$) then 

print *• "Parameter g$p$ is greater than g$pmax." 
stop 

end if 

call g$fcn$6(g$p$, x, y, g$y, ldg$y, yp, g$yp, ldg$yp) 
return 

end 

FIGURE 9 ADIFOR-generated code for problem C2. 
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incompressible, axisymmetric fluid between two 

rotating, infinite coaxial disks. The number of 

variables in the resulting optimization problem 

depends on the discretization. For example, for 

n = 56 the Jacobian of F has the structure shown 

in Figure 10. 

By using a graph coloring algorithm designed to 

identify structurally orthogonal colmpns (we used 

the one described by Coleman and More) [ 40], we 

can determine that this Jacobian can be grouped 

into 14 sets of structurally orthogonal columns, 

independent of the size of the problem. As a 

result, we initialize a 56 X 14 matrix g$xT to the 

structure shown in Figure 11. Here every circle 

denotes the value 1.0. The structure of the result­

ing compressed Jacobian g$Fval T is shown in 

Figure 11 as well. Here every circle denotes a non­

zero entry. Now, instead of g$p$ = 56, a size of 

g$p$ = 14 is sufficient, a sizeable reduction in 

cost. Bischof and Hovland describe the proper 
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Table 1. Performance of ADIFOR-Generated Derivative Codes Compared to Divided-Difference 

Approximations on Orthogonal-Distance Regression Examples for 10,000 Jacobian Evaluations 

Code Divided-Difference 

Problem Jacobian Size Run-Time 
Name Size (Lines) (Seconds) 

Camera 2 X 13 97 1.82 

Camera 2 X 13 97 8.19 

Micro 4 X 20 153 6.39 

Micro 4 X 20 153 23.0 
Polymer 2 X 6 34 3.12 
Polymer 2 X 6 34 9.18 

Psycho 1 X 5 26 0.70 

Psycho 1 X 5 26 2.95 
Sand 1 X4 24 0.16 

Sand 1 X 4 24 0.36 

and efficient initialization of ADIFOR-generated 

derivative codes [38]. 

One issue that deserves some attention is that 

of error handling. Exceptional conditions arise 

because of branches in the code or because sub­

expressions may be defined but not be differentia­

ble (~at x = 0, for example). ADIFOR knows 

when Fortran intrinsics are nondifferentiable, and 

traps to an error handler if we wish to compute 

derivatives at a point where the derivatives do not 

exist [44]. 

5 EXPERIMENTAL RESULTS 

In this section, we report on the execution time of 

ADIFOR-generated derivative codes in compari­

sion with divided-difference approximations of 

first derivatives. While the ADIFOR system runs 

on a SPARC platform, the ADIFOR-generated de­

rivative codes are portable and can run on any 

computer that has a Fortran 77 compiler. 

The problems named "camera," "micro," 

''heart,'' ''polymer,'' ''psycho,'' and ''sand'' 

were given to us by Janet Rogers, National Insti­

tute of Standards and Technology in Boulder, 

Colorado. The code submitted to ADIFOR com­

putes elementary Jacobian matrices which are 

then assembled to a large sparse Jacobian matrix 

used in an orthogonal-distance regression fit [ 45 J. 
The code named "shock" was given to us by Greg 

Shubin, Boeing Computer Services, Seattle, 

Washington. This code implements the steady 

shock tracking method for the axisymmetric blunt 

body problem [ 46]. The Jacobian has a banded 
structure. The compressed Jacobian has 28 

columns, compared to 190 for the "normal" Ja­

cobian. The code named "adiabatic" is from 

ADIFOR 
Run-Time ADIFOR 
(Seconds) Improvement Machine 

1.81 0.5% RS6000/550 
13.87 -69% SPARC 4/490 

3.35 47% RS6000/550 
16.17 30% SPARC 4/490 

1.20 62% RS6000/550 
4.84 47% SPARC 4/490 
0.38 46% RS6000/550 

1.49 49% SPARC 4/490 
0.07 56% RS6000/550 
0.18 50% SPARC 4/490 

Larry Biegler, Chemical Engineering, Carnegie­

Mellon University and implements adiabatic flow, 

a common module in chemical engineering [ 4 7]. 

Lastly, the code named "reactor" was given to us 

by Hussein Khalil, Reactor Analysis and Safety 

Division, Argonne National Laboratory. While the 

other codes were used in an optimization setting, 

the derivatives of the "reactor" code are used for 

sensitivity analysis to ensure that the model is ro­

bust with respect to certain key parameters. 

Tables 1 and 2 summarize the performance of 

ADIFOR-generated derivative codes with respect 

to divided differences. These tests were run on a 

SPARC station 1, a SPARC 4/400, or an IBM 

RS6000/550. We used different machines be­

cause the codes were submitted from different 

computing environments. The numbers reported 

in Table 1 are for 10,000 evaluations of the Jaco­

bian, while those in Table 2 are for a single evalu­

ation of the Jacobian. 

The column of the Tables labeled "ADIFOR 

Improvement" indicates the percentage im­

provement of the running time of the ADIFOR­

generated derivative code over an approximation 

of the divided-difference running-times. For the 

"shock" code, we had a derivative code based on 

sparse divided differences supplied to us. In the 

other cases, we estimated the time for divided dif­

ferences by multiplying the time for one function 

evaluation by the number of independent vari­

ables. This approach is conservative, yet fairly 

typical in an optimization setting, where the func­

tion value already has been computed for other 

purposes. An improvement greater than 0% indi­

cates that the ADIFOR-generated derivatives ran 

faster than divided differences. 

The percentage improvement for the "camera" 

problem indicates a stronger-than -expected de-
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Table 2. Performance of ADIFOR-Generated Derivative Codes Compared to Divided-Difference 
Approximations for a Single Jacobian Evaluation 

Code Divided-Difference ADIFOR 
Problem Jacobian Size Run-Time 

1\'ame Size (Lines) (Seconds) 

Reactor 3 X 29 1455 42.34 
Reactor 3 X 29 1455 13.34 
Adiabatic 6 X 6 1089 0.54 
Heart 1 X 8 1305 11641.1 
Shock 190 X 190 1403 0.041 
Shock 190 X 190 1403 0.46 

pendence of running-times of ADIFOR-generated 

code on the choice of compiler and architecture. 

In fact, the 69% degradation in performance on 

the "camera" problem is a result of the SPARC 

compiler's missing an opportunity to move loop­

invariant cos and sin invocations outside of 

loops, as occurs in the following ADIFOR­

generated code: 

C c=cos(par(4)) 

d$0 = p (4) 

do 99969 g$i$ = 1, g$p$ 

g$cteta (g$i$) = 

-sin (d$0) * g$par (g$i$, 4) 

99969 continue 

cteta = cos (d$0) 

If we edit the ADIFOR-generated code by hand to 

extract the invariant expression, we get a simi­

lar performance on the SPARC. Moving loop­

invariant code outside of loops is one of the per­

formance improvements that we will implement in 

later versions. 

We see that already in its current version, 

ADIFOR performs well in competition with di­

vided-difference approximations. It is up to a fac­

tor of three faster, and never worse by more than a 

factor of 1. 69. This improvement was obtained 

without the user having to make any modifications 

to the code. We also see that ADIFOR can handle 

problems where symbolic techniques would be al­

most certain to fail, such as the "shock" or "reac­

tor" codes. The ADIFOR-generated derivative 

codes were at most four times as long as the code 

that was submitted to ADIFOR. 

The performance of ADIFOR-generated deriv­

atives can even be better than that of hand-coded 

derivatives. For example, for the swirling flow 

problem mentioned in the preceding section, we 

obtain the performance shown Figure 12. 

Figure 12 shows the performance of the hand-

Run-Time ADIFOR 
(Seconds) Improvement Machine 

36.14 15% SPARC 4/490 
8.33 38% RS6000/550 
0.18 67% SPARC 1 

13941.30 -20% SPARC 1 
0.023 44% RS6000/550 
0.31 33% SPARC 1 

derived derivative code supplied as part of the 

MINPACK-2 test set collection [48], and that of 

the ADIFOR-ger.erated code properly initialized 

to exploit the sparsity structure of Jacobian. On an 

RS6000/320, the ADIFOR-generated code sig­

nificantly outperforms the hand-coded deriva­

tives. On one processor of the CRAY Y-MP/18, 

the two approaches perform comparably. The val­

ues of the derivatives computed by the ADIFOR­

generated code agree to full machine precision 

with the values from the hand-coded derivatives. 

The accuracy of the finite difference approxima­

tions, on the other hand, depends on the user's 

careful choice of a step size. 

We conclude that ADIFOR-generated deriva­

tives are a more than suitable substitute for hand­

coded or divided-difference derivatives. Virtually 

no time investment is required by the user to gen­

erate the codes. In most of our example codes, 

ADIFOR-generated codes outperform divided­

difference derivative approximations. In addition, 

the fact that ADIFOR computes highly accurate 

derivatives may significantly increase the robust­

ness of optimization codes or ODE solvers, where 

O.Q3 . 

! 0.02 

0.01 .... 

IBM RS6000 20 
_ : hand coded 

: ADIFOR w/ ccmpreucd J.::obilln 

400 

order of Jacobim 

order of Jacobim 

FIGURE 12 Swirling flow Jacobian. 
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FIGURE 13 Ratio of gradient/function evaluation. 

good derivative values are critical for the conver­

gence of the numerical scheme. 

6 FUTURE WORK 

We are planning many improvements for 

ADIFOR The most important are second- and 

higher-order derivatives, automatic detection of 

sparsity, increased use of the reverse mode for 

better performance, and integration with Fortran 

parallel programming environments such as 

Fortran-D [49] 
Second-order derivatives are a natural exten­

sion, and this functionality is required for many 

applications in numerical optimization. In addi­

tion, for sensitivity analysis applications, second 

derivatives reveal correlations between various 

parameters. While we currently can just reprocess 

the ADIFOR-generated code for first derivatives, 

much can be gained by computing both first- and 

second-order derivatives at the same time [24, 

50]. 
The automatic detection of sparsity is a func­

tionality that is unique to automatic differentia­

tion. Here we exploit the fact that in automatic 

differentiation, the computation of derivatives is 

intimately related to the computation of the func­

tion itself. The key observation is that all our gra­

client computations have the form 

vector = L scalar; * vector;. 

By merging the structure of the vectors on the 

right-hand side, we can obtain the structure of the 

vector on the left-hand side. In addition, the 

proper use of sparse vector data structures will 

ensure that we perform computations onlv with 

the nonzero components of the various derivative 

vectors. 

We can improve the speed of ADIFOR­

generated derivative code through increased use 

of the reverse mode. The reverse mode requires us 

to reverse the computation from a trace of at least 

part of the computation which we later interpret. If 

we can accomplish the code reversal at compile 

time, we can truly exploit the reverse mode, since 

we do not incur the overhead that is associated 

with run-time tracing. 

ADIFOR currently does a compile-time reversal 

of composite right-hand sides of assignment state­

ments, but there are other svntactic structures 

such as parallel loops for which this could be per­

formed at compile time. In a parallel loop, there 

are no dependencies between different iterations. 

Thus, in order to generate code for the reverse 

mode, it is sufficient to reverse the computation 

inside the loop bodv. This can easilv be done if the 

loop body is a basic block. The p~tential of this 

technique is impressive. Hand-compiling reverse 

mode code for the loop bodies of the torsion prob­

lem, another problem in the MINPACK-2 test set 

collection, we obtained the performance shown in 

Figure 13. This figure shows the ratio of gradient/ 

function evaluation on a Solbourne .SE/900 for 

the current ADIFOR version, and for a hand­

modified ADIFOR code that uses the reverse 

mode for the bodies of parallel loops. If nint is the 

number of grid points in each dimension, then the 

gradients are of size nint * nint. 

Approximation of the gradient by divided dif­

ferences costs ninl * nint function evaluations. 

Hence, we see that the current ADIFOR is faster 

than divided-difference approximations bv a fac­

tor of 70 on a problem of size 4900: and u~ing the 

reverse mode for loop bodies. we can compute the 

gradient in about six to seven times the cost of a 

function evaluation, independent of the size of the 

problem. 

Taken together, these points mean that for the 

problem of size 4900, we can improve the speed 

of the derivative computation bv over two orders 

of magnitude compared to divided-difference 

computations. \V"e stop at a problem of size 4900 

only because. at that size, we ran out of memor-v. 

These examples for which we have "compiled" 

ADIFOR-generated code by hand show again the 

promise of viewing automatic differentiation as a 

syntax transformation process. By taking advan­

tage of the context (parallel loops, in this case) of a 



piece of code, we can choose whatever automatic 

differentiation technique is most applicable, and 

generate the most efficient code for the computa­

tion of derivatives. In many applications where the 

computation of derivatives currently requires the 

dominant portion of the running time, the use of 

ADIFOR-generated derivatives will lead to dra­

matic improvements, without having to change 

the algorithm that uses the derivative information, 

or the coding of the 'function' for which deriva­

tives are required. 
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