
ADIFOR-Generating Derivative Codes from

Fortran Programs*

CHRISTIAN BISCHOF 1
, ALAN CARLE2

, GEORGE CORLISS1
, ANDREAS GRIEWANK1

,

AND PAUL HOVLAND 1

1 Mathematics and Computer Science Division, Argonne Sational Laboratory, 9700 S. Cass Avenue, Argonne, IL

60439
2 Center for Research on Parallel Computation, Rice University. P. 0. Box 1892, Houston, TX 77251

ABSTRACT

The numerical methods employed in the solution of many scientific computing problems

require the computation of derivatives of a function I : R" ~ Rm. Both the accuracy and

the computational requirements of the derivative computation are usually of critical

importance for the robustness and speed of the numerical solution. Automatic Differen­

tiation of FORtran (ADIFOR) is a source transformation tool that accepts Fortran 77

code for the computation of a function and writes portable Fortran 77 code for the

computation of the derivatives. In contrast to previous approaches, ADIFOR views

automatic differentiation as a source transformation problem. ADIFOR employs the

data analysis capabilities of the ParaScope Parallel Programming Environment, which

enable us to handle arbitrary Fortran 77 codes and to exploit the computational context

in the computation of derivatives. Experimental results show that ADIFOR can handle

real-life codes and that ADIFOR-generated codes are competitive with divided-differ­

ence approximations of derivatives. In addition, studies suggest that the source transfor­

mation approach to automatic differentiation may improve the time to compute deriva­

tives by orders of magnitude. © 1992 by John Wiley & Sons, Inc.

1 INTRODUCTION

The methods employed for the solution of many

scientific computing problems require the evalua­

tion of derivatives of some function. Probablv best

known are gradient methods for optimization [1],

Newton's method for the solution of nonlinear

systems [1, 2], and the numerical solution of stiff

ordinary differential equations [3, 4 J. Other ex­

amples can be found in a report by Corliss [5]. In

the context of optimization, for example, given a

function

* This work was supported by the Applied Mathematical

Sciences subprogram of the Office of Energy Research, U.S.

Department of Energy Research, U.S. Department of Energy,

under Contract W -31-1 09-Eng-38, through NSF Coopera­

tive Agreement No. CCR-8809615, and by theW. M. Keck

Foundation.

Received January 1992.

© 1992 by John Wiley & Sons, Inc.

Scientific Programming, Vol. 1, pp. 11-29 (1992)

CCC 1058-9244/92/010011-19$04.00

one can find a minimizer x. of f using variable

metric methods that involve the iteration

for i = 1, 2, do

end for

11

12 BISCHOF ET AL.

for suitable step multipliers a; > 0. Here

Vf(x) =

a
ax1 f(x)

a
axnj(x)

(1)

is the gradient off at a particular point xo, and B;

is a positive definite matrix that may change from

iteration to iteration.

In the context of finding the root of a nonlinear

function

Newton's method requires the computation of the

Jacobian matrix

a a
ax1 / 1(x) ax /1(x)

n

f'(x) = (2)

a
ax1 fn(x)

a
axnfn(x)

Then, we execute the following iteration:

fori = 1, 2, do

Solve f '(x;)s; = - f(x;)

Xi+1 = X;+ S;

end for

Another important application is the numerical

solution of initial value problems in stiff ordinary

differential equations. Methods such as implicit

Runge-Kutta [6] and backward differentiation

formula (BDF) [7] methods require a Jacobian

which is either provided by the user or approxi­

mated by divided differences. Consider a system

of ODEs

y' = f(t, y), y(to) =yo. (3)

System (3) is called stiff if its Jacobian J = aj! ay

(in a neighborhood of the solution) has eigen­

values A; with Re(A.;) << 0 in addition to eigen­

values of moderate size. Equations of this type

arise frequently in chemical reaction models, for

example. They can be of arbitrarily large dimen­

sion, because they also arise as discretizations of

partial differential equations, where J is large and

sparse. If explicit methods (multistep, Runge­

Kutta, Taylor, or extrapolation) are applied, the

step size must be very small in order to retain de­

sirable stability properties of the method. That is

why authors as early as the 1920s [8] and again in

the late 1940s [9] were led to consider implicit

methods in which the approximate solution Y;+ 1 at

t = t;+ 1 is given by the solution to some nonlinear

system

which is solved by a Newton-type iteration requir­

ing the Jacobian a <I> I a y. The exact form of <I> dif­

fers from one implicit method to another, but for

many methods.

+ terms not involving Yi+ 1 ,

so the user is asked to supply the Jacobian J =

aj!ay.

These methods are examples of a large class of

methods for numerical computation, where the

computation of derivatives is a crucial ingredient

in the numerical solution process. The function f
is not usually represented in closed form, but in

the form of a computer program.

For purposes of illustration, we assume that f:

x ERn H y E Rand that we wish to compute the

derivatives of y with respect to x. We call x the

independent variable and y the dependent vari­

able. While the terms "dependent," "indepen­

dent," and "variable" are used in many different

contexts, this terminology corresponds to the

mathematical use of derivatives. There are four

approaches to computing derivatives [10]:

1. By hand: Hand coding is increasingly diffi­

cult and error-prone, especially as the prob­

lem complexity increases.

2. Divided differences: The derivative of f
with respect to the ith component of x at a

particular point xo is approximated by ei­

ther one-sided differences

aj(x) I = f(xo ± h * e;) - f(xo)

ax; x~xo ±h

or central differences

_ l(xo + h * e;) - l(xo - h * e;)
- 2h

Here e; is the ith Cartesian basis vector.

Computing derivatives by divided differ­

ences has the advantage that we need only

the function as a "black box." The main

drawback of divided differences is that their

accuracy is hard to assess. A small step size

h is needed for properly approximating de­

rivatives, yet may lead to numerical cancel­

lation and the loss of many digits of accu­

racy. In addition, different scales of the x;'s

may require different step sizes for the vari­

ous independent variables.

3. Symbolic differentiation: This functional­

ity is provided by symbolic manipulation

packages such as Maple, Reduce, Mac­

syma, or Mathematica. Given a string de­

scribing the definition of a function, sym­

bolic manipulation packages provide exact

derivatives, expressing the derivatives all in

terms of the intermediate variables. For ex­

ample, if

l(x) = x(1) * x(2) * x(3) * x(4) * x(5),

we obtain

a1 = x(2) * x(3) * x(4) * x(5)
ax1

a1 = x(1) * x(3) * x(4) * x(5)
ax2

a1 = x(1) * x(2) * x(4) * x(5)
ax3

a1 = x(1) * x(2) * x(3) * x(5)
ax4

a~~ = x(1) * x(2) * x(3) * x(4).

This is correct, yet it does not represent a

very efficient way to compute the deriva­

tives, since there are a lot of common sub­

expressions in the different derivative ex­

pressions. Symbolic differentiation is a

powerful technique, but it may not derive

good computational recipes, and it may run

into resource limitations when the function

description is complicated. Functions in-

ADIFOR 13

volving branches or loops cannot be readily

handled by symbolic differentiation.

4. Automatic differentiation: Automatic dif­

ferentiation techniques rely on the fact that

every function, no matter how complicated,

is executed on a computer as a (potentially

very long) sequence of elementary opera­

tions such as additions, multiplications,

and elementary functions such as sin and

cos. By applying the chain ruie

:tl(g(t)) lt=to = (:S l(s) ls=g(to)(:t g(t) lt=J
(4)

over and over again to the composition of

those elementary operations, one can com­

pute derivative information of I exactly and

in a completely mechanical fashion. ADI­

FOR transforms Fortran 77 programs using

this approach. For example, if we have a

program for computing I= llf=1 x(i)

subroutine prod5 (x, f)

real x(5), f

f = x(l) * x(2) * x(3) * x(4) * x(5)

return

end

ADIFOR produces a program whose com­

putational section is shown in Figure 1.

Symbolic differentiation uses the rules of calcu­

lus in a more or less mechanical way, although

some efficiency can be recouped by back-end op­

timization techniques [11, 12 J. In contrast, auto­

matic differentiation is intimately related to the

program for the computation of the function to be

differentiated. By applying the chain rule step by

step to the elementary operations executed in the

course of computing the "function," automatic

differentiation computes exact derivatives (up to

machine precision, of course) and avoids the po­

tential pitfalls of divided differences. The tech­

niques of automatic differentiation are directly

applicable to functions with branches and loops.

ADIFOR is a tool to provide automatic differen­

tiation for programs written in Fortran 77. Given a

Fortran subroutine (or collection of subroutines)

for a function I, ADIFOR produces Fortran 77

subroutines for the computation of the derivatives

of this function. ADIFOR differs from other ap­

proaches to automatic differentiation (see

14 BISCHOF ET AL.

r$1 x(1) * x(2)

r$2 r$1 • x(3)

r$3 r$2 * x(4)

r$4 x(5) * x(4)

r$5 r$4 * x(3)

r$1bar = r$5 * x(2)

r$2bar = r$5 * x(1)

r$3bar = r$4 * r$1

r$4bar = x(5) * r$2

do gi = 1, gp

g$f(g$i$) = r$1bar * g$x(g$i$, 1) + r$2bar * g$x(g$i$, 2)

+ r$3bar * g$x(gi, 3) + r$4bar * g$x(gi, 4)

+ r$3 * g$x(gi, 5)

end do

f = r$3 * x(5)

FIGURE 1 ADIFOR-generated code.

Juedes [1 :3] for a survey) by being based on a

source translator paradigm and by having been

designed from the outset with large-scale codes in

mind. ADIFOR provides several advantages:

1. Portability: ADIFOR produces vanilla For­

tran 77 code. ADIFOR-generated derivative

code does not require any run-time support

and can easily be ported between different

computing environments.

2. Generality: ADIFOR supports almost all of

Fortran 77. including arbitrary calling se­

quences, nested subroutines. conunon

blocks. and equivalences. Fortran 77 func­

tions and statement functions will be sup­

ported in the next version of ADIFOR. \\ e

do not anticipate support for input/ output.

alternate returns for subroutines. or Pntr;

statements.

:3. Efficiency: ADIFOR-generated derivative

code is competitive with codes that compute

the derivatives bv divided differences. In

most applications wP have run. the ADI­

FOR-generated code is faster than the di­

vided-difference code.

4. Preservation of software development

effort: The code produced by ADIFOR re­

spects the data flow structure of thP original

program. That is. if the user invested the

effort to develop code that vectorizes and

parallelizes welL then the AD IF OR -gener­

ated derivative code also vectorizes and

parallelizes well. In fact. the derivatiw code

offers more scope for vectorization and par­

allelization.

o. Extensability: ADIFOR employs a consis-

tent subroutine-naming scheme that allows

users to supply their own derivative rou­

tines. In this fashion. users can exploit

domain-specific knowledge, exploit ven­

dor-supplied libraries. and reduce compu­

tational bottlenecks.

6. Ease of use: ADIFOR requires the user to

supply the Fortran source code for the sub­

routine representing the function to be dif­

ferentiated and for all lower-level subrou­

tines. The user then selects the variables (in

either parameter lists or common bloch)

that correspond to the independent and de­

pendent variables. ADIFOR then deter­

mines which other variables throughout the

program require derivative information.
7 Intuitive interface: An X-windows inter­

face for ADIFOR (called '·xadifor") makes

it easy for the user to set up the ASCII script

file that ADIFOR reads. This functional di­

vision makes it easy both to set up the prob­

lem and to rerun ADIFOR if changes in the

code for the target function require a new

translation.

Lsing ADIFOR. one then need not worry about

the accurate and efficient computation of deriva­

tives. even for complicatPd '·functions ... As a

resulL the computational scienti,;t can concen­

trate on the more important issues of alf(orithm

design or system modeling.

In the next section. we shall give a brief intro­

duction to automatic differentiation. Section :3 de­

scribes how ADIFOR provides this functionality in

the context of a source transformation environ­

ment. and gives the rationale for choosing such an

approach. Section 4 gives a brief introduction into

the use of ADIFOR-generated derivative codes,

including the exploitation of sparsity structure in

the derivative matrices. In Section 5, we present

some experimental results which show that the

run-time required for ADIFOR-generated exact

derivative codes compares very favorably with

divided-difference derivative approximations.

Lastly, we outline ongoing work and present evi­

dence that the source transformation approach to

automatic differentiation may reduce the time to

compute derivatives by orders of magnitudes.

2 AUTOMATIC DIFFERENTIATION

We illustrate automatic differentiation with an ex­

ample. Assume that we have the sample program

shown in Figure 2 for the computation of a func­

tion f : R 2 ~ R 2 . Here, the vector x contains the

independent variables, and the vector y contains

the dependent variables. The function described

by this program is defined except at x(2) = 0 and

is differentiable except at x(1) = 2.

By associating a derivative object V't with every

variable t, we can transform this program into one

for computing derivatives. Assume that V't con­

tains the derivatives oft with respect to the inde­

pendent variables x,

V't = (':~ 1
)) .

ilx(2)

We can propagate those derivatives by using ele­

mentary differentiation arithmetic based on the

chain rule (see Rall [14 J for more details). For

example, the statement

a= x(1) + x(2)

if x(1) > 2 then

a = x(1)+x(2)

else

a .. x(1)•x(2)

end if

do i = 1, 2

a = a•x(i)

end do

y(l) = a/x(2)

y(2) = sin(x(2))

FIGURE 2 Sample program for a functionf:x ~ y.

ADIFOR 15

implies

V'a = V'x (1) + V'x (2).

The chain rule, applied to the statement

y(1) = a/x(2),

implies that

V' (1 l = ay (1) * V' a + ay (1 l * V'x (2 l
Y aa ax(2)

= 1. 0/x(2) * V'a + (-a/ (x(2) * x(2)))

* V'x(2).

Care has to be taken when the same variable ap­

pears on both the left- and the right-hand sides of

an assignment statement. For example, the state­

ment

a=a*x(i)

implies

V' a = x (i) * V' a + a * V'x (i) .

However, simply combining these two statements

leads to the wrong results, since the value of "a"

referred to in the right-hand side of the V'a assign­

ment is the value of a before the assignment a =
a*x(i) has been executed. We avoid this difficulty

in the ADIFOR-generated code by using a tempo­

rary variable as shown in Figure 3.

if x(l) > 2.0 then

a = x(l)+x(2)

Va = Vx(l) + Vx(2)

else

a = x(1)•x(2)

Va = x(2) • Vx(l) + x(l) • Vx(2)

end if

do i = 1, 2

temp = a

a = a • x(i)

Va = x(i) * Va + temp • Vx(i)

end do

y(l) = a/x(2)

Vy(l) = 1.0/x(2) • Va- a/(x(2)•x(2)) • Vx(2)

y(2) = sin(x(2))

'V'y(2) = cos(x(2)) • Vx(2)

FIGURE 3 Sample program of Figure 2 augmented
with derivative code.

16 BISCHOF ET AL.

tl - - y
t2 .. z • z
t3 .. t2 • z

v = tt I t3

FIGURE 4 Expansion of w = -y I (z*z*z) in unary and
binary operations.

Elementary functions are easy to deal with. For

example, the statement

implies

Vy(2J

y(2) = sin(x(2))

= ay (2) * Vx (2)
ax (2)

= cos (x (2)) * Vx (2).

Straightforward application of the chain rule in

this fashion then leads to the pseudo-code shown

in Figure 3 for computing the derivatives of y(1)

and y(2).

This mode of automatic differentiation, where

we maintain the derivatives with respect to the

independent variables, is called the forward mode

of automatic differentiation.

The situation gets more complicated when the

source statement is not just a binary operation.

For example, consider the statement

w = -y I (Z * z * Z)'

where y and z depend on the independent vari­

ables. We have already computed Vy and Vz and

now wish to compute Vw. By breaking up this

compound statement into unary and binary state­

ments as shown in Figure 4, we could simply ap­

ply the mechanism that was used in Figure 3 and

associate a derivative computation with each bi­

nary or unary statement (the resulting pseudo­

code is shown in the left half of Figure 6).

There is another way, though. The chain rule
tells us that

aw aw
Vw=ay*Vy +az*Vz.

Hence, if we know the "local" derivatives (aw I ay,

aw I az) of w with respect to z and y, we can easily

compute Vw, the derivatives ofw with respect to x.

The "local" derivatives (aw I ay, aw I az) can be

computed efficiently by using the reverse mode of

automatic differentiation. Here we maintain the

derivative of the final result with respect to an

intermediate quantity. These quantities are usu­

ally called adjoints. They measure the sensitivity

of the final result with respect to some intermedi­

ate quantity. This approach is closely related to

the adjoint sensitivity analysis for differential

equations that has been used at least since the late

1960s, especially in nuclear engineering [15, 16],

in weather forecasting [17], and even in neural

networks [18 J .

In the reverse mode, let tbar denote the ad­

joint object corresponding to t. The goal is for

tbar to contain the derivative aw I at. We know

that wbar = aw 1 aw = 1. o. We can compute ybar

and zbar by applying the following simple rule to

the statements executed in computing w, but in

reverse order:

if s = f (t) , then tbar

+= sbar * (df I dt)

if s = f (t, u) , then tbar

+= sbar * (df I dt)

ubar += sbar * (df 1 du)

Using this simple recipe [10, 14], we generate the

code shown in Figure 5 for computing w and its

gradient.

In Figure 6, we juxtapose the derivative compu­

tations for w = -y I (Z*Z*Z) based on the pure

forward mode and those based on the reverse

mode for computing Vw. For the reverse mode, we

performed some simple optimizations such as

I• Compute function values •I
tl - y

t2 = z • z

t3 = t2 • z

w = tt I t3

I• Initialize adjoint quantities •I
wbar = 1.0; t3bar = 0.0; t2bar = 0.0;

t1bar = 0.0; zbar = 0.0; ybar = 0.0;

I• Adjoints for w = t1 I t3 •I
t1bar = t1bar + wbar • (1 I t3)

t3bar = t3bar + wbar • (- t1 I t3)

I• Adjoints for t3 = t2 • z •I
t2bar = t2bar + t3bar • z

zbar = zbar + t3bar • t2

I• Adjoints for t2 = z • z •I
zbar = zbar + t2bar • z

zbar = zbar + t2bar • z

I• Adjoints for t1 = - y •I
ybar = - ttbar

V' w = ybar • V' y + zbar • V' z

FIGURE 5 Reverse mode computation of Vw.

Forward Mode:

t1 = - y
\7 t1 = - \7 y

t2 = z * z

\7 t2 = \7 z * z + z * \7 z

t3 = t2 * z

\7 t3 = \7 t2 * z + t2 * \7 z
v = t1 I t3

\7 v = (\7 t 1 - \7 t3 * v) 1 t3

ADIFOR 17

Reverse Mode:

t1 ,. - y

t2 = z * z

t3 = t2 * z
v = t1 I t3

t1bar = (1 I t3)

t3bar • (- t1 I t3)

t2bar = t3bar * z

zbar = t3bar * t2

zbar = zbar + t2bar * z
zbar = zbar + t2bar * z

ybar '"' - t1bar

\7 v "' ybar * \7 y + zbar * \7 z

FIGURE 6 Forward versus reverse mode in computing derivatives of w

-y I (Z*Z*Z) .

eliminating multiplications by 1 and additions to

0.

The forward mode code in Figure 6 requires

that space be allocated for three auxiliary gradient

objects, and the code contains four gradient com­

putation loops. In contrast, the reverse mode code

requires only five scalar auxiliary derivative ob­

jects and has only one gradient loop. In either

case, the storage required by automatic differenti­

ation is at most the amount of storage required by

the original function evaluation times the length of

the gradient objects computed.

Figures 5 and 6 illustrate a very simple example

of using the reverse mode. The reverse mode re­

quires fewer operations if the number of indepen­

dent variables is larger than the number of depen­

dent variables. This is exactly the case for

computing a gradient, which can be viewed as a

Jacobian matrix with only one row. This issue is

discussed in more detail in other papers [10, 19,

20].

Despite the advantages of the reverse mode

with regard to complexity, the implementation of

the reverse mode for the general case is quite com­

plicated. It requires the ability to access in reverse

order the instructions performed for the computa­

tion of f and the values of their operands and

results. Current tools achieve this by storing a

record of every computation performed [13].

Then an interpreter performs a backward pass on

this "tape." The resulting overhead often annihi­

lates the complexity advantage of the reverse

mode in an actual implementation [21, 22].

ADIFOR uses a hybrid approach. It is generally

based on the forward mode, but uses the reverse

mode to compute the gradients of assignment

statements, since for this restricted case the re­

verse mode can easily be implemented by a

source-to-source translation. We also note that

even though we showed the computation only of

first derivatives, the automatic differentiation ap­

proach can easily be generalized to the computa­

tion of univariate Taylor series or multivariate

higher-order derivatives [14, 23, 24 J.
The derivatives computed by automatic differ­

entiation are highly accurate, unlike those com­

puted by divided differences. Griewank and Reese

[25] showed that the derivative objects computed

in the presence of round-off correspond to the ex­

act result of a nonlinear system whose partial de­

rivatives have been perturbed by factors of at

most (1 + e)2 , where e is the relative machine

precision.

3 ADIFOR DESIGN PHILOSOPHY

The examples in the preceding section have

shown that the principles underlying automatic

differentiation are not complicated: we just asso­

ciated extra computations (which are entirely

specified on a statement-by-statement basis) with

the statements executed in the original code. As a

result, a variety of implementations of automatic

differentiation have been developed over the years

(see Juedes [13] for a survey).

Most of these implementations implement au­

tomatic differentiation by means of operator over­

loading, which is a language feature in C++, Ada,

Pascal-XSC, and Fortran 90 [26]. Operator over­

loading provides the possibility of associating

side-effects with arithmetic operations. For exam­

ple, with an addition "+" we now could associate

the addition of the derivative vectors that is re­

quired in the forward mode. Operator overloading

18 BISCHOF ET AL.

also allows for a simple implementation of the re­

verse mode, since as a by-product of the compu­

tation off we can store a record of every computa­

tion performed and then have an interpreter

perform a backward pass on this "tape." The

only drawback is that for straightforward imple­

mentations, the length of the tape is proportional

to the number of arithmetic operations performed

[20, 27]. Recently, Griewank [19] suggested an

approach to overcome this limitation through

clever checkpointing.

Nonetheless, for all their simplicity and ele­

gance, operator overloading approaches present

two fundamental drawbacks:

1. Loss of context: Since all computation is

performed as a by-product of an elementary

operation, it is very difficult, if not impos­

sible, to perform optimizations that tran­

scend one elementary operation (such as

the constant folding techniques that simpli­

fied the reverse mode shown in Figure 5 into

that shown in Figure 6). Another disadvan­

tage is the difficulty associated with the ex­

ploitation of parallelism [28].

2. Loss of efficiency: The overwhelming ma­

jority of codes for which computational sci­

entists want derivatives are written in For­

tran, which does not support operator

overloading. While we can emulate operator

overloading by associating a subroutine call

with each elementary operation, this ap­

proach slows computation considerably,

and usually also imposes some restrictions

on the syntactic structure of the code that

can be proeessed. Examples of this ap­

proach are DAPRE [29, 30], GRESS/

ADGEI\ [31, 32], and JAKEF [33]. Experi­

ments with some of those svstems are

described elsewhere [34].

The lack of efficiency of previously exrstmg

tools has prevented automatic differentiation from

becoming a standard tool for mainstream high­

performance computing, even though there are

numerous applications where the need for accu­

rate first- and higher-order derivatives essentially

mandated the use of automatic differentiation

techniques and prompted the development of

custom-tailored automatic differentiation systems

[35]. For the majority of applications, however,

automatic differentiation techniques were sub-

stantially slower than divided-difference ap­

proximations, discouraging potential users.

The issues of ease of use and portability have

received scant attention in software for automatic

differentiation as well. In many applications, the

"function" of which we wish to compute deriva­

tives is a collection of subroutines, and all that

really should be expected of the user is to specify

which of the variables correspond to the indepen­

dent and dependent variables. In addition, the

automatic differentiation code should be easily

transportable between different machines.

ADIFOR takes those requirements into ac­

count. Its user interface is simple, and the ADI­

FOR-generated code is efficient and portable. Un­

like previous approaches, ADIFOR can deliver

this functionality because it views automatic dif­

ferentiation from the outset as a source transfor­

mation problem. The goal is to automate and op­

timize the source translation process that was

shown in very simple examples of the preceding

section. By taking a source translator view, we can

bring the many man-years of effort of the compiler

community to bear on this problem.

ADIFOR is based on the ParaScope program­

ming environment which combines dependence

analysis with interprocedural analysis to support

the semi-automatic parallelization of Fortran pro­

grams [36 J. While our primary goal is not the par­

allelization of Fortran programs, the ParaScope

environment provides us with a Fortran parser,

data abstractions for representing Fortran pro­

grams, and tools for constructing and manip­

ulating those representations. In particular,

ParaScope tools gather data flow facts for scalars

and arrays; dependence graphs for array ele­

ments; control flow graphs; and constant and

symbolic facts.

The data dependence analysis capabilities are

critical for determining which variables need to

have derivative objects associated with them, a

process we call variable nomination. Only those

variables z whose values depend on an indepen­

dent variable x and influence a dependent vari­

able v need to have derivative information associ­

ated with them. Such a variable is called active.

Variables that do not require derivative informa­

tion are called passive. lnterprocedurally, variable

nomination proceeds in a series of passes over the

program call graph by using an "interaction ma­

trix" for each subroutine. Such a matrix repre­

sents a bipartite graph. Input parameters or vari­

ables in common blocks are connected with

output parameters or variables in common blocks

whose values they influence. This dependency

analysis is also crucial in determining the sets of

active/passive variable binding contexts in which

each subroutine may be invoked. For example,

consider the following code for computing

Y = 3. 0 *X* X:

subroutine threexx (x, y)

call prod(3. O,x, t)

call prod (t, x, y)

end

subroutine prod (x, y, z)

Z =X* y

end

In the first call to prod, only the second and third

of prod's parameters are active, whereas in the

second call, all variables are active. ADIFOR rec­

ognizes this situation and performs procedure

cloning to generate different augmented versions

of prod for these different contexts. The decision

to do cloning based on active/passive variable

context will eventually be based on an assessment

of the savings made possible by introducing the

cloned procedures, in accordance with the goal­

directed interprocedural transformation approach

being adopted within ParaScope [37].

Another advantage of a compiler-based ap­

proach is that we have the mechanism in place for

simplifying the derivative code that has been gen­

erated by application of the simple statement-by­

statement rules. For example, consider the reverse

mode code shown in Figure 5. By applying con­

stant folding and eliminating variables that are

used only once, we eliminate multiplications by

1.0 and additions to 0, and we reduce the number

of variables that must be allocated.

In summary, ADIFOR proceeds as follows:

1. Users specify the subroutine that corre­

sponds to the "function" for which they

wish derivatives, as well as the variable

names that correspond to dependent and

independent variables. These names can be

subroutine parameters or variables in com­

mon blocks. In addition to the source code

for the function subroutine, users must sub­

mit the source code for all subroutines that

are directly or indirectly called from this

subroutine.

2. ADIFOR parses the code, builds the call

ADIFOR 19

graph, collects intra- and interprocedural

data flow information, and determines ac­

tive variables.

3. Derivative objects are allocated in a

straightforward fashion: derivative objects

for parameters are again parameters; deriv­

ative objects for variables in common blocks

and local variables are again allocated in

common blocks and as local variables, re­

spectively.

4. The original source code is augmented with

derivative statements-the reverse mode is

used for assignment statements, the forward

mode overall. Subroutine calls are rewritten

to propagate derivative information, and

procedure cloning is performed as needed.

5. The augmented code is optimized, eliminat­

ing unnecessary arithmetic operations and

temporary variables.

The resulting code generated by ADIFOR can

be called by users' programs in a flexible manner

to be used in conjunction with standard soft­

ware tools for optimization, solving nonlinear

equations, or for stiff ordinary differential equa­

tions. Bischof and Hovland discuss calling the

ADIFOR-generated code from users' programs

[38].

4 THE FUNCTIONALITY OF
ADIFOR-GENERATED DERIVATIVE CODES

The functionality provided by ADIFOR is best un­

derstood through an example. Our example is

adapted from problem C2 in the STDTST set of

test problems for stiff ODE solvers [39]. The rou­

tine FCN2 shown in Figure 7 computes the right­

hand side of a system of ordinary differential

equations y' = f(x, y) by calling a subordinate

routine FCN. In the numerical solution of the or­

dinary differential equation, the Jacobian ajl ay is

required.

Nominating Y as independent and YP as de­

pendent, ADIFOR produces the code shown in

Figures 8 and 9. We use the dollar sign$ to indi­

cate ADIFOR-generated names. In practice,

ADIFOR generates variable names which do not

conflict with any names appearing in the original

program.
We see that the derivative codes have a gradient

object associated with every dependent variable.

Our convention is to associate a gradient g$(var)

20 BISCHOF ET AL.

SUBROUTIIE FCI2(M,X,Y,YP)

IITEGER I
DOUBLE PRECISIOI X, Y(M), YP(M)
IITEGER ID, IWT
DOUBLE PRECISIOI W(20)
COMMOI /STCOM5/W, IWT, I, ID

CALL FCI(X,Y,YP)
RETURI
EID

SUBROUTIIE FCI(X,Y,YP)

C ROUTIIE TO EVALUATE THE DERIVATIVE F(X,Y) CORRESPOIDIIG TO THE
C DIFFEREITIAL EQUATIOI:
C DY/DX = F(X,Y) .
C THE ROUTIIE STORES THE VECTOR OF DERIVATIVES II YP(•). THE
C DIFFEREITIAL EQUATIOI IS SCALED BY THE WEIGHT VECTOR W(•)
C IF THIS OPTIOI HAS BEEI SELECTED (IF SO IT IS SIGIALLED
C BY THE FLAG IWT).

DOUBLE PRECISIOI X, Y(20), YP(20)
IJTEGER ID, IWT, I
DOUBLE PRECISIOI W(20)
COMMOI /STCOM5/W, IWT, I, ID
DOUBLE PRECISIOI SUM, CPARM(4), YTEMP(20)
IJTEGER I, IID
DATA CPARM/1.D-1, 1.DO, 1.D1, 2.D1/

IF (IWT.LT.O) GO TO 40
DO 20 I= 1, I

YTEMP(I) = Y(I)
Y(l) = Y(I)•W(I)

20 COITIIUE
40 liD = MOD(ID,10)

C ADAPTED FROM PROBLEM C2
YP(1) • -Y(1) + 2.DO
SUM = Y(1)•Y(1)
DO 50 I = 2, I

YP(I) = -10.0DO•I•Y(I) + CPARM(IID-1)•(2••I)•SUM
SUM = SUM + Y(I)•Y(I)

50 COITIIUE

IF (IWT.LT.O) GO TO 680
DO 660 I = 1, I

YP(I) = YP(I)/W(I)
Y(I) = YTEMP(I)

660 COITIIUE
680 COITIIUE

RETURI
EID

FIGURE 7 Original code for problem C2.

of leading dimension ldg$(var) with variable

(var). The calling sequence of gfoon is derived

from that of f oo by inserting an argument gp
denoting the length of the gradient vectors as the

first argument, and then copying the calling se­

quence of foo, inserting g$(var) and ldg$(var)

after every active variable (var). Passive variables

are left untouched.

Subroutine g$fcn2$6 relates to the Jacobian

ilyp1 ayp1

ay1 aym

Jyp =
aypm aypm

ay1 aym

subroutine gfcn6(gp, x, y, gy, ldgy, yp, gyp, ldgyp)
c
C ADIFOR: runtime gradient index

integer gp
C ADIFOR: translation time gradient index

integer g$pmax$
parameter (g$p~ax$ = 20)

C ADIFOR: gradient iteration index
integer gi

c
integer ldg$y
integer ldg$yp

C ROUTIIE TO EVALUATE THE DERIVATIVE F(X,Y) CORRESPOIDIIG TO THE
C DIFFEREITIAL EQUATIOJ:
C DY/DX • F(X,Y) .
C THE ROUTIIE STORES THE VECTOR OF DERIVATIVES II YP(•). THE
C DIFFEREJTIAL EQUATIOI IS SCALED BY THE WEIGHT VECTOR V(•)
C IF THIS OPTIOI HAS BEEI SELECTED (IF SO IT IS SIGIALLED
C BY THE FLAG IVT).

c

double precision x, y(20), yp(20)
integer id, ivt, n
double precision v(20)
common /stcomS/ v, ivt, n, id
double precision sum, cparm(4), ytemp(20)
integer i, iid
data cparm /1.d-1, 1.d0, 1.d1, 2.d1/

C ADIFOR: gradient declarations
double precision g$y(ldg$y, 20), g$yp(ldg$yp, 20)
double precision g$sum(g$pmax$), g$ytemp(g$pmax$, 20)
if (gp .gt. g$pmax$) then

print •, "Parameter gp is greater than g$pmax."

stop
end if
if (ivt .lt. 0) then

goto 40
end if
do 99999, i • 1, n

C ytemp(i) '" y(i)
do gi = 1, gp

g$ytemp(g$i$, i) • g$y(gi, i)

enddo
ytemp(i) • y(i)

C y(i) • y(i) • v(i)
do g1 • 1, gp

g$y(g$i$, i) = v(i) • g$y(gi, i)

enddo
y(i) = y(i) • v(i)

20 continue
99999 continue
40 iid = mod(id, 10)
C ADAPTED FROM PROBLEM C2
c yp(t) • -y(t) + 2.d0

do gi = 1, gp

FIGURE 8 ADIFOR-generated code for problem C2 (part 1).

ADIFOR 21

as follows: Given input values for gp, m, x, y,

gy, ldgy, and ldg$yp, the routine g$fcn2$6

computes yp and g$yp, where

g$yp(1 : g$p$, 1 : m)

= (lyp(g$y(1: g$p$,1: mf))T

The superscript T denotes matrix transposition.

While the implicit transposition may seem awk­

ward at first, this is the only way to handle

assumed-size arrays (like real a(*)) in subrou­

tine calls. It is the responsibility of the user to allo­

cate g$yp and g$y with leading dimensions

ldg$yp and ldg$y that are at least gp.

22 BISCHOF ET AL.

g$yp(g$i$, 1) • -g$y(gi, 1)
enddo
yp(1) a -y(1) + 2.d0

C sum = y(1) • y(1)

do gi • 1, gp

g$sum(g$i$) = y(1) • g$y(gi, 1) + y(1) • g$y(g$i$, 1)
enddo

sum = y(1) • y(1)
do 99998, i = 2, n

C yp(i) • -10.0d0 • i • y(i) + cparm(iid - 1) • (2 •• i) • sum
do gi = 1, gp

g$yp(g$i$, i) = cparm(iid- 1) • (2 •• i) • g$sum(g$i$) + -1
•O.OdO • i • g$y(g$i$, i)

end do

yp(i) = -10.0d0 • i • y(i) + cparm(iid - 1) • (2 •• i) • sum
C sum = sum + y(i) • y(i)

do gi = 1, gp

g$sum(g$i$) • g$sum(gi) + y(i) • g$y(g$i$, i) + y(i) • g$y
•(gi, i)

end do

sum = sum + y(i) • y(i)
50 continue
99998 continue

if (iwt .lt. 0) then

goto 680
end if

do 99997, i = 1, n
C yp(i) = yp(i) I w(i)

do gi = 1, gp

g$yp(g$i$, i) = (1 I w(i)) • g$yp(gi, i)
enddo

yp(i) = yp(i) I w(i)
C y(i) = ytemp(i)

do gi = 1, gp
g$y(g$i$, i) = g$ytemp(gi, i)

enddo

y(i) "' ytemp(i)
660 continue
99997 continue

680 continue

return
end

FIGURE 8

For example, to compute the Jacobian of yp

with respect toy, we initialize g$y to be an m X m

identity matrix and set gp to m. After the call to

g$fcn2$6, g$yp contains the transpose of the Ja­

cobian of yp with respect toy. If we wish to com­

put only a matrix-vector product (as is often the

case when iterative schemes are applied to solve

equation systems with the Jacobian as the coeffi­

cient matrix), we set p = 1 and g$y to the vector

by which the Jacobian is to be multiplied.

From the forementioned discussion, ADIFOR­

generated code is well suited for computing dense

Jacobian matrices. We will now show that it can

also exploit the sparsity structure of Jacobian ma­

trices. Remember that the forward mode of auto­

matic differentiation upon which ADIFOR is

mainly based requires roughly gp operations

(part 2).

for every assignment statement in the original

function. Thus, if we compute a Jacobian] with n

columns by setting gp = n, its computation will

require roughly n times as many operations as the

original function evaluation, independent of

whether] is dense or sparse. However, it is well

known [40, 41 J that the number of function eval­

uations that are required to compute an approxi­

mation to the Jacobian by divided differences can

be much less than n if] is sparse. The same idea

can be applied to greatly reduce the running time

of ADIFOR-generated derivative code as well.

As an example, consider the swirling flow prob­

lem, which comes from Parter [42] and is part of

the Mll\'P ACK- 2 test problem collection [43 J. The

problem is a coupled system of boundary value

problems describing the steady flow of a viscous,

subroutine g$fcn2$6(gp, m, x, y, gy, ldgy, yp, gyp, ldgyp)
c
C ADIFOR: runtime gradient index

integer gp
C ADIFOR: translation time gradient index

integer g$pmax$
parameter (g$pmax$ = 20)

C ADIFOR: gradient iteration index

integer gi

c
integer ldg$y
integer ldg$yp
integer n
double precision x, y(m), yp(m)
integer id, iwt
double precision w(20)

common /stcom5/ w, iwt, n, id
c
C ADIFOR: gradient declarations

double precision g$y(ldg$y, m), g$yp(ldg$yp, m)

if (gp .gt. g$pmax$) then

print *• "Parameter gp is greater than g$pmax."
stop

end if

call gfcn6(gp, x, y, gy, ldgy, yp, gyp, ldgyp)
return

end

FIGURE 9 ADIFOR-generated code for problem C2.

ADIFOR 23

incompressible, axisymmetric fluid between two

rotating, infinite coaxial disks. The number of

variables in the resulting optimization problem

depends on the discretization. For example, for

n = 56 the Jacobian of F has the structure shown

in Figure 10.

By using a graph coloring algorithm designed to

identify structurally orthogonal colmpns (we used

the one described by Coleman and More) [40], we

can determine that this Jacobian can be grouped

into 14 sets of structurally orthogonal columns,

independent of the size of the problem. As a

result, we initialize a 56 X 14 matrix g$xT to the

structure shown in Figure 11. Here every circle

denotes the value 1.0. The structure of the result­

ing compressed Jacobian g$Fval T is shown in

Figure 11 as well. Here every circle denotes a non­

zero entry. Now, instead of gp = 56, a size of

gp = 14 is sufficient, a sizeable reduction in

cost. Bischof and Hovland describe the proper

·.

id!lr:::::
..........

·:::::::
FIGURE 10 Structure of the swirling flow Jacobian,
n =56.

.

. .

.

..

. .

. .

. .

. .

. . .

.

. .

..

. ..

··.

.•••
::::::: :::::
·:::::.: :
.: ... ·:::: ::::: .. :::::

:: ::::::::::•
=:.::::.: ••.• : . ·: ... ::::.•....... . .••......

:::::::::

.iiii.liiii!ii

.·:::.::::
FIGURE 11 Left: Structure of g$xT; right: structure
of g$Fval T_

24 BISCHOF ET AL.

Table 1. Performance of ADIFOR-Generated Derivative Codes Compared to Divided-Difference

Approximations on Orthogonal-Distance Regression Examples for 10,000 Jacobian Evaluations

Code Divided-Difference

Problem Jacobian Size Run-Time
Name Size (Lines) (Seconds)

Camera 2 X 13 97 1.82

Camera 2 X 13 97 8.19

Micro 4 X 20 153 6.39

Micro 4 X 20 153 23.0
Polymer 2 X 6 34 3.12
Polymer 2 X 6 34 9.18

Psycho 1 X 5 26 0.70

Psycho 1 X 5 26 2.95
Sand 1 X4 24 0.16

Sand 1 X 4 24 0.36

and efficient initialization of ADIFOR-generated

derivative codes [38].

One issue that deserves some attention is that

of error handling. Exceptional conditions arise

because of branches in the code or because sub­

expressions may be defined but not be differentia­

ble (~at x = 0, for example). ADIFOR knows

when Fortran intrinsics are nondifferentiable, and

traps to an error handler if we wish to compute

derivatives at a point where the derivatives do not

exist [44].

5 EXPERIMENTAL RESULTS

In this section, we report on the execution time of

ADIFOR-generated derivative codes in compari­

sion with divided-difference approximations of

first derivatives. While the ADIFOR system runs

on a SPARC platform, the ADIFOR-generated de­

rivative codes are portable and can run on any

computer that has a Fortran 77 compiler.

The problems named "camera," "micro,"

''heart,'' ''polymer,'' ''psycho,'' and ''sand''

were given to us by Janet Rogers, National Insti­

tute of Standards and Technology in Boulder,

Colorado. The code submitted to ADIFOR com­

putes elementary Jacobian matrices which are

then assembled to a large sparse Jacobian matrix

used in an orthogonal-distance regression fit [45 J.
The code named "shock" was given to us by Greg

Shubin, Boeing Computer Services, Seattle,

Washington. This code implements the steady

shock tracking method for the axisymmetric blunt

body problem [46]. The Jacobian has a banded
structure. The compressed Jacobian has 28

columns, compared to 190 for the "normal" Ja­

cobian. The code named "adiabatic" is from

ADIFOR
Run-Time ADIFOR
(Seconds) Improvement Machine

1.81 0.5% RS6000/550
13.87 -69% SPARC 4/490

3.35 47% RS6000/550
16.17 30% SPARC 4/490

1.20 62% RS6000/550
4.84 47% SPARC 4/490
0.38 46% RS6000/550

1.49 49% SPARC 4/490
0.07 56% RS6000/550
0.18 50% SPARC 4/490

Larry Biegler, Chemical Engineering, Carnegie­

Mellon University and implements adiabatic flow,

a common module in chemical engineering [4 7].

Lastly, the code named "reactor" was given to us

by Hussein Khalil, Reactor Analysis and Safety

Division, Argonne National Laboratory. While the

other codes were used in an optimization setting,

the derivatives of the "reactor" code are used for

sensitivity analysis to ensure that the model is ro­

bust with respect to certain key parameters.

Tables 1 and 2 summarize the performance of

ADIFOR-generated derivative codes with respect

to divided differences. These tests were run on a

SPARC station 1, a SPARC 4/400, or an IBM

RS6000/550. We used different machines be­

cause the codes were submitted from different

computing environments. The numbers reported

in Table 1 are for 10,000 evaluations of the Jaco­

bian, while those in Table 2 are for a single evalu­

ation of the Jacobian.

The column of the Tables labeled "ADIFOR

Improvement" indicates the percentage im­

provement of the running time of the ADIFOR­

generated derivative code over an approximation

of the divided-difference running-times. For the

"shock" code, we had a derivative code based on

sparse divided differences supplied to us. In the

other cases, we estimated the time for divided dif­

ferences by multiplying the time for one function

evaluation by the number of independent vari­

ables. This approach is conservative, yet fairly

typical in an optimization setting, where the func­

tion value already has been computed for other

purposes. An improvement greater than 0% indi­

cates that the ADIFOR-generated derivatives ran

faster than divided differences.

The percentage improvement for the "camera"

problem indicates a stronger-than -expected de-

ADIFOR 25

Table 2. Performance of ADIFOR-Generated Derivative Codes Compared to Divided-Difference
Approximations for a Single Jacobian Evaluation

Code Divided-Difference ADIFOR
Problem Jacobian Size Run-Time

1\'ame Size (Lines) (Seconds)

Reactor 3 X 29 1455 42.34
Reactor 3 X 29 1455 13.34
Adiabatic 6 X 6 1089 0.54
Heart 1 X 8 1305 11641.1
Shock 190 X 190 1403 0.041
Shock 190 X 190 1403 0.46

pendence of running-times of ADIFOR-generated

code on the choice of compiler and architecture.

In fact, the 69% degradation in performance on

the "camera" problem is a result of the SPARC

compiler's missing an opportunity to move loop­

invariant cos and sin invocations outside of

loops, as occurs in the following ADIFOR­

generated code:

C c=cos(par(4))

d$0 = p (4)

do 99969 gi = 1, gp

g$cteta (g$i$) =

-sin (d$0) * g$par (gi, 4)

99969 continue

cteta = cos (d$0)

If we edit the ADIFOR-generated code by hand to

extract the invariant expression, we get a simi­

lar performance on the SPARC. Moving loop­

invariant code outside of loops is one of the per­

formance improvements that we will implement in

later versions.

We see that already in its current version,

ADIFOR performs well in competition with di­

vided-difference approximations. It is up to a fac­

tor of three faster, and never worse by more than a

factor of 1. 69. This improvement was obtained

without the user having to make any modifications

to the code. We also see that ADIFOR can handle

problems where symbolic techniques would be al­

most certain to fail, such as the "shock" or "reac­

tor" codes. The ADIFOR-generated derivative

codes were at most four times as long as the code

that was submitted to ADIFOR.

The performance of ADIFOR-generated deriv­

atives can even be better than that of hand-coded

derivatives. For example, for the swirling flow

problem mentioned in the preceding section, we

obtain the performance shown Figure 12.

Figure 12 shows the performance of the hand-

Run-Time ADIFOR
(Seconds) Improvement Machine

36.14 15% SPARC 4/490
8.33 38% RS6000/550
0.18 67% SPARC 1

13941.30 -20% SPARC 1
0.023 44% RS6000/550
0.31 33% SPARC 1

derived derivative code supplied as part of the

MINPACK-2 test set collection [48], and that of

the ADIFOR-ger.erated code properly initialized

to exploit the sparsity structure of Jacobian. On an

RS6000/320, the ADIFOR-generated code sig­

nificantly outperforms the hand-coded deriva­

tives. On one processor of the CRAY Y-MP/18,

the two approaches perform comparably. The val­

ues of the derivatives computed by the ADIFOR­

generated code agree to full machine precision

with the values from the hand-coded derivatives.

The accuracy of the finite difference approxima­

tions, on the other hand, depends on the user's

careful choice of a step size.

We conclude that ADIFOR-generated deriva­

tives are a more than suitable substitute for hand­

coded or divided-difference derivatives. Virtually

no time investment is required by the user to gen­

erate the codes. In most of our example codes,

ADIFOR-generated codes outperform divided­

difference derivative approximations. In addition,

the fact that ADIFOR computes highly accurate

derivatives may significantly increase the robust­

ness of optimization codes or ODE solvers, where

O.Q3 .

! 0.02

0.01

IBM RS6000 20
_ : hand coded

: ADIFOR w/ ccmpreucd J.::obilln

400

order of Jacobim

order of Jacobim

FIGURE 12 Swirling flow Jacobian.

26 BISCHOF ET AL.

.. ::-:::-."!'!'!@~ __ L _____ L_ ____ ;__

-.-,-.ADIF~wfloo[iocb~io

.
-e 40

lO •..

····~·· ·-·-·-···-···

·-................ - ----· .. ------ -·- -- -

FIGURE 13 Ratio of gradient/function evaluation.

good derivative values are critical for the conver­

gence of the numerical scheme.

6 FUTURE WORK

We are planning many improvements for

ADIFOR The most important are second- and

higher-order derivatives, automatic detection of

sparsity, increased use of the reverse mode for

better performance, and integration with Fortran

parallel programming environments such as

Fortran-D [49]
Second-order derivatives are a natural exten­

sion, and this functionality is required for many

applications in numerical optimization. In addi­

tion, for sensitivity analysis applications, second

derivatives reveal correlations between various

parameters. While we currently can just reprocess

the ADIFOR-generated code for first derivatives,

much can be gained by computing both first- and

second-order derivatives at the same time [24,

50].
The automatic detection of sparsity is a func­

tionality that is unique to automatic differentia­

tion. Here we exploit the fact that in automatic

differentiation, the computation of derivatives is

intimately related to the computation of the func­

tion itself. The key observation is that all our gra­

client computations have the form

vector = L scalar; * vector;.

By merging the structure of the vectors on the

right-hand side, we can obtain the structure of the

vector on the left-hand side. In addition, the

proper use of sparse vector data structures will

ensure that we perform computations onlv with

the nonzero components of the various derivative

vectors.

We can improve the speed of ADIFOR­

generated derivative code through increased use

of the reverse mode. The reverse mode requires us

to reverse the computation from a trace of at least

part of the computation which we later interpret. If

we can accomplish the code reversal at compile

time, we can truly exploit the reverse mode, since

we do not incur the overhead that is associated

with run-time tracing.

ADIFOR currently does a compile-time reversal

of composite right-hand sides of assignment state­

ments, but there are other svntactic structures

such as parallel loops for which this could be per­

formed at compile time. In a parallel loop, there

are no dependencies between different iterations.

Thus, in order to generate code for the reverse

mode, it is sufficient to reverse the computation

inside the loop bodv. This can easilv be done if the

loop body is a basic block. The p~tential of this

technique is impressive. Hand-compiling reverse

mode code for the loop bodies of the torsion prob­

lem, another problem in the MINPACK-2 test set

collection, we obtained the performance shown in

Figure 13. This figure shows the ratio of gradient/

function evaluation on a Solbourne .SE/900 for

the current ADIFOR version, and for a hand­

modified ADIFOR code that uses the reverse

mode for the bodies of parallel loops. If nint is the

number of grid points in each dimension, then the

gradients are of size nint * nint.

Approximation of the gradient by divided dif­

ferences costs ninl * nint function evaluations.

Hence, we see that the current ADIFOR is faster

than divided-difference approximations bv a fac­

tor of 70 on a problem of size 4900: and u~ing the

reverse mode for loop bodies. we can compute the

gradient in about six to seven times the cost of a

function evaluation, independent of the size of the

problem.

Taken together, these points mean that for the

problem of size 4900, we can improve the speed

of the derivative computation bv over two orders

of magnitude compared to divided-difference

computations. \V"e stop at a problem of size 4900

only because. at that size, we ran out of memor-v.

These examples for which we have "compiled"

ADIFOR-generated code by hand show again the

promise of viewing automatic differentiation as a

syntax transformation process. By taking advan­

tage of the context (parallel loops, in this case) of a

piece of code, we can choose whatever automatic

differentiation technique is most applicable, and

generate the most efficient code for the computa­

tion of derivatives. In many applications where the

computation of derivatives currently requires the

dominant portion of the running time, the use of

ADIFOR-generated derivatives will lead to dra­

matic improvements, without having to change

the algorithm that uses the derivative information,

or the coding of the 'function' for which deriva­

tives are required.

REFERENCES

[1] J. Dennis and R. SchnabeL Numerical Methods

for Unconstrained Optimization and Nonlinear

Equations. Englewood Cliffs, :'IJJ: Prentice-Hall,

1983.

[2] T. F. Coleman, B. S. Garbow, and J. J. More,

"Software for estimating sparse Jacobian ma­

trices," ACM Trans. /Hath. Software, voL 10, pp.

329-345, 1984.

[3] J. C. Butcher, "Implicit Runge-Kutta processes,"

Math. Camp., voL 18, pp. 50-64, 1964.

[4] G. Dahlquist, "A special stability-problem for lin­

ear multistep methods." BIT. vol. 3, pp. 27-43,

1963.

[5] G. F. Corliss, Applications of differentiation

arithmetic, In R. E. ~oore, Ed .. Reliability in

Computing. London: Academic Press, 1988. pp.

127-148.

[6] J. C. Butcher, The Numerical Analysis of Ordi­

nary Dtfferential Equations (Rung Kulla and

General Linear Afethod), John Wiley and Sons,

l'\ew York. 1987.

[7] E. Hairer and G. Wanner. Solving Ordinary' Dif­

ferential Equations II (Stiff and Differential­

Algebraic Problems), volume 14 of Springer Se­

ries in Computational Mathematics. ~ew York:

Springer Verlag, 1991.

[8] R. Courant. K. Friedrichs. and H. Lewy, "Cber

die partiellen Differenzengleichungen der mathe­

matischen Physik.'' Jiathematische Annalen, vol.

100, pp. 32-74, 1928.

[9] J. Crank and P. ;\"icholson. "A Practical ~1ethod

for Numerical Integration of Solutions of Partial

Differential Equations of Heat Conduction

Type,"' Proc. Cambridge Philos. Soc., vol. 43.

p. 50, 1947.

[10] A. Griewank, "On automatic differentiation," In

~1. lri and K. Tanabe. Eds .. Jlathematical Pro­

gramming: Recent Developments and Applica­

tions . ."'orwelL MA: Kluwer Academic Publishers,

1989, pp. 83-108.

ADIFOR 27

[11] B. W. Char, "Computer algebra as a toolbox for

program generation and manipulation," In A.

Griewank and G. F. Corliss, Eds. Automatic Dif­

ferentiation of Algorithms: Theory, Implementa­

tion, and Application. Philadelphia: SIAM, 1991,
pp. 53-60.

[12] V. V. Goldman, J. Molenkamp, and J. A. van

Hulzen, "Efficient numerical program generation

and computer algebra environments," In A.

Griewank and G. F. Corliss, Edits. Automatic Dif­

ferentiation of Algorithms: Theory, Implementa­

tion, and Application. Philadelphia: SIAM, 1991,

pp. 74-83.

[13] D. Juedes, "A taxonomy of automatic differentia­

tion tools," In A. Griewank and G. F. Corliss,

Eds. Automatic Differentiation of Algorithms:

Theory, Implementation, and Application. Phila­

delphia: SIAM, 1991, pp. 315-329.

[14] L. B. Rail, Automatic Differentiation: Techniques

and Applications, volume 120 of Lecture Notes in

Computer Science. Berlin: Springer Verlag, 1981.

[15] D. G. Cacuci, "Sensitivity theory for nonlinear

systems. I. nonlinear functional analysis ap­

proach,"]. Math. Phys., vol. 22, no. 12, pp.

2794-2802, 1981.

[16] D. G. Cacuci, "Sensitivity theory for nonlinear

systems. II. extension to additional classes of re­

sponses,]. Math. Phys., vol. 22, no. 12, pp.

2803-2812, 1981.

[17] I. M. Navon and C. Muller, "FESW-A finite­

element Fortran IV program for solving the shal­

low water equations," Advances in Engineering

Software, vol. 1, pp. 77-84, 1970.

[18] P. Werbos, Systems Modeling and Optimization,

."i'ew York: Springer Verlag, 1982, pp. 762-777.

[19] A. Griewank, "Achieving logarithmic growth of

temporal and spatial complexity in reverse auto­

matic differentiation,'' Optimization Methods

and Software, vol. 1, no. 1, pp. 24-35, 1992.

[20] A. Griewank, D. Juedes, J. Srinivasan, and C.

Tyner, "ADOL-C, a package for the automatic

differentiation of algorithms written in C/C+ +,"

ACM Trans. Math. Software, to appear. Also ap­

peared as Preprint MCS-P180-1190, Mathemat­

ics and Computer Science Division, Argonne Na­

tional Laboratory, 9700 S. Cass Ave., Argonne,

IL 60439, 1990.

[21] L. C. W. Dixon, "Automatic Differentiation and

Parallel Processing in Optimisation," Technical

Report ."i'o. 180, The :'-Jumerical Optimisation

Center, Hatfield Polytechnic, Hatfield, U.K.,

1987.

[22] L. C. W. Dixon, "Use of automatic differentiation

for calculating Hessians and ."i'ewton steps," In A.

Griewank and G. F. Corliss, Eds., Automatic Dtf­

ferentiation of Algorithms: Theory, Implementa­

tion, and Application. Philadelphia: SIA~, 1991,

pp. 114-125.

[23J B. D. Christianson, "Reverse accumulation and

accurate rounding error estimates for Taylor se-

28 BISCHOF ET AL.

ries coefficients," Optimization Methods and

Software, vol. 1, no. 1, pp. 81-94, 1992.

[24] A. Griewank, "Automatic evaluation of first- and

higher-derivative vectors," In R. Seydel, F. W.

Schneider, T. Kupper, and H. Troger, Eds., Pro­

ceedings of the Conference at Wiirzburg, Aug.

1990, Bifurcation and Chaos: Analysis, Algo­

rithms, Applications. Basel, Switzerland:

Birkhiiuser Verlag, 1991, vol. 97, pp. 135-148.

[25] A. Griewank and S. Reese, "On the calculation of

Jacobian matrices by the Markowitz rule," In A.

Griewank and G. F. Corliss, Eds., Automatic Dif­

ferentiation of Algorithms: Theory, Implementa­

tion, and Application. Philadelphia: SIAM, 1991,

pp. 126-135.

[26] G. F. Corliss, "Overloading point and interval

Taylor operators," In A. Griewank and G. F. Cor­

liss, Eds., Automatic Differentiation of Algo­

rithms: Theory, Implementation, and Applica­

tion. Philadelphia: SIAM, 1991, pp. 139-146.

[27] C. Bischof and J. Hu, "Utilities for Building and

Optimizing a Computational Graph for Al­

gorithmic Decomposition," Technical Memoran­

dum ANL/MCS-TM-148, Mathematics and

Computer Sciences Division, Argonne National

Laboratory, 9700 South Cass Ave., Argonne, IL

60439, April 1991.

[28] C. Bischof, "Issues in parallel automatic differen­

tiation," In A. Griewank and G. F. Corliss, Eds ..

Automatic Differentiation of Algorithms: Theory,

Implementation, and Application. Philadelphia:

SIAM, 1991, pp. 100-113.

[29] J.D. Pryce and P. H. Davis, "A New Implementa­

tion of Automatic Differentiation for Use With

Numerical Software," Technical Report TR A.\1-

87 -11, Mathematics Department, Bristol C niver­

sity, 1987.

[30] B. R. Stephens and J. D. Pryce, The DAPREI

UNIX Preprocessor Users' Guide vl. 2, Royal Mili­

tary College of Science at Shrivenham, 1990.

[31] J. E. Horwedel, "GRESS: A preprocessor for sen­

sitivity studies on Fortran programs," In A.

Griewank and G. F. Corliss, Eds., Automatic Dif­

ferentiation of Algorithms: Theory, Implementa­

tion, and Application. Philadelphia: SIAM, 1991,

pp. 243-250.

[32] J. E. Horwedel, B. A. Worley, E. M. Oblow, and

F. G. Pin, "GRESS Version 1.0 Cser's Manual,"

Technical Memorandum ORNL/T.\1 10835,

Martin Marietta Energy Systems, Inc., Oak Ridge

National Laboratory, Oak Ridge, TN 37830,
1988.

[33] K. E. Hillstrom, "JAKEF-A Portable Symbolic

Differentiator of Functions Given by Algorithms,"

Technical Report ANL-82-48, Mathematics and

Computer Science Division, Argonne National

Laboratory, 9700 South Cass Ave., Argonne, IL

60439, 1982.

[34 J E. J. Soulie, "User's experience with Fortran pre­

compilers for least squares optimization prob­

lems," In A. Griewank and G. F. Corliss, Eds.,

Automatic Differentiation of Algorithms: Theory,

Implementation, and Application. Philadelphia:

SIAM, 1991, pp. 297-306.

[35] A. Griewank and G. F. Corliss, Eds., Automatic

Differentiation of Algorithms: Theory, Implemen­

tation, and Application. Philadelphia: SIAM,

1991.

[36] D. Callahan, K. Cooper, R. T. Hood, K. Ken­

nedy, and L. M. Torczon, ''ParaScope: a parallel

programming environment," Int.]. Supercom­

put. Applications, vol. 2, no. 4, Dec. 1988.

[37] P. Briggs, K. D. Cooper, M. W. Hall. and L. Torc­

zon, "Goal-Directed lnterprocedural Optimiza­

tion," CRPC Report CRPC-TR90102, Center for

Research on Parallel Computation, Rice Lniver­

sity, Houston, TX, '\,'ovember 1990.

[38] C. Bischof and P. Hovland. "Csing ADIFOR to

Compute Dense and Sparse Jacobians, ,. Techni­

cal Memorandum A:'IIL/MCS-TM-158, Mathe­

matics and Computer Science Division, Argonne

National Laboratory, 9700 S. Cass Ave ..

Argonne, IL 60439, October 1991.

[39] W. H. Enright and J.D. Pryce, "Two FORTRAN

packages for assessing initial value methods,"

ACM Trans. Math. Software, vol. 13, no. 1. pp.

1-22, 1987.

[40] T. F. Coleman and J. J. More, "Estimation of

Sparse Jacobian Matrices and Graph Coloring

Problems," SIAM]. Numer. Anal., vol. 20, pp.

187-209, 1984.

[41] D. Goldfarb and P. Toint, ''Optimal estimation of

Jacobian and Hessian matrices that arise in finite

difference calculations," Math. of Computation,

pp. 69-88, 1984.

[42] S. V. Parter, Theory and Applications of Singular

Perturbations, volume 942 of Lecture Notes in

Mathematics. New York: Springer Verlag, 1982,

pp. 258-280.

[43] B. Averick, R. G. Carter, and J. J. More, "The

MINPACK-2 Test Problem Collection (Prelimi­

nary Version)," Technical Memorandum MCS­

T.\1-150, Mathematics and Computer Science Di­

vision, Argonne National Laboratory, 9700 S.

Cass Ave., Argonne, IL 60439, May 1991.

[44] C. Bischof, G. Corliss, and A. Griewank,

"ADIFOR Exception Handling," Technical

Memorandum ANL/MCS-TM-159, Mathematics

and Computer Science Division, Argonne Na­

tional Laboratory, 9700 S. Cass Ave., Argonne,

IL 60439, 1991.

[45] P. T. Boggs and J. E. Rogers, "Orthogonal dis­

tance regression," Contemporary Math., vol.

112,pp. 183-193,1990.

[46] G. R. Shubin, A. B. Stephens, H. M. Glaz, A. B.

Wardlaw, and L. B. Hackerman, "Steady shock

tracking, Newton's method, and the supersonic
blunt body problem," SIAM]. Sci. Stat. Com­

put., vol. 3, no. 2, pp. 127-144, June 1982.

[47] J. M. Smith and H. C. Van Ness, Introduction to

Chemical Engineering. New York: McGraw-Hill,
1975.

[48] J. J. More, Large-Scale Numerical Optimization.

Philadelphia: SIAM, 1991, pp. 32-45.

[49] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel,

ADIFOR 29

U. Kremer, C.-W. Tseng, and M.-Y. Wu, "For­

tran D Language Specification," CRPC Report
CRPC-TR90079, Center for Research on Parallel

Computation, Rice University, Houston, TX, De­
cember 1990.

[50] L. B. Rail, Fundamentals of Numerical Computa­

tion (Computer Oriented Numerical Analysis),

Computing Supplement No. 2. Berlin: Springer

Verla~ 1980, pp. 141-156.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

