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Insulin resistance is defined as a failure of target organs to
respond normally to the action of insulin. Insulin resistance
causes incomplete suppression of hepatic glucose output and
impaired insulin-mediated glucose uptake in the periphery
(skeletal muscle and adipose), leading to increased insulin
requirements. When increased insulin requirements are not
matched by increased insulin levels, hyperglycemia devel-
ops. Insulin resistance is also known to be associated with
other conditions such as central obesity, hypertension, and
dyslipidemia, all risk factors for cardiovascular disease. The
constellation of these metabolic abnormalities has been
termed the metabolic syndrome. Obesity is a well-recognized
risk factor for the development of insulin resistance and the
metabolic syndrome. In addition to total amount of fat, dis-
tribution of adipose tissue is also important, with visceral
depots contributing more to insulin resistance. The mecha-
nisms by which accumulation and anatomic distribution of
adipose tissue may be related to the development of insulin
resistance are under intense investigation. Adipose tissue has
traditionally been considered an energy storage organ, but
over the last decade, a novel role of the adipose tissue as an
endocrine organ has emerged (1). Adipose tissue is currently
known to secrete a large number of factors with diverse
functions. These factors include free fatty acids (FFA) with
well described physiological and pathophysiological effects
on glucose homeostasis (2), and proteins, termed adipocy-
tokines, that act in an autocrine, paracrine, or endocrine
fashion to control various metabolic functions (Table 1).
Some of these adipocytokines have been implicated in the
development of insulin resistance. They may act locally or
distally to alter insulin sensitivity in insulin-targeted organs
such as muscle and liver or may act through neuroendocrine,
autonomic, or immune pathways. Here, we focus on certain
adipocytokines and how they influence insulin sensitivity.
We review potential insulin sensitizers such as leptin and
adiponectin or insulin antagonists such as resistin, TNF-�,
and IL-6.

Leptin

Since its discovery in 1994, leptin has assumed a pivotal
role in energy homeostasis. Leptin is a 167-amino acid pro-
tein secreted by adipocytes in proportion to adipocyte tissue
mass (3). Leptin circulates bound to a soluble form of its
receptor and exerts its effects through binding to the leptin
receptor (Ob-R), a member of the cytokine family of trans-
membrane receptors. There are five Ob-R isoforms; the best-
characterized one is Ob-Rb, which activates the Jak-Stat sig-
nal transduction pathway. An important site of action of
leptin is in the hypothalamus in which it regulates energy
intake and expenditure and certain neuroendocrine axes.
Some of the effects of leptin are mediated by direct actions
on peripheral tissues.

Insight into the physiology of leptin, including its rela-
tionship to insulin resistance, comes from the study of de-
ficiency syndromes. Mice that are deficient in leptin (ob/ob)
exhibit hyperphagia, obesity, hypercortisolemia, infertility,
and diabetes (4). Exogenous leptin administration reverses
these abnormalities (5). Of interest, in ob/ob mice, leptin re-
verses hyperglycemia and hyperinsulinemia at doses that do
not decrease weight, suggesting an effect of leptin on insulin
resistance that is independent of its effects on weight control
(5). Leptin improves insulin resistance when injected in the
cerebral ventricles, implying a mechanism mediated by the
hypothalamus, possibly via activation of the adrenergic sys-
tem. Leptin may also improve insulin sensitivity by directly
acting on peripheral tissues such as skeletal muscle and liver
(6, 7).

Rare patients with a complete deficiency in leptin as a

Abbreviations: FFA, Free fatty acid; Ob-R, leptin receptor; TZD,
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JCEM is published monthly by The Endocrine Society (http://www.
endo-society.org), the foremost professional society serving the en-
docrine community.

TABLE 1. Proteins secreted by adipocytes that may act as
signaling molecules

Acylation stimulation protein (derived from adipsin, C3,
and factor B)

Adiponectin
Angiotensin
Glucocorticoids and sex hormones (modification)
Leptin
TNF-�
IL-6
Plasminogen activator inhibitor type 1
Resistin
TGF-�
Tissue factor
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result of a mutation in the leptin gene have been described.
These individuals are morbidly obese and display hormonal
abnormalities such as hypogonadotropic hypogonadism and
insulin resistance but not frank diabetes (8). Leptin replace-
ment in these individuals had beneficial effects on energy
intake, fat mass, hyperinsulinemia, and hyperlipidemia and
pubertal development (9). Mutations in the human Ob-R
resulting in a truncated receptor have also been described.
These patients exhibited obesity and defects in hypothalamic
endocrine axes but no diabetes (10).

Individuals with complete leptin deficiency or resistance
are rare. A small number of humans may have relatively low
levels of leptin, suggesting a relative deficiency that may be
treated with replacement. However, in humans, leptin levels
correlate with the percentage of body fat, suggesting that
most obese individuals become insensitive to endogenous
leptin (3) and exogenous leptin administration is unlikely to
have a major effect (11). The basis of leptin resistance in
humans is unclear and may involve multiple mechanisms.
One mechanism may be the induction of leptin on suppressor
of cytokine signaling-3, which blocks the intracellular path-
way of leptin (12). A defect in the transfer of leptin across the
blood-brain barrier is another mechanism of resistance to the
action of leptin that may lead to insulin resistance (13).

Additional insight into the relationship between adipocy-
tokines and insulin resistance comes from studies of patients
with lipodystrophy who exhibit loss of sc and visceral adi-
pose tissue and insulin resistance. The extent of fat loss
determines the severity of metabolic complications such as
insulin resistance, hyperglycemia, dyslipidemia, and hepatic
steatosis. It is thought that, in the absence of adipose tissue,
excess calories cannot be diverted to normal storage depots
(adipocytes) and they accumulate, instead, as triglyceride
stores in liver, skeletal muscle, cardiac muscle, and pancre-
atic � islet cells. Abnormal intracellular triglyceride accu-
mulation leads to impaired insulin secretion and action, lead-
ing to diabetes (2). A recent body of evidence suggests that
lack of certain adipocytokines influences disposition of pe-
ripheral fatty acids.

As expected in the absence of adipose tissue, leptin levels
are very low in generalized lipodystrophy, and low leptin
levels correlate significantly with markers of insulin resis-
tance. Studies in animal models of lipodystrophy have
shown that implantation of fat tissue from normal mice, but
not from ob/ob mice (14), or exogenous leptin administration
(15) led to a dramatic improvement in insulin resistance that
was independent of decreased caloric intake. Based on these
observations, leptin therapy has been studied in lipodystro-
phic patients. In a nonrandomized, open-label study, leptin
replacement therapy improved glycemic control and de-
creased triglyceride levels in patients with lipodystrophy
and leptin deficiency (16). Additional studies in a subgroup
of the same cohort showed that leptin treatment improved
insulin-stimulated hepatic and peripheral glucose metabo-
lism and was associated with a reduction in hepatic and
muscle triglyceride content. These studies suggest that leptin
acts as a signal that contributes to regulation of total-body
sensitivity to insulin.

Adiponectin

Adiponectin is a 247-amino acid adipocytokine with an
increasingly important role in energy homeostasis and in-
sulin sensitivity. Known by multiple names (AcrP30,
AdipoQ, apM1, and gelatin binding protein), it was isolated
during adipocyte differentiation of 3T3-L1 and 3T3-F442A
fibroblasts and from large-scale sequencing of the human
adipose cDNA library (17). It has four main domains: a
cleaved amino acid terminal signal sequence, a collagenous
domain, a globular domain at the carboxy end, and a fourth
region without homology to known proteins.

In contrast to other adipocytokines, adiponectin mRNA is
reduced in adipose tissue from obese and diabetic mice and
humans (18, 19) but restored to normal levels after weight
loss (20). In human cross-sectional studies, plasma adiponec-
tin levels are negatively correlated with obesity (21), adipos-
ity, and waist to hip ratio (22), diabetic dyslipidemia (23),
cardiovascular disease (24), and insulin resistance (22). Cir-
culating adiponectin levels seem to correlate more with hy-
perinsulinemia and insulin resistance than obesity or body
fat (22). In case-control studies, low plasma adiponectin was
an independent risk factor for future development of type 2
diabetes (25, 26) but not for obesity (27).

These studies suggest an important link between adi-
ponectin and insulin resistance. Adiponectin may play a
causative role in the development of insulin resistance and
the metabolic syndrome. Alternatively, adiponectin secre-
tion may be regulated by insulin, and, therefore, circulating
levels may be a marker of insulin resistance and angiopathy,
but not a causal factor. There is evidence to suggest that
adiponectin is an important contributor to insulin resistance
and the metabolic syndrome, as outlined below.

Important insight into the role and action of adiponectin
comes from animal studies. In addition to leptin deficiency,
lipoatrophic mice have low levels of adiponectin and insulin
resistance (defined as hyperglycemia and hyperinsulinemia)
that are partially ameliorated with adiponectin administra-
tion. Of particular interest is that coadministration of leptin
and adiponectin almost completely abolished insulin resis-
tance in these mice. Administration of adiponectin also re-
verses insulin resistance in rodent models of obesity and type
2 diabetes (28). Additionally, transgenic mice overexpressing
adiponectin exhibit amelioration of insulin resistance (29).
Additional support for the important role of adiponectin in
insulin resistance comes from genetic studies that have
mapped a susceptibility locus for type 2 diabetes and met-
abolic syndrome to chromosome 3q27 in which the gene
encoding adiponectin is located (30). An association between
single nucleotide polymorphisms and missense mutations in
the adiponectin gene and type 2 diabetes has also been de-
scribed (31).

The mechanisms by which adiponectin may ameliorate
insulin resistance have not been fully elucidated. One pro-
posed mechanism is that adiponectin decreases circulating
FFA by increasing fatty acid oxidation by skeletal muscle (28,
32). This results in decreased triglyceride content in muscle
that has been associated with improved insulin sensitivity
(2). Increased skeletal muscle FFA oxidation is hypothesized
to be mediated, at least in part, by increased expression of
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genes encoding CD36, acyl CoA oxidase, and UCP2, which
enhance FFA oxidation, fat combustion, and dissipation, re-
spectively (28). Liver FFA influx (uptake and/or oxidation)
also is decreased in the presence of adiponectin either due to
decreased circulating FFA levels or a direct effect on liver
uptake (28). Decreased liver FFA influx might lead to de-
creased hepatic triglyceride content, which improves hepatic
insulin sensitivity and reduces glucose output. Adiponectin
also directly stimulates glucose uptake in adipocytes and
muscle by activating AMP-activated protein kinase (33, 34).
Recently, two distinct adiponectin receptors were cloned
(35). These transmembrane receptors are predicted to impart
specificity of the antidiabetic metabolic effects of adiponectin
in the liver and skeletal muscle.

In addition to its effects on fuel homeostasis, adiponectin
may have antiinflammatory properties. Adiponectin inhibits
myelomonocytic activity, phagocytic activity, and TNF-�
production by macrophages (36). Based on its effects on
insulin sensitivity and antiinflammatory properties, adi-
ponectin may have an antiatherogenic role. Indeed, adi-
ponectin knockout mice showed high levels of TNF-�,
increased insulin resistance (37), and susceptibility to athero-
sclerosis (38).

Adiponectin gene transcription and secretion is regulated
by multiple factors (17). Insulin stimulates adiponectin se-
cretion in rodents (39). It is, therefore, possible that adiponec-
tin levels are low in obesity because of insulin resistance in
the adipocyte. Adiponectin gene transcription and secretion
are also decreased by TNF-� and IL-6 (40). Adiponectin ex-
pression is also regulated by peroxisome proliferator-acti-
vated receptor �-dependent pathways (28), which suggests
that, at least in part, the beneficial effects of thiazolidinedione
(TZD) on insulin sensitivity may be mediated by adiponectin.

In summary, adiponectin is an adipocyte-derived plasma
protein with insulin sensitizing, antiinflammatory, and
antiatherogenic properties. Although its physiological and
pathophysiological role has not been fully elucidated, its low
levels in insulin resistance states suggest that therapeutic
modulation of adiponectin may provide a novel treatment
modality for insulin resistance.

Resistin

Resistin is a recently discovered adipocyte-secreted
polypeptide that has been implicated in the development of
insulin resistance. Resistin was first described in 2001, when
a search for genes that are induced during adipocyte differ-
entiation but down-regulated in mature adipocytes during
exposure to TZD led to the discovery of a protein the inves-
tigators named resistin (for resistance to insulin) (41). Resis-
tin is a member of a family of tissue-specific signaling mol-
ecules, called resistin-like molecules (42). The resistin mRNA
encodes a 114-amino acid polypeptide with a 20-amino acid
signal sequence. Resistin is secreted as a disulfide-linked
dimmer.

Resistin gene expression is induced during adipocyte dif-
ferentiation of 3T3-L1 cells, and the resistin polypeptide was
expressed and secreted by mature adipocytes (42). The se-
creted protein was found to inhibit 3T3-LI adipogenesis, and

it was speculated that resistin was a feedback regulator of
adipogenesis. The resistin gene is expressed in white adipose
tissue in mice and rats (42), and it is also present in immu-
nocompetent cells (43, 44).

Resistin polypeptide was found to circulate in mouse and
rat serum (42). Mouse serum levels of resistin decreased with
fasting and increased after refeeding. Circulating resistin
levels were found to be elevated in both genetic (ob/ob and
db/bd) and diet-induced mouse obesity and insulin-resistance
models (42). However, resistin mRNA expression is reduced
in adipose tissue taken from obese mice (45), suggesting that
the correlation between mRNA levels and secreted protein is
not linear.

Administration of resistin in normal mice impaired glu-
cose tolerance and insulin action. Furthermore, immunoneu-
tralization of resistin improved blood glucose and insulin
action in animal models of obesity-induced insulin resis-
tance. Resistin gene and polypeptide expression was found
to be reduced after exposure to TZD in some studies (41, 46)
but not in others (45).

These initial data suggested that resistin, at least in part,
may explain how adiposity leads to insulin resistance and
may also explain the antidiabetic effects of TZD. The mo-
lecular mechanism for the action of resistin is unknown. A
recent study in mice suggested that resistin selectively im-
pairs the inhibitory action of insulin on hepatic glucose pro-
duction (47). However, the role of resistin on obesity-asso-
ciated insulin resistance has become controversial because
additional evidence has suggested that obesity and insulin
resistance are associated with decreased resistin expression
(43, 45, 48).

Resistin is expressed in human adipose tissue (49), but its
role in insulin resistance is even less clear. Resistin mRNA
and protein expression was found to be similar in both the
abdominal sc and omental depots, but expression in abdom-
inal depots was increased compared with thigh fat, which
suggests a potential link between central obesity and in-
creased risk of diabetes. This finding is in contrast to other
studies that showed that resistin was not detected in human
myocytes and isolated adipocytes or adipose tissue obtained
from biopsies (44, 50). The reason for the differences in these
studies is unclear. Human resistin is only 59% similar to the
mouse protein, and this may portend important differences
in the endocrine functions of adipocytes and resistin between
rodents and humans (42). Furthermore, insulin and TNF-�,
both elevated in obesity, have been found to inhibit resistin
expression, which may explain the low levels of resistin
found in the recent studies of obesity diabetes.

The initial suggestion that resistin may be the link between
obesity and insulin resistance is being challenged. The role
of resistin in normal and abnormal physiology remains elu-
sive. Studies from knockout mice and better characterization
of resistin changes in humans should help elucidate the role
of resistin in metabolic disorders in humans and determine
whether it is a causative agent vs. simply a bystander. Also,
it is important to understand the similarities and differences
between mouse and human resistin and mechanisms of
obesity-related insulin resistance in these two species.
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TNF-�

TNF-� is a proinflammatory cytokine that has been im-
plicated in the pathogenesis of insulin resistance. TNF-� is
expressed as a 26-kDa cell surface transmembrane protein
that undergoes cleavage to produce a 17-kDa soluble, bio-
logically active form of TNF-� (51). Increased TNF-� pro-
duction has been observed in adipose tissue derived from
animal models of obesity and insulin resistance as well as
human subjects (52). Adipose tissue TNF-� mRNA correlates
with body mass index, percentage of body fat, and hyper-
insulinemia (53). Weight loss decreases TNF-� levels (53).
Circulating TNF-� levels have been documented in patients
with type 2 diabetes in some studies (54, 55) but not others
(56). A direct link between TNF-� and obesity-associated
insulin resistance was suggested in 1993 when neutralization
of TNF-� was shown to ameliorate insulin resistance in obese
rats (57). However, infusion of TNF-� neutralizing antibod-
ies to type 2 diabetics did not show any change in glucose
levels or insulin sensitivity (58).

Various mechanisms to explain the effect of TNF-� on
obesity-related insulin resistance have been proposed. Ad-
ipose tissue TNF-� is not secreted in the systemic circulation
but acts in an autocrine and paracrine fashion (59). Potential
mechanisms by which adipose tissue TNF-� increases insulin
resistance includes increased release of FFA by adipocytes,
reduction in adiponectin synthesis (40), and impairment of
insulin signaling (60, 61).

In vitro and in vivo studies have shown that the inhibitory
effects of TNF-� on insulin action are, at least in part, an-
tagonized by TZD, further supporting the important role of
TNF-� in insulin resistance (62–64).

In summary, TNF-� seems to play an important role in the
development of insulin resistance in rodents, but the in vivo
data in humans has not been as conclusive. Additional hu-
man studies are needed to understand its role in the patho-
genesis of insulin resistance in humans.

IL-6

IL-6 is a pleiotropic circulating cytokine with effects rang-
ing from inflammation to host defense to tissue injury (65),
and it is one of several proinflammatory cytokines that have
been associated with insulin resistance. It is secreted by many
cell types, including immune cells, fibroblasts, endothelial
cells, skeletal muscle, and adipose tissue and circulates as a
variably glycosylated 22- to 27-kDa protein. IL-6 binds on a
transmembrane receptor inducing homodimerization of an-
other transmembrane receptor, gp130, which initiates a sig-
nal transduction cascade.

The association of IL-6 and insulin resistance is supported
by epidemiological and genetic studies. Plasma IL-6 levels
positively correlate with human obesity and insulin resis-
tance (66, 67), and elevated levels of IL-6 predict the devel-
opment of type 2 diabetes (68) and future myocardial in-
farction (69). Weight loss significantly decreases IL- 6 levels
in both adipose tissue and serum (70). Genetic studies have
also demonstrated a high level of correlation between insulin
resistance and IL-6 gene polymorphism (71).

In contrast to TNF, IL-6 may be able to signal systemically
(59). Administration of IL-6 in healthy volunteers induced

dose-dependent increases in blood glucose (72), probably by
inducing resistance to insulin action. IL-6 is secreted by ad-
ipose tissue, with visceral depots releasing more IL-6 com-
pared with sc depots (52), although it seems that the majority
of adipose tissue-derived IL-6 comes from stromal immune
cells and not adipocytes. Because visceral depots drain into
the portal circulation, the metabolic effects of IL-6 on the liver
become important. Indeed, there is evidence to suggest that
IL-6 inhibits insulin receptor signal transduction in hepato-
cytes that is mediated, at least in part, by induction of sup-
pressor of cytokine signaling-3 (73).

Besides its glucoregulatory effect, IL-6 increases circulat-
ing FFA (from adipose tissue) with their well described ad-
verse effects on insulin sensitivity (2). IL-6 may also exert its
adverse effects, at least in part, by decreasing adiponectin
secretion (74). Although much evidence implicates IL-6 in
insulin resistance, there is some conflicting evidence. In a
recent study, acute IL-6 administration did not impair glu-
cose homeostasis in healthy individuals (75). Moreover,
IL-6-deficient mice were not protected from development of
obesity and glucose intolerance (76).

In summary, in contrast to TNF-�, IL-6 acts in a local and
systemic fashion to modulate insulin sensitivity.

Perspective

The role of adipocytokines in physiology and pathophys-
iology has only been appreciated recently. At least some of
the adipocytokines, such as adiponectin, seem to be impor-
tant in maintaining metabolic homeostasis, but others may
contribute to the development of insulin resistance during
time when food is plentiful. The mechanisms by which adi-
pocytokines promote insulin resistance are complex, and our
understanding incomplete. It seems that excessive adipose
tissue, especially at the wrong place (omental depots), may
be detrimental partially through secretion of the following
cytokines: TNF, IL-6, and resistin. In contrast, the presence
of adipose tissue is vital in the prevention of insulin resis-
tance, at least in part, via secretion of the following cytokines:
leptin and adiponectin. Some of these cytokines are also
present in the immune system and may play a role in linking
the nutritional system with the immune system. Given ac-
cumulating evidence that insulin resistance may be an in-
flammatory condition, this relationship may be important to
elucidate. Finally, determining the relative contribution of
adipocytokines to glucose homeostasis and insulin resistance
and elucidating the dynamic interactions between adipocy-
tokines should be a focus of our research in the future.
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