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Abstract
Non-alcoholic fatty liver disease (NAFLD) comprising 
hepatic steatosis, non-alcoholic steatohepatitis (NASH), 
and progressive liver fibrosis is considered the most 
common liver disease in western countries. Fatty liver 
is more prevalent in overweight than normal-weight 
people and liver fat positively correlates with hepatic 
insulin resistance. Hepatic steatosis is regarded as a 
benign stage of NAFLD but may progress to NASH in a 
subgroup of patients. Besides liver biopsy no diagnostic 
tools to identify patients with NASH are available, and 
no effective treatment has been established. Visceral 
obesity is a main risk factor for NAFLD and inappropri-
ate storage of triglycerides in adipocytes and higher 
concentrations of free fatty acids may add to increased 
hepatic lipid storage, insulin resistance, and progres-
sive liver damage. Most of the adipose tissue-derived 
proteins are elevated in obesity and may contribute to 
systemic inflammation and liver damage. Adiponectin is 
highly abundant in human serum but its levels are re-
duced in obesity and are even lower in patients with he-
patic steatosis or NASH. Adiponectin antagonizes excess 
lipid storage in the liver and protects from inflammation 

and fibrosis. This review aims to give a short survey on 
NAFLD and the hepatoprotective effects of adiponectin.

© 2011 Baishideng. All rights reserved.

Key words: Hepatic steatosis; Non-alcoholic steatohepa-
titis; Adiponectin; Obesity; Adipose tissue

Peer reviewer: Christopher O'Brien, MD, Professor of Clinical 
Medicine, Chief of Clinical Hepatology, Center for Liver 
Diseases, Divisions of Liver and GI Transplantation, University 
of Miami School of Medicine, 1500 Northwest 12th Ave., Suite 
#1101, Miami, FL 33136, United States

Buechler C, Wanninger J, Neumeier M. Adiponectin, a key adi-
pokine in obesity related liver diseases. World J Gastroenterol 
2011; 17(23): 2801-2811  Available from: URL: http://www.
wjgnet.com/1007-9327/full/v17/i23/2801.htm  DOI: http://
dx.doi.org/10.3748/wjg.v17.i23.2801

INTRODUCTION
Obesity is associated with insulin resistance, a common risk 
factor for type 2 diabetes, cardiovascular disease, hepatic 
steatosis and non-alcoholic steatohepatitis (NASH)[1,2]. 
Hypertrophied adipocytes in obesity fail to appropriately 
store excess triglycerides and excessive ectopic accumula-
tion of  lipids in skeletal muscle and liver disturbs insulin 
signalling[3]. Body fat distribution appears to be even more 
important than the total amount of  adipose tissue, and 
visceral fat mass is strongly linked to insulin resistance and 
non-alcoholic fatty liver disease (NAFLD)[4]. Visceral fat 
released free fatty acids are transported to the liver by the 
portal vein and may contribute to hepatic steatosis, pro-
duction of  triglyceride rich very low density lipoproteins 
(VLDL) and elevated β-oxidation[5,6] (Figure 1). Metaboli-
cally healthy but obese (MHO) individuals are insulin sen-
sitive and hepatic fat accumulation is significantly lower 
compared to similarly overweight subjects that develop 
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insulin resistance[7,8]. Despite comparable fatness between 
MHO and control cohorts that develop insulin resistance, 
MHO subjects have 49% less visceral fat which further 
emphasizes the unfavourable characteristics of  this fat 
depot[9]. Lean body mass may be associated with a higher 
insulin sensitivity and is significantly lower in MHO sub-
jects[9]. A recent study even describes an independent 
association of  lean body mass with impaired glucose dis-
posal and systemic C-reactive protein (CRP) levels in cen-
trally obese postmenopausal women that may exacerbate 
the harmful effects of  visceral fat mass[10]. These studies 
further point to the highly complex interplay of  various 
factors associated with metabolic diseases like the meta-
bolic syndrome. 

Various epidemiological studies have identified central 
obesity as an independent risk factor for metabolic diseases 
and highlight the crucial role of  impaired production or 
activity of  adipose tissue released proteins[6,11]. Most of  
the adipokines identified so far are elevated in obesity and 
raised chemokine C-C motif  ligand 2 (CCL2) contributes 
to the increasing number of  adipose tissue resident macro-
phages[11,12]. They produce inflammatory proteins like inter-
leukin-6 (IL-6) and tumour necrosis factor (TNF) whose 
circulating levels are increased in obesity, a state of  low-
grade, chronic inflammation[13]. TNF impairs insulin signal-
ling and plays a crucial role in non-alcoholic steatohepatitis 
(NASH) progression[14,15]. Visceral fat released proteins 
are directly transported to the liver by the portal vein and 
the anatomical feature of  this fat depot may explain the 
harmful metabolic effects of  visceral adiposity[6]. IL-6 is 
preferentially released from visceral fat and upregulates sup-
pressor of  cytokine signalling 3 (SOCS3) in the liver that 
causes hepatic insulin resistance[16-18]. Furthermore, IL-6 is a 
well known inducer of  CRP, a marker protein for systemic 
inflammation[19] (Figure 1). Leptin is mainly produced by 
adipocytes, and obesity is characterized by elevated systemic 
levels and central and peripheral leptin resistance[6]. Leptin 
prevents lipid accumulation in non-adipose tissues like the 
liver. Leptin lowers stearoyl-CoA desaturase that catalyzes 
the rate-limiting reaction of  monounsaturated fatty acid 
synthesis and thereby may ameliorate hepatic insulin sen-
sitivity[20]. Animal studies have proven that leptin directly 
promotes fibrogenesis. Leptin induces transforming growth 
factor β (TGF-β) and connective tissue growth factor 
(CTGF) production in hepatic stellate cells through indirect 
effects on Kupffer cells[21]. In humans, a direct association 
of  circulating leptin and liver fibrosis has not been con-
firmed yet and locally produced leptin and/or leptin resis-
tance may have to be taken into account[22]. 

The adipokine adiponectin is highly abundant in hu-
man serum and is secreted by adipose tissue in inverse pro-
portion to the body mass index[23]. Adiponectin circulates 
as trimer, hexamer and higher order multimer in serum 
and isoform-specific effects have been described[24-26]. Adi-
ponectin may also form hetero-oligomers with additional 
members of  the C1q/TNF-related protein (CTRP) family 
like the recently described CTRP9[27]. Early studies indicate 

that globular adiponectin, the globular C1q domain of  this 
protein generated by proteolysis of  the full-length protein, 
may also exist in serum[28]. However, circulating levels seem 
to be rather low, questioning the biological significance 
of  this protein[29] that may nevertheless be of  therapeutic 
relevance. Epidemiological studies revealed that low adi-
ponectin levels are associated with NASH independent of  
insulin resistance and body mass index, and hepatoprotec-
tive effects of  adiponectin have been identified in animal 
studies or with isolated liver cells[30-32]. MHO individuals 
are insulin sensitive and have adiponectin levels similar to 
normal-weight controls despite excessive weight and body 
fat, and this association may further underline the protec-
tive effects of  this adipokine[33]. 

NAFLD not only compromises the hepatic manifesta-
tion of  the metabolic syndrome but is linked to a higher 
risk of  develop metabolic disorders like type 2 diabetes 
or cardiovascular disease[34,35]. Fatty liver is even associated 
with dyslipidemia, metabolic syndrome and low adiponec-
tin independent of  body mass index (BMI), waist to hip 
ratio and visceral fat mass[36]. NAFLD has been predicted 
to increase along with the growing epidemic of  obesity[37] 
and understanding of  its pathophysiology is a prerequisite 
to develop non-invasive diagnostic tools and to establish-
ing effective treatment regimes. Rising adiponectin levels 
may be beneficial in liver disease and its protective effects 
in hepatic steatosis and NASH[38] are summarized in the 
current review article. 

EPIDEMIOLOGY OF NAFLD
Diagnosis of  NAFLD requires a careful anamnesis to ex-
clude other liver diseases or drug-mediated liver damage. 
Moderate alcohol intake, defined by most physicians as 
20 to 40 g/d in men and 20 g/d in women, has to be en-
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Figure 1  Crosstalk of visceral adipose tissue and the liver. Free fatty acids 
and Interleukin (IL)-6 released by visceral adipose tissue (VAT) are transported 
to the liver by the portal vein. Free fatty acids promote steatosis, enhance 
β-oxidation and the release of very low density lipoproteins (VLDL) contributing 
to dyslipidemia. IL-6 induces hepatic C-reactive protein (CRP) synthesis and 
suppressor of cytokine signalling 3 (SOCS3), and thereby is linked to systemic 
inflammation and hepatic insulin resistance, respectively (adapted from Schaf-
fler A, Scholmerich J, Buchler C. Mechanisms of disease: adipocytokines and 
visceral adipose tissue--emerging role in nonalcoholic fatty liver disease. Nat 
Clin Pract Gastroenterol Hepatol 2005; 2: 273-280[6]). ER: Endoplasmatic reticu-
lum; TG: Triglycerides.



quired about[39]. Liver biopsy is essential for diagnosis and 
staging but the use of  this invasive method is limited to a 
subgroup of  patients[39]. 

When NAFLD is defined as elevation of  aspartate 
aminotransferase (AST) or alanine aminotransferase (ALT) 
and transferrin saturation of  less than 50% the frequency 
is 5.4% in the general population of  the United States[40]. 
When elevated gamma-glutamyltranspeptidase (GGT) is 
included and lower cut-off  values are used the prevalence 
is 24%[41]. Studies performed in gastroenterology units 
restricted cohorts identified 11% of  the patients as having 
NAFLD[42]. In bariatric surgery patients hepatic steatosis 
ranges from 65% to 90%[43,44]; NASH has been diagnosed 
in 15 to 55% and fibrosis in 34% to 47%[41,45].

Current estimates based on different studies in un-
selected and selected populations indicate that about 20% 
to 30% of  adults in Western countries have excess fat ac-
cumulation in the liver, 2% to 3% of  adults are thought to 
meet current diagnostic criteria for NASH and eventually 
up to one third of  those with NASH suffer from progres-
sive fibrosis or even cirrhosis[41,45,46]. In obesity defined as 
BMI above 30 kg/m2 and in morbidly obese patients these 
values are much higher and patients with NASH are over-
represented in these populations[41,45] (Figure 2). 

GENETICS OF NAFLD
Visceral adiposity and insulin resistance are clearly related 
to NAFLD[47] and genetic variations associated with obe-
sity and disproportionate body fat distribution may predis-
pose to development of  steatotic liver. Chemerin is a re-
cently identified adipokine and a common genetic variation 
is associated with increased visceral fat mass in non-obese 
subjects but epidemiological studies to link chemerin al-
leles with NAFLD are still lacking[48]. The adiponectin 45T
→G variant contributes to overall fatness and abdominal 
obesity but is not an important determinant of  NAFLD at 
least in Chinese people[49,50]. 

Gene variations may influence NAFLD stage, progres-
sion and even occurrence. NAFLD is much more likely 
in Hispanic Americans than among whites[51] and African 
Americans have a lower degree of  hepatic steatosis relative 
to whites[52]. Familial clustering of  NAFLD has been dem-

onstrated, and fatty liver is more common in siblings and 
parents of  children with NAFLD indicating that NAFLD, 
similar to type 2 diabetes, is a multifactorial disease[53]. Envi-
ronmental and genetic factors define the individual risk of  
developing NAFLD and may also explain why only a sub-
group of  patients develop more progressive liver damage.

Studies in small cohorts have identified genetic as-
sociations of  microsomal triglyceride transfer protein, an 
enzyme regulating hepatic VLDL release, the antioxidant 
mitochondrial enzyme superoxide dismutase 2, the inflam-
matory cytokine TNF and the main profibrotic cytokine 
TGF-β with NAFLD[54,55]. Genome-wide association 
studies find that variations of  patatin-like phospholipase 
domain containing 3 (PNPLA3, adiponectin), a protein 
with close homology to adipose triglyceride lipase but so 
far unknown function, contributes to ethnic and inter-
individual differences in hepatic steatosis and susceptibility 
to NAFLD[56,57]. 

This association has not been confirmed in a recent 
study in non-Hispanic, Caucasian, women with liver 
biopsy proven NAFLD, where an association between 
NASH activity score and single nucleotide polymorphisms 
(SNPs) within the squalene synthase (FDFT1) gene, a key 
regulator of  cholesterol biosynthesis, is described. Poly-
morphisms of  the pregnancy zone protein, a proteinase 
involved in clearance of  TGF-β, are linked to systemic 
AST levels, and variants of  platelet-derived growth factor 
α are linked to liver fibrosis[58]. 

Genetic variations of  adiponectin are found to be 
associated with NAFLD[50,59], and single nucleotide poly-
morphisms in adiponectin receptor 1 (AdipoR1) and Adi-
poR2 contribute to variations in hepatic fat accumulation 
in humans[60,61]. 

SYSTEMIC ADIPONECTIN IN NAFLD 
Systemic adiponectin concentrations are in the μg/mL-
range indicating that adiponectin constitutes a substantial 
fraction of  plasma proteins, and these high levels are 
remarkably constant. Despite its abundant presence in 
plasma, adiponectin is cleared rapidly by the liver with a 
half-life of  about 75 min[62]. 

Visceral adiposity is associated with elevated circulating 
free fatty acids and higher concentrations of  most adipose 
tissue released proteins[63]. Adiponectin differs from the 
adipokines described so far because its systemic levels are 
decreased in obesity[23]. In high fat diet induced obese ro-
dents and in ob/ob mice adiponectin levels are reduced in 
plasma and clearance is significantly prolonged, indicating 
markedly impaired adiponectin synthesis in obesity[62,64,65]. 
Visceral fat accumulation is associated with hypoadipo-
nectinemia and negative associations of  visceral fat with 
systemic adiponectin have been identified[66,67]. 

Besides adiponectin, circulating levels of  omentin pre-
dominantly released from the stromovascular cells of  vis-
ceral fat are found reduced in obesity and serum omentin 
levels are increased in patients with NAFLD and indepen-
dently predict hepatocyte ballooning[68]. 

2803 June 21, 2011|Volume 17|Issue 23|WJG|www.wjgnet.com

General population 
20%-30%

BMI > 30 kg/m2 

65%-75%

General population 
2%-3%

BMI > 30 kg/m2 

15%-20%

General population   
< 1%

BMI > 30 kg/m2 

?

NASHFatty liver Cirrhosis

Figure 2  Epidemiology of non-alcoholic fatty liver disease. Current esti-
mates of the prevalence of fatty liver, non-alcoholic steatohepatitis (NASH) and 
obesity-related liver cirrhosis in the general population and in obesity defined as 
body mass index (BMI) above 30 kg/m2.
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In healthy Caucasians, BMI and adiponectin, but not in-
sulin resistance, predict serum concentrations of  both ALT 
and GGT[69]. Low adiponectin levels are even found as-
sociated with NASH independent of  insulin resistance and 
BMI[30]. Multivariate regression analysis identifies decreased 
adiponectin as an independent predictor of  liver steatosis 
and elevated ALT and GGT levels in healthy obese individu-
als[32]. In NAFLD patients low adiponectin levels are closely 
associated with the degree of  hepatic steatosis, necroinflam-
mation and fibrosis[30,32]. Shimada et al[70] reported that 90% 
of  patients with early-stage NASH can be predicted by a 
combined evaluation of  the serum adiponectin level, ho-
meostasis assessment model-insulin resistance (HOMA-IR) 
score, and serum type Ⅳ collagen 7S level. 

Circulating adiponectin levels in the μg/mL range by 
far exceed concentrations commonly required for recep-
tor-dependent signalling. This may indicate receptor inde-
pendent functions of  adiponectin and binding to growth 
factors like platelet derived growth factor (PDGF), extra-
cellular matrix proteins, low density lipoprotein (LDL) and 
opsonization of  apoptotic cells to stimulate phagocytosis 
have been described[71-74]. 

Systemic adiponectin is about 20% to 60% lower in 
NAFLD than healthy controls[75-77] but considering the 
high levels in the circulation and a half-maximal effective 
dose of  0.85 μg/mL full-length adiponectin for AdipoR2 
stimulated fatty acid oxidation[78] the question arises wheth-
er impaired receptor-mediated signalling due to reduced 
concentrations is a reasonable explanation for metabolic 
complications associated with hypoadiponectinemia. 
Therefore, it is likely that adiponectin receptor signal trans-
duction pathways are also impaired in NAFLD.

ADIPONECTIN RECEPTORS IN NAFLD
Two 7-transmembrane proteins, AdipoR1 and AdipoR2, 
have been identified to function as adiponectin recep-
tors[78]. Although initial studies using rodent tissues reveal 
preferential expression of  AdipoR2 in the liver, in human 
tissues AdipoR1 and AdipoR2 mRNAs are most abun-
dant in skeletal muscle and both are moderately expressed 
in the liver[78]. AdipoR1 protein is easily detected in human 
hepatocytes indicating that both receptors may play a role 
in liver physiology[79]. 

Although there is a well documented relationship be-
tween low adiponectin and liver disease, an association of  
NAFLD and reduced expression of  hepatic adiponectin 
receptors is not consistently reported. Furthermore, main-
ly mRNA expression has been analysed and this may not 
necessarily predict protein abundance[80,81].

In animal models of  obesity, hepatic adiponec-
tin receptor mRNAs are found unchanged or even in-
creased[65,82,83]. In human biopsies, hepatic adiponectin 
receptor mRNAs are increased in biopsy-proven NASH 
compared to steatotic livers[84]. Other studies, however, 
describe similar levels of  adiponectin receptor mRNA in 
normal liver, steatotic liver and NASH[85,86]. There are also 
reports on reduced AdipoR2 mRNA in NASH compared 

to simple steatosis or lower AdipoR2 mRNA in fatty liver 
with no further reduction in NASH[87,88]. 

Data on AdipoR2 proteins are sparse and one study 
demonstrates reduced AdipoR2 protein in human NASH 
compared to steatotic liver[88]. Treatment of  hepatocytes 
with palmitate is used as an in vitro model for hepatocyte 
steatosis and 200 μmol/L of  this fatty acid reduce Adi-
poR2 protein in Huh7 cells[89]. Activating transcription 
factor 3 (ATF3) is induced upon endoplasmic reticulum 
stress and in the liver of  ob/ob mice, and suppresses Adi-
poR2 in HepG2 cells[90]. Therefore, besides low circulating 
adiponectin, AdipoR2 may be reduced in hepatic steatosis 
and NASH indicating a possible adiponectin resistant state.

ANTISTEATOTIC EFFECTS OF ADIPO-
NECTIN
Dyslipidemia is characterized by high circulating triglycer-
ides[91] and low high density lipoprotein (HDL) cholesterol 
levels, and is frequently accompanied by hepatic steato-
sis[92]. Adiponectin negatively correlates with serum triglyc-
erides and apolipoprotein B (ApoB), the main apolipopro-
tein of  the triglyceride rich VLDL[93,94]. Hepatocyte ApoB 
and triglycerides are reduced by adiponectin indicating 
lower hepatic VLDL release[28,95,96]. Furthermore, VLDL 
catabolism is enhanced by an increased skeletal muscle 
lipoprotein lipase and VLDL receptor expression[97]. This 
more favourable lipid profile may be linked to lower he-
patic lipid storage. 

A choline and L-amino acid deficient diet induces 
more severe hepatic steatosis in adiponectin deficient mice 
compared to wild type animals[14]. Adenoviral expression 
of  adiponectin ameliorates lipid deposition in the liver[95]. 
SREBP-1c is a central regulator of  fatty acid synthesis, 
and is suppressed by adiponectin in hepatocytes and in 
the liver of  db/db mice[95]. AMP-activated protein kinase 
(AMPK) is physiologically activated by low energy status, 
and switches on ATP-producing catabolic pathways (such 
as fatty acid oxidation and glycolysis), and switches off  
ATP-consuming anabolic pathways (such as lipogenesis)[98]. 
Adiponectin activates AMPK by binding to AdipoR1[78].
Suppression of  SREBP-1c by adiponectin is mediated 
through AdipoR1/LKB1, an upstream kinase of  AMPK, 
and AMPK pathway[95]. AMPK in addition phosphorylates 
acetyl-CoA carboxylase (ACC) and this is subsequently 
associated with a higher activity of  carnitine palmitoyl-
transferase 1 (CPT-1), a rate limiting enzyme in fatty acid 
oxidation[98]. 

Signalling via AdipoR2 enhances peroxisome-prolifera-
tor activated receptor α (PPARα) activity[78,99]. PPARα up-
regulates CPT-1, stimulates β-oxidation, reduces lipid syn-
thesis and thereby prevents excess triglyceride storage[100]. 

ANTIINFLAMMATORY AND ANTIAPOP-
TOTIC EFFECTS OF ADIPONECTIN
Lipopolysaccharide (LPS) is involved in the pathogenesis 
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of  NAFLD and elevated levels of  circulating LPS are 
found in obesity[101,102]. Increased gut permeability and 
a higher prevalence of  small intestinal bacterial over-
growth correlates with the severity of  steatosis but not 
with NASH[103]. Besides age, inflammation was identified 
as an independent predictor of  progression to advanced 
fibrosis in NASH patients[104]. Hepatic steatosis may be 
accompanied by inflammatory cell infiltrates composed 
of  neutrophils and mononuclear cells. In several mouse 
models of  immune mediated hepatitis, adiponectin reduc-
es TNF and induces interleukin-10 (IL-10) release from 
Kupffer cells[105]. Adiponectin lowers CRP synthesis in cy-
tokine stimulated rat hepatocytes, and an inverse correla-
tion of  systemic adiponectin and CRP has been identified 
in obese patients[106,107]. Adiponectin may exert its anti-
inflammatory activity by lowering nuclear factor kappa B 
(NFκB) action in preactivated cells or by inducing toler-
ance to inflammatory stimuli by a rapid and transient acti-
vation of  NFκB that subsequently renders the cells inert 
to further activation[108-111]. 

Nevertheless, in patients suffering from chronic inflam-
matory diseases like inflammatory bowel disease or type 
1 diabetes that are not associated with adiposity elevated 
circulating adiponectin levels that even correlate with in-
flammatory markers are found[112-114], and an induction of  
inflammatory proteins and activation of  NFκB by recom-
binant adiponectin is described in several studies[25,108,113,115]. 
Therefore, adiponectin seems to be regulated in the op-
posite direction in classic versus obesity-associated chronic 
inflammatory diseases and may even exert opposite activi-
ties in resting compared to activated cells[116]. 

NFκB promotes cell survival and NEMO-mediated 
NFκB activation in hepatocytes has an essential physi-
ological function to prevent the spontaneous development 
of  steatohepatitis and hepatocellular carcinoma[117]. Adipo-
nectin activates NFκB in human hepatocytes, and thereby 
may prevent hepatocyte apoptosis. Adiponectin further 
upregulates the chemokine interleukin 8 (CXCL8) via Adi-
poR1 and NFκB dependent pathways in primary human 
hepatocytes[118]. CXCL8 is an antiapoptotic protein[119] and 
overexpression of  the rodent CXCL8 homologous pro-
tein protects the liver from galactosamine and endotoxin 
induced damage[120]. 

Adiponectin further antagonizes hepatocyte death by 
blocking fatty acid-induced activation of  c-Jun NH2 ter-
minal kinase[121], by reducing TNF levels[105] and by inhibit-
ing fatty acid mediated upregulation of  CD95[122]. 

ANTIOXIDATIVE EFFECTS OF 

ADIPONECTIN
Fatty liver is thought to represent the first incident towards 
the subsequent development of  liver fibrosis[6]. Accelerated 
β-oxidation of  fatty acids in hepatic steatosis is associated 
with excess reactive oxygen species (ROS), lipid peroxida-
tion, the release of  inflammatory cytokines, death of  hepa-
tocytes and activation of  hepatic stellate cells[1]. ROS and 

lipid peroxidation are thought to contribute to the progres-
sion of  liver injury partly by accelerating inflammation that 
in turn causes ROS production[1]. Oxidative stress is en-
hanced in human hypoadiponectinemia and in adiponectin 
knock-out mice fed a choline-deficient L-amino acid defi-
cient diet[123,124]. Hepatic cytochrome P450 2E1 (CYP2E1) 
is elevated in these animals and in human NASH and may 
contribute to higher ROS levels[125,126]. 

Aldehyde oxidase 1 (AOX1) is a xenobiotic metaboliz-
ing protein whose physiological role has not been evaluat-
ed in detail so far[127]. AOX1 activity has been identified as 
an important source of  ROS[128] and is reduced in hepato-
cytes by adiponectin via activation of  PPARα[31] Adiponec-
tin also increases ROS detoxifying enzymes and AdipoR2 
is involved in the induction of  superoxide dismutase 1 and 
catalase[129]. 

ANTIFIBROTIC EFFECTS OF ADIPONECTIN
Liver injury causes activation of  otherwise “quiescent” 
hepatic stellate cells (HSC) and activated cells proliferate, 
synthesize CTGF and extracellular matrix proteins[130]. 
TGF-β is the main profibrotic factor in fibrosis and induces 
CTGF synthesis. CTGF stimulates binding of  TGF-β to its 
receptor and thereby enhances TGF-β activity[130]. CTGF 
is induced by TGF-β indicating an autocrine or paracrine 
loop that mutually enhances synthesis of  both proteins[130]. 
Knock-down of  AdipoR2 in mice fed a methionine-choline 
deficient diet to cause progressive fibrosing steatohepatitis 
is associated with higher levels of  steatosis, inflammation 
and fibrosis[131]. Overexpression of  AdipoR2 is protective, 
and this mechanistically includes inhibition of  TGF-β sig-
naling and stimulation of  PPARα activity[131]. 

Expression of  recombinant adiponectin in activated 
HSC reduces proliferation and lowers α-smooth muscle 
actin that is induced in activated HSC[132]. Furthermore, 
apoptotic cell death of  activated HSC is augmented[132]. 
Exogenously added recombinant adiponectin suppresses 
PDGF-stimulated HSC proliferation by activation of  
AMPK[133]. Adiponectin may also bind to growth factors 
like PDGF and thereby inhibits binding to their corre-
sponding receptors[71]. Leptin is a well described profibrot-
ic adipokine and several studies have shown that adiponec-
tin antagonizes leptin bioactivity[134,135]. Adiponectin blocks 
leptin-induced STAT3 phosphorylation in activated HSC 
and leptin-mediated upregulation of  TIMP-1 release and 
these in-vitro findings have been confirmed in-vivo[134]. 

DIET, EXERCISE AND PHARMACOLOGI-
CAL INTERVENTIONS
Studies analysing the impact of  changes in life style and 
medications in NAFLD have been performed in small pa-
tient groups sometimes even lacking suitable controls. Cur-
rently weight loss and exercise are recommended as initial 
strategies to improve NASH[136]. Diet and diet in conjunc-
tion with exercise for 6 mo cause a similar reduction in 
body weight and intrahepatic fat[137]. In 19 sedentary obese 
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men and women four weeks of  aerobic exercise improved 
hepatic steatosis even in the absence of  weight loss[138]. In 
a randomized controlled trial enrolling 31 patients with 
biopsy-proven NASH intensive changes in life style with 
the objective of  at least 7% weight loss and educational 
training without weight reduction have been compared[139]. 
Weight loss significantly correlates with improvement in 
NASH histological activity score and weight loss of  7% 
or even more is recommended as a treatment strategy for 
these patients[139]. Another study also reports improve-
ments of  histological and laboratory parameters when 
body weight is reduced by 10% in NASH patients[140]. 
Adiponectin concentrations increase by about 36% in type 
2 diabetic patients by 13% weight loss[141], and this may 
partly contribute to the metabolic improvements observed 
in these patients. 

Clinical trials using fibrates have revealed inconsistent 
results so far. Treatment of  sixteen NASH patients with 
clofibrate did not ameliorate biochemical or histologi-
cal parameters[142], whereas a second study demonstrated 
biochemical and ultrasound improvements with fenofi-
brate[143]. Emerging data on thiazolidinediones have dem-
onstrated improvement in both liver enzymes and histol-
ogy[144,145]. These drugs activate PPARγ and thereby inhibit 
growth of  HSC and TGF-β mediated induction of  CTGF, 
respectively[146]. PPARγ is the main adipogenic transcrip-
tion factor and its agonists stimulate adipogenesis[147]. Thia-
zolidinediones strongly stimulate adiponectin synthesis and 
elevate systemic adiponectin[147]. Increase of  adiponectin 
by pioglitazone is related to histological improvement of  
steatosis, inflammation and fibrosis confirming the crucial 

role of  adiponectin in NAFLD[148]. The PPARγ agonist 
rosiglitazone even induces AdipoR2 in hepatocytes[146]. A 
recent study reports that pioglitazone therapy improves 
adipose tissue insulin sensitivity and this correlates with a 
reduction in hepatic fat and necroinflammation[149]. Activa-
tion of  PPARγ primes human monocytes into alternative 
M2 macrophages with anti-inflammatory properties and 
patients may also benefit from reduced inflammation[150]. 
In line with this hypothesis pentoxifylline with multiple 
pharmacological effects including antioxidant and anti-
inflammatory activity[151] has been tested in small clinical 
trials, and biochemical and histological improvements have 
been reported[151,152]. Vitamin E therapy decreases AST 
and ALT levels and hepatic steatosis but does not improve 
necroinflammation and fibrosis[153]. Antioxidants may even 
prevent health-promoting effects of  physical exercise 
namely insulin sensitivity and rise of  systemic adiponectin 
in untrained and pre-trained individuals, and therefore, may 
be more effective in patients with low physical activity[154]. 
In summary to date no pharmacologic treatment has been 
reliably shown to be effective for the treatment of  NASH 
patients.

CONCLUSION
Adiponectin has emerged as a protective adipokine in in-
sulin resistance and obesity related liver diseases (Figure 3), 
and drugs that elevate systemic adiponectin may be useful 
as therapeutics for NAFLD. Adiponectin receptor signal-
ling pathways and potential hepatic adiponectin resistance 
in NASH, however, have been poorly investigated so far. 
Identification of  molecules downstream of  AdipoR1/2 
and strategies to enhance adiponectin receptor activity may 
constitute promising approaches towards treatment of  
NAFLD. 
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