
Adiponectin: A Novel Adipokine Linking Adipocytes and
Vascular Function

BARRY J. GOLDSTEIN AND ROSARIO SCALIA

Dorrance H. Hamilton Research Laboratories, Division of Endocrinology, Diabetes and Metabolic Diseases (B.J.G.),
Department of Medicine, and Department of Physiology (R.S.), Jefferson Medical College of Thomas Jefferson University,
Philadelphia, Pennsylvania 19107

Cardiovascular disease accounts for an overwhelming pro-
portion of the morbidity and mortality suffered by patients
with obesity and type 2 diabetes mellitus, and recent work has
elucidated several potential mechanisms by which increased
adiposity enhances cardiovascular risk. Excess adipose tis-
sue, especially in certain compartments, leads to reduced in-
sulin sensitivity in metabolically responsive tissues, which is
frequently associated with a set of cardiovascular risk factors,
including hyperinsulinemia, hypertension, dyslipidemia, and
glucose intolerance. Increasing attention has also been paid
to the direct vascular effects of plasma proteins that originate

from adipose tissue, especially adiponectin, which exhibits
potent antiinflammatory and antiatherosclerotic effects. This
brief review will summarize recent work on the vascular ac-
tions of adiponectin, which complements the growing body of
information on its insulin-sensitizing effects in glucose and
lipid metabolism. Adiponectin is now a recognized component
of a novel signaling network among adipocytes, insulin-
sensitive tissues, and vascular function that has important
consequences for cardiovascular risk. (J Clin Endocrinol
Metab 89: 2563–2568, 2004)

“To lengthen thy Life, lessen thy Meals”
Benjamin Franklin in Poor Richard’s Almanack,

June 1733

THE GROWING EPIDEMIC of cardiovascular disease in
developed countries and the third world is closely as-

sociated with an increased prevalence of insulin resistance
and type 2 diabetes due to excess body weight and sedentary
lifestyles (1). Insulin resistance, a failure of circulating insulin
to elicit its expected responses in glucose and lipid metab-
olism, plays a key role in the development of the metabolic
syndrome, a complex set of risk factors, including hyperin-
sulinemia, hypertension, glucose intolerance, and dyslipide-
mia, that dramatically heightens cardiovascular risk (2, 3).
The pathogenic relationships among obesity, the metabolic
syndrome, and its cardiovascular complications, however,
remain poorly understood, and intensive research efforts are
underway to elucidate the mechanisms by which excess ad-
iposity, especially in visceral compartments, causes both in-
sulin resistance and vascular dysfunction.

Endothelial dysfunction, characterized by several abnor-
malities, including a deficiency of nitric oxide (NO) produc-
tion in response to normal secretion signals, is a key abnor-
mality found in insulin-resistant states (4). When endothelial
dysfunction is present, the relative lack of NO production
contributes to hypertension and several concomitant alter-
ations, including increased expression of adhesion molecules

on the endothelial cell surface and other inflammatory
changes that underlie the early processes of atherosclerosis.
A variety of humoral substances that adversely influence
endothelial function have been recognized, including free
fatty acids, cytokines such as TNF�, and prooxidant mole-
cules, including oxidized low density lipoprotein (oxLDL).
These mediators activate signaling kinases and are also
closely linked to the endothelial production of reactive ox-
ygen species (ROS; superoxide and H2O2), a central compo-
nent of the inflammatory milieu that contributes to athero-
genesis in the metabolic syndrome and in frank diabetes
(5–9). ROS can reduce NO availability, consuming NO in the
chemical formation of peroxynitrite, which has also been
postulated to alter the catalytic activity of endothelial NO
synthase (eNOS), diverting its synthesis from NO toward
increased superoxide production (10). The duration and
magnitude of ROS exposure also affect endothelial cell
growth and determine whether these cells undergo prolif-
eration or apoptosis (11).

Much of the recent work on obesity has highlighted the key
role of adipose tissue as an endocrine organ that secretes a
number of factors, termed adipokines, that mediate many of
the vascular and metabolic complications of adiposity (12,
13). As the visceral adipose mass is expanded, the secretion
of many of these products is increased, including free fatty
acids, TNF�, ILs, resistin, leptin, and complement factors,
which reduce insulin sensitivity and contribute to endothe-
lial dysfunction (14).

Potential role of adiponectin

Adiponectin is a relatively abundant, approximately 30-
kDa plasma protein secreted specifically from adipose tissue
that is found in multimeric complexes in the circulation at
relatively high levels in healthy human subjects (�2 to 10
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�g/ml) (see Refs. 15–17 for recent reviews). In contrast to the
dramatic increase in plasma levels of several of the adipo-
kines observed in visceral adiposity, the plasma levels of
adiponectin are markedly reduced. Thus, adiponectin levels
correlate negatively with percent body fat, central fat distri-
bution, fasting plasma insulin, and oral glucose tolerance and
positively with glucose disposal during euglycemic insulin
clamp. Adiponectin levels are also significantly lower in
patients with coronary artery disease than in matched control
subjects, suggesting a possible association of reduced adi-
ponectin in vasculopathic states (18, 19).

Adiponectin exists in the circulation as a full-length pro-
tein (fAd) as well as a putative proteolytic cleavage fragment
consisting of the globular C-terminal domain (gAd), which
may have enhanced potency (20). Interestingly, two receptor
forms have been cloned for adiponectin that have unique
distributions and affinities for the molecular forms of the
protein. AdipoR1 is a high affinity receptor for gAd with very
low affinity for fAd, and AdipoR2 has intermediate affinity
for both forms of adiponectin (21). Interestingly, AdipoR1 is
abundantly expressed in skeletal muscle and at moderate
levels in other tissues, whereas AdipoR2 is predominantly
expressed in the liver. These findings are consistent with the
observation that fAd has a greater effect on hepatic metabolic
signaling, whereas both gAd and fAd elicit metabolic effects
in skeletal muscle (21–23). Aortic endothelial cells express
both adiponectin isoforms, but appear to preferentially ex-
press mRNA for AdipoR1, suggesting a signaling role for
gAd in this cell type (24, 25).

Effects of adiponectin on vascular structure and function
(Table 1)

Studies in animal models and human subjects have dem-
onstrated an association between circulating adiponectin lev-
els and endothelial function. Forearm blood flow in human
subjects during reactive hyperemia is highly correlated in a
negative fashion with adiponectin, indicating that adiponec-
tin is closely associated with endothelium-dependent vaso-
dilation (25–27). In human subjects, independent of a corre-
lation with insulin sensitivity, circulating adiponectin levels
are positively associated with arterial vasodilation in re-
sponse to nitroglycerin, a measure of endothelium-indepen-
dent vasodilation (28).

In vivo studies in mouse models

Using a more direct approach to determine the role of
adiponectin in the vasculature, several groups have gener-
ated mice that completely lack adiponectin expression. These
knockout mice show striking vascular alterations, including
severe neointimal thickening and increased proliferation of
vascular smooth muscle cells in mechanically injured arteries
(29). Importantly, replenishment of fAd by infection with a
recombinant adenovirus attenuated neointimal proliferation
(30).

Related in vivo studies have shown that both forms of
adiponectin can suppress the development of atherosclerosis
in susceptible mice. Apolipoprotein E-deficient mice treated
with recombinant adenovirus to increase the circulating lev-
els of fAd demonstrated a 30% decrease in lesion formation
compared with mice expressing a control protein (31). Adi-
ponectin associated with foam cells in the fatty streak lesions,
suppressed the expression of vascular cell adhesion mole-
cule-1 (VCAM-1) and class A scavenger receptors, and
tended to reduce levels of TNF� (31). Similarly, transgenic
mice overexpressing gAd ameliorated atherosclerotic lesion
formation when crossed onto an apolipoprotein E-deficient
background, an effect that was associated with decreased
expression of class A scavenger receptors and TNF� (32).

At physiological levels, adiponectin exhibits specific and
saturable binding to aortic endothelial cells, but readily binds
to the walls of catheter-injured vessels, preferentially to in-
tact vascular walls (33–35). Studies of vascular reactivity in
aortic rings from adiponectin knockout mice showed re-
duced vasodilation in response to acetylcholine compared
with wild-type mice, but not in response to sodium nitro-
prusside, indicative of an endothelial signaling defect (26).

Antiinflammatory effects of adiponectin

Consistent with a protective effect on macrovascular dis-
ease, studies in vitro have provided insight into the direct
effects of adiponectin on the function of vascular and in-
flammatory cells, including reversing some of the deleterious
effects of TNF� on endothelial function. Without blocking
TNF� binding, fAd inhibited TNF�-induced expression of
several adhesion molecules on the surface of endothelial
cells, including VCAM-1, E-selectin, and intercellular adhe-
sion molecule-1, and suppressed the effect of TNF� to induce
the adhesion of monocytic THP-1 cells to cultured endothe-
lial cells (18). Adiponectin (fAd) also suppresses TNF�-
induced inflammatory changes in endothelial cells by block-
ing inhibitory nuclear factor-�B phosphorylation and nuclear
factor-�B activation without affecting TNF�-mediated acti-
vation of c-Jun N-terminal kinase, p38, and Akt (33). Addi-
tional antiinflammatory effects of adiponectin (fAd) include
suppression of leukocytic colony formation, reduction of
phagocytic activity, and reduction of TNF� secretion from
macrophages (34, 36).

Using aortic endothelial cells, we recently reported that
gAd inhibited oxLDL-induced cell proliferation as well as
basal and oxLDL-induced release of superoxide and the ac-
tivation of p42/p44 MAPK by oxLDL (24). The uptake and
oxidation of circulating LDL particles in the vascular wall can
potentiate the formation of foam cells, inactivate eNO, in-

TABLE 1. Cellular effects of adiponectin in the vasculature

Enhanced endothelium-dependent vasodilation
Enhanced endothelium-independent vasodilation
Suppression of atherosclerosis
Suppressed expression of vascular adhesion molecules scavenger

receptors
Reduced levels of TNF� and suppression of inflammatory TNF�

effects on endothelial function
Attenuation of growth factor effects on smooth muscle cells
Inhibition of endothelial cell effects of oxidized LDL, including

suppression of proliferation, superoxide generation and the
activation of MAPK

Enhanced NO production
Stimulation of angiogenesis
Reduced neointimal thickening and proliferation of smooth muscle

cells in mechanically injured arteries
Inhibition of endothelial cell proliferation and migration
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duce inflammatory responses, and stimulate the generation
of ROS, all processes that are widely believed to be integral
to atherogenesis (5, 37). Vascular ROS can lead to the pro-
liferation or apoptosis of endothelial cells, processes that are
integral to angiogenesis and vascular damage (11, 38, 39).

Effects of adiponectin on NO

As one of the cardinal functions of endothelial cells is to
generate NO, the salutary effects of adiponectin on the vas-
culature have been hypothesized to be associated with en-
hanced eNO generation. Consistent with this, concentrations
of fAd similar to those found in the circulation have been
shown to enhance NO production in cultured aortic endo-
thelial cells (25, 40). In our studies of the effects of oxLDL on
endothelial cells, gAd also enhanced NO production by ame-
liorating the suppression of eNOS activity by oxLDL (24).

Effects of adiponectin on angiogenesis

Two very recently published studies have shown that adi-
ponectin also has significant effects on small vessel angio-
genesis. Ouchi et al. (41) showed that fAd exhibited che-
moattractant properties and stimulated the differentiation of
human umbilical vein endothelial cells into capillary-like
structures in vitro; fAd also stimulated blood vessel growth
in vivo in a corneal model of angiogenesis. In contrast,
Bråkenhielm et al. (42) reported that fAd acts a negative
regulator of angiogenesis, preventing new blood vessel
growth in a chick chorioallantoic membrane assay as well as
in mouse corneal angiogenesis assays, and in vitro, adiponec-
tin potently inhibited endothelial cell proliferation and mi-
gration. These discordant results may arise from the source
of the endothelial cells, large vessels (aorta) or small capil-
laries, or from technical differences in the corneal angiogen-
esis assays (42).

In addition to endothelial cell responses, the effects of
adiponectin on vascular smooth muscle cells may also con-
tribute to its influence on angiogenesis. Adiponectin (fAd)
treatment of vascular smooth muscle cells in culture atten-
uated proliferation induced by a variety of growth factors
and migration induced by heparin-binding-epidermal
growth factor or platelet-derived growth factor-BB (PDGF-
BB). The reduction in signaling effects of PDGF were possibly
caused at least in part by binding of adiponectin to PDGF-BB,
which inhibited PDGF cellular association (30, 43). Depend-
ing on the setting, angiogenesis can be either reparative (e.g.
coronary neovascularization) or pathological (e.g. diabetic
retinopathy), so it is difficult to predict what effects of adi-
ponectin in cultured cell systems might correlate best with its
observed role in protection from atherosclerosis in mouse
models in vivo. Nevertheless, the available data indicate that
adiponectin has dramatic effects on vascular remodeling that
probably contribute to vascular function and growth in var-
ious disease states.

Adiponectin signal transduction mechanisms

Studies in metabolically responsive cell types (liver, skel-
etal muscle, and adipose) have shown that activation of the
pleiotropic enzyme AMP-activated protein kinase (AMP ki-

nase) is integral to the signaling effects of adiponectin (22, 23,
44). AMP kinase is typically activated in a variety of cellular
stress conditions associated with AMP accumulation, and it
turns on catabolic pathways that generate ATP (45, 46). In-
terestingly, AMP kinase has recently been implicated in the
mechanism of action of metformin in the liver (47) and po-
tentially in the action of the thiazolidinedione insulin sen-
sitizers (48, 49), suggesting that it may be an important me-
diator of antidiabetic metabolic effects, consistent with the
insulin-sensitizing effects of adiponectin.

AMP kinase also appears to mediate adiponectin signaling
in endothelial cells (40, 41). As in other cell types, AMP kinase
activation in the endothelium increases fatty acid oxidation
and net ATP synthesis (50, 51). As AMP kinase activates
eNOS in endothelial cells (52), this enzyme system provides
a potential signaling link between adiponectin and NO gen-
eration. Pharmacological AMP kinase activation also ame-
liorates the increased apoptosis observed in endothelial cells
exposed to high glucose (53), suggesting that AMP kinase
may mediate cellular growth and differentiation responses,
as described above for adiponectin in endothelial cells.

What upstream or parallel pathway(s) modulates the ac-
tivation of AMP kinase and eNOS by adiponectin? The avail-
able evidence at this early stage in our understanding of
adiponectin signaling suggests that adiponectin influences a
number of interrelated signaling pathways (Fig. 1). The hi-

FIG. 1. Multiple potential signaling pathways for adiponectin in en-
dothelial cells. Both isoforms of the adiponectin receptor (AdipoR1
and AdipoR2) are expressed in endothelial cells, but mRNA for the
AdipoR1 receptor, with a higher affinity for gAd, is more abundant.
As in metabolically responsive tissues, one of the major signaling
effects of adiponectin in endothelial cells is activation of AMP kinase.
AMP kinase, in turn, activates eNOS via a pathway that also appears
to be dependent on Akt activation, which is linked upstream to phos-
phatidylinositol 3�-kinase (PI-3K) signaling. Both eNOS activation
and Akt activation contribute to the effects of adiponectin on angio-
genesis. Adiponectin also inhibits oxLDL-induced superoxide produc-
tion, possibly through inhibition of cellular NAD(P)H oxidase activity.
Reduced ROS generation may enhance NO production and diminish
cell proliferation by adiponectin by ameliorating the suppression of
eNOS activity and NO quenching by ROS and by blocking oxLDL-
induced MAPK activation, respectively. Adiponectin can also lead to
endothelial apoptosis via upstream caspase activation. The solid ar-
rows and dotted lines reflect stimulatory and inhibitory effects, re-
spectively. See text for discussion and pertinent references.
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erarchy of these signaling responses has not been fully elu-
cidated and is under active investigation. For example, the
enhanced NO production in endothelial cells elicited by adi-
ponectin is not only linked to AMP kinase activation, but is
also dependent on signaling through the Akt kinase and its
upstream mediator phosphatidylinositol 3�-kinase (40, 41).
The effects of adiponectin on endothelial cell angiogenesis
were also dependent on activation by adiponectin of both
AMP kinase and Akt (41). AMP kinase appears to be up-
stream of Akt in adiponectin signaling in endothelial cells,
because disrupting AMP kinase activation inhibited adi-
ponectin-induced Akt phosphorylation. These findings are
consistent with other examples of multiple parallel pathways
that can elicit eNOS activation, including AMP kinase and
Akt (54). Clearly, additional work will be required to map out
the relative importance of specific upstream signals on adi-
ponectin effects in endothelial cells. In addition, the signaling
roles of the two adiponectin receptor isoforms are completely
unknown at this time. As both AdipoR1 and AdipoR2 are
expressed in endothelial cells (although more mRNA encod-
ing R1 is present compared with R2), it is possible that they
differ in their activation of various kinase-linked cascades in
the endothelial cells.

Additional signaling systems have also been implicated in
at least some of the endothelial effects of adiponectin. The
inhibitory effect of adiponectin on TNF� signaling in endo-
thelial cells was accompanied by cAMP accumulation and
was blocked by an inhibitor of either adenylate cyclase or
protein kinase A. These observations suggest that adiponec-
tin may modulate inflammatory signaling in endothelial cells
through cross-talk between the cAMP-protein kinase A and
nuclear factor-�B pathways (33). As oxLDL-induced super-
oxide generation in endothelial cells is linked to an NAD(P)H
oxidase pathway, the suppression of this process by gAd
may involve regulation of the activity of certain isoforms of
NADPH oxidase or its protein subunits in the vascular cells
(24, 55, 56). Finally, the activation of endothelial cell apo-
ptosis by adiponectin in the system reported by Bråkenhielm
and colleagues (42) is mediated by specific cellular caspases
(caspases-8, -9, and -3), which may be coupled to unique
upstream signaling cascades.

Vascular effects of leptin and resistin

Although the role of the adipokine leptin in human obesity
and insulin resistance has yet to be fully clarified (57), recent
studies have provided evidence that leptin also has signifi-
cant effects on vascular development and repair. Treatment
of endothelial cells with leptin increased cell number and
enhanced the formation of capillary-like tubular structures in
vitro and evidence of neovascularization in vivo (58). Leptin
acts synergistically with fibroblast growth factor-2 and vas-
cular endothelial growth factor to stimulate angiogenesis
and can also influence vascular permeability (59). Leptin
induced neovascularization in corneas from normal rats, but
not in corneas from leptin receptor-deficient (fa/fa) rats, in-
dicating that the vascular effects were mediated via the leptin
receptor (60). Leptin administration also increased vascular
lesion formation in injured arteries in leptin-deficient (ob/ob)
mice, but this response was markedly attenuated in leptin

receptor-deficient (db/db) mice, providing strong evidence
for direct effects of leptin on the arterial wall (61, 62).

The adipokine resistin, which mediates glycemia in obe-
sity (63), has been shown to promote endothelial cell acti-
vation, with increased endothelin-1 transcription and release
and increased expression of the adhesion molecule VCAM-1
and the chemotactic protein VCAM-1 (64). To make matters
even more complex, adiponectin reportedly inhibits the in-
duction of the adhesion molecules VCAM-1 and intercellular
adhesion molecule-1 in endothelial cells by resistin, suggest-
ing that the balance of the opposing effects of these adipo-
kines at the level of the endothelial cell is an important
determinant of the development of vascular inflammation,
leukocyte adherence, and early atherosclerosis (65). In future
work, additional circulating adipokines are likely to add to
our growing understanding of the complex relationship be-
tween adipose tissue and vascular proliferation and function.

Perspective

Adiponectin is an important adipokine specifically se-
creted by adipocytes that circulates at relatively high levels
in the bloodstream. Adiponectin exhibits potent antiinflam-
matory and atheroprotective responses in vascular tissue in
addition to its insulin-sensitizing effects in tissues involved
in glucose and lipid metabolism. Thus, the reduced circu-
lating levels of adiponectin in visceral adiposity are now
known to contribute not only to insulin resistance and dys-
glycemia, but also to the endothelial vascular dysfunction
that is characteristic of the metabolic syndrome. Ongoing
studies will help delineate the roles of the two adiponectin
receptor isoforms (gAd and fAd) as well as their oligomeric
complexes, which may activate specific regulatory signaling
pathways that mediate the cellular effects of adiponectin in
the vasculature, as has begun to be appreciated for meta-
bolically responsive tissues (66–68). A detailed character-
ization of the adiponectin signaling cascade in vascular tis-
sues will potentially provide insight into novel therapeutic
approaches that modulate this system to ameliorate the
heightened cardiovascular risk associated with obesity and
type 2 diabetes.
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