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The widespread physiological actions of adiponectin have now been well characterized as
clinical studies and works in animal models have established strong correlations between
circulating adiponectin level and various disease-related outcomes. Thus, conventional
thinking attributes many of adiponectin’s beneficial effects to endocrine actions of adipose-
derived adiponectin. However, it is now clear that several tissues can themselves produce
adiponectin and there is growing evidence that locally produced adiponectin can medi-
ate functionally important autocrine or paracrine effects. In this review article we discuss
regulation of adiponectin production, its mechanism of action via receptor isoforms and sig-
naling pathways, and its principal physiological effects (i.e., metabolic and cardiovascular).
The role of endocrine actions of adiponectin and changes in local production of adiponectin
or its receptors in whole body physiology is discussed.
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INTRODUCTION
ADIPONECTIN: REGULATION OF ITS EXPRESSION AND
POST-TRANSLATIONAL MODIFICATION
Adiponectin was discovered as an adipocyte-derived 30 kDa secre-
tory protein, which consists of an amino-terminal signal sequence
followed by a collagenous domain and a carboxyl-terminal glob-
ular domain (Scherer et al., 1995; Hu et al., 1996; Maeda et al.,
1996; Nakano et al., 1996). Adiponectin is transcriptionally reg-
ulated by peroxisome proliferator-activated receptor γ (PPARγ),
C/EBP, SREBP, E47, and Id3 protein (Fajas et al., 1998; Osborne,
2000; Motoshima et al., 2002; Yilmaz et al., 2004; Doran et al.,
2008; Figure 1). Drugs like rosiglitazone and pioglitazone, belong-
ing to the thiazolidinedione (TZD) class of PPARγ agonists, have
been clinically and experimentally proven to be potent inducers of
adiponectin expression (Tsuchida et al., 2005; Phillips et al., 2008;
Liu et al., 2009) and indeed many of the metabolic and cardiopro-
tective effects of rosiglitazone or pioglitazone are absent/decreased
in mice lacking adiponectin (Li et al., 2010; Tao et al., 2010; Zhou
et al., 2010). Therefore, elevated adiponectin expression is a crit-
ical mechanism of action in mediating beneficial effects of this
drug class. Regulation of SREBP-1c is another well known mecha-
nism activating adiponectin transcription while more recently Id3
and E47 were demonstrated as novel regulators of this SREBP-
1c-mediated adiponectin expression in adipocytes. E47 poten-
tiates SREBP-1c-mediated adiponectin promoter activation and
this is inhibited upon interaction with Id3. Decreased Id3 levels
increased adiponectin expression and Id3-null mice had increased
adiponectin expression in visceral fat tissue and serum (Doran
et al., 2008).

Extensive post-translational modification plays a vital role for
assembling adiponectin to form its functional oligomeric com-
plexes (Wang et al., 2008; Simpson and Whitehead, 2010). The

initiation step of adiponectin multimerization involves the non-
collagenous globular domain forming trimers (Waki et al., 2003).
Subsequently, the disulfide bond formed via Cys39 (mouse) or
Cys36 (human) is critical for adiponectin to form higher molecu-
lar weight multimers based on its trimeric form (Tsao et al., 2003).
Post-translational modification including hydroxylation and gly-
colysation of the four conserved lysine residues (lys68, lys71, lys80,
lys104) within the collagenous domain of adiponectin are required
for the formation of HMW oligomeric complex (Wang et al., 2002,
2006). The disulfide bond A oxidoreductase-like protein (DsbA-
L) was found to positively regulate the process of adiponectin
multimerization. The secretion of adiponectin is specifically reg-
ulated by endoplasmic reticulum (ER) proteins ERp44 and Ero1-
Lα. The covalent bond formed between ERp44 and the thiol
group of Cys39 on adiponectin retains adiponectin in ER while
the disulfide bond formed between ERp44 and Ero1-Lα releases
adiponectin (Anelli et al., 2003; Wang et al., 2007; Schraw et al.,
2008). Adiponectin exists abundantly in the plasma and circulates
in its HMW (oligomer), MMW (hexamer), and LMW (trimer)
oligomeric forms (Waki et al., 2003). The combination of these
oligomeric forms is often referred to as full-length adiponectin
(fAd). An additional circulating form of adiponectin, the albumin
binding LMW, has been identified subsequently (Ebinuma et al.,
2006). Moreover, upon protease cleavage the globular domain of
fAd (referred to hereafter as gAd) can be librated. Although sig-
nificant circulating levels are not observed, gAd is proposed to
be cleaved locally by specific tissues or at sites of inflammation
(Fruebis et al., 2001; Waki et al., 2005).

ADIPONECTIN RECEPTORS AND RECEPTOR ADAPTOR PROTEINS
Adiponectin exerts many of its cellular effects princi-
pally through binding to two receptor isoforms with seven
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FIGURE 1 | Schematic representation of the steps involved in

transcription, translation, post-translational modification,

oligomerization, and secretion of adiponectin. Several transcription factors
(top left) which mediate adiponectin gene transcription are regulated to
increase (thiazolidinedione, TZD) or decrease (tumor necrosis factor-alpha,

TNF-α) adiponectin expression. Monomeric adiponectin (mAd) is
posttranslationally modified and further oligomerized to form trimers (low
molecular weight, LMW), hexamers (medium, MMW) and oligomeric (high,
HMW) forms. Various mechanisms (bottom right) mediate this oligomerization
and secretion resulting in secretion of HMW, MMW, and LMW forms.

putative transmembrane domains. These adiponectin receptor 1
(AdipoR1) and adiponectin receptor 2 (AdipoR2) isoforms have
distinct distribution patterns in various tissues (Yamauchi et al.,
2003a, 2007; Kadowaki et al., 2007, 2008). It was shown that
skeletal muscle cells bound gAd more avidly than fAd and sup-
pression of AdipoR1 expression with siRNA reduced high-affinity
gAd binding (Yamauchi et al., 2003b). Conversely, suppression of
AdipoR2 expression with siRNA largely reduced fAd binding, but
only modestly reduced globular adiponectin binding. Collectively,
available data indicates that AdipoR1 is a high-affinity receptor
for gAd and a low-affinity receptor for fAd, whereas AdioR2 is an
intermediate-affinity receptor for fAd and gAd. Since AdipoR1 is
the predominant form expressed in skeletal muscle, while AdipoR2
is predominantly expressed in liver, this correlated with the fact
that gAd exerts its insulin mimetic and insulin-sensitizing effect
more effectively compared to fAd in skeletal muscle and vice versa
(Yamauchi et al., 2002). T-cadherin, was also found to competi-
tively bind only the hexameric and HMW forms of adiponectin
(Hug et al., 2004; Asada et al., 2007; Chan et al., 2008). Although T-
cadherin lacks an intracellular domain (Hug et al., 2004), various
studies have suggested the involvement of this protein in mediating
functional effects of adiponectin. These include cardioprotective
effects (Denzel et al., 2010), anti-atherosclerotic effects in vascu-
lature (Takeuchi et al., 2007; Andreeva et al., 2010), anti-diabetic

effects in skeletal muscle (Hug et al., 2004) as well as anti-fibrotic
effects in liver (Asada et al., 2007).

Several adiponectin receptor binding proteins have now been
identified (Buechler et al., 2010; Heiker et al., 2010). The first
and best characterized is adaptor protein containing pleckstrin
homology domain, phosphotyrosine binding (PTB) domain, and
leucine zipper motif (APPL1; Mao et al., 2006a). Other more
recently identified adaptor proteins which have been suggested
to be involved in adiponectin’s intracellular signal transduction
include activated protein kinase C1 (RACK1; Xu et al., 2009), ER
protein 46 (ERp46; Charlton et al., 2010), and protein kinase CK2β

(Heiker et al., 2009). Among the adaptor proteins, only APPL1
associates with both AdipoR1 and AdipoR2 while RACK1, ERp46,
and CK2β bind to AdipoR1. APPL1 interacts with the intracellu-
lar region of adiponectin receptors through its PTB domain (Mao
et al., 2006a) and sequentially activates downstream signaling. It
has now been shown that APPL1 plays an important role in medi-
ating many of adiponectin’s effects, including metabolic effects in
liver, muscle, and endothelial cells (Kobayashi et al., 2004; Mao
et al., 2006a; Cheng et al., 2007, 2009; Chandrasekar et al., 2008;
Wang et al., 2009a; Zhou et al., 2009; Cleasby et al., 2011; Xin et al.,
2011) as well as cardioprotective effects (Fang et al., 2010; Park
et al., 2011). The interaction between RACK1 or CK2β and Adi-
poR1 was indicated by yeast two-hybrid studies and confirmed
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in cells by colocalization and coimmunoprecipitation (Heiker
et al., 2009; Xu et al., 2009). RNAi-mediated RACK1 knockdown
prevented adiponectin regulated glucose uptake in HepG2 cells
(Xu et al., 2009). Pharmacological inhibition of CK2β attenuated
adiponectin signaling in skeletal muscle cells (Heiker et al., 2009).
Coimmunoprecipitation also confirmed the interaction between
ERp46 and AdipoR1, but not AdipoR2, and interestingly the sup-
pression of ERp46 expression resulted in increased cell surface
AdipoR1 levels and enhanced adiponectin stimulated phospho-
rylation of AMP kinase (AMPK) but reduced phosphorylation
of p38-mitogen-activated protein kinase (MAPK; Charlton et al.,
2010).

CIRCULATING ADIPONECTIN: REGULATION AND CHANGES
IN NORMAL AND DISEASE STATES
ADIPONECTIN ISOFORMS, THEIR CIRCADIAN RHYTHMN AND
CLEARANCE
Adiponectin circulates in the concentration range of ∼3–30 μg/ml
in healthy individuals, with a lower level in male compare to female
which is mainly attributed to lower amounts of hexameric HMW
form (Xu et al., 2005; Wang et al., 2008). Studies on the metab-
olism and clearance of adiponectin have yielded variable results
with a half-life of approximately 75 min reported recently based
on tracking fluorescently labeled recombinant adiponectin in the
circulation (Halberg et al., 2009) while a previous study (as the
study performed in rabbit using recombinant human adiponectin)
found HMW adiponectin had a half-life of 13 h and LMW a half-
life of 17.5 h (Peake et al., 2005). A recent study indicated the
important role of posttranslational modifications, including sia-
lylation which modifies the O-linked glycans on Thr residues with
sialic acid, in the regulation of adponectin’s half-life (Richards
et al., 2010). Indeed, enzymatic removal of the sialic acid from
adiponectin accelerates its clearance from circulation (Richards
et al., 2010). Like many other metabolic hormones adiponectin,
especially its HMW form, is regulated by the biological clock and
shows circadian rhythms with a reduction occurring during the
night (Froy, 2007; Cano et al., 2009; Gomez-Abellan et al., 2010;
Scheer et al., 2010; Tan et al., 2011). The endocrine effects of
adipose-derived adiponectin are conventionally believed to reg-
ulate many physiological processes, and many studies have estab-
lished strong correlations between circulating adiponectin levels
and various disease states.

ADIPONECTIN IN OBESITY AND DIABETES
A decreased plasma adiponectin level has been found in patients
with obesity and type 2 diabetes despite the increasing mass of adi-
pose tissue (Arita et al., 1999; Ouchi et al., 2001; Weyer et al., 2001;
Matsuda et al., 2002; Daimon et al., 2003; Spranger et al., 2003; Ryo
et al., 2004; Liu et al., 2007). Moreover, many studies have shown
that instead of the absolute total circulating level of adiponectin,
the ratio between HMW and total adiponectin can more accu-
rately predict insulin resistance and development of features of
the metabolic syndrome (Araki et al., 2006; Hara et al., 2006; Kat-
suki et al., 2006; Liu et al., 2007; Hamilton et al., 2011). However,
although HMW is often referred to as most biologically active
for this reason, there remains a lack of direct metabolic studies
have been conducted using only the HMW form of adiponectin.

Proinflammatory cytokines, in particular tumor necrosis factor α

(TNFα), are considered to be a principal cause of the reduction
in circulating adiponectin seen in obese/diabetic patients (Ouchi
et al., 2003a,b; Takemura et al., 2007). Nevertheless, it is important
to balance these strong clinical correlations with consideration of
whether alterations in adiponectin are always a cause or, in some
cases, a consequence of disease states and this will be highlighted
below.

ADIPONECTIN IN CARDIOVASCULAR DISEASE
A substantial amount of evidence indicates a potential pathophys-
iological contribution of adiponectin in cardiovascular disease
(Shinmura, 2010; Xu et al., 2010; Hui et al., 2011; Okamoto,
2011). Clinical studies have generally identified negative corre-
lations between plasma adiponectin levels and various aspects of
cardiovascular disease such as atherosclerosis, myocardial infarc-
tion, heart failure, endothelial dysfunction and hypertension, and
established as an independent risk factor for these. The HMW
form of adiponectin has been generally regarded as the best pre-
dictor of cardiovascular outcome yet, interestingly, a recent study
also identifies trimeric LMW adiponectin as a potentially use-
ful biomarker in cardiovascular disease (Hamilton et al., 2011).
Adiponectin knockout mice have been particularly informative
in terms of elucidating the interaction between adiponectin and
cardiovascular injury, with exaggerated degrees of induced car-
diovascular defects typically observed in these mice which can be
corrected by adiponectin replenishment. Additionally, several sin-
gle nucleotide polymorphisms (SNPs) have been identified in the
adiponectin gene that consequently cause a reduction of its serum
concentration (Menzaghi et al., 2002, 2007; Tanko et al., 2005;
Yang and Chuang, 2006). For example, clinical data has shown
evidence of the correlation between adiponectin gene +45 and
+276G SNPs with obesity, type 2 diabetes, insulin resistance, car-
diovascular disease, and hypertension (Mousavinasab et al., 2006;
Loos et al., 2007; Yang et al., 2007; Dolley et al., 2008). Adiponectin
exerts its beneficial cardiovascular influence via targeting many cell
types and inducing antioxidative, metabolic, anti-fibrotic, anti-
apoptotic, anti-inflammatory, and vasodilator activities (Xu et al.,
2010; Hui et al., 2011). The concept of adiponectin resistance,
potentially due to changes in expression of AdipoRs and APPL1/2,
may be an underestimated factor in the development of CVD (Lau
et al., 2011).

ADDITIONAL DISEASE PROCESSES RELATED TO CHANGES IN
ADIPONECTIN LEVELS
An extremely wide variety of physiological processes have been
found to be regulated by adiponectin and, as a consequence,
changes in circulating adiponectin have been implicated in var-
ious clinical settings (Kadowaki et al., 2008; Wang and Scherer,
2008; Yamauchi and Kadowaki, 2008; Shetty et al., 2009; Brochu-
Gaudreau et al., 2010; Chiarugi and Fiaschi, 2010). Correlations
have been established between changes in circulating adiponectin
levels and cancer (Kelesidis et al., 2006; Jarde et al., 2011; Paz-Filho
et al., 2011), hepatic fibrosis (Dogru et al., 2010), reproductive
events (Michalakis and Segars, 2010), bone mass density (BMD;
Napoli et al., 2010), and inflammation (Fantuzzi, 2008). Some of
these are discussed in more detail below.
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ADIPONECTIN PHYSIOLOGY AND EVIDENCE FOR
CONTRIBUTION OF ENDOCRINE AND LOCAL EFFECTS
SKELETAL MUSCLE
Adiponectin has clearly been shown to regulate glucose and fatty
acid metabolism in skeletal muscle, principally via studies which
have used animal models with enhanced or suppressed circulat-
ing adiponectin or used recombinant forms of the protein to treat
cells in vitro or skeletal muscle ex vivo. Cell based in vitro studies
show adiponectin can increase both basal and insulin-stimulated
glucose uptake by promoting GLUT4 translocation to the cell
membrane (Ceddia et al., 2005; Fang et al., 2005, 2009; Mao et al.,
2006a) and increase fatty acid uptake and oxidation (Tomas et al.,
2002; Yoon et al., 2006) through the activation of AMPK, p38-
MAPK, and PPARα pathways (Yamauchi et al., 2002, 2003b; Yoon
et al., 2006). Animal model studies in vivo correlate well with
these observations as systemic infusion, adenoviral-based delivery
or genetic overexpression of adiponectin can successfully correct
high-fat diet-induced insulin resistance in skeletal muscle and
decrease serum TG and FFA levels (Yamauchi et al., 2001, 2003c;
Maeda et al., 2002; Combs et al., 2004). Although it is very well
accepted that adiponectin mediates beneficial metabolic effects
in skeletal muscle, the precise underlying molecular mechanisms
were uncovered in more detail recently. Adiponectin can increase
skeletal muscle mitochondrial mass and oxidative capacity, at
least in part via inducing extracellular Ca2+ influx and subse-
quently activating the Ca2+/calmodulin-dependent protein kinase
kinase beta (CaMKKβ)–AMPK–Sirt1–peroxisome proliferator-
activated receptor gamma coactivator-1alpha (PGC1α) pathway
(Iwabu et al., 2010). Previous studies also showed transgenic
mice overexpressing adiponectin had improved insulin sensitiv-
ity whereas adiponectin knockout mice exhibit some degree of
insulin resistance and decreased expression of PGC1α and PPARγ

(Civitarese et al., 2006; Kadowaki et al., 2006). Most recently,
Scherer’s group identified another important mechanism under-
lying adiponectins beneficial metabolic effects, namely enhanced
ceramide catabolism in skeletal muscle (Holland et al., 2011).

The prevailing assumption was that the metabolic effects of
adiponectin in skeletal muscle were due to endocrine effects of
adipocyte-derived adiponectin (Figure 2). Importantly, emerg-
ing evidence (Delaigle et al., 2004, 2006; Krause et al., 2008; Liu
et al., 2009; Amin et al., 2010; Jortay et al., 2010; Van Berendon-
cks et al., 2010) suggests that adiponectin can also be expressed
and secreted by skeletal muscle and thus may also be classified
as a myokine (Pedersen and Febbraio, 2008) which exerts its
effect locally. We have shown an increased level of adiponectin
mRNA, intracellular and secreted protein in response to rosiglita-
zone treatment in vitro; and subsequently verified that this skele-
tal muscle produced adiponectin exerted functional metabolic
effects including enhanced insulin-stimulated Akt phosphoryla-
tion and glucose uptake (Liu et al., 2009). In agreement with this,
Leff ’s group also demonstrated PPARγ-mediated skeletal mus-
cle adiponectin production which mediated autocrine effects to
improve insulin sensitivity and could protect against high-fat diet-
induced insulin resistance in vivo (Amin et al., 2010). It has been
suggested that skeletal muscle adiponectin content increases in
response to certain inflammatory conditions and obesity in an
attempt at providing local anti-inflammatory and antioxidative

FIGURE 2 | Endocrine and autocrine/paracrine effects of adiponectin.

The figure indicates that adiponectin in circulation (blood vessel,

center) is derived primarily from adipose tissue (top). Circulating
adiponectin can travel to numerous tissues and mediate endocrine effects.
In addition, several tissues can also produce adiponectin (solid gray arrow)
which can then act locally (twisted gray arrow) to mediate functional
autocrine or paracrine effect.

protection (Delaigle et al., 2004, 2006; Jortay et al., 2010). Indeed,
the globular form of adiponectin mediates potent metabolic effects
in skeletal muscle (Fruebis et al., 2001; Tomas et al., 2002; Ced-
dia et al., 2005; Chen et al., 2005; Fang et al., 2005; Mao et al.,
2006a) and it is conceivable that elevated local amounts of gAd are
produced in inflamed tissue by elastase enzyme derived from infil-
trating inflammatory cells (Waki et al., 2005). Finally, autocrine
effects of gAd have recently been identified in the regulation of
skeletal muscle cell differentiation (Fiaschi et al., 2009, 2010).

Local effects of adiponectin may also be determined by changes
in expression of its receptor isoforms and signaling intermediates,
although relatively little is known on this topic to date. Weight loss
induced by either exercise or diet together with exercise enhance
the expression of adiponectin receptor mRNA in skeletal muscle
of humans and animal models (Vu et al., 2007; Christiansen et al.,
2010). A study in non-diabetic Mexican Americans with or with-
out a family history of Type 2 diabetes concluded that skeletal
muscle expression levels of both AdipoR1 and AdipoR2 correlated
positively with insulin sensitivity (Civitarese et al., 2004). Hyper-
glycemia and hyperinsulinemia can both alter AdipoR expression
in muscle cells and consequently adiponectin sensitivity (Fang
et al., 2005). Although it is generally believed that enhancing
AdipoR–APPL1 signaling is beneficial (Mao et al., 2006a; Cheng
et al., 2007, 2009; Saito et al., 2007; Zhou et al., 2009; Fang et al.,
2010; Cleasby et al., 2011), recent studies have identified that the
abundance of APPL1 mRNA is significantly higher in muscle of
type 2 diabetic individuals (Holmes et al., 2011). Bariatric surgery
corrected hyperglycemia and this was correlated with increased
circulating adiponectin and skeletal muscle AdipoR1 expression
with reduced APPL1 content (Holmes et al., 2011).
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CARDIOVASCULAR
As described above, many studies have established correlations
between circulating adiponectin levels and various cardiovascular
outcomes and the underlying mechanisms are now well under-
stood. For example, adiponectin is now established as a cardio-
protective adipokine as it mediates beneficial effects on cardiac
remodeling events such as energy metabolism, hypertrophy, fibro-
sis, and apoptosis (Shibata et al., 2004, 2005, 2007; Liao et al.,
2005; Palanivel et al., 2007; Fang et al., 2010; Li et al., 2010; Tao
et al., 2010; Shimano et al., 2011). Anti-inflammatory, vasodilator,
and anti-atherosclerotic effects confer further beneficial influ-
ences of adiponectin on the cardiovascular system (Fantuzzi,
2008; Brochu-Gaudreau et al., 2010; Xu et al., 2010; Hui et al.,
2011).

Mice lacking adiponectin have been particularly informative in
establishing the cardioprotective role of adiponectin, with numer-
ous studies in these mice demonstrating an exaggerated response
of the heart to cardiac stress (Shibata et al., 2004, 2005, 2007; Liao
et al., 2005; Li et al., 2010; Tao et al., 2010; Shimano et al., 2011),
which was attenuated upon restoration of circulating adiponectin.
The ability of adiponectin to counteract deterioration in cardiac
function was mediated by metabolic, anti-apoptotic, anti-fibrotic,
and anti-hypertrophic effects (Shibata et al., 2004, 2005, 2007;
Tao et al., 2007; Wang et al., 2009b; Fang et al., 2011; Park
et al., 2011). Adiponectin has been shown to regulate fatty acid
β-oxidation in the heart. In cell based in vitro studies of iso-
lated cardiomyocytes, adiponectin was shown to stimulate the
phosphorylation of AMPK, IRS1, and Akt (T308 and S473) cor-
relating with the regulation of glucose and fatty acid uptake and
metabolism (Palanivel et al., 2007), and to target cofilin to medi-
ate remodeling of the actin cytoskeleton leading to the translo-
cation of lipoprotein lipase (LPL) to the cell surface (Ganguly
et al., 2011). Adiponectin was also shown to stimulate the phos-
phorylation of acetyl coenzyme A carboxylase (ACC), as well as
to induce CPT-1 expression and activation through AMPK (Li
et al., 2007a). Recently (Fang et al., 2010), we demonstrated that
adiponectin increases fatty acid uptake, CD36 translocation, and
insulin-stimulated glucose transport as well as Akt phosphory-
lation in isolated adult cardiomyocytes, and enhances fatty acid
oxidation in conjunction with AMPK and ACC phosphorylation
in the isolated working heart. However, despite an increase in fatty
acid oxidation and myocardial oxygen consumption, adiponectin
increased hydraulic work, and maintained cardiac efficiency (Fang
et al., 2010).

The phosphorylation of AMPK was shown to attenuate norep-
inepherine induced cardiomyocyte hypertrophy and ERK phos-
phorylation (Shibata et al., 2004), angiotensin II induced NF-κB
activation and hypertrophy (Wang et al., 2011), and also shown
to fully (Shibata et al., 2005), or minimally (Wang et al., 2009a)
attenuate hypoxia–reoxygenation induced apoptosis. Adiponectin
was shown to attenuate hypoxia–reoxygenation induced apopto-
sis in H9C2 cells through the AdipoR1/APPL1 signaling pathway
(Park et al., 2011). Cardiac fibrosis is associated with impaired car-
diac function, and there are numerous studies demonstrating the
exaggerated fibrotic response of the heart to cardiac stress in the
absence of adiponectin (Shibata et al., 2004, 2005, 2007; Liao et al.,
2005; Li et al., 2010; Tao et al., 2010; Shimano et al., 2011). Very

few studies have directly investigated regulation of extracellular
matrix components by adiponectin in vitro. Cardiac fibroblasts
express AdipoR1 (Huang et al., 2009) and treatment of adult rat
fibroblasts with gAd was shown to increase IL-6 expression and
secretion via the activation of AMPK, p38-MAPK, and ERK1/2
(Fan et al., 2011).

Although an overwhelming amount of data indicates numer-
ous beneficial effects of adiponectin, there is also some contra-
dictory evidence from clinical and experimental studies on the
cardioprotective role of adiponectin. For example, recent clin-
ical data have positively correlated high levels of adiponectin
with mortality and severity in patients with congestive heart fail-
ure (Shinmura, 2010). Adiponectin knockout mice subjected to
long-term pressure overload suggested that under chronic stress,
adiponectin deficiency preserves oxidative capacity and cardiac
function despite an increase in cardiac hypertrophy compared to
wild-type mice, suggesting that adiponectin may in fact be playing
a permissive role in long-term cardiac dysfunction (O’Shea et al.,
2010).

Both cardiomyocytes (Pineiro et al., 2005; Ding et al., 2007) and
epicardial adipose tissue (Gormez et al., 2011; Hirata et al., 2011)
can produce adiponectin and thus increase autocrine/paracrine
bioavailability. Indeed,epicardial adipose-derived adiponectin was
recently identified as a predictor of positive outcome following
cardiac surgery (Kourliouros et al., 2011), although it should
be noted that expression of adiponectin from epicardial adi-
pose tissue has been shown to be lower than that from sub-
cutaneous adipose tissue (Bambace et al., 2011). Similarly, car-
diomyocytes produce relatively small amounts of adiponectin
(Pineiro et al., 2005; Ding et al., 2007), yet these are likely to
be sufficient for locally mediated effects. A number of studies
have found that cardiac adiponectin levels are altered in vari-
ous cardiomyopathies. For example, a recent study has shown
in patients with dilated cardiomyopathy that adiponectin expres-
sion was decreased sixfold and this was mirrored in immuno-
histochemical analysis of endomyocardial biopsies (Skurk et al.,
2008). Additionally, the accumulation of adiponectin within the
myocardial tissue following stress through leakage from the vas-
cular compartment could also serve to increase the local sup-
ply of bioavailable adiponectin and serve to compensate for the
inflammatory induced downregulation of both local and sys-
temic adiponectin expression (Ouchi et al., 2000; Shibata et al.,
2007; Fujita et al., 2008). Interestingly, adiponectin has also been
shown to accumulate in atherosclerotic plaques and whether
this is causative or protective against progression of atheroscle-
rosis is still incompletely resolved, although the latter seems
most likely (Li et al., 2007b; Cai et al., 2010; Reynolds et al.,
2010).

Myocardial adiponectin resistance (Saito et al., 2007; Kollias
et al., 2011; Ma et al., 2011) may necessarily be the first target
in developing adiponectin-based therapeutics in the treatment of
cardiovascular disease. Overall, circulating or local adiponectin
levels tend to correlate negatively with cardiovascular disease inci-
dence and prognosis, however since many cardiovascular events
are progressive in nature there may in some cases be a tempo-
ral compensatory increase in adiponectin expression, particularly
within the affected tissue. Thus, several paradoxical observations
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have been reported in the literature and it is likely that the timing
of targeting adiponectin therapeutically will be vital to its success
in the cardiovascular arena (Dembinski, 2010).

LIVER
Regulation of hepatic glucose and fatty acid metabolism plays an
important role in the ability of adiponectin to improve whole
body energy homeostasis (Kadowaki and Yamauchi, 2005; Fang
and Sweeney, 2006; Kadowaki et al., 2007). For example, low
levels or defects in adiponectin action correlate with steatosis,
hepatomegaly, and local inflammation associated with various
liver diseases. The intracellular signaling mechanisms via which
adiponectin mediates effects in hepatocytes are similar to those in
muscle (Wang et al., 2009c), with one apparent exception being
a more important role of the AdipoR2 isoform in mediating
the effects of adiponectin in liver (Yamauchi et al., 2003b, 2007;
Yamauchi and Kadowaki, 2008). Adiponectin is known to exert its
effects in the liver primarily through the activation of the AMPK
and PPARα pathways. In addition to the well characterized insulin-
sensitizing and insulin-like effects of adiponectin in the liver, low
serum adiponectin levels have been associated with high TNFα lev-
els and the presence of non-alcoholic fatty liver disease (NAFLD)
independent of insulin resistance (Hui et al., 2004; Aygun et al.,
2006; Polyzos et al., 2011). In particular, adiponectin has been
shown to mediate anti-fibrotic effects through the activation of
AMPK in hepatic stellate cells (Adachi and Brenner, 2008), anti-
apoptotic effects via PI3K and AMPK activation in hepatocytes
(Jung et al., 2009), and to be anti-inflammatory through the inhi-
bition of TNFα induced hepatotoxicity (Sennello et al., 2005). A
role for T-cadherin has also been proposed in mediating the effects
of adiponectin on liver fibrosis (Asada et al., 2007). Furthermore,
circulating adiponectin levels have been found to be downregu-
lated in morbidly obese patients with non-alcoholic steatohepatitis
(NASH) compared to individuals with simple steatosis (Uribe
et al., 2008; Ma et al., 2009), while a paradoxical increase in serum
adiponectin levels were detected in patients with cirrhosis, inde-
pendent of insulin resistance (Tietge et al., 2004; Kaser et al.,
2005). It is worth bearing in mind that increased adiponectin
levels in liver cirrhosis may reflect reduced hepatic clearance of
adiponectin and/or a compensatory increase toward the over-
whelming production of proinflammatory cytokines in cirrhosis.
Thus, a potentially detrimental contribution of adiponectin as
NAFLD progresses to cirrhosis must be considered (Polyzos et al.,
2010).

Hepatic AdipoR1 and AdipoR2 mRNA expression levels were
higher in insulin-resistant subjects, perhaps reflecting a com-
pensatory mechanism for reduced plasma adiponectin (Felder
et al., 2010). Liver fibrosis in individuals infected with hepatitis C
virus was associated with hyperadiponectinemia and, interestingly,
reduced AdipoR1 expression (Corbetta et al., 2011). A study in
humans showed no change in AdipoR expression in patients with
NASH (Uribe et al., 2008), but an important role for changes in
AdipoR expression was also shown in a study using a high-fat and
high-cholesterol diet in obese fa/fa Zucker rats to induce NASH
was associated with decreased AdipoR1 and AdipoR2 expression
(Matsunami et al., 2011). In addition, liver expression and localiza-
tion of adiponectin were increased in wild-type mice in response

to carbon tetrachloride induced hepatofibrosis (Yoda-Murakami
et al., 2001).

LUNG
Respiratory complications are often observed in obese individ-
uals (Ford, 2005; Shore, 2010). Importantly, decreased serum
adiponectin levels correlate with poor lung function in asthma
and chronic obstructive pulmonary disease (COPD, independent
of adiposity (Sood et al., 2008; Stanciu et al., 2009; Sutherland
et al., 2009; Chan et al., 2010; Thyagarajan et al., 2010). Indeed,
clinical treatment of COPD with corticosteroids and antibiotics
improved lung function concomitant with elevated circulating
adiponectin levels and a decrease in systemic inflammatory mark-
ers such as IL-6 and TNFα (Krommidas et al., 2010). Note, it
is possible that the increased adiponectin levels may result from
diminished IL-6 and TNFα after treatment. Adiponectin knockout
mice exhibited progressive alveolar enlargement and endothelial
cell apoptosis, which was attenuated by adenoviral administra-
tion of adiponectin (Nakanishi et al., 2011). Continuous infusion
of adiponectin via subcutaneously implanted osmotic pumps to
replenish decreased levels was found to attenuate ovalbumin-
induced airway inflammation in mice through the attenuation of
inflammatory cell influx, corresponding with a reduction in IL-13
and IL-5 (Shore et al., 2006). Furthermore, chronic allergic airway
inflammation and pulmonary vascular remodeling are also exacer-
bated in adiponectin deficient mice (Medoff et al., 2009; Nakagawa
et al., 2009; Summer et al., 2009). Nevertheless, a double-blind
randomized clinical trial found that asthmatic patients exhibited
only a modestly beneficial effect in the late asthmatic response to
inhaled allergen challenge after 28 days of rosiglitazone treatment
to increase serum adiponectin levels (Richards et al., 2010).

Although the studies described above focused on endocrine
effects of adiponectin, it is again important to consider the
potential effects of locally produced adiponectin in the lung.
Adiponectin was found to be localized to the murine pulmonary
vascular endothelium under normal (Summer et al., 2009) or
hypoxic (Nakagawa et al., 2009) conditions and bronchoalveolar
fluid contained low levels of adiponectin (Summer et al., 2008).
Adiponectin was overexpressed in the bronchoalveolar lavage
(BAL) fluid of COPD patients and in a multimeric distribution
profile differing from that found in serum (Zhu et al., 2010). Inter-
estingly, these findings correlated with the increased localization
of AdipoR1 to the airway epithelial cells of COPD patients (Miller
et al., 2009).

OTHERS
Numerous effects of adiponectin have been established in other
peripheral tissues (Kadowaki et al., 2008), besides the obvious
autocrine effects on adipocytes themselves (Wu et al., 2003). For
example, the longstanding complication of nephropathy in obesity
and diabetes has naturally led to studies on the pathophysiological
role of adiponectin in this process (Chen et al., 2004; Srivas-
tava, 2006; Stenvinkel, 2011). Increased circulating adiponectin
levels are found in predialysis patients with end stage renal dis-
ease (ESRD; Shen et al., 2007; Stenvinkel, 2011) and adiponectin
suggested to be a predictive factor for the progression of chronic
kidney disease in men (Kollerits et al., 2007). General consensus

Frontiers in Endocrinology | Cellular Endocrinology November 2011 | Volume 2 | Article 62 | 6

http://www.frontiersin.org/Endocrinology
http://www.frontiersin.org/Cellular_Endocrinology
http://www.frontiersin.org/Cellular_Endocrinology/archive


Dadson et al. Adiponectin physiology

based on available literature indicates that adiponectin is renopro-
tective (Abe et al., 2010), for example via attenuating pathological
progression toward renal fibrosis and glomerular hypertrophy
(Ohashi et al., 2007). Even in the absence of a stressor, adiponectin
deficient mice exhibited segmentally fused podocyte processes,
increased albumin leakage into the urine (albuminuria), and kid-
ney oxidant stress when compared to wild-type controls, while
treatment with adiponectin reduced the degree of albumin per-
meability of a podocyte monolayer in vitro (Sharma et al., 2008).

Obesity is strongly associated with increased BMD due not only
to the increased mechanical load, but also to adipocyte-derived
hormonal factors mediating the cross-talk between adipocytes and
bone (Confavreux et al., 2009). As such, there is accumulating and
contradictory evidence indicating that adiponectin plays a role in
bone maintenance and metabolism (Lenchik et al., 2003; Bozic
et al., 2010; Barbour et al., 2011). Specifically, in vitro, adiponectin
has been found to decrease osteoclast differentiation and bone-
resorption activity (Oshima et al., 2005) via APPL1-mediated
Akt1 suppression (Tu et al., 2011), while increasing osteoblast
proliferation and differentiation via an AdipoR1 dependent p38-
MAPK/JNK signaling pathway (Luo et al., 2005), suggesting that
adiponectin positively influences bone growth. However, addi-
tional studies in adiponectin deficient or hyperadiponectinemic
examining bone mass and fragility yielded some paradoxical
observations (Oshima et al., 2005; Williams et al., 2009; Mit-
sui et al., 2011). Indeed, another study reported no abnormal-
ity in bone mass or turnover in adiponectin knockout mice or
adiponectin transgenic mice overexpressing globular adiponectin
(Shinoda et al., 2006). Interestingly, adiponectin has been found
to be expressed by bone forming osteoblasts (Berner et al., 2004;
Shinoda et al., 2006) indicating a potential complex autocrine,
paracrine, and endocrine role of adiponectin in mediating bone
density.

Adiponectin also has centrally mediated effects, such as reg-
ulation of food intake and energy expenditure (Qi et al., 2004;
Kadowaki et al., 2008). Although adiponectin was reportedly
unable to cross the blood brain barrier (Spranger et al., 2006),
it was found in the cerebrospinal fluid of rats (Qi et al., 2004)
and humans (Neumeier et al., 2007) although at significantly
lower levels and with different oligomeric profile than that
in peripheral circulation (Ebinuma et al., 2007). Adiponectin
mRNA expression and localization within the CNS has now
been shown (Rodriguez-Pacheco et al., 2007; Psilopanagioti et al.,
2009). Several studies have documented the functionality of
adiponectin (Rodriguez-Pacheco et al., 2007) in vitro, and through

intracerebral injection (Hoyda et al., 2009a; Iwama et al., 2009;
Park et al., 2011), and also central expression of adiponectin
receptors (Hoyda et al., 2009b).

ADIPONECTIN ACTION AS A THERAPEUTIC TARGET
The rationale for targeting adiponectin is based on the well doc-
umented beneficial physiological actions of adiponectin spanning
diabetes, inflammation, cardiovascular diseases, and cancer and
it is expected that studies in animal models will translate well to
human physiology in the case of adiponectin (Mao et al., 2006b;
Zhu et al., 2008; Shetty et al., 2009; Wang et al., 2009c; Marette
and Sweeney, 2011). Adiponectin-based therapeutics would have
potentially wide-ranging applications in markets with widespread
demographics. In diabetes alone there are still significant unmet
therapeutic needs despite an annual global market value of around
$30 billion. Synthesis and administration of recombinant forms
of adiponectin is generally not a viable therapeutic approach due
to the cost of synthesizing correctly posttranslationally modified
bioactive forms and the disadvantage of the route of administra-
tion, although the recombinant globular domain of adiponectin
is in pre-clinical trials for Merck and Protemix have a highly
glycosylated form of adiponectin in pre-clinical trials. There are
several reports of compounds which increase adiponectin expres-
sion and secretion, although these increases tend to be very modest
at non-supra-physiological doses (Zhu et al., 2008). The com-
monly prescribed TZD class of anti-diabetic agents act at least
in part via elevating adiponectin (Pajvani et al., 2004; Kubota
et al., 2006; Li et al., 2010). A more attractive therapeutic option
would be the discovery of small molecule compounds which
mimic or enhance adiponectin action. Presently, a small mol-
ecule adiponectin-mimetic developed by Rigel Pharmaceuticals
that improves insulin sensitivity in a diabetic mouse model is in
pre-clinical development and Kadowaki’s group have also identi-
fied such a compound. However there are no potent and specific
adiponectin-based therapeutics which are clinically available yet.
Based on the information in this review article it is interesting
to consider the future possibility of combining adiponectin-based
therapeutics with tissue- or cell-specific delivery approaches.
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