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INTRODUCTION 
 

Ulcerative colitis (UC) is a chronic, non-specific 

inflammatory disease that affects mainly the  

colonic mucosa and submucosa [1]. UC tends  
to recur and often progresses to cancer [2].  

Current treatments include aminosalicylic acid, 

immunosuppressants and adrenal glucocorticoids,  
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ABSTRACT 
 

Ulcerative colitis is a chronic, non-specific inflammatory disease that affects mainly the colonic mucosa and 
submucosa. The pathogenesis of ulcerative colitis is unclear, which limits the development of effective 
treatments. In this study, single-cell sequencing data from 18 ulcerative colitis samples and 12 healthy controls 
were downloaded from the Single Cell Portal database, cell types were defined through cluster analysis, and 
genes in each cluster that were differentially expressed in ulcerative colitis were identified. These genes were 
enriched in functional pathways related to apoptosis, immunity and inflammation. Analysis using iTALK 
software suggested extensive communication among immune cells. Single-cell sequencing data from adipose-
derived mesenchymal stem cells from three healthy female donors were obtained from the Sequence Read 
Archive database. The SingleR package was used to identify different cell types, for each of which a stemness 
score was calculated. Pseudotime analysis was performed to infer the trajectory of cells. SCENIC software was 
used to identify the gene regulatory network in adipose-derived mesenchymal stem cells, and iTALK software 
was performed to explore the relationship among macrophages, adipose-derived mesenchymal stem cells and 
enterocytes. Molecular docking confirmed the possibility of cell-cell interactions via binding between surface 
receptors and their ligands. The bulk data were downloaded and analyzed to validate the expression of genes. 
Our bioinformatics analyses suggest that ulcerative colitis involves communication between macrophages and 
enterocytes via ligand-receptor pairs. Our results further suggest that adipose-derived mesenchymal stem cells 
may alleviate ulcerative colitis by communicating with macrophages to block inflammation. 
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but they are often ineffective and the disease  

can recur [3].  

 

The pathogenesis of UC is unclear. Pathological 

examination of intestinal tissues during active UC 

shows extensive damage to intestinal epithelial cells 

as well as diffuse inflammation [2, 4]. The intestinal 

mucosal acts as an immune and mechanical barrier [5] 

that maintains the stability of the intestinal flora and 

host immune tolerance toward intestinal microbes [6]. 

The chronic inflammation in UC can weaken the tight 

junctions between epithelial cells [7], leading to the 

destruction of the mucus layer on the surface of the 

intestinal epithelium [8]. Apoptosis and autophagy 

may also contribute to damage of the intestinal 

mucosa in UC [9].  

 

Immune cells appear capable of influencing the course 

of UC. The subtype of monocytes called macrophages 

regulate immune responses in the intestinal micro-

environment in UC [10]. Macrophages remove 

apoptotic cells [11] and regulate inflammatory 

processes [9]. Adipose-derived mesenchymal stem cells 

(ADMSCs) regulate macrophage function, and they 

down-regulate pro-inflammatory factors (INFγ, IL-6 

and IL-8) while up-regulating anti-inflammatory factors 

(IL-10, IL-4), thereby weakening the local 

inflammatory response [12]. Clarifying the roles and 

interactions of macrophages and ADMSCs in UC may 

help clarify how the disease occurs and progresses, 

which may lead to therapeutic targets.  

 

In this bioinformatics study, we found evidence that 

macrophages may damage the intestinal mucosal barrier 

by promoting inflammation and intestinal epithelial cell 

apoptosis/autophagy, likely contributing to UC. We 

found evidence that, conversely, ADMSCs may 

communicate with macrophages to block inflammation 

and thereby alleviate UC. 

 

MATERIALS AND METHODS 
 

Single cell data collection and quality control 

 

Single-cell RNA sequencing data from colon biopsies 

of 18 patients with UC and 12 healthy individuals were 

collected from the Single Cell Portal database 

(accession number SCP259) [1]. Single-cell RNA 

sequencing data from ADMSCs from thigh source of 

three healthy female donors were obtained from the 

Sequence Read Archive database (accession number 

SRP148833) [13].  
 

Sequencing data were subjected to quality control based 

on the following criteria [14]: gene number between 

200 and 6000, unique molecular identifiers (UMI)  

count > 1000, and mitochondrial gene percentage < 0.1. 

All 23 samples with sequencing data were used for cell-

clustering analysis. 

 

Dimensional reduction, clustering and cell type 

identification 

 

The most variable genes in single cells were identified 

as described [15]. In brief, the average expression and 

dispersion of each gene were calculated, then the genes 

were assigned to eight bins based on their expression. 

The “NormalizeData” function in Seurat [14] was used 

to normalize the expression matrix of single cells. The 

expression matrix was multiplied by 10000 using the 

“LogNormalize” function, then divided by the size of 

the total library, so that different cells could be 

compared. The expression levels of highly variable 

genes were scaled and centered using the “ScaleData” 

function in order to exclude the influence of mito-

chondrial genes and the total number of molecules 

detected within a cell.  

 

Data were visualized in two dimensions using the 

“uniform manifold approximation and projection for 

dimension reduction” (UMAP) method. The SingleR 

package in R (version 0.2.2) was used to independently 

infer the cell source and identify the type of each single 

cell, based on the “Immgen” data set [15]. The 

“Findallmarkers” function in Seurat version 3.1.2 was 

used to identify differentially expressed genes (DEGs) 

in UC. DEGs were defined as those showing |log2(fold 

change)| > 1 and P < 0.05 with respect to controls.  

 

To uncover the potential biological significance of 

DEGs, their enrichment in functional pathways was 

examined using the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) within the “clusterprofiler” package 

in R [16]. P < 0.05 was considered to indicate 

enrichment. 

 

Stemness score 

 

The “stemness” gene set was downloaded from the 

Molecular Signatures database (https://www.gsea-

msigdb.org/gsea/msigdb) [17]. Gene set variation 

analysis was performed using the “GSVA” package in 

R in order to estimate variation in stemness across 

different cell types in an unsupervised manner [18]. 

 

Pseudotime analysis 

 

Monocle 3 was used to simulate an evolutionary trajectory 

through pseudotime [15]. The “importCDS” function in 
Monocle was used to convert the original count in the 

Seurat object into the “CellDataSet” data set, and the 

“differentialGeneTest” function was used to identify 
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genes that may help identify genes whose expression 

changes across pseudotime (qval < 0.01). The “dimension 

reduction” function was used for clustering, while the 

“orderCells” function was used to infer the trajectory 

based on default parameters. Gene expression was 

mapped using the “plot_genes_pseudotime” function. 

 

Cell-cell crosstalk between cell clusters 

 

The iTALK package in R [19] was used to investigate 

cell-cell crosstalk between cell clusters. Briefly, the top 

50% of highly expressed genes in each cell cluster were 

matched to the 2,648 non-redundant ligand-receptor 

pairs included in the iTALK package. These pairs fall 

into four categories, based on whether the ligand serves 

as a checkpoint protein, cytokine, growth factor, or 

“other” protein. The top 20 ligand-receptor pairs for 

each type were visualized as a ligand-receptor inter-

action network. 

 

Gene regulatory network and regulons 

 

We used a modified version of the “Single-Cell 

Regulatory Network Inference” (SCENIC) approach 

[20, 21] to construct a gene regulatory network from 

the single-cell RNA sequencing data [22]. First, co-

expression modules of transcription factors (TFs) and 

their potential target genes were identified.  

Second, the most likely target genes were identified 

based on enrichment of the appropriate binding  

motifs in the TFs. The resulting regulons of TFs with 

their most likely target genes were assigned a 

“regulon activity score” (RAS) in each single cell, 

based on the area under the receiver operating 

characteristic curve.  

 

The bioinformatical analysis on the bulk data level 

The microarray data of UC patients and controls have 

been downloaded from the Gene Expression Omnibus 

(GEO) database (accession number: GSE38713, the 

platform: GPL570) [23]. The bulk data from intestinal 

mucosa of 13 healthy controls and 30 UC patients. The 

differentially expressed genes were identified using the 

Linear Models for Microarray data (limma) package 

[24] in R software. P < 0.05 was considered to indicate 

a statistically significant difference.  

 

Molecular docking 

 

Molecular docking studies of different cell types via 

surface receptors and ligands were performed using 

Hex8.0.0.0 software [25] and protein crystal structures 

available in the Protein Database (https://www.rcsb.org/ 
pages/contactus) [26]. Binding energy < 0 was taken to 

indicate possible binding. Potential complexes were 

visualized with Pymol software [27]. 

RESULTS 
 

Total cellular landscape in UC 

 

The sampling, sequencing and analysis workflow was 

show in Figure 1A. Through single-cell RNA 

sequencing of 68 colonoscopy specimens from 18 

patients with UC and 12 healthy individuals, 366,650 

high-quality cells were obtained. These cells were 

divided into 51 clusters based on the UMAP method. 

And we found that the distribution and number of cells 

of different subtypes was of difference (Figure 1B). The 

violin pictures of healthy individuals-specific marker 

genes for each cell type further supported these cell 

types (Figure 1C). In addition, the expression of marker 

genes common to UC patients and healthy controls was 

different in each cell type (Figure 1D). Furthermore, we 

identified marker genes specific to UC patients was 

whose expression differed in UC patients and healthy 

controls (Figure 1E and Supplementary Table 1).  

 

Immune cell landscape in UC 

 

UC impairs the integrity of the intestinal mucosa, which 

can compromise host immune tolerance toward intestinal 

microbes. Therefore we examined the landscape of 

immune cells in UC. Analysis of the DEGs in 51 types of 

cells (Figure 2A) showed functional enrichment in 

pathways involving immunity, apoptosis and 

inflammation, including pathways mediated by NF-κB, 

IL-17, PPAR, ErbB, and T cell receptors (Figure 2B). We 

also found that immune cells may communicate with 

each other via binding between surface receptors and 

their cognate ligands (Figure 2C). In particular, iTALK 

predicted that macrophages may communicate with 

Best4+ enterocytes, enterocytes and immature enterocytes 

(Supplementary Table 2). The interactions among the 

function pathways and genes in enterocytes of the above 

three subtypes were identified (Supplementary Tables 4–

6). Interestingly, we found that some receptor or ligand 

genes (ITGB1, CD44, VCAN, CD4, ITGB2, AXL 

CANX and PLAUR) were significantly highly expressed 

in UC patients compared with healthy controls based on 

the bulk data (Supplementary Table 3). 

 

Single-cell atlas of ADMSCs 

 

High-quality transcriptome data were obtained from 

24,358 single ADMSCs (Figure 3A). UMAP 

dimensionality reduction showed that the cells were 

divided into four clusters (Figure 3B). The stemness 

score of 4 clusters was calculated, the Cluster 3 showed 

the highest stemness score, while clusters 1 and 2 

showed the lowest (Figure 3C). Pseudo-time analysis 

suggested that ADMSCs in clusters 0, 1 and 2 

differentiated from the cells in clusters 3 (Figure 3D). 

https://www.rcsb.org/pages/contactus
https://www.rcsb.org/pages/contactus
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Figure 1. Single-cell transcriptomic profiles from colon biopsies from UC patients and healthy individuals. (A) Study design. (B) 

2d visualization of 51 clusters of cells in healthy controls (up) and UC patients (down) on the UMAP plot. (C) Violin plots of specific marker 
genes in all types in healthy individuals. (D) Ridge plot. Expression of marker genes common to healthy individuals (left) and UC patients 
(right). (E) The heat map showing expression of UC-specific marker genes in healthy individuals (left) and UC patients (right). UMAP: uniform 
manifold approximation and projection for dimension reduction. UC: ulcerative colitis. 
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The specific marker genes showed different expression 

patterns across the clusters (Figure 3E). Using the 

SCENIC method, we organized regulons of TFs with 

their most likely target genes into six modules. For each 

module, we identified several representative regulators 

and cell types based on average activity scores (Figure 

3F), and UMAP analysis identified specific regulators 

in each cluster of ADMSCs (Figure 3G). 

 

Potential therapeutic mechanism of ADMSCs in UC 

 

Previous studies have suggested that ADMSCs can 

alleviate UC [16], but the mechanism involved remains 

unclear. We found that the expression pattern of genes 

targeted by regulons in each cluster of ADMSCs 

(Figure 4A). In addition, correlation analysis showed 

that expression level of regulons expression correlated 

with that of genes encoding surface ligand (Figure 4B). 

The iTALK analysis result suggested that ADMSCs 

may communicate with macrophages via ligand-

receptor interactions. The result provided the  

evidence that macrophages may also communicate with 

Best 4+ enterocytes, enterocytes and immature 

enterocytes (Figure 4C). To examine the possibility of 

these cell-cell interactions via ligand-receptor inter-

actions, molecular docking studies were performed, 

 

 
 

Figure 2. Immune cell landscape in UC. (A) Manhattan plot. The DEGs in 51 cell types between UC patients and healthy individuals. (B) 

Enrichment of DEGs in functional pathways of the Kyoto Encyclopedia of Genes and Genomes. (C) Sankey plot, showing communication 
among immune cells of different types via ligand-receptor pairs. DEGs: Differentially expressed genes. UC: ulcerative colitis. 
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Figure 3. Single-cell atlas of ADMSCs. (A) Flow chart of sampling, sequencing and analysis of ADMSCs in this study. (B) 2D visualization of 

four clusters of 24,258 ADMSCs on the UMAP plot. (C) 2D visualization of stemness score of four cluster of ADMSCs on the UMAP plot.  
(D) Pseudotime developmental trajectory of ADMSCs shown in the UMAP plot. (E) Heat map, showing the expression of specific marker 
genes in each cluster of ADMSCs. (F) Regulon modules identified based on the regulon CSI matrix. The right panel shows representative 
transcription factors, their binding motifs, and associated cell types. (G) UMAP plot, showing the expression of transcription factors in each 
ADMSC cluster. ADMSCs: adipose-derived mesenchymal stem cells. UMAP: uniform manifold approximation and projection for dimension 
reduction. CSI: connection specificity index.  
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which indicated nine potential ligand-receptor pairs 

(Figure 4D). Based on the findings in this study, we 

proposed a mechanism that ADMSCs may alleviate UC 

after enter into the human body through communicating 

with macrophages, thereby further communicating with 

enterocytes by ligand-receptor pairs (Figure 5). 

 

DISCUSSION 
 

In this bioinformatics study, we identified DEGs in 

different cell types of UC patients, which may 

participate in pathways involving immunity, apoptosis 

and inflammation. And we found that macrophages may 

communicate with enterocytes or ADMSCs. These 

results may help guide future research into the onset, 

progression and treatment of UC.  

 

Enrichment results of the DEGs identified in our study 

of UC showed that the signaling pathways were 

significantly with immunity, apoptosis and inflam-

mation. In this study, MAPK, Ras and mTOR signaling 

pathway, as well as E. coli-related biological function 

were significantly enriched based on the DEGs in UC 

patients. MAPK cascade in turn participates in cell 

migration, differentiation and proliferation [28]. In 

addition, Ras proteins function as molecular switches in 

signaling pathways involved in cell differentiation, 

growth, migration, survival and proliferation [29]. 

 

 
 

Figure 4. Exploration of how ADMSCs may alleviate UC. (A) Heat map, showing the expression of specific marker genes regulated by 

transcription factors in each ADMSCs cluster. (B) Correlation plot, showing relationships between transcription factors and ligands in 
ADMSCs. (C) Circos plot, showing relationships among macrophages, ADMSCs and three types of enterocytes. (D) Potential complexes 
between surface receptor and ligand obtained through molecular docking. ADMSCs: adipose-derived mesenchymal stem cells. UC:  
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mTOR, a highly conserved serine/threonine protein 

kinase that regulates several biological processes [30]. 

Enteropathogenic E.coli (EPEC) and enterohemorrhagic 

E.coli (EHEC) are closely related pathogenic strains of 

Escherichia coli [31], which damage enterocytes and 

may increase risk of UC [32].  

 

UC involves extensive damage to enterocytes and 

diffuse inflammation [2]. Macrophages interact with 

enterocytes [33] and may compromise gap junctions 

between enterocytes during intestinal inflammation 

[34]. Our iTALK analysis suggests cross-talk between 

them, implying that the interaction between 

macrophages and enterocytes may contribute to UC. 

Our results further suggest that ADMSCs communicate 

with macrophages to block inflammation and thereby 

alleviate UC. These in silico findings are consistent 

with biological studies showing that ADMSCs interact 

with immune cells [35] and can shift macrophages from 

a pro-inflammatory M1 phenotype to an anti-

inflammatory M2 phenotype [36].  

 

Using the SCENIC method, we proposed a gene 

regulatory network in ADMSCs. Module M1 in the 

network contains regulators of gene expression, 

morphogenesis, and differentiation, and it also contains 

genes encoding zinc finger proteins required for normal 

development of the epithelial barrier, such as HOX12 

[37], HOXA6 [38], KLF4 [39] and KLF6 [40]. Module 

M2 contains the regulators SP1, which is involved in 

many cellular processes [41], and TCF12, which is 

involved in cell cycle regulation or DNA replication 

[42]. Module M3 contains regulators FOXO3 and 

TEAD1. FOXO3 likely activates genes that promote 

 

 
 

Figure 5. Proposed mechanism about ADMSCs may alleviate UC. (A) The proposed mechanism that macrophages may contribute to 

UC by communicating with enterocytes via ligand-receptor interactions. (B) Proposed mechanism of how ADMSCs may alleviate UC by 
communicating with macrophages and blocking inflammation. ADMSCs: adipose-derived mesenchymal stem cells. UC: ulcerative colitis. 
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apoptosis and autophagy [43, 44], while the TF TEAD1 

may promote apoptosis and restrict proliferation [45]. 

The consistency between our bioinformatics analyses of 

ADMSCs and previous biological studies suggests the 

reliability of our approach. 

 

There are some limitations in this study. On the other 

hand, the data in this study come from a relatively small 

sample and were analyzed using only bioinformatics 

techniques, but they provide a useful reference for 

experimental work to clarify the pathogenesis of UC 

and develop effective treatments. On the other hand, the 

expression of genes in UC patients and healthy 

individuals was preliminarily validated on the bulk data 

level, the findings in this study needs to be validated in 

more bulk data or the biological experiments. 
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SUPPLEMENTARY MATERIALS 

 

 

 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 4–6. 

 

Supplementary Table 1. The differentially expressed genes in UC patients and controls.  

 

Supplementary Table 2. The receptor and ligand pairs of macrophages and enterocytes of different subtypes. 

Ligand Receptor Cell_from_mean_exprs Cell_from Cell_to_mean_exprs Cell_to 

VIM CD44 392.9345568 1 0.639843532 Macrophages 

COL1A1 CD44 214.0378432 1 0.639843532 Macrophages 

COL1A2 CD44 117.4523317 2 0.639843532 Macrophages 

FN1 CD44 76.85261818 2 0.639843532 Macrophages 

COL1A1 CD36 135.694858 0 0.340597932 Macrophages 

APP CD74 1.95886416 0 17.00223526 Macrophages 

COL1A1 CD44 31.21820918 3 0.639843532 Macrophages 

FN1 PLAUR 26.22723853 3 0.566359318 Macrophages 

PKM CD44 23.19493477 0 0.639843532 Macrophages 

VCAN CD44 7.218096458 1 0.639843532 Macrophages 

FGF2 CD44 4.701765157 0 0.639843532 Macrophages 

THBS1 CD36 6.203453569 0 0.340597932 Macrophages 

CTGF ITGB2 2.679834462 3 0.664291702 Macrophages 

SPON2 ITGB2 2.673404425 2 0.664291702 Macrophages 

ANXA1 FPR3 6.580932675 2 0.250209556 Macrophages 

TGFB1 CXCR4 4.411153791 1 0.293657446 Macrophages 

THBS1 CD36 3.579759217 3 0.340597932 Macrophages 

GAS6 AXL 7.75743349 1 0.134534786 Macrophages 

GAS6 AXL 4.842440522 0 0.134534786 Macrophages 

HLA-B CANX 1.37237145 0 0.35582565 Macrophages 

CXCL12 CXCR4 1.493169609 0 0.293657446 Macrophages 

CSF1 CSF1R 0.836543053 2 0.289466331 Macrophages 

CSF1 CSF1R 0.587797391 0 0.289466331 Macrophages 

PROS1 AXL 0.358109184 2 0.134534786 Macrophages 

ICAM3 ITGB2 0.062829195 3 0.664291702 Macrophages 

VCAN ITGB1 0.654512434 Macrophages 0.462867012 Best4+ Enterocytes 

VCAN ITGB1 0.654512434 Macrophages 0.4375 Enterocytes 

VCAN ITGB1 0.654512434 Macrophages 0.498440424 Immature Enterocytes 2 
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Supplementary Table 3. The expression levels of the differentially expressed receptor or ligand genes obtained 
in bulk data through single cell analysis.  

Symbol LogFC AveExpr t P.Value adj.P.Val B 

ITGB1 0.014940634 3.782862 2.2946137 0.026785722 0.146494886 -4.382364 

CD44 0.1351186 3.507543 5.180855 5.81345E-06 0.000540562 3.604434 

VCAN 0.2244977 2.672022 3.40536 0.001458855 0.01869735 -1.709587 

CD4 0.08734719 2.941532 2.664814 1.09E-02 0.077302676 -3.5718828 

ITGB2 0.22633679 3.022593 3.041501 0.004032696 0.03837442 -2.66088 

AXL 0.150793 2.925003 2.495249 0.01657418 0.1042333 -3.954259 

CANX 0.04339978 3.655007 5.314411 3.75E-06 0.000410103 4.031727 

PLAUR 0.1633127 2.991897 3.309774 0.001915449 0.02262415 -1.96566 

CD36 -0.1378495 2.660956 -2.070367 0.04456048 0.2074994 -4.827498 

HLA-A -0.003592468 3.834781 -0.467279 0.6426995 0.9354278 -6.784791 

HLA-B -0.01278865 3.844941 -0.8690066 0.3897497 0.7887466 -6.515917 

HLA-C -0.01500723 3.70149 -0.9425641 0.3512585 0.7486185 -6.449699 

CXCR4 0.1313991 3.17712 1.456362 0.1526787 0.4684196 -5.846819 

 

Supplementary Table 4. The interactions among the enriched pathways and the differentially expressed genes 
in Best4+ enterocytes. 

 

Supplementary Table 5. The interactions among the enriched pathways and the differentially expressed genes 
in enterocytes. 

 

Supplementary Table 6. The interactions among the enriched pathways and the differentially expressed genes 
in immature enterocytes 2. 


