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Abstract

Background

Pulmonary edema is a hallmark of acute respiratory distress syndrome (ARDS). Smoke

inhalation causes ARDS, thus significantly increasing the mortality of burn patients. Adi-

pose-derived stem cells (ASCs) exert potent anti-inflammatory properties. The goal of the

present study was to test the safety and ecfficacy of ASCs, in a well-characterized clinically

relevant ovine model of ARDS.

Methods

Female sheep were surgically prepared. ARDS was induced by cooled cotton smoke inhala-

tion. Following injury, sheep were ventilated, resuscitated with lactated Ringer’s solution,

and cardiopulmonary hemodynamics were monitored for 48 hours in a conscious state. Pul-

monary microvascular hyper-permeability was assessed by measuring lung lymph flow,

extravascular lung water content, protein content in plasma and lung lymph fluid. Sheep

were randomly allocated to two groups: 1) ASCs: infused with 200 million of ASCs in 200mL

of PlasmaLyteA starting 1 hours post-injury, n = 5; 2) control, treated with 200mL of Plasma-

LyteA in a similar pattern, n = 5.

Results

Lung lymph flow increased 9-fold in control sheep as compared to baseline. Protein in the

plasma was significantly decreased, while it was increased in the lung lymph. The treatment

with ASCs significantly attenuated these changes. Treatment with ASCs almost led to the

reversal of increased pulmonary vascular permeability and lung water content. Pulmonary

gas exchange was significantly improved by ASCs. Infusion of the ASCs did not negatively

affect pulmonary artery pressure and other hemodynamic variables.
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Conclusions

ASCs infusion was well tolerated. The results suggest that intravenous ASCs modulate pul-

monary microvascular hyper-permeability and prevent the onset of ARDS in our experimen-

tal model.

Introduction

Acute respiratory distress syndrome (ARDS) is a severe form of acute lung injury caused by

sepsis, pneumonia, trauma, severe burn, and smoke inhalation injury [1]. Although survival

from ARDS has increased in recent years with the use of intensive supportive cares, such as

lung-protective ventilation and fluid-conservative management, the mortality of ARDS

patients is still high [1]. Due to the lack of specific treatment, smoke inhalation injury and

ARDS are a major cause of morbidity and mortality in burn patients [2]. Pathophysiological

changes in the lungs after smoke inhalation injury are characterized by increased pulmonary

microvascular permeability, edema formation, and airway obstruction. Chemical components

of smoke stimulate the release of neuropeptides from peripheral endings of sensory neurons

within the airways to induce neurogenic inflammation. Plasma extravasation and oedema

then result as secondary responses. Neurogenic inflammation results in narrowing of airway

lumina, which is attributable to airway mucosal hyperaemia, formation of obstructive casts in

the airway, and bronchospasm. These changes result in severe impairment of respiratory gas

exchange [3].

Mesenchymal stem cells (MSCs) have been shown to be beneficial in many pathological

conditions, such as myocardial infarction [4], graft versus host disease [5] and spinal cord

injury [6]. Believed to be multipotent cells, MSCs are capable of differentiating into multi cell

types i.e., adipocytes, chondrocytes and osteocytes [7]. In addition, they can also differentiate

into a variety of cell lineages that form mesenchymal tissues, such as marrow stroma, muscle,

cartilage, tendon, fat, and bone [8–10]. Other studies have shown that MSCs lead to improved

clearance of alveolar fluid and have anti-inflammatory effects on host tissue in preclinical

models of ARDS and sepsis [11]. To date, two clinical studies (Phase 1) on the safety of MSCs

use in patients with ARDS have been successfully completed [12, 13], and recently, we have

reported on the beneficial effects of clinical grade human bone marrow-derived MSCs in

ovine models of ARDS induced by pneumonia/sepsis [14].

In the present study, we tested the hypothesis that intravenously administered adipose-

derived stem cells (ASCs) effectively ameliorate the severity of pulmonary microvascular

hyper-permeability in ovine models of ARDS induced by smoke inhalation.

Material andmethods

Animal care and use

This study was approved by the Institutional Animal Care and Use Committee of the Univer-

sity of Texas Medical Branch (1308034) and conducted in compliance with the guidelines of

the National Institutes of Health and the American Physiological Society for the care and use

of laboratory animals.
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Surgical preparation

Ten female Merino sheep weighing 30–40 kg were surgically prepared 5–7 days before the

experiment. Under aseptic conditions, the animals were chronically instrumented with multi-

ple vascular catheters for hemodynamic monitoring as previously described [15]. In brief,

under isoflurane anesthesia (IsoSol, VEDCO, St. Joseph, MO) administered via endotracheal

tube, a 7F Swan-Ganz thermodilution catheter (model 131F7, Edwards Critical Care Division,

Irvine, CA) was inserted into the right jugular vein through a 9.0F Intro-Flex-Percutaneous

Sheath Introducer (CENTURION, Williamston, MI) and was advanced into the common pul-

monary artery. The right femoral artery was cannulated, and a polyvinylchloride catheter

(16-gauge, 24-in., Intracath, Becton Dickinson Vascular Access, Sandy, UT) was positioned in

the descending aorta. Through a left thoracotomy at the level of the fifth intercostal space, a

Silastic catheter (0.062-in. inner diameter, 0.125-in. outer diameter; Dow-Corning, Midland,

MI) was positioned in the left atrium. To determine pulmonary transvascular fluid flux (lung

lymph flow), a thoracotomy in the fifth and seventh intercostal space was performed, and the

efferent vessel of the caudal mediastinal lymph node was cannulated with Silastic medical

grade tubing (0.025-in inner diameter, Dow Corning, Midland, MI) with a modified method

based on the technique of Staub et al [16]. The animal was given a 5-day recovery period. Dur-

ing this time, they had free access to food and water. Pre and post surgical analgesia was pro-

vided with buprenorphine (Buprenorphine SR™, SR Veterinary Technologies, Windsor, CO).

Measured variables

Before beginning studies, catheters were connected to pressure transducers (model PX4X4,

Baxter Edwards Critical Care Division, Irvine, CA) with continuous flushing devices. Electron-

ically calculated mean pressures (MAP: mean arterial pressure; CVP: central venous pressure;

MPAP: mean pulmonary artery pressure; and LAP: left atrium pressure) were recorded on a

monitor with graphic and digital displays (MP30, Philips, Andover, MA). Pressures were mea-

sured while sheep were standing and calm. Zero calibrations were taken at the olecranon joint

on the frontal leg while the animals were standing. Core body temperature was measured with

the thermistor of the Swan-Ganz catheter. 10mL of Saline solution at 1˚C served as the thermal

indicator. Arterial blood gas samples were analyzed at 37˚C and carboxyhemoglobin (COHb)

was measured using a conventional blood gas analyzer (RAPIDPoint 500 System, Siemens

Healthcare Diagnostics, Tarrytown, NY); consequently corrected for core body temperature.

The partial arterial oxygen pressure (PaO2)/inspired oxygen fraction (FiO2) ratio, cardiac

index (CI), systemic vascular resistance index (SVRI), and oxygenation index (OI) were calcu-

lated using standard formulas. Lung lymph flow was measured with graduated test tubes and a

stopwatch. Plasma and lymph protein concentrations were measured using a refractometer.

Experimental protocol

After baseline (BL) measurements and sample collections were completed in the healthy state,

a tracheostomy was performed under ketamine (KetaVed, Phoenix Scientific, St.Joseph, MO)

anesthesia (5mg/kg) and a cuffed tracheostomy tube (10mm diameter, Shiley, Irvine, CA) was

inserted into the trachea. In addition, a Foley urinary retention catheter (C.R. Bard, Inc., Cov-

ington, GA) was placed in the urinary bladder to monitor fluid balance. Anesthesia was main-

tained with 2% to 5%. Isoflurane (IsoSol, VEDCO, St. Joseph, MO) in O2. Smoke inhalation

was induced using a modified bee smoker. The bee smoker was filled with 40 g of burning cot-

ton towels and then attached to the tracheostomy tube via a modified endotracheal tube con-

taining an indwelling thermistor from a Swan-Ganz catheter. Four sets of twelve breaths of

smoke (total 48 breaths) were delivered, and the carboxyhemoglobin level was determined
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immediately after each set. The temperature of the smoke was not allowed to exceed 40˚C dur-

ing the smoking procedure [15, 17, 18]. Immediately after injury, anesthesia was discontinued,

and the animals were allowed to awaken but were maintained on mechanical ventilation

(Hamilton-G5, Hamilton Medical, Switzerland) throughout the 48-h experimental period.

After the injury, sheep were randomly allocated to one of the two groups (n = 5 each): 1)

control (injured, treated with vehicle); and 2) ASCs treatment (injured, treated with 200 mil-

lion of adipose-derived stem cells). The cells were administered intravenously over 30 min via

central line, starting 1 h after injury.

All sheep were continuously (around the clock) monitored for 48 hours in the Translational

Intensive Care Unit. The variables of hemodynamics, pulmonary function, blood gas

exchange, and lung lymph flow (transvascular fluid flux) were recorded every 6 hours.

All sheep were mechanically ventilated in APVcmv mode with positive end-expiratory pres-

sure set at 5 cmH2O, tidal volume maintained at 12mL/kg and a respiratory rate of 20 breaths

per minute. The breath rate was periodically adjusted to maintain arterial carbon dioxide ten-

sion close to baseline values. One hundred percent oxygen was delivered in the first three

hours after injury to accelerate the dissociation of carbon monoxide from hemoglobin. The

fraction of inspiratory oxygen was periodically adjusted to maintain the arterial oxygen tension

above 95 mmHg.

All sheep received fluid resuscitation during the experiment with lactated Ringer’s solution

following the Parkland formula. During experimental periods, the animals were allowed free

access to food, but not to water to accurately measure fluid intake.

ASCs isolation and culture conditions

Subcutaneous adipose tissue was isolated from healthy sheep from the left fifth intercostal inci-

sion in preparative surgery and was washed extensively with PBS containing 2% penicillin/

streptomycin. The tissue was then minced (2mm or less). Each 10 grams of minced fat tissue

was placed in processing 50 ml tube with 2.5 ml of Matrase™ and up to 30 ml of lactated Ring-

er’s solution. Fat tissue was incubated at 37˚C for 2 hours using ARC System (InGeneron,

Inc). Because ovine adipose tissue has higher levels of saturated fat compared to adipose tissue

from humans, longer incubation time was needed for the enzymatic digestion of the fat. Fol-

lowing complete digestion, solution was filtered in Steriflip™ to collect the filtrate. The filtrate

was concentrated using ARC System by centrifuge at 600g for 10 minutes. Two washing steps

with 60 ml of lactated Ringer’s solution were applied in order to have a pellet of stromal vascu-

lar fraction. Finally, the pellet was re-suspended in complete media [Dulbelco’s Minimum

Essential Medium with 10% FBS and 2% antibacterial/antimycotic solution (10,000IU/mL

Penicillin; 10,000ug/mL Streptomycin)]. The final pellet was seeded into tissue culture flask of

175 cm2, and placed in the 5% CO2 and 37˚C incubator. After incubating for 24 hours, the

media was replaced to remove unattached cells and debris. Cells were cultured and frozen

down in aliquots. Second passage cells were used for the experiments.

The cells were characterizes as below: 1) adherence to plastic in standard culture conditions,

2) expression of specific surface antigen assessed by flow cytometer or PCR (Negative for

CD45, CD31, CD14, CD11b and MHC Class II DQ/DR. Positive for CD44, CD73, CD90 and

CD105), 3) differentiation potential for osteoblasts, adipocytes and chondroblasts (Fig 1).

Necropsy

Forty-eight hours after injury, animals were deeply anesthetized and euthanized by intrave-

nous administration of xylazine (3.0mg/kg), ketamine (40mg/kg), and buprenorphine

(0.01mg/kg) following IACUC approved protocols, and American Veterinary Medical
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Association Guidelines for Euthanasia. The lower one-half of the lower lobe of the right lung

was used for the determination of bloodless wet-to-dry weight ratio. The organ tissue samples

were harvested, snap-frozen in liquid nitrogen and stored at -80˚C for later analysis.

Immunohistochemistry

For the distribution study, we prepared 3 sheep in the same manner, and treated with 200 mil-

lion of GFP-labeled ASCs. Sheep were euthanized 24 hours after the injury. Several organs

including the lung, liver, kidney, and spleen were removed, processed and paraffin embedded.

5 μm coronal sections were stained for histopathology analysis of ASCs distribution. In prepa-

ration for immunohistochemistry (IHC), samples were deparaffinized and rehydrated in

xylene, 100% and 95% alcohol. Antigen retrieval was completed in 95˚C 0.01M citrate buffer

pH 6 followed by a quenching process of 3% endogenous hydrogen peroxide. The sections

were blocked with the endogenous avidin- biotin complex (Life Technologies; Waltham, MA)

to reduce nonspecific binding. Slides were stained with primary antibody rabbit anti- GFP

(1:1000; Abcam Cambridge, MA) and secondary biotinylated anti- rabbit IgG (Vector Labora-

tories, Burlingame, CA). Horseradish peroxidase streptavidin (Vector Laboratories, Burlin-

game, CA) was used for color visualization in addition to diaminobenzidine (DAB; Dako,

Carpinteria, CA). Sections were counterstained with Harris hematoxylin (Protocol, Thermo-

Fischer Scientific, Waltham, MA).

Statistical analysis

All values were expressed as means ± SEM. Statistic analysis (Prism 6 software [GraphPad Soft-

ware, Inc. San Diego, CA]) was performed among the groups by two-way ANOVA, followed

by post hoc Bonferroni test. COHb levels after smoke inhalation injury and wet-to-dry weight

ratio between the groups were compared using non-parametric procedures (Mann-Whitney U

test) after confirming non-normal distribution. A value of P< 0.05 was regarded as statistically

significant.

Results

All animals survived the 48-hour experimental period. The arterial carboxyhemoglobin levels

determined immediately after smoke exposure averaged 74.6±4.3% in the control group and

69.5±3.3% in the ASCs group. There was no significant difference between these values.

Fig 1. Multipotent differentiation potential of ASCs. The cells were differentiated into osteoblasts (demonstrated by staining with Alizarin
Red), adipocytes (demonstrated by staining with Oil O Red) and chondroblasts (demonstrated by staining with Alcian blue).

https://doi.org/10.1371/journal.pone.0185937.g001

Stem cell treatment after smoke inhalation

PLOSONE | https://doi.org/10.1371/journal.pone.0185937 October 5, 2017 5 / 14

https://doi.org/10.1371/journal.pone.0185937.g001
https://doi.org/10.1371/journal.pone.0185937


Lung lymph flow, an index of pulmonary transvascular fluid flux, was increased ~9-fold in

control sheep compared to baseline (37.4±14.4 at 36hr, 4.2±1.1 at Baseline). This was associ-

ated with a significant total protein decrease in plasma and its increase in lung lymph. The

treatment with ASCs significantly attenuated increases in lymph flow (control vs. ASCs; 31.2

±6.2 and 13.9±3.1 at 18hr, 33.3±5.6 and 18.2±4.8 at 30hr, 34.1±5.5 and 15.0±4.3 at 36hr,

p<0.05) (Fig 2A). The plasma protein significantly decreased immediately after the injury vs.

baseline and continued to drop in the control group. Treatment with ASCs prevented these

changes (Fig 2B). Accumulated loss of protein with lung lymph tended to increase in both

groups, but it was significantly lower after 24hrs in ASC group (Fig 2C). Moreover, the treat-

ment with ASCs almost reversed increased pulmonary vascular permeability index {(lung

lymph protein × lung lymph flow)/plasma protein} (Fig 3A) and reduced lung water content

(Lung wet-to-dry weight ratio) (5.7±2.6 and 7.9±3.6, p = 0.0556) (Fig 3B).

PaO2/FiO2 ratio decreased below 300 after 24hours in control group. However, pulmonary

gas exchange was significantly improved by ASCs treatment. ASCs treatment delayed the

Fig 2. Fluid and protein leakage from lung. Intravenous administration of ASCs significantly reduced the pulmonary microvascular
hyperpermeability in sheep caused by cotton smoke inhalation. (A) Lung lymph flow, an index of pulmonary transvascular fluid flux, was
increased ~9-fold in control sheep compared to baseline. This was associated with a significant total protein decrease in plasma (B) and its
increase in lung lymph(C). Treatment with ASCs prevented these changes.

https://doi.org/10.1371/journal.pone.0185937.g002

Fig 3. Pulmonary vascular permeability. (A) The treatment with ASCs almost reversed increased
pulmonary vascular permeability index and (B) reduced lung water content (LungWet-to-Dry Ratio). Smoke
inhalation injury causes pulmonary vascular hyperpermeability to both fluid and protein, which was attenuated
by ASCs treatment.

https://doi.org/10.1371/journal.pone.0185937.g003
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onset of ARDS (PaO2/FiO2 ratio, control vs. ASCs: 262±127 and 406±101 at 24hr, 150±29 and

354±56 at 30hr, p<0.05) (Fig 4A). Oxygenation index increased markedly in the control group

after 18hr and continued to increase over the 48hrs study period. The latter was significantly

attenuated by ASCs (P<0.05 at 36hr and 48hr [Fig 4B]).

Peak and Pause airway pressures were increased more than 2 fold in the control group.

These changes were significantly inhibited by the ASCs treatment (Fig 4C and 4D).

In treatment group, urine output was significantly higher compared to the control group at

18, 24 and 30hrs after injury (Fig 5A). Increases in accumulated net fluid balance (fluid reten-

tion) were significantly attenuated by ASCs treatment compared to control group at 42 and

48hrs after injury (Fig 5B).

Systemic hemodynamics (Table 1)

Mean arterial pressure increased in both groups following injury as compared to baseline

values. There was no difference in comparison between the two groups. Systemic vascular

resistance also similarly increased post-injury in both groups. Additionally, the pulmonary

capillary wedge pressure and central venous pressure did not deviate between the two groups

over the experimental period.

The pulmonary artery pressure was not affected during the 30-minute infusion of 200 mil-

lion ASCs into the jugular vein. In the post-injury time, the changes in pulmonary artery pres-

sure were comparable in both groups except it was significantly higher at 18hrs in ASCs group.

Cardiac index displayed no sustained post-injury changes, and there were no differences

between sheep receiving therapeutic treatment and control group.

Fig 4. Pulmonary function. The administration of ASCs significantly improved pulmonary gas exchange,
evaluated by determining PaO2/FiO2 ratio (A), and pulmonary oxygenation index (B). Peak and Pause airway
pressures were gradually elevated after 18 hours and reached more than 2 fold in the control group at the end
of the study. The treatment also significantly reduced elevated airway pressures (C, D).

https://doi.org/10.1371/journal.pone.0185937.g004
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Histopathology

Many structurally intact ASCs were detected in the lung interstitial space and seemed to

migrate by changing their shape (Fig 6A). Few stained cells were found in liver vasculatures

and sinus 24hours after injury (Fig 6B). In spleen, many smaller particles were stained by anti-

GFP antibody, and no structurally intact cells were detected (Fig 6C). Urinary tubules were

filled by stained particles and some cells were found in glomerulus (Fig 6D), but its integrity

was disrupted.

Fig 5. Fluid balance. (A) Urine output was significantly higher in the treatment group. (B) Increases in
accumulated net fluid balance (fluid retention) were significantly attenuated by ASCs treatment compared to
control group.

https://doi.org/10.1371/journal.pone.0185937.g005

Table 1. Systemic hemodynamics.

Baseline Time After Injury, h

3 6 12 18 24 30 36 42 48

MAP, mmHg

Control 97.8±3.6 108±3.8 105±4.7 99±1.8 94.8±2.4 99.2±2.9 95.6±2.2 94.4±3.9 97.2±1.7 93±4.2
ASCs 96.6±3.1 114.4±3.4 111.0±3.0 103.8±3.2 101.8±2.6 96.8±4.0 97.6±1.5 99.0±4.0 104.4±2.1 101.8±3.0

PAP, mmHg

Control 20.6±0.9 22.0±1.6 24.0±1.4 20.2±0.7 21.4±1.2 29.0±2.5 29.2±2.2 26.4±2.3 26.2±1.8 25.8±1.8
ASCs 22.2±2.4 27.4±1.7 28.2±1.3 26.4±2.8 30.4±2.7* 27.4±1.5 27,2±1.6 27.8±1.9 28.4±1.4 26.2±2.3

PCWP, mmHg

Control 12.4±0.9 13.2±1.7 14.0±1.6 10.6±0.4 11.4±0.5 15.8±0.7 15.6±2.1 14.0±2.1 14.0±1.8 14.2±1.8
ASCs 13.2±1.9 17.0±1.2 15.2±0.6 14.4±1.2 16.0±1.7 15.2±0.7 15.0±1.2 14.8±2.0 14.6±1.9 15.0±1.8

CVP, mmHg

Control 8.2±1.0 7.4±1.2 7.6±1.0 6.6±1.0 6.2±1.0 9.0±1.3 6.0±1.6 7.6±1.9 10.2±1.6 10.8±1.7
ASCs 7.8±1.4 11.0±1.2 10.4±0.7 7.8±0.9 9.4±0.8 9.8±1.6 9.0±1.7 8.0±2.0 9.0±2.1 9.4±2.2

CI, L×min-1×m-2

Control 6.1±0.4 6.2±0.5 5.9±0.2 5.6±0.3 5.4±0.2 5.1±0.6 5.1±0.4 5.2±0.3 5.6±0.5 5.9±0.2
ASCs 6.4±0.3 6.7±0.4 6.5±0.4 6.3±0.2 6.1±0.2 6.2±0.5 5.3±0.2 6.0±0.4 6.8±0.7 6.0±0.7

SVRI, dynes×sec×cm-5m-2

Control 1204.2
±100.7

1322.4
±94.0

1325.5±66.9 1336.7
±75.8

1329.1
±54.3

1457.9
±132.9

1444.3
±117.3

1356.1
±69.6

1275.3
±116.6

1123.2±60.2

ASCs 1120.9±44.0 1250.9
±98.9

1262.7
±105.5

1226.8
±19.3

1208.2
±59.3

1153.3±95.0 1348.2±87.5 1219.0
±68.7

1177.7
±142.4

1314.5
±180.6

(MAP, mean arterial pressure; CVP, central venous pressure; MPAP, mean pulmonary artery pressure; and LAP, left atrium pressure)

https://doi.org/10.1371/journal.pone.0185937.t001
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Discussion

The main findings of the present work was as follows:

1) Intravenous administration of ASCs significantly reduced the pulmonary microvascular

hyperpermeability in sheep caused by cotton smoke inhalation. This was evidenced by signifi-

cantly attenuated increases in lung lymph flow, an index of pulmonary microvascular fluid

flux, pulmonary microvascular hyperpermeability index and reduced lung water content.

These observations were supported by the findings that ASCs significantly reduced the sys-

temic fluid retention, increased the plasma protein, prevented protein loss in lymph, and

increased the urinary output. 2) The administration of ASCs significantly improved pulmo-

nary gas exchange, evaluated by determining PaO2/FiO2 ratio (arterial/inspired air oxygen

partial pressures), and pulmonary oxygenation index. The treatment also significantly reduced

elevated airway pressures. The data from present study suggest that ASCs treatment delayed

the onset of mild ARDS and prevented the development of moderate and severe ARDS as the

PaO2/FiO2 ratio stayed above 300 up to 30hrs and above 200 in the remaining time period. It

is worth noting that the intravenous administration of ASCs was well tolerated, as there were

not any negative hemodynamic changes observed, including pulmonary arterial pressure dur-

ing the 30-minute infusion time.

Fig 6. Histopathology.Many structurally intact ASCs were detected in the lung interstitial space (A). Few stained cells were found in liver
(B). In the spleen, many smaller particles were stained by anti-GFP antibody (C). Urinary tubules were filled by stained particles (D).

https://doi.org/10.1371/journal.pone.0185937.g006
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MSCs are multipotent cells with low immunogenicity that secrete multiple anti-inflamma-

tory cytokines capable of modulating the immune response, attenuating bacterial infection by

secretion of antimicrobial peptides, and controlling oxidative stress through the transfer of

functional mitochondria to the damaged host cells [11, 19–21]. It has previously been shown

that MSCs from different origins ameliorated the severity of acute lung injury [22–25]. In con-

trast to our research, a majority of these studies were conducted with the rodent model, and

treated with bone marrow-derived human mesenchymal stem cells. The sheep model has

proven to be an excellent paragon for biomedical research. The anatomy and physiology of the

sheep respiratory system is well understood and much more comparable to humans. Hence,

the ovine model is appropriate for vaccines, asthma pathogenesis, and inhalation treatment

studies.

As mentioned, adipose-derived stem cells exerted a strong effect on systemic and pulmo-

nary microvascular hyper-permeability caused by smoke inhalation; however, the study is lim-

ited by insufficiently described mechanistic aspects underlying these salutary effects. It has

been shown that beneficial effects of MSCs are mediated by many different factors including

their ability to modulate innate and adaptive immune cells, by enhancing anti-inflammatory

pathways, such as IL-10 and IL-1 receptor antagonist [26, 27]. Previous studies reported that

MSCs alleviate severity of organ injury by their antioxidative effects [28]. MSCs attenuate neu-

trophil activity and protect against ventilator-induced lung injury [29]. Pati S et al. reported

that bone marrow derived mesenchymal stem cells inhibit inflammation and preserve vascular

endothelial integrity in the lungs after hemorrhage shock by inhibiting leucocyte adhesion

molecules [30]. In our previous studies, we have demonstrated important roles of oxidative

stress, neutrophil activation, adhesion molecules, and pro-inflammatory cytokines, such as IL-

1 and IL-6 in smoke inhalation-induced acute lung injury in sheep model [31–38]. Thus,

based on previous studies by others and our group, we speculate that ASCs may have attenu-

ated severity of smoke inhalation-induced acute lung injury by exerting their potent anti-

inflammatory (secretory function) properties.

Previous studies also reported that MSCs attenuate lung injury through lipoxin A4 (LXA4)

[39, 40]. It has also been shown that potent permeability factor angiopoietin-2 (ANG2) to play

a critical role in the pathophysiology of ARDS [41–43]. We have measured both LXA4 and

ANG2 in the lung tissue at 48 hours (time of necropsy); however, these values were not

affected by ASCs treatment, suggesting that LXA4 and ANG2 pathways are not involved in the

beneficial effect of ASCs on microvascular hyper-permeability and lung tissue injury at least at

48 hours.

Another limitation of our present study is that we were not able to measure inflammatory

or permeability markers in the lung tissue at different time points after the injury. It is possible

that the peak time of the expression of ANG2 and LXA4 occurred much earlier; as we have

reported in our previous studies that inflammatory mediators (lung IL-1β, TNF-α, IL-6) in
mice lung tissue peaked around 9 hours after the injury [36]. We have also reported on the

time course of cytokines in sheep sepsis study, in which IL-6 and PARP activation in lung tis-

sue peaked at 8 hours and 12 hours after injury [37].

In the present study, we have determined the distribution of intravenously administered

ASCs. We found many structurally intact ASCs in the lung parenchyma 24 hours after the

injury (microscopic image). Some intact cells were also spotted in the liver sinus. However, we

were not able to find intact ASCs in spleen or urine in spite of the positive signals of green fluo-

rescent protein (GFP) by whole organ imaging or flow cytometer.

Microscopically, we found numerous small particles stained with anti-GFP antibody in

spleen and renal tubules. It is worth nothing that whole organ imaging gives some idea of cell
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distribution, but this method does not provide information on the cell morphology, while

microscopic assay (immunohistochemistry) enables the determination of cell integrity.

Nevertheless, the above results suggest that most of the intravenously administered ASCs

are deposited in the lung tissue, migrating to interstitial space. Currently, we have no evidence

confirming their differentiation to lung epithelial or endothelial cells; however we do not

exclude the possibility of their engraftment, thus repairing the injured cells—this hypothesis

should be further investigated. It appears that there was none or minimal (liver) distribution of

these cells in non-pulmonary organs at least 24 h injection (another limitation of this study is

that were not able to harvest lung tissue at different times after the ASCs infusion).

Previously, numbers of investigators reported in vivo cell distribution. Schrepfer et al. dem-

onstrated that most of intravenously (IV) infused MSCs were trapped in the lung 5 minutes

after injection, and lung passing was size dependent [44]. Fischer et al. investigated the pulmo-

nary first-pass effect and found MSCs in carotid artery immediately post- injection, but the

numbers were less than 1% of infused cells [45]. Barbash et al. showed that IV injected MSCs

were redistributed in liver, kidney and bladder 4 hours after injection using whole body fluo-

rescent imaging [46]. These studies suggest that a small amount of cells pass through the lung

microvasculature. However, this notion should be confirmed by future studies with frequent

sampling at various time points after the infusion.

Nevertheless, we are reporting for the first time, to our knowledge, the beneficial effects of

ASCs in a clinically relevant translation ovine model of acute lung injury induced by smoke

inhalation. This is of a particular importance, because there are no clinical studies demonstrat-

ing efficacy of MSCs in ARDS patients expect two phase-1 safety studies with limited numbers

of patients [12, 13]. Previously, our group demonstrated beneficial effects of clinical grade

human bone marrow-derived MSCs in ovine model of ALI/ARDS induced by pneumonia sep-

sis [14].

In conclusion, the results of our previous and present studies as well as prior studies by

others, strongly suggest that ASCs could be a safe and efficient therapeutic option for the treat-

ment of ARDS patients. These studies also indicate a need for large, multicenter and prospec-

tive clinical studies on the safety and efficacy of ASCs in ARDS patients. Future studies

exploring mechanistic aspects specifically focusing on the salutary effects of ASCs on endothe-

lial permeability are warranted.
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