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In obese individuals, visceral adipose tissue (VAT) is the

seat of chronic low-grade inflammation (metaflamma-

tion), but the mechanistic link between increased adi-

posity and metaflammation largely remains unclear. In

obese individuals, deregulation of a specific adipokine,

chemerin, contributes to innate initiation of metaflam-

mation by recruiting circulating plasmacytoid dendritic

cells (pDCs) into VAT through chemokine-like receptor 1

(CMKLR1). Adipose tissue–derived high-mobility group

B1 (HMGB1) protein activates Toll-like receptor 9 (TLR9)

in the adipose-recruited pDCs by transporting extracel-

lular DNA through receptor for advanced glycation end

products (RAGE) and induces production of type I inter-

ferons (IFNs). Type I IFNs in turn help in proinflammatory

polarization of adipose-resident macrophages. IFN sig-

nature gene expression in VAT correlates with both ad-

ipose tissue and systemic insulin resistance (IR) in obese

individuals, which is represented by ADIPO-IR and HOMA2-

IR, respectively, and defines two subgroups with different

susceptibility to IR. Thus, this study reveals a pathway that

drives adipose tissue inflammation and consequent IR

in obesity.

Obesity and associated metabolic disorders are major health

problems worldwide. Studies over the past decade have

established that visceral adipose tissue (VAT) in obese

individuals harbors chronic low-grade inflammation,

termed metaflammation, involving myriad innate and

adaptive immune cell subsets (1–3). Interest in mech-

anisms of metaflammation grew after discovery of res-

ident macrophages in VAT of obese individuals (4).
The chemokine-receptor axis CCL2-CCR2 has been impli-

cated in the recruitment of monocyte-derived macrophages

into adipose tissue (5,6). In obese VAT, as opposed to lean

VAT, the resident macrophages show a classically activated

proinflammatory M1 phenotype rather than the so-called

alternatively activated anti-inflammatory M2 phenotype

(2). Although CCR2+ macrophages have been shown to be

recruited in response to CCL2 expressed in obese VAT, no
evidence points to selective recruitment of M1 macrophages

in response to CCL2. One study shows that CCL2 pro-

motes an M2 phenotype (7). Thus, the switch in the macro-

phage phenotype in response to hyperadiposity cannot be

explained by the CCL2-CCR2 axis. Therefore, the potential

mediators for the M2-to-M1 switch are probably induced in

obese VAT in situ.

One of the proposed candidates is circulating free fatty
acid (FFA), which might induce proinflammatory cytokine

production from adipocytes through Toll-like receptor

4 (TLR4) (8). These adipose-derived cytokines in turn

can affect the macrophage phenotypic switch in situ as

well as systemic insulin resistance (IR) (9). Fetuin-A, a
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fatty acid–binding glycoprotein secreted from the liver,
has been implicated in mediating TLR4 activation by

FFAs (10). Nevertheless, the mechanistic link between

metabolic deregulation associated with increased adipos-

ity and innate immune initiation of metaflammation re-

mains largely unclear. A major adipose-intrinsic deregulation

in obesity is change in adipokine expression levels. An

imbalance between two such adipokines, leptin and adi-

ponectin, has been found to be instrumental for the met-
abolic derangements associated with obesity (11). Chemerin

(expressed by tazarotene-induced gene 2 [TIG2]) is another

such adipokine that regulates adipocyte development,

differentiation, and metabolic function (12). Chemerin ex-

pression in adipocytes is increased with abundance of FFAs

(13); accordingly, its systemic level has been found to be

elevated in obese patients with metabolic syndrome (14,15).

Moreover genetic deficiency of chemokine-like receptor
1 (CMKLR1), the cognate receptor for chemerin, in mice

protects them from high-fat diet (HFD)–induced IR (14).

Of note, chemerin also acts as a chemokine for immune

cells acting through CMKLR1, specifically plasmacytoid

dendritic cells (pDCs) (16), the major type I interferon

(IFN)–producing cells in the body. In autoimmune con-

texts, like psoriasis, chemerin has been shown to recruit

pDCs in tissues and initiate the cascade of autoreactive
inflammation through type I IFNs (17–19).

We wondered whether adipose tissue–derived chem-

erin is involved in linking hyperadiposity to initiation of

metaflammation by playing a similar chemotactic function

in obesity as well. We collected VAT samples from obese

individuals, and by means of whole-tissue gene expres-

sion, adipose explant culture, and cell culture studies, we

unraveled a role of chemerin-recruited pDCs and type I
IFNs in the initiation of metaflammation.

RESEARCH DESIGN AND METHODS

Patients and Tissue Samples

We recruited 83 obese and 29 lean individuals who were

undergoing bariatric surgery or other abdominal surger-

ies, respectively, at the ILS Hospitals, Kolkata, India.

Relevant characteristics of the recruited patients are

shown in Table 1. Greater omental adipose tissue samples

from all obese individuals and 11 lean individuals and

peripheral blood samples were collected after written in-

formed consent per recommendations of the institutional
review boards of all participating institutions.

RNA Isolation and Quantitative Real-Time PCR

Total RNA was isolated from both in vitro–cultured

and ex vivo–sorted macrophages and VAT using TRIzol

reagent (Life Technologies, Frederick, MD). cDNA was

synthesized with Superscript III (Thermo Fisher Scien-

tific, Waltham, MA) and assayed for expression of in-

dicated genes by an Applied Biosystems 7500 Fast
Real-Time PCR using SYBR Green Master Mix (Roche,

Basel, Switzerland). The primers are listed in Supple-

mentary Table 1.

Isolation of Stromal Vascular Fraction From VAT

Major macroscopic blood vessels were removed by dissec-

tion from the VAT samples followed by wash with PBS

(three changes) and digestion in PBS supplemented with
0.075% collagenase I, 1% BSA, and 1% HEPES at 37°C.

Stromal vascular fraction (SVF) was obtained by centrifu-

gation of the digested VAT at 300g for 10 min followed by

Table 1—Anthropometric and biochemical parameters of the recruited individuals

Data available Values

Parameters Obese Lean Obese Lean

Total 83 29 — —

Female 49 8 — —

Male 34 21 — —

Age (years) 83 29 41.2857 6 12.0866 44.7241 6 11.4483

BMI (kg/m2) 76 29 43.9388 6 7.46692 25.07037 6 3.09401

VAT samples 83 11 — —

Plasma samples 72 28 — —

Fasting blood glucose (mg/dL) 78 29 128.7462 6 59.1401 103.5862 6 19.4082

Fasting plasma insulin (mU/mL) 63 0 25.3906 6 14.2685 NA

HbA1c (%) 63 20 7.15873 6 1.719118 5.445 6 0.551052

HbA1c (mmol/mol) 63 20 57.23809 6 21.8216 35.9 6 6.086223

Plasma FFA (mmol/L) 64 0 296.6826 6 114.731 NA

Plasma chemerin (ng/mL) 72 28 75.2466 6 23.2116 15.4 6 18.6437

ADIPO-IR 64 0 49.198 6 37.125 NA

HOMA2-IR 63 0 3.52116 2.0888 NA

Data are n and mean 6 SD. NA, not available.
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passage through a 100-mm cell strainer (SPL Life Sciences,
Gyeonggi-do, Korea).

Flow Cytometric Analysis and Sorting

CD123+CLEC4c+ pDCs in the SVFs from VAT samples

were enumerated with the following fluorophore-tagged

antibodies: CD45 phycoerythrin (PE) (BD Biosciences, San

Diego, CA) and CD3 fluorescein isothiocyanate (FITC),

CD8 peridinin-chlorophyll-protein (PerCP), CLEC4c allo-

phycocyanin (APC), and CD123 eFlour450 (eBioscience,

Santa Clara, CA). To assess surface phenotype of in vitro–

generated macrophages, we used anti-human CD14 PerCP,
CD11b BV421, CD206 FITC, and CD86 APC (BD Biosci-

ences). Macrophage subsets in the SVF from VAT samples

(n = 11) were enumerated using CD3 PerCP and CD163

APC (eBioscience) and CD45-PE, CD11b FITC, and CD11c

PE Cy7 (BD Biosciences) to identify M1- (CD11b+CD11c+)

and M2- (CD11b+CD163+) polarized macrophages by flow

cytometry. In some cases (n = 7), the M1 and M2 subsets

were sorted on a BD FACS Aria cell sorter for subsequent
gene expression studies.

Adipose Tissue Sectioning and Staining

Adipose tissue samples were cryosectioned (15-mm thick
slices) in a Leica CM1950 cryotome using Shandon cryo-

matrix and stained with PE-conjugated BDCA4 antibody

(Miltenyi Biotec, Bergisch Gladbach, Germany). DAPI-

counterstained sections were mounted with VECTASHIELD

(Vector Laboratories, Burlingame, CA) and 2003 images

were acquired on an EVOS FL fluorescence microscope

(Thermo Fisher Scientific).

pDC Isolation and Culture

pDCs were isolated from peripheral blood mononuclear

cells by magnetic immunoselection using anti-BDCA4

microbeads (Miltenyi Biotec). Isolated pDCs were cultured
in complete RPMI medium (or as indicated) in 96-well

U-bottom plates.

Adipose Explant Culture

VAT samples were collected in PBS supplemented with

1% Gibco antibiotic-antimycotic solution (Thermo Fisher

Scientific). Minced pieces of tissue were weighed and

cultured in complete Gibco RPMI medium. Supernatant

(adipose explant culture supernatant [AEC-sup]) was

collected from the culture at 1, 7, 14, 24, and 36 h and

then cryostored.

pDC Migration Assay

Purified pDCs were cultured for 1 h in RPMI medium with

2% FBS (migration medium) followed by incubation for

15 min in the presence of control antibody (rat IgG2a
1 mg/mL; eBioscience), anti-CMKLR1 antibody (1 mg/mL;

eBioscience), or just the migration medium. Then 50 3

103 pDCs in 100 mL was added to the top transwell in-

serts, and either 600 mL of AEC-sup or control medium

was added to the bottom chambers. After 5 h, the plate was

kept on ice for 15 min, and the number of migrating cells

was counted. In some experiments, purified recombinant

human chemerin (10 ng/mL; R&D Systems, Minneapolis,

MN) were used to drive pDC migration in the presence
of the anti-CMKLR1 antibody or control antibody as

described.

Reporter Assays

Human embryonic kidney (HEK) cells (70,000 cells/200 mL)

expressing human TLR9 along with a nuclear factor kB

(NF-kB) promoter–driven secreted embryonic alkaline

phosphatase (SEAP) reporter (InvivoGen, San Diego, CA)
were used for assessing TLR9 activation by the AEC-sups.

Twenty-five percent of the total volume of AEC-sup or

control medium was used for the assays, and the SEAP

activity was assessed using QUANTI-Blue detection media

(InvivoGen).

pDC Stimulation With AEC-sups

AEC-sups were added to pDC cultures to check for
type I IFN induction. To deplete adipose explant superna-

tants of DNA molecules, the AEC-sups were treated with

200 units/mL DNase (Thermo Fisher Scientific) for 1 h

at 37oC before addition to pDC cultures. In some exper-

iments, RAGE receptors were blocked on pDCs using

1 mg/mL anti-human RAGE goat polyclonal antibody

(R&D Systems) before adding the AEC-sups. To deplete

the HMGB1-bound TLR9 ligands, AEC-sups were added
with either 5 mg/mL anti-HMGB1 monoclonal antibody

(R&D Systems), control antibody, or none (mock deple-

tion) and then added to the tubes containing protein G

magnetic beads (Merck Millipore, Danvers, MA). After

incubation for 12 h, the antibody-bound beads were re-

moved by using a Magna rack. Following this, the mock

and antibody-depleted supernatants were added to freshly

isolated pDCs.

ELISA

ELISA was used to detect and measure IFN-a (Mabtech,

Nacka Strand, Sweden) in the supernatants obtained from

pDC cultures, tumor necrosis factor a (TNF-a) in the su-

pernatant of macrophage culture (Mabtech), chemerin

(Merck Millipore) in AEC-sups, and insulin (Merck

Millipore) in plasma samples. ELISAs were performed

according to the respective manufacturer’s protocol. FFA
estimation was done for the plasma samples by using a

fluorometric assay kit (Cayman Chemical, Ann Arbor, MI).

RNA Interference

Knockdown of TLR9 expression in freshly isolated pDCs

was done with small interfering RNA (siRNA) using

nucleofection according to the manufacturer’s protocol

(Amaxa 4D-Nucleofector Kit; Lonza, Koln, Germany).

pDCs (5 3 105) were resuspended in 100 mL of sup-
plemented P3 nucleofection buffer. Control (MISSION

esiRNA-targeting EGFP; Sigma-Aldrich, Haverhill, MA)

or human TLR9-specific siRNA (sequence: GACCUCUAU

CUGCACUUCUdTdT) (Eurogentec, Liège, Belgium) was

delivered by using the program FF168. After 18 h of

culture in complete RPMI medium, cells were harvested

and plated in a 96-well U-bottom plate and treated as

indicated.
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Macrophage Culture

Peripheral blood CD14+ monocytes were isolated by

magnetic immunoselection from healthy peripheral

blood mononuclear cells and differentiated to macro-

phages by culturing in the presence of recombinant hu-

man macrophage colony-stimulating factor (M-CSF)

(500 units/mL; R&D Systems) in 24-well plates. Forty-

eight hours later, recombinant human interleukin-4

(IL-4) (20 ng/mL; Tonbo Biosciences, San Diego, CA) was
added to the macrophages to allow polarization to the

M2 phenotype and incubated for an additional 48 h

(except control wells). Following this, recombinant hu-

man IFN-a (PBL Interferon Source, Piscataway, NJ) was

added in indicated concentrations (10, 100, and 1,000

units/mL). Cultured macrophages and their superna-

tants were then harvested and processed after 48 h for

further studies. In some experiments, in vitro–generated
M2 macrophages (10 3 105) were cocultured with freshly

isolated autologous pDCs (10 3 104) in the presence of
AEC-sups.

Statistics

Statistical analyses of all data were done with GraphPad

Prism 5.0 software. Data were compared between groups
using paired or unpaired Student t test and Spearman

rank correlation.

RESULTS

VAT-Derived Chemerin Recruits pDCs in Obesity

We recruited adult obese individuals undergoing bariatric

surgery and collected samples of their VAT. To explore the

potential role of VAT-derived chemerin in recruitment of

pDCs into VAT, we did explant cultures with human VAT

samples. We found accumulation of chemerin in the AEC-

sups with time (Fig. 1A). We then checked the chemotac-

tic function of these AEC-sups in transwell migration

Figure 1—VAT-derived chemerin recruits pDCs in obesity. A: Chemerin ELISA was done on AEC-sups collected at various time points.

Each dot represents an AEC-sup generated from different VAT samples (n = 14 at 36 h). Comparisons among paired samples were done by

paired t test. B: Migration of pDC (isolated from healthy donors) was assessed in response to AEC-sups in transwells. pDCs were either

untreated or pretreated with anti-CMKLR1 or isotype control antibody, and the number of migrated pDCs were compared by performing

two-tailed paired t test (P = 0.0185). Cumulative data of six independent experiments (with different AEC-sup and pDC donor combinations)

are represented. C and E: Total RNA was isolated from VAT of lean (n = 11) and obese (n = 83) individuals, and real-time PCR was done to

determine the relative expression of CLEC4C and chemerin (TIG2) genes (normalized to the expression of 18S rRNA as the reference gene).

Expression of TIG2 and CLEC4C was compared between the two groups by Student t test (P = 0.8408 for TIG2, P = 0.004 for CLEC4C).

D: Plasma level of chemerin measured by ELISA was compared between lean and obese individuals by Student t test (P < 0.0001).

F: The relative expression values of TIG2 and CLEC4C in obese VAT were correlated based on Spearman rank correlation (r = 0.6203, P <

0.0001). G and H: SVF was isolated from VAT samples by enzymatic digestion and stained to enumerate frequency of pDCs

(CD45+CD32CD82CD123+CLEC4c+ cells) by flow cytometry and compared with pDC frequency (stained similarly) from peripheral blood

of the same individuals. A representative contour plot was acquired by flow cytometry (G), and a scatter plot reveals relative enrichment of

pDCs in VAT (H) compared with peripheral blood (n = 15). Paired Student t test (two-tailed) was performed to show significant enrichment of

pDCs in VAT (P = 0.0071). I: Representative images from immunofluorescence microscopy done on cryosections of VAT samples. The left

panel shows the merged image of a 2003 field; nuclei were stained with DAPI (blue), and pDCs were stained with PE-labeled anti-BDCA4

antibody (red). The middle panel shows a digitally zoomed region of the DAPI area, and the right panel shows the merged image of the

same zoomed region of the field. Arrows show BDCA4+ pDCs. *P < 0.05. BF, bright field; Ctrl, control.
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experiments with purified pDCs from healthy donors.
Neutralizing the receptor CMKLR1 led to total abolition

of recombinant chemerin-induced pDC migration in these

experiments (Supplementary Fig. 1A). We found efficient

pDC migration along the AEC-sup gradient that also could

be inhibited by neutralizing the CMKLR1 receptor on

pDCs by using a monoclonal antibody as opposed to an

isotype control antibody (Fig. 1B). Gene expression stud-

ies on these VAT samples revealed that VAT expression of
TIG2 was not upregulated in obese compared with lean

individuals (Fig. 1C), but plasma levels of chemerin were

significantly higher in obese individuals (Fig. 1D). Thus, it

seems that the increased volume of body visceral fat

rather than the intrinsic biology of the adipose tissue is

responsible for this increased plasma level of chemerin

in obesity. Obese VAT also showed significantly higher

enrichment of CLEC4C expression (Fig. 1E), the signa-
ture transcript for pDCs (20). We found a strong pos-

itive correlation between expression of chemerin (TIG2)

and CLEC4C expression (Fig. 1F). Recruitment of other

immune cell subsets in response to chemerin is implausible

because expression of CMKLR1, the chemerin receptor, is

restricted to pDCs among different immune cells (Supple-

mentary Fig. 1B). We isolated the SVF from the collected

VAT samples and detected significant enrichment of
CD45+CD32CD82CD123+CLEC4c+ pDCs by flow cytome-

try compared with peripheral blood (Fig. 1G and H).

BDCA4+ pDCs were also detected in situ in cryosections of

VAT (Fig. 1I). These studies reveal that in obese individuals,

adipose-derived chemerin can recruit pDCs from the circu-

lation into the VAT through CMKLR1 receptor and thus link

the hyperadiposity-driven functional phenotype of adipo-

cytes to recruitment of a major innate immune cell.

Type I IFN Induction by VAT-Recruited pDCs

pDCs are the most efficient type I IFN–producing cells in

the immune system (21). Induction of type I IFN produc-

tion by pDCs in response to recognition of self or nonself

nucleic acid molecules by endosomal TLRs (TLR9 and

TLR7) is the mainstay of pDC function in protective im-

munity against pathogens (mostly viruses) as well as in their
key role in several autoimmune diseases (18,19,21–23).

Finding chemerin-driven recruitment of pDCs into VAT

of obese individuals naturally led us to consider the pos-

sibility of pDC activation in situ and involvement of type I

IFNs in metaflammation. We checked for expression of

four genes (IRF7, ISG15, MX1, and TRIP14), which repre-

sent the group of IFN signature genes (ISGs) expressed in

responder cells to type I IFN signaling that have pre-
viously been shown to be surrogate markers for type I

IFN induction in several autoimmune contexts (24,25).

We calculated an ISG index (ISGi) as the average relative

expressions of the four selected ISGs (Supplementary

Fig. 2A–F) and found that CLEC4C expression in VAT

correlates positively with the ISGi (Fig. 2A). As expected,

the ISGi was significantly higher in obese VAT than in

lean VAT (Fig. 2B).

Previous studies have established that visceral fat
depots are critical sites for obesity-associated metaflam-

mation compared with subcutaneous adipose tissue (26).

To confirm the importance of VAT in this phenomenon,

we compared paired samples of subcutaneous adipose tis-

sue with VAT samples (n = 6). As expected, VAT samples

showed significantly higher expression of TIG2, enrich-

ment of CLEC4C transcript, and ISGi (Supplementary

Fig. 3A–C).
To look for endogenous molecules that may lead to

type I IFN induction in VAT-recruited pDCs, we added

AEC-sups collected from obese individuals to purified

pDCs from healthy donors in culture. We found that AEC-

sups could induce type I IFN production by pDCs (Fig.

2C). When AEC-sups were treated with DNase before ad-

dition to the culture, this pDC activation was abrogated,

indicating that extracellular DNA molecules released in
the AEC-sup play a role in pDC activation (Fig. 2D). Rel-

ative abundance of extracellular nucleic acids in VAT can

be extrapolated from the higher propensity of adipocyte

death and tissue remodeling previously reported in obesity

(27,28). AEC-sups were also able to trigger TLR9 activation in

HEK293 cells that express TLR9 and report downstream

NF-kB activation through an enzymatic reporter (Fig. 2E).

When the TLR9 gene was knocked down in pDCs using
siRNAs (Supplementary Fig. 4A), AEC-sup–induced type I

IFN production by pDCs was abolished (Fig. 2F), confirming

a critical role of TLR9 activation in this event.

HMGB1 Aids Activation of VAT-Recruited pDCs

Under physiological conditions, extracellular nucleic acids

of self-origin cannot access the TLRs in pDCs due to their

endosomal localization (21). But in autoimmune contexts,
endogenous molecules (e.g., LL37, HMGB1) take part in

transport of self-nucleic acids into pDC endosomes and

initiate sterile autoreactive inflammation (19,21). Among

such molecules, the HMGB1 protein has been shown to

bind extracellular self-DNA molecules and facilitate their

recognition by endosomal TLR9 in pDCs through partic-

ipation of RAGE, which is expressed in pDCs (29). Of

note, one study showed that in obese individuals, there
is an elevated level of HMGB1 in plasma as well as an

increased expression in VAT, which correlate with adipose

inflammatory markers (30). Therefore, we speculated that

HMGB1 may help in TLR activation in VAT-recruited

pDCs. Antibody-mediated neutralization of RAGE, the

HMGB1 receptor, on pDCs could have inhibited AEC-

sup–induced type I IFN induction (Fig. 3A). Moreover,

antibody-mediated depletion of HMGB1 from the AEC-
sups, before they were added to pDC cultures, abolished

the type I IFN induction capability of the AEC-sup (Fig.

3B). Similar mechanisms of pDC activation seem to operate

in vivo in obese individuals as well. We found a signifi-

cantly positive correlation between expression of HMGB1

and ISGi in VAT samples (Fig. 3C). Thus, we found that

adipose tissue–derived HMGB1 and extracellular self-

DNA molecules trigger TLR9 activation in pDCs aided
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by RAGE receptors on pDCs, leading to induction of type I
IFN production in situ.

Type I IFNs Polarize Macrophages to

a Proinflammatory Phenotype

A mechanistic link between accumulation and proinflam-

matory polarization of macrophages in VAT is established

in obesity-associated metaflammation (3,4,31). Macro-

phages in lean adipose tissue show an alternatively acti-
vated anti-inflammatory M2 phenotype, whereas in obese

adipose tissue, they show a classically activated proinflam-

matory M1 phenotype (3,31). Whether this results from

selective recruitment of M1-like macrophages into VAT or

is due to in situ polarization of M2 to the M1 phenotype

remains an open question. We wanted to explore whether

type I IFN induction in VAT can drive in situ polarization

of M2 macrophages to the proinflammatory M1 pheno-
type. First, to check whether this can happen in vitro, we

generated M2 macrophages from CD14+ monocytes iso-

lated from peripheral blood of healthy individuals in

the presence of M-CSF and IL-4. We found that these

in vitro–generated M2 macrophages could be polarized

to a proinflammatory M1-like phenotype in the presence

of recombinant IFN-a in terms of reduction in expression

of M2-specific genes, like F13A1 and CCL22 (Fig. 4A and B),
and surface expression of the mannose receptor CD206,

an established marker for M2 macrophages generated

in vitro in response to IL-4 (32) (Fig. 4E and F). Expres-

sion of IFN regulatory factor 5 (IRF5), a transcription

factor with an established role in proinflammatory polar-

ization of macrophages (33,34), and the gene for inducible

nitric oxide synthase (NOS2), which is characteristically

expressed in M1 macrophages, were increased in the pres-
ence of IFN-a (Fig. 4C and D). Surface expression of the

costimulatory molecule CD86, characteristic of M1-like

proinflammatory macrophages (35), was also enhanced

in the presence of IFN-a (Fig. 4E and F). Constitutive

TNF-a production was also enhanced in the macrophage

cultures in the presence of IFN-a (Fig. 4G). Thus, we

found that IFN-a, the major member of type I IFN fam-

ily, can drive polarization of alternatively activated mac-
rophages to a proinflammatory phenotype in vitro.

Role of Type I IFNs in Macrophage Polarization In Situ

To confirm the role of pDCs in polarization of M2 to M1

macrophages in response to VAT-derived TLR9 ligands,

Figure 2—Type I IFN induction by VAT-recruited pDCs. A: Total RNA

from VAT (n = 83) collected from obese individuals was isolated, and

real-time PCR was done for the pDC-specific transcript CLEC4C and

four ISGs, namely, IRF7, TRIP14, MX1, and ISG15; relative expression

was quantified using 18S rRNA as the reference gene. ISGi was cal-

culated as the average of the relative expressions of the four selected

ISGs in each sample. The relative expression values of CLEC4C were

then related with ISGi values based on Spearman rank correlation (r =

0.4822, P < 0.0001). B: Comparison of ISGi for VAT was compared

between lean and obese individuals by Student t test (P < 0.0001). C:

AEC-sup was added to pDCs from healthy donors in increasing doses

(25% and 75% total volume of culture media), and after overnight in-

cubation, supernatants were checked for presence of IFN-a by ELISA.

Induction of IFN-a by AEC-sups was validated by paired t test (P =

0.0078). Cumulative data of seven independent experiments (with var-

ious AEC-sup and pDC donor combinations) are represented. D: AEC-

sups were treated with DNase (as described in RESEARCH DESIGN AND

METHODS) before addition to healthy pDC cultures. IFN-a induction (mea-

sured by ELISA on the supernatants after overnight incubation) was

compared with AEC-sup without DNase treatment. Cumulative data

of five independent experiments (with different AEC-sup and pDC do-

nor combinations) are represented. E: AEC-sup (25% of total volume of

200 mL per well) were added to HEK293 cells expressing TLR9 and

reported downstream NF-kB activation through SEAP reporter. Super-

natants were collected after 12 h and added to an SEAP substrate

medium for further incubation. Optical density (OD) was then measured

at 620 nm on a spectrophotometer. Data from eight different AEC-sups

are presented and compared with control medium–induced enzyme

activity by unpaired t test (P = 0.0062). F: TLR9 gene expression was

knocked down in pDCs isolated from healthy individuals by using

RNA interference. Knockdown efficiency is presented in Supple-

mentary Fig. 4A. Control (for EGFP) and target (for TLR9) siRNA-

transfected cells were cultured in the presence of AEC-sup (75% of

total volume of 100 mL per well), and after overnight incubation,

IFN-a was measured in culture supernatants. Data from seven in-

dependent experiments are presented. Comparison between con-

trol and target-transfected cells were done by two-tailed paired

t test (P = 0.024). CTRL, control.
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we performed coculture experiments of in vitro–generated

M2 macrophages and freshly isolated pDCs in the presence

of AEC-sup (Fig. 5A). We found that the proinflammatory

polarization of the M2 macrophages in response to AEC-

sup was significantly reduced in the absence of cocultured

pDCs in terms of surface expression of M2-specific marker
CD206 (Fig. 5B) and M1-specific marker CD86 (Fig. 5C). This

was associated with a significant reduction in accumulation

of IFN-a in the supernatant (Fig. 5D).

To further validate the putative role of type I IFN

response in in situ M1 polarization of the VAT-resident

macrophages, we isolated M1- and M2-type resident

macrophages from the SVFs of VAT from obese indi-

viduals by flow cytometric sorting. Expression of surface

markers CD206 and CD86, used for assessing in vitro
generation of M1 and M2 phenotypes, did not distinguish

these phenotypic subsets in SVF, which is not surprising

because characteristic markers of macrophage subsets

vary between contexts (36). Adipose tissue resident M2

macrophages can be identified by expression of CD163,

whereas M1 macrophages present in obese VATs express

CD11c (35,37,38). Accordingly, we could define distinct sub-

sets of M1 and M2 macrophages in SVF isolated from VAT
samples as CD45+CD11b+CD11c+ and CD45+CD11b+CD163+

cells, respectively (Fig. 5E). Apart from the surface markers,

the subsets could also be validated based on expression

IRF5 (Fig. 5F) and NOS2 (Fig. 5G). We found that expres-

sion of the ISG genes was significantly enriched in the

CD11c+ M1 subset (Fig. 5H), indicating that a type I

IFN response in the adipose resident macrophages favors

M1 polarization. The expression of IRF5 and NOS2 in the
CD11c+ M1 macrophages strongly correlated with ISGi

values as well (Fig. 5I and J).

In a few studies done in murine models of HFD-induced

metabolic syndrome, TLR9 activation in macrophages in

response to circulating DNA has been implicated in proin-

flammatory polarization of macrophages (39,40). In hu-

mans, however, TLR9 expression is restricted to pDCs and

B cells, with no considerable expression in the myeloid
compartments, as opposed to that in mice (41). To con-

firm this, we also compared expression of TLR9 in circu-

lating pDCs, B cells, T cells, conventional DCs, monocytes,

and in vitro–generated and ex vivo–isolated M1 and M2

macrophages. We found pDCs to be the major TLR9-

expressing cells, with no significant expression in any of

the myeloid cell subset as previously described (Supple-

mentary Fig. 4B). In whole-tissue transcripts from VAT as
well, expression of genes characteristic of M1 macro-

phages (namely, IRF5) was found to be significantly cor-

related with the level of type I IFN induction (in terms of

ISGi values) in VAT (Fig. 6A) and with expression of the

pDC signature gene CLEC4C (Fig. 6B). Although a signif-

icantly coherent expression of IRF5 and NOS2 in VAT

validated their selection as M1 signature genes (Supple-

mentary Fig. 5A), in total VAT transcript analysis, NOS2
expression was not correlated with ISGi perhaps because

of a type I IFN–independent regulation of its expression

in cells other than macrophages in vivo (Supplementary

Fig. 5B). The ratio of frequency of M1 and M2 macro-

phages in the SVF from VATs (n = 11) was also found to

be correlated with VAT ISGi (Fig. 6C). Thus, we found that

induction of type I IFNs in VAT of obese individuals drives

in situ proinflammatory polarization of macrophages as
characterized by key signature genes and surface markers,

thereby fueling metaflammation.

Type I IFN Induction in VAT Is Associated With IR

Because proinflammatory polarization of VAT-recruited

macrophages has been linked to systemic IR in numerous

previous studies (3,31), we expected a link between level

of type I IFN induction in obese VAT with adipose tissue

Figure 3—HMGB1 aids activation of VAT-recruited pDCs. A: AEC-

sups (75% of total volume 100 mL per well) were added to healthy

pDC cultures and incubated overnight. In some conditions before

addition of AEC-sups, pDCs were treated with an anti-RAGE goat

polyclonal antibody. ELISA was done to compare IFN-a levels in

supernatants of anti-RAGE antibody–treated or untreated pDCs.

Cumulative data of seven independent experiments (with different

AEC-sup and pDC donor combinations) are represented. Compar-

ison between antibody-treated and untreated conditions was done

by one-tailed paired t test (P = 0.0078). B: HMGB1 was depleted

from AEC-sups by using a monoclonal antibody (mAb) and pro-

tein G magnetic beads. These AEC-sups were then added (75%

of total volume 100 mL per well) to pDC cultures and incubated

overnight. ELISA was done for IFN-a on the supernatants and

compared between HMGB1-depleted or control antibody–

depleted AEC-sup treatments by unpaired t test (P = 0.0482). C:

Total RNA from VAT (n = 79) was isolated, and real-time PCR was

done for HMGB1, and the relative expression of the four ISGs

(IRF7, TRIP14, MX1, and ISG15) was quantified using 18S rRNA

as the reference gene. The relative expression values of CLEC4C

were then related with ISGi values based on Spearman rank cor-

relation (r = 0.2853, P = 0.0108). Ctrl, control.
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and systemic IR. We assessed adipose tissue IR in the

recruited obese individuals by measuring the ADIPO-IR

index (ADIPO-IR = plasma FFAs 3 insulin concentration),

which has been validated previously for this purpose (42).

Of note, we identified two distinct groups of individuals

in whom VAT ISGi was positively correlated with ADIPO-IR

values (Fig. 7A–C). One group (left-shifted correlation

[group L]), however, had higher ADIPO-IR values corre-
sponding to its ISGi values than the other group (right-

shifted correlation [group R]). We also found a significant

positive correlation of HOMA2-IR values, which indicate

systemic IR, with VAT ISGi in both groups L and R (Fig.

7D and E). These groups were not significantly different

with respect to BMI (Supplementary Fig. 6A), but group R

showed significantly higher enrichment of the pDC-

specific transcript CLEC4C, higher ISGi, and higher
expression of the M1 macrophage signature IRF5 (Sup-

plementary Fig. 6B–D). These two distinct groups perhaps

point to different susceptibility of obese individuals to the

development of IR after the innate initiation of metaflam-

mation through type I IFNs. Of note, the level of glycated

hemoglobin (HbA1c) was significantly correlated with only

group R (Fig. 7F), indicating that higher levels of ISGi

have a greater influence on long-term glycemic control.

Thus, we have unraveled a hitherto unknown pathway

for the initiation of metaflammation that links obesity-

induced functional changes in VAT with recruitment and

activation of a major innate immune mechanism, which

can both initiate and fuel metaflammation as shown in

the pathogenetic model (Fig. 7G).

DISCUSSION

Despite recent advances in the understanding of adipose

tissue inflammation and its role in IR, all key contribu-

tions from the immune cell subsets are yet to be fully

understood. Although the fetuin-A-TLR4 axis in adipo-

cytes and resulting MCP1 expression in visceral fat depots

has been implicated in the recruitment of circulating

CCR2+ monocytes into VAT, the mechanism of their po-

larization into proinflammatory macrophages is not clear,
as discussed earlier. We found that chemerin, an adipokine

shown to be produced by adipocytes in response to FFAs

with reported abundance in plasma in obese individuals,

plays a role in the innate initiation of VAT inflamma-

tion. Chemerin is known to have chemoattractant prop-

erties in cells expressing its cognate receptor CMKLR1,

which is preferentially expressed on the pDCs among

immune cells. We believe that as the VAT depots become

Figure 4—Proinflammatory macrophage polarization by type I IFNs. A–D: CD14+ monocytes isolated from peripheral blood of healthy

donors were developed into macrophages in vitro in the presence of M-CSF and then into M2-type macrophages by adding recombinant

human IL-4 in the culture. The cells were further cultured in the absence or presence of escalating doses of recombinant human IFN-a.

Total RNA was then isolated from the cells, and real-time PCR was done for two M2 signature genes, F13A1 (A) and CCL22 (B), as well as

for two M1 signature genes, IRF5 (C) and NOS2 (D). In the presence of IFN-a, the M2-polarized cells showed a reduction in the M2

signature genes and induction of the M1 signature genes. Statistical significance was checked by paired t test. Cumulative data of three to

seven independent experiments are presented. E and F: Macrophages generated as described in A–D were assessed for surface expres-

sion of the M2-specific marker CD206 and the M1-specific marker CD86 by flow cytometry. Histograms of a representative experiment for

both the markers (E) and cumulative data of mean fluorescence intensity (MFI) from five independent experiments (F ) are shown. Statistical

significance was checked by two-tailed paired t test. G: ELISA was done for TNF-a on supernatants collected at the end of the culture from

the macrophages generated as described previously; absorbance was taken at 450 nm (P = 0.0313 by Wilcoxon matched pair signed rank

test). OD, optical density.
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a source of chemerin in obesity, circulating pDCs infil-
trate VAT in response to CMKLR1 triggering, thus

linking hyperadiposity to VAT recruitment of an innate

immune cell. Although obese individuals had signifi-

cantly higher levels of chemerin in plasma than lean

individuals, VAT expression of chemerin (TIG2) showed

no difference between the groups, indicating a depen-

dence of systemic abundance of chemerin on total vol-

ume of VAT rather than change in adipose biology in
obesity. Total VAT volume has also been shown previ-

ously to be linked with extent of inflammation (26). As

expected, both enrichment of pDC transcript CLEC4C

expression in VAT and ISGi were significantly higher

in obese than in lean individuals. Of note, we did not

find a correlation between BMI with plasma chemerin

levels in obese individuals, which may be a result of

ongoing therapy with antidiabetic drugs, especially met-
formin, in a large number of these individuals. The re-

duction in level of chemerin in response to drug therapy

has been previously established (43).

CD11c+ DC recruitment into VAT has been previously

reported, but these studies focused mainly on conven-

tional DCs (cDCs) and their role in T-cell polarization.

DC infiltration into the VAT and liver has also been cor-

related with macrophage infiltration in HFD-fed mice

genetically deficient in CD11c+ DCs (44). Although in
this study VAT-infiltrating DCs comprised both cDCs

and pDCs, the phenotype was linked to the role of cDCs

(44). Another study provided evidence for CD11c+ cell

recruitment in VAT of obese individuals and showed

that ablation of CD11c+ DCs in HFD-fed obese mice re-

duced VAT inflammation as well as IR (45). The reason

behind this recruitment of DCs and initiation of the meta-

flammation process, however, was not clear in these studies.
pDCs are the major producers of type I IFNs in the

body (21), and the role of pDC-derived type I IFNs in

initiating autoreactive inflammation in several autoim-

mune disease is well established (18,19,22,23). In the

current study, we show the possible mechanism of acti-

vation of VAT-recruited pDCs by free self-DNA molecules

released from adipose tissue. pDC activation and conse-

quent type I IFN induction depended on HMGB1 bound
to the DNA molecules and RAGE receptor on pDCs. Other

findings of amelioration of disease in HFD-fed mice with

genetic deficiency of RAGE (46) as well as of increased

concentration of circulating HMGB1 in obese individuals

with metabolic syndrome (30) support this possibility. An

increased adipose tissue turnover and adipocyte death in

obese individuals can be responsible for the abundance of

both HMGB1 and the free nucleic acid molecules.

Figure 5—Role of pDCs and type I IFNs in proinflammatory polarization of macrophages in the context of metaflammation. A–C: In vitro–

generated M2 macrophages were cultured with AEC-sup (75% of total volume 200 mL per well) in the presence or absence of autologous

pDCs (A). After 2 days, cells were harvested and used for flow cytometric assessment of M2-specific surface marker CD206 (B) and M1-

specific surface marker CD86 (C) on CD11b+ macrophages. D: Culture supernatants from the coculture experiment described in A were

harvested, and IFN-a was measured by ELISA; the comparison was done by paired t test (P = 0.0131). E: SVF was isolated from VAT

samples by enzymatic digestion and stained to isolate M1-type (CD45+CD11b+CD11c+ cells) and M2-type (CD45+CD11b+CD163+ cells) by

flow cytometry; a representative contour plot is shown. F and G: Total RNA was isolated from the sorted M1-type and M2-type cells, and

expression data from quantitative PCR for two M1 signature genes, IRF5 (F ) and NOS2 (G), were compared between two subsets (n = 7).

H: ISGi (calculated as the average of expression of four ISGs [IRF7, TRIP14, MX1, and ISG15]) was compared between M2 and M1

macrophages (n = 7). I and J: Relative expression of ISGs (ISGi) was correlated with relative expression of IRF5 and NOS2 in the sorted

CD11c+ M1 macrophages based on Spearman rank correlation (IRF5 vs. ISGi: n = 7, r = 0.9286, P = 0.0022; NOS2 vs. ISGi: n = 6, r =

0.8857, P = 0.0333). MFI, mean fluorescence intensity.
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TLR9 recognizes unmethylated CpG motifs on DNA

molecules (21). Both genomic and mitochondrial DNA

contain such motifs, and their release in response to ad-
ipocyte death can trigger TLR9 activation in pDCs when

aided by molecules like HMGB1. Recently, plasma from

both HFD-fed mice and patients with nonalcoholic stea-

tohepatitis was shown to have circulating mitochondrial

DNA, which contributes to hepatic inflammation and dis-

ease through TLR9 triggering (39). A recent study showed

that TLR9 activation in VAT-recruited macrophages in

response to cell free DNA from dying adipocytes induced
CCL2 expression in situ (40). Accordingly, in TLR92/2

HFD-fed mice, accumulation of macrophages in VAT,

VAT-resident inflammation, and IR were attenuated. Of

note, in both these murine studies, the whole phenotype

was shown to depend on TLR9 expression in lysozyme-

expressing macrophages, whereas in humans, TLR9 ex-

pression is largely restricted in pDCs and B cells (41).

The second study also found that the level of circulating
DNA molecules, the TLR9 ligands, was increased in obese

individuals and correlated with their systemic IR (40).

In clinical contexts of autoimmune disorders, pDC-

derived type I IFNs drive inflammation by influencing

cDC maturation as well as potentiation of autoreactive

B-cell activation and expansion (47,48). We now have

unraveled a direct action of type I IFNs on the VAT-recruited

macrophages. We provide evidence of polarization of M2

macrophages to the proinflammatory M1 phenotype in
response to type I IFNs both in vitro and in situ. The

phenotypic details of in vitro–generated and ex vivo–

isolated macrophages were somewhat different in terms

of gene expression and surface markers, probably due

to additional microenvironmental factors in vivo. Among

the ex vivo–isolated macrophages, we could identify and

isolate CD163+ M2 and CD11c+ M1 subsets as described

(2). The ex vivo–isolated M1 macrophages had a clear
enrichment of ISG expression. In a previous study, again

in the HFD-fed mouse model, CD11c+ macrophages were

shown to be instrumental for adipose inflammation and

IR (49), as shown by disease amelioration on genetic de-

ficiency of CD11c+ cells. But in that study, the phenotype

might have contributions from both infiltrating DCs

(pDCs and cDCs) and M1 macrophages because all of

them express CD11c.
VAT infiltration of a number of other immune cells has

been implicated in metaflammation other than macro-

phages and DCs (3,50). The cellular components of the

adaptive immune system, namely T-helper 1–polarized

CD4 cells (51) and cytotoxic CD8 T cells (52), perhaps

get involved downstream of innate initiation of metaflam-

mation. But recently, in situ activation of VAT-resident

natural killer (NK) cells, an innate immune cell subset,
was found to be a critical driver of metaflammation in

independent studies using two different genetic models

of NK-cell deficiency as well as in obese humans (53,54).

Of note, a critical role of type I IFNs was established in

the regulation of NK-cell function in such contexts as viral

infection and solid tumors (55–57). A recent study also

established that NK-cell activation and survival is severely

impaired in the absence of type I IFNs (58). Thus, plau-
sibly, in situ induction of type I IFNs in VAT, as reported

by us, mechanistically precedes activation of NK cells dur-

ing metaflammation.

We found that induction of type I IFN in VAT was

linked to both adipose tissue (represented by ADIPO-IR)

and systemic IR (represented by HOMA2-IR), although it

was not correlated individually with fasting blood glucose,

FFA, or insulin levels in plasma (data not shown). We could
identify, however, two subgroups among obese individuals

with different susceptibility of insulin unresponsiveness

in the adipose tissue to the level of type I IFN induction

in situ. Group L had higher ADIPO-IR levels at lower VAT

ISGi compared with group R. HOMA2-IR was similarly

regulated in response to VAT ISGi. Of note, the level of

HbA1c was correlated with VAT ISGi only in group R, per-

haps pointing to higher ISGi levels affecting long-term
glycemic control to a greater extent.

A putative role of type I IFNs in systemic IR was

suggested a long time ago in a study wherein IR developed

in human subjects injected with IFN-a (59). Pegylated

IFN-a therapy in patients with hepatitis C viral infection

was also found to be associated with IR (60,61). Genetic

deficiency of IRF7 (IFN regulatory factor 7), the criti-

cal transcription factor for induction of type I IFNs in

Figure 6—Relating tissue type I IFN response to macrophage com-

position. A and B: Correlation of VAT expression of IRF5 with tissue

ISGi (n = 82, Spearman r = 0.4736, P< 0.0001) and VAT expression

of the signature pDC transcript CLEC4C (n = 82, Spearman r =

0.4962, P < 0.0001). C: Ratio of M1 (CD11c+) to M2 (CD163+)

macrophage frequency (% of CD45+CD11b+ cells) in VAT was re-

lated with whole-tissue ISGi based on Spearman rank correlation

(n = 11, r = 0.5909, P = 0.0278).
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pDCs (62), was found to protect mice from HFD-induced

metabolic syndrome (63). In clinical contexts, an associ-

ated risk of developing metabolic disorders has already

been established in systemic lupus erythematosus (64)

and psoriasis (65), where pDC-derived type I IFNs play a

central role in pathogenesis (19). Administration of
hydroxychloroquine (HCQ), the antimalarial drug with

antirheumatic effects, was found to improve insulin sen-

sitivity in obese individuals (66,67). The role of HCQ in

inhibition of endosomal TLRs, either by regulation of

endosomal acidification or direct interaction with the

nucleic acid ligands, is established (68,69). We speculate

that the antidiabetic effect of HCQ is also through inhi-

bition of TLR-mediated type I IFN induction. Of note,
the level of systemic IR in the current study represents

both the influence of metaflammation and the intrinsic

insulin unresponsiveness in metabolically active tissues.

Thus, beyond contribution to metaflammation, the role

of type I IFNs in driving systemic IR by direct action on

metabolically active tissues needs to be explored. In fact,

hepatic IR in response to IFN-a was suggested in a pre-

vious study (70).

In conclusion, we propose a novel model (Fig. 7G) for the

initiation of metaflammation in obese individuals wherein

adipose recruitment of pDCs in response to high expression

of chemerin and in situ TLR activation in adipose-recruited

pDCs in response to HMGB1-nucleic acid complexes lead

to induction of type I IFNs. Type I IFNs in turn fuel
metaflammation by driving proinflammatory polarization

of macrophages in VAT and contribute to systemic IR. Type

I IFNs are already being explored as therapeutic targets in

various systemic autoimmune contexts (71,72). This study

also opens the possibility of similar therapeutic approaches

in obesity-associated metabolic syndrome.
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