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Abstract: Obesity is one of the main risk factors for type 2 diabetes mellitus (T2DM). It is closely

related to metabolic disturbances in the adipose tissue that primarily functions as a fat reservoir.

For this reason, adipose tissue is considered as the primary site for initiation and aggravation

of obesity and T2DM. As a key endocrine organ, the adipose tissue communicates with other

organs, such as the brain, liver, muscle, and pancreas, for the maintenance of energy homeostasis.

Two different types of adipose tissues—the white adipose tissue (WAT) and brown adipose tissue

(BAT)—secrete bioactive peptides and proteins, known as “adipokines” and “batokines,” respectively.

Some of them have beneficial anti-inflammatory effects, while others have harmful inflammatory

effects. Recently, “exosomal microRNAs (miRNAs)” were identified as novel adipokines, as adipose

tissue-derived exosomal miRNAs can affect other organs. In the present review, we discuss the role

of adipose-derived secretory factors—adipokines, batokines, and exosomal miRNA—in obesity and

T2DM. It will provide new insights into the pathophysiological mechanisms involved in disturbances

of adipose-derived factors and will support the development of adipose-derived factors as potential

therapeutic targets for obesity and T2DM.

Keywords: obesity; type 2 diabetes mellitus; adipokines; batokines; exosomal miRNAs; potential

therapeutic targets

1. Introduction

Modern sedentary lifestyle and excessive calorie intake have increased the chance of developing

metabolic diseases such as obesity and type 2 diabetes mellitus (T2DM) [1–3]. Obesity and T2DM are two

of the most pressing public health concerns worldwide because of their association with life-threatening

diseases, including cardiovascular diseases and cancers [4–7]. Obesity, especially pathologic expansion

of visceral white adipose tissue (vWAT), increases the risk of developing T2DM. Depending on the race,

more than 75–90% of patients with T2DM are overweight or obese. The strong association of obesity

and T2DM is supported by the term “diabesity” [8,9]. Obesity and the progression from obesity to

T2DM can partly be explained by changes in adipose tissue (AT) composition and function.

The AT is an active endocrine organ secreting several hundreds of bioactive molecules, referred to

as adipokines [10–12]. The adipokines affect adipocyte functions in an autocrine and paracrine manner

and enable the AT to extensively communicate with the brain, liver, muscle, pancreas, and other organs
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in an endocrine manner [13–15]. The AT has been classically considered as a fat reservoir for storage of

excess calories. However, it has recently been reported that AT also functions as an energy-consuming

organ that participates in the regulation of thermogenesis, the process that dissipates energy in the

form of heat [16,17]. The AT is broadly classified into the two depots based on their morphology and

functions–white adipose tissue (WAT) and brown adipose tissue (BAT) [18,19]. WAT contains cells

with a single large lipid droplet, called unilocular cells that are dynamically altered in response to the

calorie state. Excess calories are stored as triacylglycerol (TG) in lipid droplets (lipogenesis), and the

stored TG is broken down into fatty acids and glycerol (lipolysis) for use by other organs when energy

is required.

In contrast, BAT dissipates lipids in the form of “heat” via β-adrenergic stimulations or cold

exposure. Adipocytes in BAT appear as multilocular cells with small lipid droplets, and have a

large number of mitochondria and upregulated mitochondrial uncoupling protein 1 (UCP1), which is

embedded in the inner membrane of the mitochondrion and uncouples oxidative respiration from ATP

synthesis. BAT is subdivided into two types–classical BAT and inducible BAT–based on their origin,

location, and developmental features. Classical BAT is observed in specific regions of the body such

as the interscapular region and kidney and constitutively sustains its thermogenic activity without

any external stimuli. The inducible BAT, known as brite (brown in white), beige, or brown-like AT is

present within the WAT, and its amount and activity are induced by stimuli such as cold exposure or

β-adrenergic agonists [20,21].

WAT and BAT secrete bioactive peptides and proteins, referred to as “adipokines” and “brown

adipokines or batokines,” respectively [22,23]. It is thought that the WAT-derived adipokines are

metabolically different from the BAT-derived batokines, as WAT and BAT differ in morphology and

function. Recently, exosomal miRNAs have also been established as factors secreted from ATs [24–26].

miRNAs are secreted from AT into the blood and preserved intact inside exosomes. Circulating

exosomal miRNAs contain intact genetic information and can reflect the physiological status of ATs.

It has been reported that exosomal miRNAs participate in a variety of metabolic processes such

as glucose/lipid metabolism, insulin signaling, inflammation, and adipogenesis in various tissues.

These adipose-derived signals, including adipokines, batokines, and exosomal miRNA, can be altered

by the metabolic status. The altered secretion pattern of adipose-derived factors affects the AT itself as

well as other metabolic organs, including the brain, liver, muscles, and pancreas (Figure 1).
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Figure 1. The role of adipose-derived factors (adipokines, batokines, and miRNAs) in the maintenance

of energy homeostasis. The adipose tissue (AT) is classified into visceral white adipose tissues

(vWAT), subcutaneous white adipose tissues (sWAT), and brown adipose tissue (BAT). The AT secretes

adipokines, batokines, and miRNAs into the blood. These adipose-derived factors act like hormones

and regulate energy metabolism in tissues, including the brain, liver, AT, muscle, and pancreas.

This review will classify adipokines, batokines, and microRNA as adipose tissue-derived factors,

and introduce them as molecular markers of obesity and T2DM.
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2. Adipokines—Good or Bad?

WAT is the primary organ that stores excess energy in the form of fats. It has been known

as an endocrine organ that secretes bioactive peptides and proteins, referred to as adipokines [16].

Therefore, changes in the concentration of adipokines and inflammatory markers can be indicators of

AT dysfunction and pathogenic conditions [27–29]. Additionally, it provides critical clues that can

explain the pathogenic mechanisms of obesity and T2DM. WAT is divided into two regional and

functional depots—vWAT and subcutaneous white adipose tissues (sWAT) [30]. vWAT is related

to insulin resistance, inflammation, dyslipidemia, obesity, and T2DM caused by the pathogenic

expansion of WAT. Conversely, sWAT is frequently associated with metabolic improvement and

insulin sensitivity, as it contains brown-like cells known as beige adipocytes or inducible brown

adipocytes that perform mitochondrial and thermogenic functions and burn fats. Besides adipocytes,

the macrophages, neutrophils, foam cells, endothelial cells, and fibroblasts also function as secretory

cells in the AT [31,32]. Therefore, their composition and distribution in AT are also important for the

maintenance of metabolic homeostasis.

In this section, we consider bioactive molecules derived from all secretory cells in the WAT, as

adipokines. Adipokines can be broadly classified into anti-inflammatory and inflammatory adipokines,

depending on their expression levels under obese conditions—adipokines that are upregulated under

obese conditions are categorized as inflammatory adipokines (Figure 2A). An extensive review on

a large number of adipokines has been published by Oh et al. [13]. Therefore, in this review, we

have introduced new adipokines along with traditional adipokines. We have briefly summarized

pathological changes in adipokine expression and discussed the usefulness and clinical significance of

adipokines as therapeutic targets for obesity and T2DM (Figures 2 and 3). Adipokines, such as FGF21,

that have thermogenic functions and are derived from beige adipocytes in sWAT are categorized into

batokines. These adipokines will be described in a different section on batokines.

 

α

Figure 2. Classification of adipokines and anti-inflammatory adipokines. (A) Adipokines are

categorized into anti-inflammatory adipokines and inflammatory adipokines, based on their expression

in obesity and type 2 diabetes mellitus. (B) Anti-inflammatory adipokines, adiponectin, omentin-1,

SFRP5, and cardiotrophin-1 improve energy metabolism in the liver, skeletal muscle, and pancreas

as well as the adipose tissue itself. Abbreviations: SFRP5, secreted frizzled-related protein 5; FABP-4,

fatty acid binding protein 4; ASP, acylation-stimulating protein; RBP4, retinol-binding protein 4;

mTOR, mammalian target of rapamycin; IRS, insulin receptor substrate; Wnt5a, wingless-type

MMTV integration site family member 5A; AT, adipose tissue; AdipoR, adiponectin receptor;

AMPK, AMP-activated protein kinase; PPARα, peroxisome proliferator-activated receptor alpha;

GSIS, glucose-stimulated insulin secretion.
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Figure 3. The role of inflammatory adipokines in obesity and type 2 diabetes mellitus (T2DM).

There are increased inflammatory adipokines depending on adiposity or obesity. They exacerbate

inflammation, insulin resistance, and glucose/insulin metabolism in adipose tissues and other peripheral

tissues such as the liver, muscle, pancreas, and blood vessels. In particular, FABP, ASP, RBP4, and

lipocalin-2 are correlated with inflammation, obesity, and insulin resistance. Although its levels

are increased in obesity and T2DM, vaspin has metabolically beneficial effects as it is thought to

compensate for obesity and T2DM. Additionally, leptin, a well-known inflammatory adipokine, exhibits

an inflammatory phenotype in adipocytes and inflammatory cells, while administration of leptin

improves hyperinsulinemia, hyperglycemia, insulin resistance, glucose/lipid metabolism. Abbreviations:

FABP-4, fatty acid binding protein 4; RBP4, retinol-binding protein 4; ASP, acylation-stimulating protein;

LPS, lipopolysaccharides; IL, interleukin; NF-κB, nuclear factor kappa light chain enhancer of activated

B cells; C/EBP, CCAAT-enhancer-binding protein; TNF, tumor necrosis factor; NMN, nicotinamide

mononucleotide; AMPK, AMP-activated protein kinase; GSIS, glucose-stimulated insulin secretion;

BMP4, bone morphogenetic protein 4.

2.1. Anti-Inflammatory Adipokines

2.1.1. Adiponectin

Adiponectin is one of the most abundant adipokines that is highly expressed in WAT and has

anti-obesity, anti-atherogenic, and anti-diabetic effects [33–35]. Patients with obesity and/or T2DM

exhibit significantly reduced circulating adiponectin levels [36–38]. It is a 30-kDa protein with

244 amino acids. Extensive post-transcriptional modifications facilitate multimerization and secretion

of adiponectin [39–41]. After post-transcriptional modifications, adiponectin is secreted into the blood

in three different homomeric complexes—trimer (the low-molecular-weight (LMW) form), hexamer

(the medium-molecular-weight (MMW) form), and multimer (the high-molecular-weight (HMW)

form). Among them, the HMW form contributes to favorable metabolic effects of adiponectin correlated

with glucose tolerance, insulin sensitivity, and weight loss [42,43]. In the liver, adiponectin alleviates

steatosis, fibrosis, and inflammation [44,45]. In the pancreatic islet β-cells, adiponectin enhances

glucose-stimulated insulin secretion (GSIS) via AMPK activation, and increases β-cell function and

proliferation [46,47]. Skeletal muscles can also generate and secrete adiponectin [48]. It is thought

that adiponectin has insulin-sensitizing and anti-diabetic functions in skeletal muscles. Adiponectin

signals via two adiponectin receptors—AdipoR1 and AdipoR2—on the target cells [49–51]. AdipoR1

and R2 were first cloned in 2003. AdipoR1 is expressed in several tissues, including skeletal muscles,

heart, spleen, kidney, and liver. AdipoR2 is mainly expressed in the liver. AdipoR1 is associated

with AMPK activation and suppression of gluconeogenic and lipogenic gene expression. AdipoR2 is

related to activated PPARα, increased glucose uptake, enhanced fatty acid oxidation, and improved

insulin sensitivity. Both AdipoR1 and R2 are involved in glucose/lipid metabolism and insulin

sensitivity. Importantly, circulating adiponectin levels are inversely correlated with obesity, diabetes,

and obesity-related diseases [36–38]. Therefore, adiponectin is a promising and attractive target for the

treatment of obesity and T2DM.
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2.1.2. Omentin-1

Omentin-1, also known as intelectin-1, has been recently identified as a novel adipokine consisting

of 313 amino acids that is selectively produced by the vWAT [52]. It exerts anti-inflammatory, anti-obesity,

anti-diabetic properties, and has beneficial effects on exercise-induced insulin-sensitization [53–57].

The AT consists of two major components – the mature adipocytes and the stromal vascular fraction

containing preadipocytes, macrophages, lymphocytes, and endothelial cells [58,59]. Omentin-1 is

abundantly expressed in the stromal vascular fraction of the vWAT [60,61]. It is also expressed

at extremely low levels in the sWAT and mature adipocytes of vWAT [60]. In human adipocytes,

omentin-1 enhanced insulin-stimulated glucose uptake and activated insulin receptor substrate (IRS)

by inhibiting the mTOR signaling pathway [60,62]. Omentin-1 levels are significantly decreased in the

serum and vWAT of overweight and obese individuals as well as in the serum of T2DM patients [53–56].

Collectively, omentin-1 as an adipokine could be a new marker for predicting the risk of metabolic

diseases such as obesity and T2DM.

2.1.3. Secreted Frizzled-Related Protein 5 (SFRP5)

Secreted frizzled-related protein 5 (SFRP5) has been newly identified as an adipokine that

is predominantly expressed in WAT rather than in other ATs. It has beneficial effects on insulin

sensitivity and inflammation and is known as a novel effector of adipose tissue-linked chronic

inflammation [63]. It was reported as a negative regulator that inhibits Wnt signaling transduction by

binding to Wnt protein [64]. Reduced Srfp5 provoked Wnt5a-mediated inflammation, obesity, and

atherosclerosis [63,65]. Additionally, depletion of SFRP5 augmented the macrophage population, and

the proinflammatory proteins in mouse AT, and exhibited impaired glucose clearance and reduced

insulin sensitivity [63]. Serum SFRP5 levels are low in subjects with obesity and T2DM [66–69].

These demonstrate that decreased expression of SFRP5 is a prognostic marker for the risk of obesity

and T2DM.

2.1.4. Cardiotrophin-1

Cardiotrophin-1 (CT-1) was identified as a member of the IL-6 cytokine family due to its structural

similarity with other IL-6 family members [70]. It is considered as a key regulator of glucose and

lipid metabolism, and as a factor that can improve obesity and insulin resistance [71,72]. CT-1 is

expressed at high levels in liver, kidney, skeletal muscle, heart, and lung, and is expressed at

low levels in the brain and testis [73]. CT-1 is chiefly produced and released from the AT [74].

CT-1 deficient mice showed obesity, insulin resistance, and high levels of cholesterol in the blood,

despite decreased food intake [71]. These findings demonstrate that loss of CT-1 is associated with

lower energy expenditure. Conversely, chronic administration of CT-1 reduced the size of adipocytes

through decreased expression of lipogenic genes and promoted the expression of genes related to

lipolysis and fatty acid oxidation, subsequently leading to metabolic remodeling of WAT in mice [71].

Additionally, CT-1 improved glucose homeostasis and promoted glucose uptake by insulin-stimulated

phosphorylation of AKT in myotubes and adipocytes [71]. Further, acute and chronic administration of

CT-1 exhibited hypoglycemic and anti-obesity properties through low intestinal sugar uptake [75]. CT-1

exerted lipolytic properties in AT through the activation of cAMP/protein kinase A (PKA) signaling

pathway [76]. The effects of CT-1 levels on obesity and metabolic diseases in humans is controversial.

However, many studies described that expression levels of CT-1 are decreased in WAT of obese mice,

and significantly reduced in overweight and obese subjects [77–80].

2.2. Inflammatory Adipokines

2.2.1. Fatty Acid Binding Protein 4 (FABP-4)

Fatty acid binding protein 4 (FABP4; also known as aP2) is mainly expressed in adipocytes and

macrophages [81]. It plays a critical role in insulin resistance, atherosclerosis, and inflammation. FABP4
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is released from adipocytes, and its level is relatively higher than other adipokines in the serum [82].

Circulating FABP4 levels are elevated in obesity-related metabolic disorders such as obesity, insulin

resistance, diabetes, hypertension, atherosclerosis, and impaired myocardial contractility [83–85]. Further,

circulating levels of FABP4 is positively correlated with adiposity shown by body mass index (BMI) and

body fat percentage, whereas it is negatively correlated with plasma concentration of adiponectin [86].

Obesity increases insulin secretion from pancreatic β-cells. FABP4 promotes insulin secretion in vitro

and in vivo, and high circulating levels of FABP4 promotes GSIS in humans [87]. Conversely, insulin

suppresses FABP4 secretion from adipocytes in vitro and in mice and humans [87,88]. These data

suggest that FABP4 increases insulin secretion from pancreatic β-cells during obesity, as an adaptive

β-cell response with adiposity, suggesting that FABP4 is a detectable proinflammatory biomarker that

can mirror adiposity and obesity.

2.2.2. Acylation-Stimulating Protein (ASP)

ASP is an adipocyte autocrine factor that increases triglyceride synthesis from glucose and free

fatty acids (FFA) in adipocytes [89]. Several studies described that plasma ASP levels are increased

in obese and hyperlipidemic individuals, and that increased ASP levels are positively correlated

with increased TG levels [90–93]. Conversely, weight loss and fasting, conditions that lower TG,

reduced ASP levels [91,93]. Further, administration of ASP enhanced high-fat diet (HFD)-induced

insulin resistance by increased adipocyte inflammatory response [94]. Insulin increases fatty acid

uptake by adipocytes and inhibits fat hydrolysis from adipocytes. ASP plays its role in an additive

and independent manner to the action of insulin [95]. Additionally, ASP is a cleavage product of

complement 3 (C3), a critical component of the innate immune system [94]. Therefore, the lack of C3

results in ASP deficiency and consequently leads to decreased leptin levels and reduced body fat [94].

Furthermore, loss of ASP contributed to delayed clearance of postprandial triglycerides and fatty

acids [96]. These data demonstrate that ASP has powerful anabolic effects on AT.

2.2.3. Retinol-Binding Protein 4 (RBP4)

Retinol-Binding Protein 4 (RBP4) is a 21 kDa hepatocyte-secreted factor and a retinol

transporter [97]. Recently, it was reported that RBP4 is also secreted by adipocytes and macrophages

as well as the liver [98,99]. RBP4 concentrations are associated with high levels of blood pressure,

cholesterol, triglycerides, and BMI, and are related to low levels of high-density lipoprotein (HDL) [100].

Serum RBP4 levels are highly expressed under insulin resistance conditions related to obesity and

T2DM [98,100]. RBP4 is more markedly expressed in visceral fat rather than subcutaneous fat, and

RBP4 expression in visceral fat is significantly increased in individuals with obesity and T2DM [101].

Serum RBP4 levels are positively linked with adipose RBP4 mRNA levels and intra-abdominal fat mass.

Adipose RBP4 mRNA levels, especially in the visceral fat, are inversely correlated with GLUT4 mRNA

and are positively linked with adiposity in insulin resistance [101]. Treatment of RBP4 suppressed

insulin-stimulated phosphorylation of insulin receptor substrate 1 (IRS1) and ERK1/2 in human

adipocytes [102]. Furthermore, RBP4 led to insulin resistance by induction of CD4+ T-helper cell

polarization and AT inflammation [103]. The lowering of inflammatory RBP4 levels might be a

promising target for the treatment of insulin resistance and obesity-related diseases [104].

2.2.4. Lipocalin-2 (LCN2)

Lipocalin-2 (LCN2) is abundantly expressed in the ATs. LCN2, also known as neutrophil

gelatinase-associated lipocalin (NGAL), is also expressed in the liver, kidney, lung, and the macrophages

and neutrophils [105–108]. It promotes inflammation, obesity, and insulin resistance, and plays a role in

AT remodeling during HFD-induced obesity [109–113]. Expression and secretion of LCN2 are induced

by several inflammatory stimuli such as lipopolysaccharides (LPS) and IL1β [106,114]. In particular,

the proinflammatory transcription factor NF-κB and CCAAT/enhancer-binding protein (C/EBP) binds

to its consensus motif on LCN2 promoter and regulates LCN2 expression [110,115]. LCN2 expression
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was increased in AT and serum of obese individuals as well as genetic and diet-induced obese

mice [110,112,116]. Serum levels of LCN2 correlate with obesity and BMI, especially in severely obese

women [117]. Furthermore, LCN2-deficiency attenuated aging- and obesity-induced insulin resistance

by inhibiting 12-lipoxygenase, an enzyme that metabolizes arachidonic acids, and tumor necrosis

factor-α (TNF-α), a critical insulin resistance inducer [118]. Conversely, some studies showed that

depletion of LCN2 in mice increased diet-induced obesity, insulin resistance, and increased expression

of proinflammatory mediators, because of impaired thermogenesis [119]. It was further corroborated

by another study that showed that LNC2 regulated oxidative metabolism and BAT activation in an

adrenergic-independent manner [120]. The reasons for these two conflicting opinions in LNC2-deficient

mice is currently unknown. However, it is thought that the beneficial effects of LCN2 might be limited

to thermogenesis or BAT metabolism in mice.

2.2.5. Chemerin

Chemerin has been identified as a novel adipokine that regulates adipogenesis and adipocyte

metabolism and promotes insulin resistance [121–123]. It is abundantly expressed in ATs, liver, and

innate immune cells [121–123]. Chemerin levels are elevated in serum and ATs of patients with obesity

and T2DM and obese and T2DM mouse models such as ob/ob and db/db mice [124–128]. Chemerin

plays a role in the activation of endothelial molecules (ICAM-1 and E-selectin), atherosclerotic vascular

changes, and the pathogenesis of cardiovascular disease in T2DM [127,129]. Further, serum chemerin

levels are correlated with abdominal visceral fat accumulation, BMI, blood pressure, insulin resistance,

and cholesterol levels [130]. Elevated circulating chemerin impaired glucose tolerance. Consistently,

injection of recombinant chemerin aggravated glucose intolerance, reduced serum insulin levels, and

impeded tissue glucose uptake in mouse models of obesity and diabetes [126,128]. These observations

suggest that chemerin is metabolically harmful and promotes insulin resistance. In contrast, chemerin

binds to orphan G protein-coupled receptor CMKLR1 (ChemR23 or DEZ) and regulates intracellular

signaling. Chemerin and its receptor ChemR23 promoted insulin-dependent glucose uptake in

ATs [131]. Loss of ChemR23 increased LPS-induced inflammatory neutrophil infiltration, because of

the reduction in chemerin response [132]. In pancreatic β-cells, chemerin, and its receptor ChemR23

enhanced β-cell function and GSIS, and improved glucose tolerance [133]. These anti-inflammatory

effects of chemerin appear to be in a ChemR23-dependent manner.

2.2.6. Visfatin/PBEF/Nampt

Visfatin was identified as a pre-B-cell colony-enhancing factor 1 (PBEF) and a growth factor for

B cell precursors in the liver, skeletal muscle, and bone marrow [134]. Circulating visfatin levels reflect

the WAT mass and adiposity, and are dependent on insulin resistance [135–137]. Its concentration is

markedly increased in T2DM patients concomitant with obesity. Further, visfatin is not only produced

by ATs, but also by the neutrophils [138]. Individuals with inflammatory diseases have elevated levels of

circulating visfatin [139]. It has been shown that visfatin and inflammatory factors influence each other.

Visfatin transcription was influenced by TNF, IL-6, and glucocorticoids [139]. Visfatin also stimulated

secretion of TNF, IL-6, and IL-1β, and triggered macrophage differentiation, and monocyte-induced

alloresponses in lymphocytes [140,141]. These suggest that visfatin mediates proinflammatory

signaling. Conversely, visfatin plays a critical role in the synthesis of nicotinamide mononucleotide

(NMN) as a phosphoribosyl transferase enzyme ((nicotinamide phosphoribosyltransferase (NAMPT)).

Administration of NMN, a product of the NAMPT reaction and a key NAD+ intermediate, improved

glucose intolerance and hepatic insulin sensitivity in HFD-induced T2DM. Further, NAMPT-mediated

NAD+ biosynthesis ameliorated aging-induced T2DM. These data suggest that NAMPT-mediated

NAD+would contribute to the prevention of obesity and T2DM by high-calorie intake and aging [142].

Additionally, visfatin inhibited β-cell apoptosis, and played a beneficial role in β-cell proliferation and

function [143,144]. Collectively, it is thought that visfatin is a proinflammatory mediator, and can exert
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beneficial effects depending on the physiological and nutritional conditions such as NAMPT-mediated

NAD+ biosynthesis by NMN production.

2.2.7. Leptin

Leptin is a classical proinflammatory adipokine that has been identified in ob/ob mice (ob is also

known as obese gene or Lep) [145]. Leptin is also known as the satiety hormone that regulates body

weight by suppressing hunger. It is a 16-kDa nonglycosylated peptide hormone that is synthesized

mainly in adipose cells to regulate weight control via its cognate receptor in the hypothalamus [146].

It has an important role in various cellular process, including reproductive function, fertility, puberty,

activity, energy expenditure, atherogenesis, fetal growth, appetite, and food intake [147–149]. Leptin,

as a well-known obesity marker, enhances the production of TNF and IL-6 in monocytes [150].

It also enhances cell proliferation, the generation of reactive oxygen species (ROS), and migratory

responses in monocytes. In macrophages, leptin promotes the production of CC-chemokine ligands by

activating the JAK2/STAT3 signaling pathway [151]. Conversely, TNFα mediated lipopolysaccharide

(LPS) induced leptin levels, and stimulated leptin secretion from adipocytes [152]. There are two

circulating forms of leptin—a biologically active free form and an inactive form that is bound to plasma

proteins [153]. The levels of circulating leptin are proportional to the body fat mass both in mice and in

humans—obese individuals typically produce higher levels of leptin than lean individuals [154,155].

Leptin levels are correlated with obesity-related diseases such as myocardial infarction and cerebral

stroke [156,157]. Leptin stimulated platelet-dependent thrombosis and upregulated vascular adhesion

molecules and the prothrombotic tissue factors [158,159]. Further, leptin can be a marker for the levels

of energy-dense triacylglycerols in AT. In contrast, leptin deficiency and leptin resistance induce severe

insulin resistance [160]. Leptin administration normalized hyperinsulinemia and hyperglycemia and

improved insulin resistance and lipodystrophy [160–163]. Additionally, leptin stimulates fatty acid

oxidation and reduces body fat accumulation by activating AMP-activated protein kinase (AMPK) in

non-ATs, resulting in improved insulin sensitivity [164–166]. These findings demonstrate the ability of

leptin to regulate glucose and lipid metabolism and its therapeutic potential in obesity and T2DM.

2.2.8. Vaspin

Visceral adipose tissue-derived serpin (vaspin) is a member of the serine protease inhibitor

family [167]. Recently, it was proposed as a useful marker associated with obesity, insulin resistance,

and T2DM [168–172]. Human vaspin has been identified as an adipokine of 414 amino acids [167].

It is produced by several tissues, including the AT, liver, skeletal muscle, pancreas, stomach, and

skin [173–175]. Unlike omentin-1, its expression is not restricted to the vWATs. It is found in 23% of

visceral and in 15% of sWATs [172]. Additionally, vaspin is highly expressed in mature adipocytes rather

than in the stromal vascular fraction of vWAT [176]. Serum vaspin concentration is high in subjects

with obesity and/or T2DM, and is lower in subjects who have a normal body weight than those who are

overweight [168–170]. The mRNA level of vaspin is enhanced by increased fat mass, impaired glucose

tolerance, and decreased insulin sensitivity observed in individuals with obesity and T2DM [172,177].

Many studies support serum vaspin as a potential marker predicting obesity and T2DM. However,

these increased levels of vaspin are thought to be compensating for obesity and T2DM [178–181].

Recombinant vaspin administration improved glucose tolerance and insulin sensitivity [168,182].

Further, it markedly reduced food intake by decreasing the expression of NPY and increasing the

expression of POMC in the hypothalamus [183]. The beneficial effects of vaspin in glucose metabolism

are closely related to its ability to inhibit protease kallikrein 7, which can cleave and degrade insulin A

and B chains [184]. Vaspin inhibits kallikrein 7-induced degradation of insulin, and can consequently

stabilize insulin in circulation [184]. Therefore, improved glucose metabolism with vaspin treatment

might be associated with the increased circulating insulin concentration. These findings suggest that

vaspin is a promising target for the treatment of obesity and T2DM.
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2.2.9. Resistin/ADSF

Resistin is a 12.5 kDa cysteine-rich adipose tissue-specific secretory factor (ADSF), which is

associated with resistance to insulin [185,186]. It is known as a proinflammatory adipokine. Circulating

levels of resistin were increased in genetic and diet-induced obesity and were decreased by treatment

with anti-diabetic drug rosiglitazone [185]. Recombinant resistin triggered systemic insulin resistance

in mice and decreased insulin-mediated glucose uptake in adipocytes [185]. Contrarily, mRNA levels

of resistin are decreased in WAT of obese mice, and administration of anti-resistin antibody improved

insulin resistance and blood glucose levels [185,187,188]. It has been reported that infusion of resistin

in rodents aggravated hepatic glucose production, and triggered severe hepatic insulin resistance [189].

Under fasting conditions, decreased resistin partly reduced hepatic glucose production by activating

AMPK and inhibiting hepatic gluconeogenic enzymes, and regulating hyperglycemia associated with

obesity [190]. Further, depletion of resistin in leptin-deficient (ob/ob) and diet-induced obesity mice

improved hepatic glucose production and increased peripheral glucose uptake [191]. Resistin induced

suppressor of cytokine signaling 3 (SOCS-3), a known inhibitor of insulin signaling, to regulate glucose

metabolism [192]. Although there are exceptions, resistin is thought to induce insulin resistance in

mice. Resistin synthesis in mice is limited to adipocytes, whereas in humans, it is expressed at a low

level and is produced by macrophages and monocytes, but not adipocytes [193]. The protein sequence

and expression pattern of resistin in humans is different from those in rodents. It is still unclear whether

resistin promotes insulin resistance in humans [185,194–196].

2.2.10. Apelin

Apelin has been identified as an adipokine that contributes to the regulation of glucose metabolism

in an endocrine fashion [197,198]. It is an endogenous ligand of the G-protein-coupled receptor and is

expressed in various tissues, such as the skeletal muscles, heart, stomach, and central nervous system

(especially in the hypothalamus) as well as in the ATs [199,200]. Higher circulating apelin is observed

in patients with obesity and T2DM and is associated with insulin resistance and hyperinsulinemia

in vivo and in vitro [197,201–203]. Apelin-induced deterioration of glucose metabolism mediated by

impeding GSIS [202]. Increased circulating apelin inhibited insulin release and impeded glucose

metabolism in mice. Further, apelin decreased adipocyte number and increased the size of lipid

droplets by controlling activation of G(q), G(i), and AMPK, suggesting that apelin would negatively

regulate lipolysis in ATs [204,205]. Conversely, apelin promoted glucose uptake by the activation

of the AMPK and AKT signaling pathway in soleus muscle [206]. In obese and insulin-resistant

models, administration of apelin improved glucose tolerance and glucose utilization, indicating that

elevated circulating apelin might be a phenotype of apelin resistance or an adaptation of the body to

raised apelin levels [206]. Moreover, many studies reported the beneficial effects of apelin on hepatic

fibrosis, cardiac contractility, blood pressure, cardiovascular and fluid homeostasis, food intake, cell

proliferation, and angiogenesis [203,207,208]. Further studies are required to understand the effects of

apelin under physiological and pathological conditions.

2.2.11. Gremlin-1

Gremlin is a glycoprotein that belongs to the Dan (neuroblastoma) family [209]. It exerts an

inhibitory effect by forming heterodimers with bone morphogenetic protein (BMP) that belong to

the transforming growth factor-beta (TGF-β) family [210,211]. Three alternative splicing forms of

gremlin—gremlin1, gremlin2, and gremlin3—have been identified, and gremlin1 is the most common

isoform [209]. Gremlin1 is a 184 amino acid (25 kDa) cysteine knot superfamily protein with an

eight-membered ring [212]. Gremlin1 secreted from (pre)adipocytes directly binds to BMP4 and

prevents its interaction with BMP receptors [212]. BMP4 is involved in the process that determines the

fate of adipose precursor cells toward the white adipose lineage and is induced during preadipocyte

differentiation in humans [213–216]. Further, BMP4 expression in WAT of mice led to brown-like changes
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in sWAT and stimulated white-to-brown transition [215,217]. Hypertrophic obesity is associated with

AT dysfunction and insulin resistance and is partly caused by impaired subcutaneous adipogenesis [216].

Gremlin1 is increased in hypertrophic obesity in humans, a state of BMP4 resistance. It is thought that

increased Gremlin1 partly contributes to BMP4 resistance in hypertrophic obesity [218,219]. Further,

the effect prominently appeared in beige/brown adipogenesis rather than white adipogenesis.

3. Batokines

Beyond the well-known classical function of storing excess energy in the form of triacylglycerol,

adipocytes are also involved in dissipating energy in the form of non-physical matter, heat. Since the

discovery of the thermogenic function of adipocytes, it has been suggested that these heat-producing

adipocytes are broken down into two groups—classical brown adipocytes and brown-like (also known

as beige or brite) adipocytes based on their origin, location, and developmental features. In addition,

even though they belong to the AT and have a profile that is different from the WAT, BAT and beige

WAT can secrete several peptides and non-peptides. These secretory factors enhance the thermogenic

activity by regulating hypertrophy and hyperplasia in adipocytes and also help to attain maximum

activity by regulating vascularization, innervation, and substrate utilization in ATs, processes that

are all integrally required when exposed to a prolonged cold environment. In this section, we have

included factors that are specifically secreted from BAT or beige WAT—the so-called batokines—based

on their functional effects on targets (Figure 4).

 

Figure 4. Batokines secreted from BAT and beige AT. Batokines secreted from BAT and beige AT

contribute to the regulation of various functions such as thermogenic activity, immune activity,

vascularization, substrate utilization, and other functions. Abbreviations: Mtrnl, meteorin-Like; IGF-1,

insulin growth factor-1; IL-6, interleukin-6; CXCL14, chemokine (C-X-C motif) ligand 14; BMPs,

bone morphogenetic proteins; PM20D1, peptidase M20 domain containing 1; bFGF, basic fibroblast

growth factor; WNT10b, wingless-Related MMTV Integration Site 10b; RBP4, retinol-binding protein-4;

IGFBP2, insulin-like growth factor-binding protein-2; NGF, nerve growth factor; 12,13-diHOME,

12,13-dihydroxy-9Z-octadecenoic acid; FGF21, fibroblast browth factor 21; T3, triiodothyronine; sLR11,

soluble form of the low-density lipoprotein receptor relative LR11; GDF8, growth differentiation

factor-8; ANGPTL8, angiopoietin-like8; VEGF-A, vascular endothelial growth factor A; NO, nitric

oxide; H2O2, hydrogen peroxide; NRG4, neuregulin-4.

3.1. Regulation of Thermogenic Programs

3.1.1. Fibroblast Growth Factor 21 (FGF21)

Several batokines have been considered to positively or negatively contribute to heat production

by regulating thermogenic signaling and gene regulation. FGF21 is one of the well-elucidated batokines,
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and since its discovery, its beneficial effects have been extensively studied in both rodents and humans.

FGF21 belongs to the FGF family and is considered to regulate glucose and lipid metabolism and energy

homeostasis. It is mainly expressed in the liver and WAT [220,221]. It was recently reported that besides

the liver and WAT, BAT and beige WAT also contribute to systemic FGF21 levels [222–224]. When

exposed to cold or its relevant stimuli such as norepinephrine or CL-316243, FGF21 expression and

secretion by BAT or beige WAT is upregulated through the β3-adrenergic signaling cascade [222–224].

Increased FGF21 augments energy catabolism by promoting glucose uptake and oxidation by Glut1

expression and activation of lipolysis and reduction of fatty acid synthesis [225,226]. In contrast, it was

demonstrated that FGF21 also directly promotes UCP1-dependent thermogenesis in BAT and beige

WAT [224]. Because of its promising benefits against metabolic disorders, the effects of FGF21 have

been re-assessed in humans. It has been shown that FGF21 is preferentially expressed in human beige

adipocytes [227]. Further, mild cold exposure increases plasma FGF21 levels with BAT activation in the

neck and shoulders [226]. Moreover, neonates have a large amount of BAT content and maintain high

levels of FGF21 [228]. These strongly suggest that FGF21 expression in humans is closely associated

with the thermogenic activity of ATs. However, despite many studies, it remains to be investigated

whether thermogenically active adipocytes are key providers of circulating FGF21 and whether FGF21

produced and secreted during thermogenic activation has similar effects in humans and rodents.

3.1.2. Triiodothyronine (T3)

T3 is a circulating thyroid hormone, which contributes to many physiological processes, including

metabolism, thermogenesis, development, and heart rate. Most T3 in circulation is derived from direct

release from the thyroid gland and T4 conversion in the liver, hypothalamus and anterior pituitary,

each accounting for approximately 20% and 80%, respectively [229]. In the context of cold exposure,

T3 is required for the complete activation of thermogenesis. Circulating T3 has a limited function

in thermogenesis; in contrast, T3 locally produced from T4 by D2 deiodinase (DIO2), induced by

beta-adrenergic signaling in brown or white adipocytes is critical for the induction of thermogenesis by

acting through the T3 receptor beta (TRβ1) isoform [230–233]. However, it remains unknown whether

T3 produced in brown or beige adipocytes can act in an endocrine manner.

3.1.3. Adenosine

Recently, it was suggested that purinergic signaling activated by extracellular nucleotides or their

derivatives is involved in many physiological and pathological processes of ATs [234]. In particular,

adenosine release can be enhanced by sympathetically activated brown adipocytes, and this released

adenosine positively contributes to the activation of BAT and browning of WAT in humans and rodents,

suggesting that it is a potential therapeutic target against diet-induced obesity [235].

3.1.4. Slit2-C

Slit is a secreted extracellular matrix protein, which was first identified in the development of the

central nervous system in Drosophila. Slit consists of three homologs—Slit1, Slit2, and Slit3. Under

thermogenic stimulation, in mammals, it has been unraveled that Slit2 can be secreted in a cleaved

form, called Slit2-C, from beige adipocytes. The secreted Slit2-C can stimulate adipose thermogenesis

by activating the PKA signaling cascade, resulting in augmented energy expenditure and improved

glucose homeostasis in mice [236]. Furthermore, Kang et al. demonstrated Slit2 presence in human

circulation, and its level revealed a negative correlation with diabetic patients [237].

3.1.5. Follistatin

Follistatin (Fst) is a soluble glycoprotein highly expressed in BAT. Exposure to cold induces Fst

secretion into the circulation. Fst confers positive effects on brown and beige adipose thermogenesis

by blocking the inhibitory cue from TGF-β/Smad3/myostatin signaling [238,239].
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3.1.6. Endocannabinoids

When BAT activation or WAT browning appears, synthesis and release of endocannabinoids

are induced in BAT and WAT, which then exert inhibitory functions in an autocrine manner [240].

Mechanistically, endocannabinoids bind to the cannabinoid 1 receptor (CB1R) and interrupt the

activated β3-adrenoreceptor signaling cascade by suppressing the levels of intracellular cyclic cAMP,

thus turning off the BAT activation and WAT browning [240,241].

3.1.7. Soluble form of the Low-Density Lipoprotein Receptor Relative LR11 (sLR11)

sLR11 was identified as one of the negative regulators of thermogenesis, and its expression and

serum level increase when thermogenesis is activated. Whittle et al. demonstrated that sLR11 regulates

the balance between lipid storage and oxidation in response to changing environmental temperature

and diet. Mechanistically, sLR11 binds directly to the BMP receptor, and thus interrupts its downstream

signaling, resulting in decreased thermogenesis [242]. It has also been revealed that the sLR11 level

positively correlates with the fat mass in humans.

3.1.8. Growth Differentiation Factor-8 (GDF8/Myostatin)

Activation of Agouti-related peptide (AgRP) neurons by an energy deficit promotes the

expression of GFP8 in BAT. In turn, in an autocrine manner, GDF8 serves as a negative regulator

of brown adipogenesis and thermogenesis through the activation of myostatin/activin receptorIIB

(ActRIIB)/Smad3 signaling [243,244].

3.1.9. Angiopoietin-Like8 (ANGPTL8)

ANGPTL8, also called lipasin, RIFL (refeeding induced fat and liver) or betatrophin, is expressed

in the liver, WAT, and BAT. A study suggested that ANGPTL8 represses the activity of lipoprotein

lipase, a protein that stimulates lipolysis [245]. With regard to thermogenesis, although it has not yet

been demonstrated, it is assumed that ANGPTL8 negatively regulates the thermogenic process. In line

with this, Fu et al. showed that cold exposure dramatically increased ANGPTL8 expression in BAT of

mice [246]. In humans, as ANGPTL8 expression is only detectable in the WAT [247], the question of

whether ANGPTL8 expression in WAT is altered by cold-stimulation remains open.

3.1.10. Endothelin-1

Endothelin-1 is initially expressed in a precursor form, referred to as preproendothelin-1 (PPET1),

in the vascular endothelial cells, and when proteolytically cleaved, it likely contributes to blood vessel

constriction. Endothelin-1 (ET-1) is expressed and secreted by brown and beige adipocytes. Released

ET-1 inhibits brown and beige adipogenesis via G(q) signaling. Moreover, ET-1 secretion by both cells

can be blocked by the activation of β3-adrenergic signaling, likely acting as a negative regulator for

thermogenesis [248].

3.2. Regulation of Vascularization in Adipose Tissues

3.2.1. Vascular Endothelial Growth Factor A (VEGF-A)

Appropriate regulation of vasculature is an essential process in the maintenance of BAT and

WAT functions under an altered environment, temperature, or diet [249]. In particular, during cold

acclimation, vascularization in both BAT and WAT is markedly enhanced in order to increase the

supply of nutrients and oxygen and to export the generated heat to the periphery. It is known that

vascularization in AT is in part, dependent on VEGF-A signaling [250,251]. As direct evidence for

the significance of VEGF-A-vascularization axis in thermogenesis, specific overexpression of VEGF-A

in adipocytes promotes vascularization and UCP1 expression both in WAT and BAT, enhancing

thermogenesis. Conversely, depletion of VEGF-A in the adipocytes of normal mouse inhibited
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thermogenesis, suggesting that VEGF-A-induced vascularization is a key step in the activation of

thermogenesis [252,253]. Importantly, Shimizu et al. proposed VEGF-A as a potential therapeutic

intervention for obesity-associated insulin resistance. Introduction of VEGF-A into AT of the obese

mouse could recover vascularity and impaired insulin sensitivity and systemic glucose metabolism [253].

3.2.2. Nitric Oxide

Under cold environments, nitric oxide (NO) makes two important contributions to thermogenic

adaptation [254]. NO not only enhances the vasodilation in BAT, but also increases the expression of

key thermogenic components such as PGC1-a, cell death-inducing DFFA-like effector A (CIDEA) and

UCP1 in white adipocytes [255,256]. When NO is produced by inducible nitric oxide synthase (iNOS) in

brown adipocytes, it can be released, and in turn, enhances the transfer of substrates and heat by dilating

blood vessels [255]. In contrast, NO can activate the thermogenic process in WAT independently of the

iNOS pathway. NO is synthesized by serial reduction from inorganic nitrate and nitrite and is known

to promote browning of WAT through the activation of the PKG-PGC1-a signaling pathway [256].

3.2.3. Hydrogen Peroxide (H2O2)

Abnormal vascular remodeling is intimately associated with the development of hypertension in

patients with obesity and diabetes. Perivascular ATs (PVATs) of different adipose depots exhibit discrete

adipose features—white phenotype at resistance vessels vs. brown phenotype at the aorta [257]. Given

these different functional features, PVATs of resistance vessels rather than those of the aorta is prone to

be anti-inflammatory and anti-contractile. Recently, Friederich-Persson et al. identified an intriguing

mechanism by which H2O2 determines these two features. Particularly, in BAT or beige AT, H2O2

produced by NOX4 reduces vascular contractility by activating cyclic GMP-dependent protein kinase

G type-1a, raising a possibility that increasing BAT content could recover vascular complications [258].

3.2.4. Neuregulin-4 (NRG4)

Neuregulin-4 (NRG4) is a secretory protein associated with epidermal growth factor (EGF).

Although NRG4 is expressed and secreted by all ATs, it is highly enriched in BAT or WAT when

exposed to cold [19]. Increased NRG4 has many beneficial effects on metabolic homeostasis mediated

in a paracrine or endocrine fashion; these include hepatic lipogenesis, fuel oxidation, nerve innervation,

and angiogenesis. NRG4 levels are inversely associated with nonalcoholic fatty liver disease (NAFLD)

and type 2 diabetes in rodents [259]. Recently, a similar trend in NRG4 levels was also observed in

humans, demonstrating its significance in human diseases. Similar to that in rodents, lower NRG4

levels in circulation are observed in patients with gestational diabetes mellitus, T2DM, metabolic

syndrome, and coronary artery diseases [260–262].

3.3. Regulation of the Immune System in Adipose Tissues

3.3.1. Meteorin-Like (Mtrnl)

Meteorin-like (Mtrnl) was identified as a circulating hormone. Its expression and secretion are

induced by exercise and cold exposure in skeletal muscle and AT, respectively. Increased circulating

Mtrnl induces a negative energy balance by increasing whole-body energy expenditure and WAT

thermogenesis. Mtrnl utilizes an unconventional pathway, regardless of sympathetic nervous system

signaling, to activate thermogenesis in beige WAT. Mtrnl stimulates the recruitment of eosinophils

and alternatively activated macrophages in WAT, and thus increases the level of catecholamines, the

key ligand of β3-adrenergic signaling activation, by promoting secretion from alternatively activated

macrophages [263].
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3.3.2. Insulin Growth Factor-1 (IGF-1)

IGF-1 is a mitogenic peptide, which is involved in growth, development, and differentiation

in various tissues by acting in an endocrine, paracrine, and autocrine manner. Its importance as a

batokine was demonstrated by a BAT transplantation trial. When BAT was placed in mice with type 1

diabetes, a significant and sharp increase in the expression of IGF-1 in BAT and circulating IGF-1 levels

together with mitigated pro-inflammation and ameliorated glucose homeostasis was observed [264].

In line with this, rats exposed to cold show increased expression of IGF-1, regulating hyperplasia of

BAT cells [265].

3.3.3. Interleukin-6 (IL-6)

IL-6 is an interleukin that is produced in response to tissue injury and inflammation and acts as a

key mediator of fever and the acute phase response. IL-6 also closely correlates with the development

of complications through proinflammatory and autoimmune processes in metabolic diseases such as

diabetes and atherosclerosis. In addition, β3-adrenergic stimulation in vitro increases IL-6 expression

and secretion by mouse brown adipocytes [266]. Although the detailed mechanism is still unknown,

Stanford et al. demonstrated the functional significance of IL-6 present in BAT in vivo. BAT from IL-6

knockout mice transplanted into the visceral cavity of normal mice lead to hepatic inflammation and

systemic insulin resistance [267].

3.3.4. Chemokine (C-X-C motif) Ligand 14 (CXCL14)

CXCL14 is a member of the CXC cytokine family. It is known as a potent chemoattractant,

enabling immune cells such as monocytes, dendritic cells, and NK cells to localize at inflammatory

sites in response to inflammation. In the context of thermogenic activation, BAT secrets CXCL14, which

enhances the activation of BAT and induces the browning of WAT by recruiting M2 macrophages [268].

3.4. Regulation of Substrate Utilization

3.4.1. Prostaglandins

Several lines of evidence have suggested that prostaglandins and their related catalyzing enzymes

are closely associated with BAT activity and browning of WAT. Exposure to cold environment promotes

the synthesis and release of prostaglandins, especially PGI2 (prostaglandin I2), PGE2 (prostaglandin

E2), and a lipocalin prostaglandin D synthase (L-PGDS) in the brown and beige adipocytes [269–272].

The functional importance of prostaglandins in thermogenic homeostasis was clarified by manipulating

the expression of cyclooxygenase 2 (COX2), a rate-limiting enzyme in prostaglandin synthesis, in

rodent models. Overexpression of COX2 in white adipocytes positively stimulates the recruitment

of beige adipocytes in WAT, while downregulation of prostaglandins by genetic deletion or specific

inhibition of COX2 impairs the formation of browning in WAT, which is mediated by shifting adipocyte

differentiation from mesenchymal stem cells [273]. Contrarily, Virtue et al. suggested a new concept

that prostaglandin-catalyzing enzymes could contribute to BAT activity independent of prostaglandin

production. Mice lacking lipocalin prostaglandin D synthase (L-PGDS) showed impaired thermogenic

activity in BAT due to a defect in switching of substrate utilization from glucose to lipids [269].

3.4.2. 12,13-Dihydroxy-9Z-Octadecenoic Acid (12,13-diHOME)

Increased lipid production in the body by enhanced lipolysis during cold exposure is an

essential process for thermogenesis, as lipids are key fuels utilized to produce heat by oxidation in

mitochondria of BAT and beige AT. In addition to this role, Lynes et al. recently proposed that lipid

12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) concentration is increased in the circulation

in humans and mice when exposed to cold, which results in the stimulation of fatty acid uptake by

promoting the translocation of CD36 and FATP1 to the cell membrane of BAT and beige WAT [274].
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In line with this function in ATs, lipid 12,13-diHOME levels are also increased in the circulation

after exercise in humans and mice, contributing to the uptake of circulating fatty acids in skeletal

muscles [275].

3.5. Regulation of Additional Functions in Adipose Tissues

3.5.1. Bone Morphogenetic Proteins (BMPs)

BMPs, a group of TGF-β superfamily members, are important in the development of bone,

cartilage, the nervous system, and heart. Many lines of evidence have demonstrated that BMPs are

essential morphogens in embryogenesis and development [276]. Among them, BMP2, BMP4, BMP7,

and BMP8B have been especially acknowledged to contribute to the regulation of AT development in

different locations at different times during development [277]. BMP2 stimulates the commitment into

white adipocyte differentiation, and its expression in AT positively correlates with obesity and diabetes

in patients. BMP4 shows several essential roles in adipocyte development. First, BMP4 induces the

commitment of multipotent mesenchymal stem cells to differentiate to the adipocyte lineage; second,

BMP4 drives the committed stem cells into white adipocytes; and lastly, BMP4 contributes to the

conversion of brown adipocytes to white adipocytes in BAT [215,217,278,279]. In 2008, Tseng et al.

identified a new role of BMP7 in adipogenesis. Their results suggested that unlike BMP2 and BMP4,

BMP7 induces the commitment of mesenchymal stem cells to the brown adipocyte lineage, thus leading

to increased BAT mass [280]. Furthermore, a similar effect was observed in humans, although the

experiments were performed only in isolated stem cells from human fat tissues [217]. BMP8B is another

factor, which can promote brown adipocyte differentiation. Increased BMP8B expression is detected in

BAT and the hypothalamus in response to cold exposure or high-fat feeding, which then activates BAT

thermogenesis by activating the SMADs/p38 MAPK pathway in BATs and increasing the sympathetic

tone to BAT [281].

3.5.2. Peptidase M20 Domain Containing 1 (PM20D1)

The discovery of PM20D1 proposed a new concept of cold-induced thermogenesis. PM20D1

is preferentially expressed in UCP1+ adipocytes and can be secreted upon cold-stimulation.

When PM20D1 is present in adipocytes, it generates a metabolite, N-acyl amino acid, which acts as an

endogenous uncoupler in mitochondria, by condensation of fatty acids and amino acids, resulting in

enhanced energy expenditure independently of UCP1 in adipocytes [282].

3.5.3. Basic Fibroblast Growth Factor (bFGF/FGF2)

Cold acclimation in mice increased BAT mass with a remarkable increase in the expression of bFGF

(or FGF2). Yamashita et al. suggested that increased bFGF levels expand the BAT mass by stimulating

brown preadipocyte (adipogenesis) and vascular endothelial cell (vascularization) proliferation in an

autocrine and paracrine manner, respectively [283].

3.5.4. Wingless-Related MMTV Integration Site 10b (WNT10b)

WNT10b is a secretory protein and a member of the WNT family. Its significance was identified

when induction of its activity in injured cardiac muscles showed a beneficial outcome by regulating

coronary vessel formation in the heart. In the AT, WNT10b acts as key leverage in determining

mesenchymal stem cell (MSC) fate between adipocyte and bone formation. Its expression inhibits

adipocyte differentiation and is thus negatively associated with adipogenesis, but supports osteoblast

differentiation in an autocrine or paracrine manner [284,285]. Furthermore, Rahman et al. identified

that WNT10b is detected in beige WAT of bone marrow in response to energy state, and determines

MSC fate [286].
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3.5.5. Insulin-Like Growth Factor-Binding Protein-2 (IGFBP2)

IGFBP2 is a member of the IGFBP family that regulates IGF-1 functions. This protein is involved

in cellular processes, such as proliferation and migration, and links the communication between energy

metabolism and bone formation. IGFBP2 was identified as a secretory protein by beige adipocytes [286].

However, its physiological significance is yet to be elucidated.

3.5.6. Retinol-Binding Protein-4 (RBP4)

RBP4 is a transporter for vitamin A and its derivatives and is mainly synthesized in the liver [287].

RBP4 is also an adipokine, but its levels in the WAT appear to be negatively associated with insulin

sensitivity [98]. In response to a β3-adrenergic cue or cold exposure, RBP4 is synthesized and released

by the BAT. However, the amount of RBP4 released from the BAT contributes only to a negligible part

in the total level of circulating RBP4. Further, the physiological significance of RBP4 from BAT remains

unknown [288].

3.5.7. Nerve Growth Factor (NGF)

A remarkable feature of BAT and beige AT development is the numerous sympathetic nerve

innervations. It has been observed that the extent of nerve innervation is dynamically and flexibly

altered in response to environmental cues, especially, cold temperature [289]. NGF is one of the

factors being identified as a regulator for nerve innervation in BAT. Cold exposure in mice increases

NGF synthesis in the BAT, which results in increased neurite outgrowth. In addition, treatment with

anti-NGF serum blocks the NGF effect [290]. However, it still has to be elucidated whether NGF is

effective enough in humans and in vivo.

4. Exosomal microRNAs as Novel Adipokines

4.1. Exosomes

Exosomes are extracellular nanovesicles that facilitate intercellular communication. They are

actively released via the endosomal pathway and contain RNAs and proteins that can be transferred

locally to adjacent cells or remotely to distant organs [291,292]. Proteins and RNAs delivered by

exosomes can modulate the activities or properties of recipient cells, influencing diverse physiological

and pathological functions such as proliferation and differentiation, immunomodulation, and

tumorigenesis [293–296]. Recently, microRNAs (miRNA) were found in exosomes, and the physiological

functions of the released miRNAs have started to gain attention [297–299].

4.2. MicroRNAs in the AT

MicroRNA is a small noncoding RNA of about 22nt, which binds to target mRNA and induces

mRNA degradation and translational repression [300]. The role of miRNA in post-transcriptional

control is critical in most cellular processes, and therefore, disorders in miRNA regulation are closely

linked to human diseases [301–303]. The importance of miRNA in AT has been established through

adipose-specific knockout of Dicer or DGCR8, the key components of miRNA biogenesis [304–306].

The loss of miRNA production results in defects of AT formation and metabolic dysregulation

accompanied by insulin resistance and alterations of circulating lipids. Moreover, dozens of individual

miRNAs have been reported to control fat metabolism, including the differentiation and function

of white and brown adipocytes [307]. However, the function and abundance of miRNA have been

analyzed mainly in terms of the autonomous role [308–310]. Exosomal miRNAs released from AT

have newly emerged as novel players that regulate systemic metabolism by connecting different

organs [311,312].
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4.3. Adipose-Derived Exosomal microRNAs

4.3.1. miR-99b

Recently, Thomou et al. provided fascinating evidence suggesting that the miRNAs released

by AT can regulate gene expression in distant metabolic organs [26] (Figure 5). They first found a

strong reduction of exosomal miRNA in adipose-specific Dicer knockout (ADicerKO) mice, which

blocks the production of miRNA in AT. The levels of 419 exosomal miRNAs were dramatically

decreased in ADicerKO mice compared to wild-type mice. Transplanting the fat depot (brown fat,

inguinal white fat, or epididymal white fat) from the wild type restored the miRNA level, suggesting

that AT is a major source of circulating exosomal miRNAs. In humans, circulating miRNAs are

also originated from the AT. A similar reduction was observed in congenital or HIV-associated

lipodystrophy patients who suffer from a generalized loss of AT [313]; levels of 217 exosomal miRNAs

were downregulated. Among 75 miRNAs decreased in the serum of both patient cohorts, 30 miRNAs

were overlapped with the adipose-derived exosomal miRNAs downregulated in ADicerKO mice.

Interestingly, Thomou et al. [26] also found a threefold higher level of circulating FGF21 in ADicerKO

mice with a marked increase of Fgf21 mRNA level in liver, muscle, pancreas, and fat. The transplantation

of normal brown fat to ADicerKO mice decreased the level of Fgf21 mRNA in liver, which comes with a

reduction of circulating FGF21. Thomou et al. [26] identified miR-99b as a factor delivered from the AT

to the liver for the regulation of FGF21 expression. MiR-99b is present in brown fat-derived exosomes

and can bind the 3′UTR of Fgf21 mRNA to inhibit the expression of FGF21. These results collectively

suggest that miRNA secreted from the fat depots regulate gene expression in the liver, which in turn

influence whole-body metabolism.
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Figure 5. Adipose tissue-derived exosomal microRNAs. Recipient organs and target mRNAs of

exosomal microRNAs. Brown fat-derived miR-99b suppresses Fgf-21 expression in the liver, which

regulates the systemic homeostasis. The circulating mIR-130b is correlated with BMI. In a mouse

obesity model, adipose tissue-derived miR-130b downregulated Pgc-1α expression in the muscle cell.

The expression and secretion of miR-200a are increased by rosiglitazone treatment. Exosomal miR-200a

derived from adipocytes stimulates mTOR signaling by decreasing TSC1 expression, which leads

to cardiomyocyte hypertrophy. Exosomal miR-450a functions in an autocrine manner to increase

adipogenesis through the downregulation of WISP2. Abbreviations: FGF21, fibroblast growth factor 21;

BMI, body mass index; PGC-1α, peroxisome proliferator–activated receptor gamma coactivator-1 alpha;

mTOR, mammalian target of rapamycin; TSC1, tuberous sclerosis 1; WISP2, WNT1-inducible-signaling

pathway protein 2.
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4.3.2. miR-200a

The role of another exosomal miRNA released from AT has been reported by Fang et al. In the

specific context of PPARγ activation, exosomal miR-200a was reported to mediate the crosstalk between

adipocytes and cardiomyocytes in mice [314] (Figure 5). Treatment with rosiglitazone, a PPARγ

agonist, activated the expression and secretion of miR-200a. Increased levels of exosomal miR-200a

from adipocytes were delivered to cardiomyocytes to decrease TSC1 expression and subsequently

stimulate mTOR signaling, leading to cardiomyocyte hypertrophy. Rosiglitazone, which is used

to treat diabetes as an insulin sensitizer, has adverse cardiovascular effects [315]. The exosomal

miR-200a-mediated inter-organ communication could be the molecular mechanism underlying the

adverse effect of rosiglitazone.

4.3.3. miR-450a

Exosomal miRNAs with autocrine functions have also been identified. Zhang et al. found an

enriched population of 45 miRNAs in exosomes released from ATs (EXO-AT), compared to those

released from adipose tissue-derived stem cells (EXO-ADSCs), in rats [316]. Among them, 14 miRNAs

participated in the regulation of adipogenesis. In particular, miR-450a, one of the abundant miRNAs,

7-fold enriched in EXO-AT compared to EXO-ADSC, increased adipogenesis by inhibiting WISP2

(Figure 5).

4.3.4. miR-155

Exosomal microRNA originating from macrophages in AT has been proven to modulate systemic

metabolism [317]. Ying et al. [317] reported that AT macrophages (ATMs) secrete miRNA-containing

exosomes. They also showed that ATM-derived exosomes in obese mice induce glucose intolerance

and insulin resistance when injected into lean mice, and conversely ATM-derived exosomes in lean

mice improve insulin sensitivity when injected into obese mice [317]. This finding suggests that

ATM-derived exosomes serve to transfer the critical regulator of glucose homeostasis and insulin

sensitivity to metabolic target cells of liver and muscle. There were 20 miRNAs with significant

differences in abundance between lean and obese ATM-derived exosomes, among which miR-155

overexpressed in obese ATM exosomes was found to suppress insulin action on glucose production

through the downregulation of its target, PPARγ mRNA.

4.4. Clinical Research on Exosomal microRNAs in Metabolic Disorders

Clinical studies have started to explore exosomal microRNAs derived from AT, especially in relation

to obesity and associated metabolic disorders [25,318,319]. The abundance of several adipocyte-derived

exosomal miRNAs was altered in obese patients, and most of them were specific to the VAT or sWAT.

Exosomal miRNAs derived from VAT were predicted to target mRNAs mainly involved in TGF-β and

Wnt/β-catenin signaling [25,320]. Another study on circulating miRNAs in obese patients showed

that miR-130b in serum was positively correlated with BMI (Figure 5). The role of exosomal miR-130b

was further defined in a mouse obesity model where the secretion of miR-130b, stimulated by TGF-β

in adipocytes, targeted PGC-1α mRNA in muscle cells [318]. In a study with obese patients who

underwent gastric bypass bariatric surgery, the relationship between adipocyte-derived exosomal

miRNAs and insulin resistance was verified [319]. Bariatric surgery that leads to weight loss and

improved glucose regulation also modified adipocyte-derived exosomal miRNAs. Fifty-six miRNAs

were differentially expressed one year after surgery, and putative targets of these miRNAs were

enriched in insulin receptor signaling. The change in abundance of 46 miRNAs was significantly

correlated to the change in insulin resistance. In addition to the adipose-derived exosomal miRNAs,

circulating miRNAs whose origins were not defined, have been increasingly reported in numerous

clinical research related to metabolic disorders [321–326]. Further characterization of circulating
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miRNAs may further expand our knowledge of the specific relationship between adipose-derived

miRNAs and metabolic diseases.

4.5. Challenges and Perspectives as Diagnostic and Therapeutic Tools

As reviewed herein, accumulated studies on miRNAs secreted from the AT have identified

exosomal miRNAs as a genetic regulator form of adipokines. Exosomal microRNAs reflect the

physiological property of the origin and alter the target cell by regulating the expression of the target

gene. Furthermore, inter-organ communication by adipose tissue-derived exosomal miRNAs alters

the systemic metabolic profile. These miRNAs could be developed as diagnostic markers of metabolic

diseases, and may be used to develop novel therapeutic strategies [327]. However, detailed mechanisms

on the transfer of miRNAs via exosomes remain to be elucidated, including detailed mechanisms of

how miRNAs are selectively loaded into exosomes and how exosomes target specific organs or cell

types. An improved understanding of the specificity of exosomal miRNA in both production and

action would unveil another layer of regulation on systemic metabolism.

5. Discussion

ATs, as endocrine organs, secrete peptides or proteins called “adipokines” for the maintenance of

energy homeostasis. Recently, it was reported that most physiologically active substances produced by

ATs can act as adipokines. Adipokines are not limited to the secretome derived from WAT. Batokines

and exosomal microRNAs also belong to the broader family of adipokines. Batokines and exosomal

microRNAs derived from ATs act like hormones and affect other metabolic organs in an endocrine

fashion. In particular, exosomal miRNA has been in the spotlight, as a new target for a therapeutic and

diagnostic biomarker for obesity-related diseases.

Changes in the expression pattern of these adipokines mirror the AT status, and an altered

secretion pattern of adipokines is frequently observed in metabolic diseases such as obesity and

T2DM. Adipose-derived factors are closely related to insulin resistance, adiposity, inflammation,

and other pathogenic conditions. Therefore, observing changes in adipose-derived factors is very

important for a better understanding of the underlying pathogenesis and pathophysiology of metabolic

diseases. It will enable us to diagnose and predict obesity and T2DM. Further, it will support the

development of adipose-derived factors as biomarkers and targets for therapeutic intervention and

pharmacotherapeutic management of obesity and T2DM.

In contrast, further studies on the metabolic effects of administration of adipokines as a therapeutic

drug are necessary. Administration of adipokines could trigger unexpected effects, owing to the

different physiological and pathological conditions in humans. Additionally, the effect could be

different in rodents and humans.
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