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Adipose tissue is a critical regulator of systemic metabolism and bodily homeostasis

as it secretes a myriad of adipokines, including inflammatory and anti-inflammatory

cytokines. As the main storage pool of lipids, subcutaneous and visceral adipose

tissues undergo marked hypertrophy and hyperplasia in response to nutritional excess

leading to hypoxia, adipokine dysregulation, and subsequent low-grade inflammation

that is characterized by increased infiltration and activation of innate and adaptive

immune cells. The specific localization, physiology, susceptibility to inflammation and

the heterogeneity of the inflammatory cell population of each adipose depot are unique

and thus dictate the possible complications of adipose tissue chronic inflammation.

Several lines of evidence link visceral and particularly perivascular, pericardial, and

perirenal adipose tissue inflammation to the development of metabolic syndrome, insulin

resistance, type 2 diabetes and cardiovascular diseases. In addition to the implication of

the immune system in the regulation of adipose tissue function, adipose tissue immune

components are pivotal in detrimental or otherwise favorable adipose tissue remodeling

and thermogenesis. Adipose tissue resident and infiltrating immune cells undergo

metabolic and morphological adaptation based on the systemic energy status and thus

a better comprehension of the metabolic regulation of immune cells in adipose tissues is

pivotal to address complications of chronic adipose tissue inflammation. In this review, we

discuss the role of adipose innate and adaptive immune cells across various physiological

and pathophysiological states that pertain to the development or progression of

cardiovascular diseases associated with metabolic disorders. Understanding such

mechanisms allows for the exploitation of the adipose tissue-immune system crosstalk,

exploring how the adipose immune system might be targeted as a strategy to treat

cardiovascular derangements associated with metabolic dysfunctions.
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INTRODUCTION

Over the past two decades, the traditional view of adipose
tissue (AT) as a passive store of excess calories evolved to
implicate an endocrine role that is particularly pertinent to
glucose and lipid homeostasis (1). This endocrine function is
the result of a complex interaction between adipocytes and
cells of the stromal vascular fraction of AT, which modulate
the type of mediators produced in different conditions of
health and disease. Importantly, this endocrine role is ascribed
to the white adipose tissue (WAT); one of the two major
types of AT. While, WAT comprises unilocular adipocytes
that specialize in the storage of energy and the regulation
of metabolic homeostasis by the production of adipokines,
brown AT (BAT) is formed of mitochondria-rich multilocular
adipocytes whose main function is energy dissipation through
thermogenesis (2). Interestingly, accumulating evidence shows
that both endocrine and thermogenic functions are modulated
by resident and infiltrating immune cells. In fact, AT harbors
a plethora of immune cells belonging to both the innate and
adaptive immune systems, which either exert a pro- or an
anti-inflammatory role depending on the microenvironmental
stimulation and metabolic rewiring. Obese AT represents a state
of chronic inflammation due to increased adipocyte hypertrophy,
hyperplasia and apoptosis accompanied by an alteration in the
production of adipokines and inflammatory mediators. This
has been linked to the development of insulin resistance (IR),
metabolic syndrome (MetS) and type 2 diabetes (T2D) (3). The
manifestations of AT inflammation are proposed to alter the
phenotype and gene expression profile of adipose immune cells,
which was proposed to underlie major comorbidities of obesity
including cardiovascular diseases (CVDs) (4).

In this review, we elaborate on the metabolic rewiring of
AT-resident and infiltrating immune cells in health and disease
and their participation in the inflammatory phenotype of AT
relevant to the development of metabolic and cardiovascular
disorders. We also touch upon recent evidence implicating
AT-resident and infiltrating immune cells in the induction or
suppression of AT thermogenesis and its possible outcomes.
Finally, we discuss how several interventions immuno-modulate
AT function and the exciting future perspectives in the field of
AT immunometabolism.

OBESITY, AT INFLAMMATION AND THE
METABOLIC SYNDROME

AT Inflammation and Remodeling
The incidence of obesity is increasing globally at an alarming rate
with a parallel increase in the associated conditions including
IR, CVD, and T2D (5, 6). Obesity is considered a chronic
inflammatory disease that is linked to metabolic disorders
(7). In this context, AT chronic low-grade inflammation and
the progressive infiltration of immune cells into the AT
contribute to IR (5, 8). The precise triggers of obesity-correlated
inflammation are not fully understood. However, it is widely
accepted that overnutrition drives a state of hyperinsulinemia,
which participates in AT inflammation by inducing adipocyte

hypertrophy followed by hypoxia, adipocyte death, lipotoxicity,
and altered extracellular matrix (ECM).

WAT is a poorly vascularized tissue that exhibits a further
decreased blood supply during AT expansion resulting in
hypoxia. This hypoxic atmosphere is stimulated by increased
adipocyte dimensions beyond the oxygen diffusing-ability,
increased oxygen demand and lack of proper compensatory
vascularization (9, 10). Infiltrating immune cells and ECM
alterations also contribute to this hypoxic phenotype (11).
Indeed, hypoxia induces the release of pro-inflammatory
cytokines, chemokines, and angiogenic as well as fibrotic factors
from adipocytes, which favor AT inflammation, vasculature
remodeling, and AT dysfunction (9, 12). Hypoxia-induced AT
dysfunction is characterized by an extensive lipolytic activity
and free fatty acids (FAs) release leading to lipotoxicity, which
was shown to exacerbate AT inflammation and participate in
the pathogenesis of IR by promoting endoplasmic reticulum
(ER) stress, adipocyte apoptosis, and inflammation (8, 13,
14). Hypoxia also causes necrosis-like adipocyte death, which
initiates inflammation via interacting with macrophages (15).
Nevertheless, AT reacts to adipocyte death by initiating a self-
limiting wound healing response, which is characterized by
intensive infiltration of immune cells, especially macrophages,
that encircle dead fat cells, creating histological crown-like
structures (CLS) (15). These macrophages generate toxic reactive
oxygen species (ROS) and nitric oxide (NO), which further
damage neighboring cells and support fibrosis (16). On the
other hand, as the injury signal sustains in obesity, the
chronic stimulation of myofibroblasts and immune cells causes
additional damage, fibrosis, ECM remodeling and eventually AT
dysfunction as well as IR (17, 18).

AT low-grade inflammation is driven by the excessive
production of inflammatory cytokines such as tumor necrosis
factor (TNF)-α and interleukin (IL)-1β, which activate and
recruit immune cells to AT, promoting its remodeling and
causing an imbalance between homeostatic AT-resident immune
cells and infiltrating inflammatory immune cells (19). The latter
cells consist of macrophages, neutrophils, mast cells and T and B
lymphocytes among others that secrete cytokines promoting the
recruitment and polarization of other inflammatory cells in the
AT. Moreover, dendritic cells (DCs), macrophages, and B cells
induce the expansion of CD4 and CD8T cells in the AT (20–22).
In case of obese AT, macrophages exceed 50% of the immune cell
population compared to lean AT (23, 24), and the production
of CXCL12, CCR5, and MCP-1 by the AT tends to recruit and
activate macrophages, making macrophages the major producers
of cytokines in the AT (25–27).

Differences in Inflammation Susceptibility
of Different AT Depots
Various molecular, physiological, and metabolic differences
exist among adipose depots (28). Differences found in the
microenvironment ofWAT depots lead to unequal AT expansion
and inflammation susceptibility under metabolic stress. Indeed,
BAT is less prone to inflammation in comparison to WAT (29–
31). Another good example is the difference in inflammation

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 November 2020 | Volume 7 | Article 602088

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


AlZaim et al. Immunomodulation of Adipose Inflammation

susceptibility between PVAT and other VAT depots. We
have shown that PVAT localized inflammation, which was
associated with uncoupling protein 1 (UCP1)-mediated hypoxic
preconditioning, occurs in isolation of systemic inflammation
in a prediabetic rat model (32). Moreover, EpiCAT has
small adipocyte size, high protein content and high rate of
FA synthesis compared to other adipose depots making it
susceptible to a metabolic profile shift (33). Additionally, during
EpiCAT expansion, a quick proinflammatory microenvironment
is generated due to the extensive inflammatory immune cell
infiltration (34).

Adipokine Profile Dysregulation
Adipokines, which encompass endocrine and other
biologically-active proteins, are released by WAT and
function as hormones that regulate insulin sensitivity,
energy balance, immune system functions and whole-
body homeostasis (35). Metabolically healthy individuals
possess a balance between proinflammatory and anti-
inflammatory adipokines. This balance shifts in favor of
proinflammatory mediators as the AT expands in the course
of metabolic syndrome and obesity. This adipokine profile
dysregulation has been associated with an increased risk
of metabolic dysfunction, T2D and CVDs. Importantly,
these adipokines profoundly influence the activation
state, differentiation, and proliferation of AT-resident and
infiltrating immune cells. Anti-inflammatory adipokines include
adiponectin, C1q/TNF-related proteins (CTRPs), omentin,
and secreted frizzled-related protein 5 (SFRP5) (36–38).
Proinflammatory adipokines include leptin, resistin, chemerin,
visfatin, retinol binding protein 4 (RBP4), and lipocalin 2
(LCN2) (35).

Adiponectin
Adiponectin is the best-known and most abundant adipokine
found in human serum with insulin-sensitizing and
cardioprotective actions (39, 40). Adiponectin serum levels
decrease in obesity, T2D, and in states of high oxidative
stress (41, 42). Total plasma adiponectin levels are also
inversely correlated with MI risk (43, 44). Adiponectin-deficient
mice exhibit an exacerbated myocardial ischemic injury,
and adiponectin supplementation protects the heart against
ischemia/reperfusion injury (45, 46). In circulation, adiponectin
forms low, intermediate, and high molecular weight complexes
where the high molecular weight complex was shown to block
NF-κB activation and the production of proinflammatory
cytokines (47, 48). Adiponectin exerts its effects by binding
to its tissue-specific receptors, AdipoR1 and AdipoR2, which
results in the downstream activation of AMPK, Akt-eNOS
phosphorylation, and NO production (49–51). Moreover,
adiponectin exerts an antioxidant (oxidative and nitrative stress)
activity that is AMPK-independent and that is largely mediated
via PKA-dependent NF-κB inhibition (52). Importantly,
adiponectin modulates the activity of several immune cells
in the AT including macrophages (53, 54), eosinophils
(55), and mast cells (56). Indeed, profound mechanistic

frameworks for this modulation are still lacking and require
further investigation.

CTRPs
CTRPs are structurally similar, paralogs of adiponectin, with
at least 15 isoforms being described to date where they
exhibit broadly diverse effects (57, 58). For example, CTRP1
plays an important role in regulating body energy homeostasis
and insulin sensitivity (59). Plasma CTRP1 was higher and
negatively correlated with insulin resistance in diabetic subjects
(60, 61). A recent study highlighted a significant association
between increased CTRP1 levels and metabolic syndrome,
obesity, T2D and non-alcoholic fatty liver disease (62). It was
suggested that CTRP1 improves insulin resistance by reducing
the phosphorylation of IRS-1 Ser1101 (61). In line with that, it
was shown that elevated concentrations of CTRP1 reduce weight
gain and diet-induced insulin resistance (59). Moreover, CTRP1
was shown to enhance glucose uptake through an increased
GLUT4 translocation to the plasma membrane and enhanced
glycolysis in HFD-fed CTRP1 transgenic mice (63). Moreover,
CTRP1 promoted fatty acid oxidation and therefore, CTRP1
seems to perform a defensive catabolic effect in response to
nutritional challenges. Interestingly, CTRP1-deficient mice fed
a low-fat diet developed insulin resistance and hepatic steatosis
(64). At the level of the cardiovascular system, CTRP1 was
shown to regulate blood pressure through the induction of
vasoconstriction (65). As such, mice overexpressing CTRP1 are
hypertensive and hypertensive patients display a higher CTRP1
levels in comparison to healthy individuals (65). Moreover,
CTRP1 was demonstrated to limit the extent of ischemia-
reperfusion injury in acute myocardial infarction (59). The level
of CTRP1 was also significantly increased in CAD patients and
was suggested as a superior biomarker for the diagnosis of
severity of vessel-lesion in CAD patients (66, 67). Interestingly,
CRTP1 levels positively correlated with concentrations of IL-6
and TNF-α in CAD patients (66). In congestive heart failure
patients, the levels of CTRP1 in serum and EpiCAT were
higher than in controls, which was associated with a worse
prognosis (68). Nevertheless, the implication of CTRP1 serum
levels alteration on the activity of immune cells in models of
metabolic and cardiovascular diseases has not yet been assessed.

CTRP3 (also known as cartducin) regulates adiponectin
secretion from adipocytes (69, 70). CTRP3 was also shown
to regulate glucose homeostasis (71), to stimulate in vitro
endothelial cell proliferation and migration (58), and to inhibit
TLR4 signaling and cytokine production in LPS- and FFA-
stimulated adipocytes and monocytes (58). Importantly, CTRP3
serum level decrease following myocardial infarction and
its restoration post-MI attenuates post-ischemic pathological
remodeling (72).

Plasma CTRP9 levels are decreased in rodent models
of obesity and diabetes (73, 74). Importantly, CTRP9
heterodimerizes with adiponectin and shares AdipoR1
stimulation in cultured cardiomyocytes and endothelial cells
(73, 75, 76). CTRP9 promotes eNOS activity and NO production
via AdipoR1-mediated activation of AMPK, resulting in
endothelium-dependent vasorelaxation of aortic rings (76).
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Moreover, CTRP9 attenuates inflammation in TNF-α-stimulated
endothelial cells via AMPK activation and inhibits inflammatory
responses in ox-LDL-stimulated macrophages (77, 78). Indeed,
CTRP9-deficient mice are obese and insulin resistant (79).
Importantly, several studies demonstrated a cardioprotective
effect of CTRP9 (73, 74, 80, 81).

Adipolin (CTRP12) is an insulin-sensitizing adipokine that
is abundantly produced by AT and whose expression levels
decrease in rodent models of obesity (82, 83). The systemic
administration of adipolin ameliorated glucose intolerance
and insulin resistance in HFD-fed obese mice (82). Adipolin
administration also attenuated macrophage infiltration and
proinflammatory genes expression in AT of obese mice (82).
Importantly, it was demonstrated that adipolin levels increase
in response to hyperinsulinemia induction in healthy lean
human subjects or following PPARγ agonism (84). This
indicates that adipolin, as a novel anti-inflammatory adipokine,
increases in the early stages of the metabolic insult to curb
metabolic derangements and these levels are not sustained
following prolonged metabolic disease induction. Importantly,
adipolin levels were found to be lower in CAD patients
compared to healthy controls (85). Moreover, adipolin levels
were inversely correlated with HOMA-IR and TNF-α and
positively correlated with adiponectin expression levels (85).
Another study highlighted that adipolin levels decrease in acute
myocardial infarction patients and that these levels are negatively
associated with epicardial fat thickness (86). Indeed, adipolin-
deficient mice exhibited an exacerbated neointimal thickening
following vascular injury which was accompanied by enhanced
inflammation and vascular cell proliferation (87). Adipolin-
treated LPS-stimulated macrophages in vitro exhibited a reduced
expression of IL-6 and TNF-α. Moreover, adipolin-deficient
MI mice had increased myocardial apoptosis, cardiomyocyte
hypertrophy, and perivascular fibrosis at the remote zone
of infarct heart through an Akt-dependent mechanism (88).
This indicates that adipolin exerts a protective effect against
pathological processes of vascular and cardiac remodeling.

The adipokine CTRP6 regulates metabolism and
inflammation (89, 90). CTRP6 improves cardiac function
and ameliorates ventricular remodeling post-MI (91). CTRP13
was also shown to improve insulin sensitivity and inhibit the
inflammation of lipid-loaded hepatocytes (92).

Omentin
Omentin is a novel adipokine whose levels decrease in obese
subjects and negatively correlate with carotid intima media
thickness (93–95). Moreover, omentin expression is negatively
associated with the prevalence and the angiographic severity of
coronary artery disease (96). Omentin inhibits TNF-α-induced
endothelial COX2 expression and induces the activity of eNOS
(97). Moreover, omentin enhances isolated aortic rings dilation
in mice in an eNOS-dependent manner (98). Omentin systemic
delivery also attenuated neointimal thickening and vascular
smoothmuscle proliferation in an AMPK-dependentmechanism
(99). Therefore, omentin functions as an anti-atherogenic
and anti-inflammatory adipokine similar to adiponectin and
the CTRPs.

SFRP5
SFRP5 has anti-inflammatory effects in AT and in macrophages
where it was shown to suppress the noncanonical Wnt5a/JNK
signaling which inhibits the synthesis of macrophage TNF-α,
IL-1β, and CCL2-MCP1 (100).

Leptin
First described as a satiety hormone, leptin was shown to bind
to long form of leptin receptor expressed in nearly all immune
cells to initiate innate immune responses (101). Leptin enhances
the production of proinflammatory cytokines in peripheral blood
monocytes and tissue-resident macrophages in mice and humans
(102–105). Leptin also induces ROS production in macrophages,
neutrophils, and endothelial cells and potentiate the expression
of INFγ-induced nitric oxide synthase (106–108). Leptin also
enhances Th1 and Th17 immune responses and prevents T cell
apoptosis (109).

Resistin
Resistin was first characterized as amediator of insulin resistance,
metabolic syndrome, and T2D in mice (110). Although WAT
represents the primary source of resistin in mice, monocytes and
macrophages are themost important source of resistin in humans
(111). The proinflammatory actions of resistin are mediated by
CAP-1, a resistin receptor, with downstream activation of NF-κB
in human monocytes (112). Resistin binds to TLR4 and regulates
the production of TNF-α and IL-6 in macrophages through the
activation of NF-κB signaling (113). Importantly, resistin levels
are elevated in obese humans and are associated with an increased
risk of CVDs (114).

Visfatin
Visfatin, also known as pre-B cell colony-enhancing factor
(PBEF), is a novel, highly conserved adipokine that is abundantly
expressed in visceral fat (115, 116). Visfatin plays a determinant
role in the pathophysiology of metabolic and cardiovascular
diseases (117). Visfatin elicits insulomimetic effects in adipocytes
and an increased blood glucose level prompts an increase of
serum visfatin (115, 118). Nevertheless, it was suggested that the
effects of visfatin do not involve the classical insulin signaling
pathways in skeletal muscles (115, 119). Indeed, several studies
demonstrated an association between increased plasma visfatin
level and diabetes (120, 121). In contrast, other studies reported
opposite or no association between visfatin plasma levels and
diabetes (122, 123). Similar controversy was also documented
when correlating visfatin plasma levels with obesity (124–126).
Despite the role of visfatin in metabolic disorders remaining
debatable (127), it does not rule out visfatin implication in
these disorders and its participation in metabolic dysfunction-
associated cardiovascular diseases. Several studies suggested a
pro-inflammatory role of visfatin in both VAT and scWAT
(128). In fact, visfatin was shown to enhance monocyte-mediated
recruitment of T cells and B cells by increasing the expression of
CD80, CD40, and ICAM-1 (129). Moreover, visfatin-stimulated
human leukocytes exhibit a dose-dependent induction in the
expression of IL-1β, IL-1Ra, IL-10, and IL-6 (129).
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FIGURE 1 | Adipose tissue resident and infiltrating immune cells activity in health and disease. Significant crosstalk exists among adipocytes, adipokines, and resident

and infiltrating, innate and adaptive immune cells. Metabolic disease conditions modulate the adipokine profile and immune cell activity leading to the observed

chronic low-grade inflammation. Pathways involved in AT homeostasis are depicted in black arrows, while those activated by metabolic dysfunction are shown in red.

B Cell, B Lymphocyte; Breg Cells, Regulatory B Lymphocyte; CCL11, C-C motif chemokine 11; CD1d, Cluster of Differentiation 1d; cDC, Conventional Dendritic Cell;

FFA, Free Fatty Acids; IFNγ, Interferon Gamma; IgG, Immunoglobulin G; IL, Interleukin; ILC, Innate Lymphoid Cell; iNKT Cell, Invariant Natural Killer T Cell; LTB4,

Leukotriene B4; NET, Neutrophil Extracellular Trap; NF-κB, Nuclear Factor Kapp-light-chain-enhancer of Activated B cells; NLRP3, NLR Family Pyrin Domain

Containing 3; NO, Nitric Oxide; pDC, Plasmacytoid Dendritic Cell; ROS, Reactive Oxygen Species; T Cell, T Lymphocyte; TGF-β, Transforming Growth Factor Beta;

Th Cell, Helper T Lymphocyte; TLR, Toll Like Receptor; TNFα, Tumor Necrosis Factor Alpha; Treg, Regulatory T Lymphocyte.

LCN2 and RBP4
LCN2, also known as neutrophil gelatinase-associated
lipocalin (NGAL) is upregulated in the presence of IFN-
γ and TNF-α in obese individuals (130, 131). Similarly,
RBP4, which is mostly complexed with retinol in
circulation, was shown to promote IR and increases the
risk of T2D (132, 133). RBP4 activates antigen presenting
cells and is suggested as a cardiometabolic marker in
MetS (134).

Alongside the above-mentioned changes observed in
the adipokine profile with the induction and progression
of metabolic disease, a bi-directional interaction proceeds
within the AT microenvironment among adipocytes and
different types of resident and infiltrating immune cells.
Details and outcomes of this interaction will be discussed
for each of the cell types below. A summary of the
different pathways and mediators involved is provided in
Figure 1.

METABOLIC REGULATION AND
ADAPTATION OF TISSUE RESIDENT AND
INFILTRATING MYELOID CELLS

Macrophages
Tissue-resident macrophages are highly heterogeneous
with distinct, localization-dependent transcriptomes (135).
Classically-activated M1 macrophages, which drive CLS
formation, can be induced by LPS, toll-like receptor (TLR)
ligands or interferon (IFN)-γ, secrete pro-inflammatory
cytokines and upregulate the production of ROS and NO
following activation (136). Conversely, alternatively-activated
M2 macrophages, which contribute to AT homeostasis, are
induced by IL-4 and IL-13, are implicated in the resolution
of inflammation, and produce anti-inflammatory cytokines
such as IL-10 (137). Although being useful to highlight
the inflammatory state of tissues in health and disease,
the M1/M2 macrophage classification paradigm is now
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TABLE 1 | Metabolic pathways of classically activated M1 macrophages and alternatively activated M2 macrophages.

Immune cell Metabolic

pathway

Metabolic

reprogramming

Relevance of metabolic pathway

to cellular function

Model References

M1

macrophages

Glycolysis ⇑ Inflammatory cytokines production Myeloid-specific HIF-1α overexpressing mice (139)

HFD-fed mice and myeloid-specific

HIF-1α−/− mice

(140)

Vascular remodeling ATMs deletion in HFD-fed mice

LPS and High Glucose

stimulated macrophages

(141)

Oxidative

phosphorylation

⇓ (138)

Pentose phosphate

pathway

⇑ Production of inflammatory cytokines,

ROS and NO

Trypanosoma cruzi-infected macrophages (142)

Inflammatory cytokines production Myeloid-specific HIF-1α overexpressing mice (139)

TCA Cycle Truncated Production of prostaglandins, NO and

ROS

(143)

Lipogenesis ⇑ Required for Inflammasome activation

and production of inflammatory

mediators

Cecal ligation puncture-induced endotoxic

shock in SREBP-1a-deficient mice

LPS stimulated macrophages from

mutant mice

(144)

Required for Phagocytosis SREBP-1a-deficient macrophages (145)

Required for inflammasome activation Polymicrobial sepsis UCP2−/− mouse model (146)

Glutamine

metabolism

⇓ Required for polarization and T cell

recruitment

Glutamine synthase (GS)-inhibited

macrophages and GS−/− macrophages

(147)

Fatty acid oxidation ⇑ Inflammasome activation NOX4-deficient mice (148)

M2

macrophages

Glycolysis ⇑ Not essential for polarization unless

OXPHOS is affected

BMDMs and Raw264.7 cells (149)

Oxidative

phosphorylation

⇑ Required for polarization BMDMs and Raw264.7 cells (149)

Glutamine

metabolism

⇑ Required for polarization (150)

Fatty acid oxidation ⇑ Required for polarization and

activation of the anti-inflammatory

program

STAT6–/– BMDMs, embryonic-derived

myeloid progenitors and PGC-1β transgenic

mice

(151)

Essentiality for polarization

?

(152–154)

⇑, high metabolic rate; ⇓, low metabolic rate; ?, requires further investigation.

considered an oversimplification as it does not consider
microenvironmental factors.

Macrophages exhibit differential metabolic profiles based
on their specific polarization and microenvironmental factors
(138). These metabolic alterations are summarized in Table 1.
Indeed, the dynamic inflammatory milieu of obese AT drives
ATMs metabolic profile modifications. ATMs in obese mice
exhibit an increased activation of OXPHOS and glycolysis
(140). In addition, the activation of the NLRP3 inflammasome
in macrophages by the increasing exogenous FAs in obesity
contributes to the emergence of M1 macrophages (155–157).
Moreover, monocytes and macrophages express the leptin
receptor, which induces the proliferation of macrophages and
the production of pro-inflammatory cytokines in response to
leptin (158). In contrast to leptin, adiponectin suppresses the
NF-κB-dependent expression of pro-inflammatory cytokines
and promotes M2 polarization (53, 54). Nevertheless, another
study argued that adiponectin induced the production of

pro-inflammatory cytokines in M2 macrophages without
interfering with their polarization (159).

Dendritic Cells
Dendritic cells (DCs) are professional antigen-presenting cells
that either instigate or suppress immune responses based on
their maturation state. DCs are divided into two categories,
plasmacytoid DC (pDC) andmyeloid or conventional DC (cDC).
Accumulating evidence implicates DCs and particularly cDCs in
the regulation of AT inflammation. The DC population expands,
promotes macrophage recruitment and induce a Th17-driven
inflammatory response in HFD-fed mice (160–162). Indeed,
HFD-fed mice exhibited an increased number of CD11c+ DCs
in the AT whose ablation attenuated visceral AT inflammation
(160, 161, 163). The accumulation of cDC during obesity was
also attenuated in CCR7-deficient mice, which was associated
with decreased AT inflammation (164, 165). Conversely, cDCs
in AT were shown to acquire a tolerogenic phenotype through
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TABLE 2 | Metabolic pathways utilized by activated dendritic cells.

Immune cell Metabolic

pathway

Metabolic

reprogramming

Relevance of metabolic pathway

to cellular function

Model References

Activated

DCs

Glycolysis ⇑ Required for activation PAMPs-stimulated human monocyte-derived

DCs

(173)

TLR agonist-stimulated DCs (174)

Required for migration In vitro stimulated bone marrow-derived DCs

and splenic DCs

(175)

Oxidative

phosphorylation

- PAMPs-stimulated human monocyte-derived

DCs

(173)

⇓ (176)

Pentose phosphate

pathway

⇑ Required for the enhanced synthesis

of fatty acids

(177)

TCA cycle Truncated Production of NO and ROS (176)

Lipogenesis ⇑ Required for activation TLR agonist-stimulated DCs (174)

⇑, high metabolic rate; ⇓, low metabolic rate; -, no change in metabolic rate.

the activation of β-catenin and PPARγ without affecting weight
gain (166). pDCs were also shown to accumulate in AT and to
have detrimental effects in mice and humans (167, 168). DCs
also influence the normal expansion of lean AT, where increased
adiposity was accompanied by a reduction of CD11c+ AT DCs
(169). Moreover, the uptake and accumulation of FAs in DCs
and the formation of lipid droplets (LDs) were associated with
increased DC immunogenicity (170, 171). Due to the lipid-rich
environment of WAT especially in obesity, AT DCs are expected
to acquire more LDs. Nevertheless, the functional impacts of
this remain to be investigated. Different DC subsets exhibit
distinct metabolic programs (172). In fact, resting and stimulated
DCs have different metabolic requirements and thus, employ
differential metabolic pathways. These pathways are highlighted
in Table 2.

Neutrophils
Neutrophils are relatively rare in WAT of lean mice, where they
are suggested to maintain tissue homeostasis (178). Neutrophils
are among the first immune cells to be recruited to the AT of
HFD-fed mice with a sustained infiltration. Neutrophils drive AT
inflammation and IR through the production of inflammatory
mediators and the formation of neutrophil extracellular traps
(NETs) (179–181). Neutrophils accumulation in AT is dependent
on the production of elastase, whose activity is enhanced in the
AT of HFD-fed mice (179). WAT-infiltrating neutrophils exhibit
an upregulation of IL-1β expression via NF-κB activation in an
adipocyte contact-dependent manner (182). Adipocyte lipolysis
and LTB4 production in WAT also accumulates neutrophils
prior to macrophages and increases the production of IL-1β,
which enhances macrophage recruitment into the AT (182).
Nevertheless, it was proposed that neutrophils, similar to
macrophages, exhibit phenotypic heterogeneity by which N1
neutrophils are pro-inflammatory and N2 neutrophils are anti-
inflammatory (183, 184).

Neutrophils were believed not to require extensive metabolic
networks and to solely depend on glycolysis as they exhibit a
relatively low transcriptional and translational activity where

(185). Nevertheless, novel evidence suggests the implication
of the TCA cycle, OXPHOS, PPP, FAO, and glutaminolysis
in neutrophil metabolism, demonstrating a broad metabolic
plasticity (185) (Table 3).

Eosinophils
Eosinophils are multifunctional phagocytic granulocytes that
are typically associated with helminth infection and allergic
disorders (206). A growing body of evidence suggests a
homeostatic role for AT-resident eosinophils (178). AT-resident
eosinophils are sustained by AT multipotent stromal cells-
derived CCL11 and ILC2-derived IL-5 (207, 208). Indeed,
AT-resident eosinophils produce IL-4 and IL-13 that drive
macrophage M2 polarization, trigger Th2 differentiation,
enhance B cell activation and promote metabolic homeostasis
(209, 210). Eosinophil-deficient HFD-fed mice showed
pronounced IR (209, 211). Moreover, it was shown that
HFD-induced adiposity can be inhibited by increasing the
number of eosinophils in mice (207, 209). Conversely, another
study demonstrated an increase in gonadal AT eosinophils
in HFD-fed mice, which was supposed to be regulated
by increased CCL11 expression (211). Indeed, HFD-fed
1db1GATA and IL-5-KO mice lacking eosinophils or almost
having no gonadal AT eosinophils, exhibited impaired insulin
sensitivity (207, 212). The forced increase of AT eosinophils
in different models demonstrated an enhanced metabolic
homeostasis (209, 213, 214). Indeed, IL-4-stimulated eosinophils
induced M2 macrophage polarization, while oxidized LDL-
mediated induction promoted M1 macrophage polarization
(209, 215, 216). HFD-fed transgenic mice overexpressing
eotaxin2 specifically in AT exhibited an increased eosinophil
migration into AT that was accompanied by enhanced glucose
tolerance (217). It is also worth mentioning that leptin promotes
while adiponectin attenuates eotaxin-induced human eosinophil
adhesion and chemotaxis (55, 218, 219). Nevertheless, enhancing
AT eosinophil abundance is debated since several studies
demonstrated no beneficial or even negative outcomes of this
approach (220).
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TABLE 3 | Metabolic pathways of neutrophils, eosinophils and mast cells.

Immune cell Metabolic

pathway

Metabolic

reprogramming

Relevance of metabolic pathway

to cellular function

Model References

Neutrophils Glycolysis ⇑ Required for phagocytosis Stimulated human neutrophils in vitro (186)

Required for NETosis Phorbol myristate acetate-stimulated human

neutrophils in vitro

(187)

Oxidative

phosphorylation

⇑ Required for differentiation shRNA induced knockdown of adenylate kinase

2 in neutrophil progenitor cells

(188)

Required for chemotaxis and

respiratory burst

Oligomycin and FCCP-treated human neutrophils (189)

Required for the production of ROS LPS-treated mouse bone marrow-derived

neutrophils treated with Antimycin A or

myxothiazol

(190)

Required for migration Polg CRISPR/Cas9-mediated neutrophil-specific

knockout in Zebra fish

(191)

Pentose phosphate

pathway

⇑ Required for NETosis Amyloid fibril- and phorbol myristate

acetate-stimulated human neutrophils

(192)

Required for ROS generation and

NETosis

G6PD-deficient patients

G6PD-deficient mice

(193, 194)

TCA cycle ⇑ Required for chemotaxis Isocitrate dehydrogenase 1 mutant mice (195)

Required for differentiation Mouse Atg5-deficient neutrophils and an in vitro

model of differentiating neutrophils

(196)

Lipogenesis ⇑ Required for differentiation Atg7-deficient neutrophil precursors (197)

Required for neutrophil maintanence FASlox/lox-Rosa26-CreER mice (198)

Glutamine

metabolism

⇑ Not required for NETosis Phorbol myristate acetate-stimulated human

neutrophils in vitro

(187)

Fatty acid oxidation ⇑ Required for NOX-2-dependent

respiratory burst and ROS production

NOX deficient p47−/− mice, bone marrow

c-Kit+/− neutrophils and human neutrophils

(199)

Required for NETosis (185)

Required for differentiation Atg7-deficient neutrophil precursors (197)

Eosinophils Glycolysis ⇑ Peripheral blood-derived human eosinophils (200)

IL-3, IL-5, or GM-CSF-stimulated human

eosinophils

(201)

Oxidative

phosphorylation

⇑ Peripheral blood-derived human eosinophils (200)

IL-3, IL-5, or GM-CSF-stimulated human

eosinophils

(201)

TCA cycle ⇑ IL-3, IL-5, or GM-CSF-stimulated human

eosinophils

(201)

Glutamine

metabolism

⇑ IL-3, IL-5, or GM-CSF-stimulated human

eosinophils

(201)

Mast Cells Glycolysis ⇑ Required for histamine release 2-DG-treated rat mast cells (202)

Required for IgE-mediated

degranulation

High glucose-treated bone marrow-derived

mouse mast cells

(203)

Oxidative

phosphorylation

⇑ (204)

Pentose Phosphate

Pathway

⇑ (204)

TCA Cycle Truncated Accumulation of upstream

intermediates that channel through

the PPP

Mast cell degranulation

Basophilic leukemia (RBL-2H3) cells and a

mouse model of allergen-induced airway

hyper-responsiveness

(204, 205)

Lipogenesis ⇑ (204)

⇑, high metabolic rate; ⇓, low metabolic rate.

It was suggested that circulating eosinophils display a
greater metabolic flexibility in comparison to neutrophils
(200, 201). Further investigation into the metabolic rewiring

of eosinophils (shown in Table 3) is required as emerging
roles of eosinophils suggest a central modulatory function in
AT homeostasis.
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Mast Cells
Mast cells (MCs) are innate immune cells that originate
from multipotent hematopoietic stem cells, then migrate to
peripheral organs, where they undergo maturation giving rise
to heterogeneous populations of mature MCs (21). MCs are
enriched in visceral AT of mice and humans and are increased in
settings of obesity and T2D, where they drive AT inflammation
partly by enhancing macrophage infiltration (21, 221, 222).
Indeed, the increased abundance of MCs in sub-cutaneous WAT
of MetS subjects positively correlated with IR and markers
of fibrosis and angiogenesis linking them to AT fibrosis and
remodeling (223, 224). It was also suggested that MCs infiltration
precedes the development of overt obesity (225). Indeed, the
genetic ablation of MCs or manipulations impairing their
function in HFD-fed mice resulted in decreased weight gain and
reduced IR (221, 226, 227). Nevertheless, other studies utilizing
different mouse models could not find a correlation between MC
deficiency and the amelioration of AT inflammation (228, 229).

The activation of MCs is accompanied by a major metabolic
reprogramming (Table 3). Indeed, these metabolic processes
regulate MCs inflammatory cytokines and ROS production
and IGE-mediated degranulation (203, 204, 230). A role
for adipokines in the regulation of MC function has been
recently revealed (56). Leptin and adiponectin were shown
to exert opposite effects on MC polarization to promote
a pro-inflammatory or an anti-inflammatory cytokine
profile, respectively.

METABOLIC REGULATION AND
ADAPTATION OF TISSUE RESIDENT AND
INFILTRATING LYMPHOID CELLS

T Cells
T lymphocytes play major immunoregulatory and
immunometabolic roles in AT homeostasis and dysfunction.
Indeed, T cells were increased in VAT of obese mice and
humans (231). Different effector T cells including helper T
(Th) cells (T-bet-regulated Th1, GATA3-regulated Th2 and
ROR-γt-regulated Th17) and cytotoxic T lymphocytes (CTLs)
were shown to actively participate in obesity-associated WAT
inflammation (178). Conversely, anti-inflammatory T cells such
as regulatory T (Treg) cells and invariant natural killer T (iNKT)
cells that reside in the AT under physiological conditions were
reduced in obesity (232, 233). Based on the composition of
the T-cell antigen receptors (TCR), T cells are categorized into
two populations, αβ T and γδ T cells. αβ T cells are further
classified, based on their surface markers, into CD4+ T cells and
CD8+ T cells that upon activation, differentiate into Th cells and
CTLs, respectively. Tregs emerge as a subset of CD4+ T cells
that negatively regulate immune responses with a characteristic
signature CD4+ CD25+ Foxp3+.

αβT Cells
αβ T cells represent the second largest immune population in
WAT (178). In obesity, T cells are enriched in visceral AT of

mice and humans, and are possibly recruited through a CCR5-
CCL5-mediated interaction (231, 234). It was proposed that T
cells infiltration precedes that of macrophages (235). However,
this is debated as other studies did not arrive at a similar result
(236, 237). CD4+ T cells represent the more abundant subtype
in visceral AT and are further enriched in obesity (234, 238). In
addition to their recruitment from the general circulation, both
CD4+ and CD8+ T cells undergo clonal expansion in epicardial
WAT (239, 240). MHCII expression was increased post-HFD
feeding and mice deficient in MHCII exhibited greater insulin
sensitivity (241). Nevertheless, inhibiting MHCII in HFD-fed
mice did not improve glucose tolerance, an improvement seen
with conventional T cells deficiency (242–244). The depletion of
CD8+ cells in HFD-fed mice decreased the expression of TNF-
α and IL-6 in epicardial WAT, which was accompanied by an
enhanced glucose and insulin tolerance (235). Similarly, CD4+

Th1 cells were shown to drive AT inflammation and glucose
intolerance (245). In fact, Th1 cells are similar in proportion
to Tregs in lean conditions, while they occur at a higher
frequency in comparison to other CD4+ cell subtypes in obesity
(242, 246). Similarly, Th17 cells accumulated in sub-cutaneous
WAT of insulin resistant individuals (247). IL-17-deficient mice
displayed a better insulin and glucose tolerance, this was however
abrogated by HFD feeding (248). Th2 cells were shown to have
a beneficial effect on AT inflammation. Rag-deficient HFD-
fed mice showed marked obesity and IR in comparison to
their WT counterparts, a phenotype that was abrogated by the
adoptive transfer of CD4+, but not CD8+ T cells (242). Indeed,
most of CD4+ cells that homed to epicardial WAT expressed
GATA3 (242).

Increasing evidence suggests a pivotal role for metabolic
pathways in naïve and activated T cells maintenance and function
(249). On activation, naïve T cells undergo major metabolic
reprogramming, which highly depends on the duration and
strength of TCR stimulation, including glucose metabolism,
glutamine metabolism, and biosynthetic pathways (249). These
metabolic alterations are summarized in Table 4.

Regulatory T Cells
Phenotypically-distinct AT-resident Tregs were reported to be
enriched in visceral AT of lean mice, where they originate from
enhanced proliferation rather than circulating Tregs infiltration
(178). Visceral AT Tregs are markedly reduced in obese
mice and humans, which promotes inflammation (232, 260,
261). Conversely, expanding Tregs in HFD-fed mice improved
metabolic parameters (262). Indeed, PPARγ is essential for the
accumulation and function of Tregs in AT of lean mice, where
it collaborates with Foxp3 to induce their distinct phenotype,
a phenotype abrogated by obesity through phosphorylating
PPARγ at position Ser273 (263–265). Moreover, it was shown
that IL-33/ST-2 axis amplified Tregs in visceral AT, which
was accompanied by an attenuation of inflammation in obese
mice (266, 267). Indeed, Tregs are highly enriched in visceral
AT and to a lesser extent in sub-cutaneous WAT, where IL-
33 is expressed (268–270). Other immune cells including γδ

T cells, ILC2s and iNKT cells were also shown to regulate
AT Tregs accumulation promoting insulin sensitivity (178).
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TABLE 4 | Metabolic pathways required for T lymphocyte proliferation, differentiation, function, and activity.

Immune cell Metabolic

pathway

Metabolic

reprogramming

Relevance of metabolic pathway

to cellular function

Model References

αβ T cells Glycolysis ⇑ Required for cell growth and clonal

proliferation

(249)

Glut1 transgenic mice

Murine model of asthma

(250)

Oxidative

phosphorylation

⇑ Required for the survival, proliferation,

generation and function

(249)

Pentose phosphate

pathway

⇑ Nucleotide and ribosome

biosynthesis

(249)

TCA Cycle ⇑ (249)

Lipogenesis ⇑ Required for Th17 development,

production of membrane

phospholipids and inflammatory

function

Pharmacological and genetic inhibition of

ACC1 in mice

Human T cell cultures

Murine model of experimental

autoimmune encephalomyelitis

(251)

Required for growth and proliferation (249)

Glutamine

Metabolism

⇑ Regulates T cell activation (249)

Fatty Acid Oxidation ⇑ Ex vivo human CD4+CD25−Foxp3− (252)

⇓ Glut1 transgenic mice

Murine model of asthma

(250)

Regulatory T

Cells

Glycolysis ⇑ Required for cellular migration Treg-specific HIF-1α−/− mice (253)

Required for cellular migration but not

immunosuppressive function

Foxp3-GFP and Cd28Y170F genetically

targeted mice on C57BL/6 background

Ctla4−/− mice

Murine lung microvascular endothelial cells,

bone marrow-derived dendritic cells

H2-d allospecific Treg cells

Loss-of-function GCK mutation human

blood samples

(254)

Required for proliferation Ex vivo CD4+CD25hiFoxp3+CD127− Treg

cells

(252)

Lipogenesis ⇓ Pharmacological and genetic inhibition of

ACC1 in mice

Human T cell cultures

Murine model of experimental

autoimmune encephalomyelitis

(251)

Fatty Acid Oxidation ⇑ Required for proliferation Ex vivo CD4+CD25hiFoxp3+CD127− Treg

cells

(252)

Required for immunosuppressive

activity

Treg-specific HIF-1α−/− mice (253)

Glut1 transgenic mice

Murine model of asthma

(250)

γδ T cells Glycolysis ⇑ In γδ T1 cells and is required for

differentiation and cytokine

production

CD2-cre;Raptor-f/f mice (255)

Oxidative

phosphorylation

⇑ In γδ T17 cells and is required for the

production of IL-17

MyD88−/−, Il1r1−/− and IL-23R KO and

conditional (CD2-cre; Raptorfl/fl,

CD-2-cre;Rictorfl/fl and CD-2-cre;Stat3fl/fl)

KO mice

Human subjects with psoriasis vulgaris

Psoriasis-like mouse model

(256)

TCA cycle ⇑ Required for the production of IL-17 MyD88−/−, Il1r1−/−, and IL-23R KO and

conditional (CD2-cre; Raptorfl/fl,

CD-2-cre;Rictorfl/fl and CD-2-cre;Stat3fl/fl)

KO mice

Human subjects with psoriasis vulgaris

Psoriasis-like mouse model

(256)

(Continued)

Frontiers in Cardiovascular Medicine | www.frontiersin.org 10 November 2020 | Volume 7 | Article 602088

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


AlZaim et al. Immunomodulation of Adipose Inflammation

TABLE 4 | Continued

Immune cell Metabolic

pathway

Metabolic

reprogramming

Relevance of metabolic pathway

to cellular function

Model References

iNKT cells Glycolysis ⇑ Required for the production of IFN-γ

and TCR recycling and accumulation

in the immune synapse

Murine spleen and liver Vα14 Tg.cxcr6gfp/+

iNKT cells

(257)

Oxidative

PHOSPHORYLATION

⇓ Murine spleen and liver Vα14 Tg.cxcr6gfp/+

iNKT cells

(257)

⇑ Essential for survival, proliferation and

selective cytokine production

PLZF+/− and PLFZTg mice spleen NKT cells (258)

Pentose phosphate

pathway

⇑ Required for effector functions PLZF+/− and PLFZTg mice spleen NKT cells (258)

Lipogenesis ⇑ Required for the production of IFN-γ Murine spleen Vα14 Tg.cxcr6gfp/+ iNKT cells

Clinical tumor biospecimens from

HCC patients

(259)

⇑, high metabolic rate; ⇓, low metabolic rate.

Conversely, IFN-γ producing Th1 cells inhibited AT Tregs and
thus promoted IR (271).

The development, function, and phenotype stabilization of
Tregs is metabolically regulated by several pathways highlighted
in Table 4 (272). Moreover, leptin metabolism was shown to
partially induce Tregs in vitro and mice deficient in leptin
exhibited an increased proliferative ability of Tregs (273). Several
lines of evidence suggest that Treg deficiency or insufficiency can
lead to both T1D and T2D (274). Although studies demonstrated
no difference in Treg frequency in diabetes, Treg phenotype and
suppressive function were altered (275).

γδT Cells
γδ T cells can be classified into two major functional groups,
IFN-γ-producing γδ T1 cells and IL-17-producing γδ T17 cells
(178). In comparison to αβ T cells, γδ T cells harbor a restricted
TCR repertoire, and the antigens recognized by these cells remain
largely unknown. γδ T cells are as abundant as MCs, neutrophils,
and CD8+ T cells in lean WAT, and are increased in response to
HFD consumption (268, 276). Earlier investigations into the role
of γδ T cells in AT demonstrated a pro-inflammatory function
in HFD-fed mice (276). Nevertheless, circulating γδ T cells were
decreased in obese subjects and were negatively correlated with
BMI (277). More recently, γδ T cells of epicardial WAT were
shown to comprise two distinct populations; PLZF−, CD3εlow,
CD27+, RORγT−, T-bet+ γδ T cells that produce IFN-γ and
PLZF+, CD3εhigh, CD27−, RORγT+, T-bet− cells that produce
TNF-α and IL-17A (268). Indeed, mice deficient in PLZF+ γδ T
cells or IL-17A KOmice exhibited reduced IL-33 levels and failed
to accumulate ILC2s and Tregs in AT, suggesting that PLZF+

γδ T cell-produced cytokines modulate the number of IL-33-
producing stromal cells. Moreover, PPARβ overexpressing mice,
which exhibited lower αβ T cells and higher γδ T cells, were
protected from HFD-induced AT inflammation and IR (278).
Intriguingly, it was demonstrated that γδ T cells were initially
increased in AT of ketogenic diet-fed mice but then decreased
following the development of obesity (279). Table 4 highlights
the fact that different γδ T cell subtypes exhibit a differential
metabolic profile depending on their polarization (256).

iNKT Cells
iNKT cells represent a subset of the innate-like T lymphocytes,
NKT cells, that recognize glycolipids presented on MHC-I-like
family protein CD1d and express a conserved semi-invariant
TCR that recognizes the prototypic ligand α-galactosylceramide
(178). Indeed, adipose iNKT cells exhibit a distinct transcriptome
from that of iNKT cells residing in other tissues with both anti-
inflammatory and pro-inflammatory characteristics, secreting
Th1-recruiting IFN-γ and Th2-recruiting IL-4 (280, 281). iNKT
cells are suggested to modulate WAT immunity in setting of
leanness and obesity (282, 283). iNKT cells were enriched in
visceral AT of humans and mice and in mouse sub-cutaneous
WAT, where CD1d-expressing M2 macrophages and adipocytes
promptly activate iNKT cells (283–285). WAT iNKT cells
contribute to metabolic homeostasis through the secretion of
IL-2 and IL-10, which regulate M2 macrophages and Tregs
function, respectively (283). In obesity, the number of AT
iNKT cells decline with WAT inflammation (284–288). Also,
iNKT cells were shown to be dysfunctional in patients suffering
from obesity or T2D exhibited by a diminished capacity to
secrete IL-2 (289). Alternatively, HFD-fed mice deficient in
AT iNKT cells were prone to obesity and IR which were
reversed upon the adoptive transfer of iNKT cells (290, 291).
Importantly, the hypoxic condition of expanding AT favors the
upregulation of HIF-1α (10, 292). iNKT cells respond to hypoxia
by upregulating the CD1d-mediated cytokine response (293).
Furthermore, leptin activates iNKT cells resulting in their anergy
and PD-1 upregulation (294, 295). Moreover, the inhibition of
the synthesis of glucosylceramide, which can be presented on
CD1d, in adipocytes was shown to impair iNKT cell activity
and cytokine production (296). Several lines of evidence suggest
that iNKT cell metabolism contributes to their development and
functioning (shown in Table 4).

Innate Lymphoid Cells
Innate lymphoid cells have been previously regarded as enigmatic
lymphocyte-like cells that possess the morphological features
of a lymphocyte in the immature state but lack its surface
markers, and are thus described as “lineage negative.” ILCs
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TABLE 5 | Metabolic pathways of innate lymphoid cells.

Immune cell Metabolic

pathway

Metabolic

reprogramming

Relevance of metabolic pathway

to cellular function

Model References

ILC1s and NK

Cells

Glycolysis ⇑ Required for cytotoxicity and IFN-γ

production

Not required for NK cell degranulation

IL-2 or IL-12/15-stimulated peripheral blood

NK cells

(308)

NK cell proliferation and cytotoxicity IL-15-activated NK cells in vitro and MCMV

infection in mice

(309)

Oxidative

Phosphorylation

⇑ IL-2 or IL-12/15-stimulated peripheral blood

NK cells

(308)

Primary murine NK cells (310)

Not required for IFN-γ production IL-12 and IL-18-stimulated primary murine

NK cells

Required for NK cell activation NK receptor-activating stimulation of primary

murine NK cells

ILC2s Glycolysis ⇓ Required for proliferation and

cytokines production

Arg1-deficient ILCs in mice (311, 312)

? Arg1-deficient ILC2s in a mouse model of

helminth infection

(56)

Required for ILC2 development Conditional deletion of E3 ubiquitin ligase

VHL in innate lymphoid progenitors

(313)

Required for ILC2 homeostasis and

cytokine production

Atg5−/− mice (314)

Fatty Acid Oxidation ⇑ Required for accumulation and

production of IL-13 and IL-5

Rag1−/− mouse model of helminth infection

and malnutrition

(315)

Required for ILC2 homeostasis and

cytokine production

Atg5−/− mice (314)

⇑, high metabolic rate; ⇓, low metabolic rate; ?, require further investigation.

include three transcriptionally-defined groups; Tbet-dependent
ILC1s (which include NK cells) that secrete IFN-γ and TNF-
α, GATA3-dependent ILC2s that secrete IL-5/IL-13 and IL-10,
ROR-γt-dependent ILC3s that secrete IL-17A/IL-22 and finally
Id3-dependent ILCregs that produce IL-10 and require autocrine
TGF-β1 (297). Importantly, recent evidence demonstrated the
presence of all ILC subsets in different AT depots, where they are
implicated in AT immune responses (298).

Adipose Tissue ILC1s and NK Cells
AT-resident ILC1s and NK cells are highly enriched in WAT
in both humans and mice, and further increase at the setting
of obesity and T2D, where they positively correlated with IR
(299, 300). ILC1s and NK cells drive AT inflammation in obesity
by secreting IFN-γ and promoting M1 macrophage polarization
(299, 301). However, the enrichment of ILC1s and NK cells in
WAT at steady state suggests homeostatic roles (302). Indeed,
ILC1s and NK cells were shown to regulate the survival of
ATMs by killing AT M2 macrophages (302). Nevertheless, the
physiological relevance of this regulation is questioned sincemice
and human deficient in ILC1s do not display major metabolic
derangements (303, 304). ILC1s and NK cells exhibit a distinct
metabolic program following activation. These alterations
drive cellular functions, cytotoxicity, and inflammatory
cytokines production (305–307). Table 5 highlights metabolic
pathways implicated in ILC1s and NK cells activity
and function.

Adipose Tissue ILC2s
ILC2 are key regulators of lean AT homeostasis (298). ILC2s are
enriched in visceral AT, where they represent the predominant
producers of IL-5 and IL-13 which are essential for the
recruitment of eosinophils (207). Indeed, the recruitment and
proliferation of AT ILC2s is driven by IL-33 whose origin is still
debated (297, 316). Moreover, AT ILC2s express ICOSL, which
signals to Tregs through ICOS and drive their accumulation
in visceral AT at steady state, a process abrogated in obesity
by IFN-γ (317). Moreover, ILC2s upregulate OX40L following
their stimulation by IL-33 which is essential for the recruitment
of Treg cells into the AT (318). The exact mechanisms leading
to the reduction of AT ILC2s number in obesity is not well-
understood. Nevertheless, one possible mechanism includes the
expansion of ILC1s where ILC1-derived IFN-γ antagonizes
ILC2s (317). Another mechanism implicates IL-12 in driving
the conversion of ILC2s to ILC1s in the context of diet-
induced obesity (DIO) (319). Metabolic pathways in ILC2s
govern their proliferation and function. Shifting the balance
between OXPHOS and glycolysis toward glycolysis impairs
the development and function of ILC2s (311, 312). Metabolic
pathways implicated in ILC2s metabolism are summarized in
Table 5.

B Cells
B lymphocytes are further subdivided into 2 major classes;
B-1 and B-2 depending on their developmental origin,
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microenvironmental niches and the requirement of Th cells to
produce antibodies (320). B-1 cells are further stratified to B1-a
and B1-b cells, which differ by their surface expression of CD5.
B cell-secreted IL-10, IL-35 and TGF-β are characteristics of the
functionally-distinct Breg cells that can derive from both B-1
and B-2 cells. Breg cells suppress Th1 and Th2 polarization,
and inhibit macrophage and dendritic cell activation and
cytokine production. B-1 and B-2 cells coexist in perivascular
AT, epicardial WAT and BAT, where the B1:B2 ratio is higher
than that in sub-cutaneous WAT but yet varies greatly in a
depot-specific manner (321, 322). B cells are among the first
immune cells to infiltrate AT following the consumption of a
HFD consistent with an increased IR, where AT B-2 cells are
thought to promote inflammation (323–327). B cell abundance
also increases in BAT following the consumption of a HFD,
where their role is poorly understood (328). Indeed, B cells global
deficiency in mice attenuated HFD-induced AT inflammation
and reduced IR (324, 325). Consistently, circulating B cells
from obese, diabetic and obese diabetic individuals produced
higher amounts of pro-inflammatory cytokines in comparison
to healthy individuals (329, 330). In addition, B cell-produced
pro-inflammatory immunoglobulins were elevated in visceral AT
of obese mice activating macrophages to secrete inflammatory
cytokines (324, 331). Contrary to B-2 cells, B-1 cell-derived
natural IgG and anti-inflammatory cytokines block AT
inflammation and improve glucose tolerance through inducing
M2 macrophage polarization and increasing their production
of IL-10, while reducing their production of IL-6 and TNF-α
(321, 322, 332–335). The number of Breg cells, which are present
in AT, is reduced in diabetic patients in comparison to healthy
donors (336, 337). Moreover, Breg cells from diabetic patients
secrete less IL-10 (329, 330). Indeed, the adoptive transfer of Breg
cells ameliorated AT inflammation and IR in DIO mice (336).
Different B cell subsets exhibit distinctive metabolic profiles
depending on their particular microenvironments and thus,
careful interpretation of B cell metabolic data is pivotal (338).
The metabolic pathways implicated in B cell metabolism are
summarized in Table 6. Metabolic rewiring of different subsets
of B cells and plasma cells have also been discussed in details
elsewhere (338).

IMMUNE CELL CONTRIBUTION TO
DEPOT-SPECIFIC ADIPOSE TISSUE
INFLAMMATION

While AT is broadly classified in WAT and BAT, WAT is further
divided into several distinct depots that differ in their properties
and microenvironments including subcutaneous (scWAT)
and visceral WAT (VAT) depots. The latter includes epicardial
(EpiCAT), perivascular (PVAT), epidydimal (EpiWAT),
mesenteric (MAT) and perirenal (PRAT) AT. VAT has been
extensively studied due to the association between visceral
obesity and the emergence of CVD risks (345, 346). It was
demonstrated that scWAT exhibits a greater potential than
VAT to undergo beiging, a process by which white adipocytes
become brown-like and participate in energy dissipation

(2, 347). Indeed, the induction of VAT beiging has been largely
regarded as an approach to curb obesity and its accompanying
metabolic and cardiovascular derangements (348, 349).
Nevertheless, several visceral adipose depots including PVAT
and EpiCAT intrinsically possess a beige phenotype and the
implications of thermogenic induction in these particular tissues
on cardiovascular functioning is not yet well-characterized,
especially that the immune landscape of these tissues is less
known (33). In the below sections, an overview of changes in
immune cell function, population, and activity, as well as the
alterations in adipokine and cytokine profile across different
depots will be provided with particular emphasis on PVAT and
EpiCAT due to their relevance to CVD in metabolic impairment.

Subcutaneous Adipose Tissue
The mass of scWAT is positively correlated with BMI in obese
subjects (350). A dysregulated scWAT in patients with MetS
exhibits higher macrophage infiltration and CLS formation,
which is accompanied by a dysregulated adipokine profile (351).
Indeed, scWAT inflammation is linked to the development
of IR (214, 352). Interestingly, a sustained scWAT low-grade
inflammation extending beyond weight loss was reported (353,
354). This sustained inflammation has been attributed to the
accumulation of effector memory T cells (354). This contradicts
with recent reports that demonstrated VAT but not scWAT
inflammation as a manifestation of obesity (355, 356). Such
discrepancies may arise from differences in diet composition and
the duration of HFD-feeding. The general consensus however is
that scWAT inflammation participates in driving IR and theMetS
in obese subjects with the implication of various immune cells.

It was shown that an increased abundance of eosinophils in
scWAT of MetS patients, is accompanied with IR, tissue fibrosis,
and adipokine dysregulation (357). Macrophage infiltration and
CLS formation are also elevated in scWAT of obese and
diabetic patients (351, 358). Interestingly, an accumulation of
M2 macrophages in scWAT but not in VAT of obese patients
is associated with inflammation limitation (359). Moreover, the
abundance of MCs is increased in scWAT of MetS subjects and
is significantly correlated with IR, leptin, IL-1β, IL-6, and the
activities of MAPK and NF-κB in circulating monocytes (224).
Similar to eosinophils, scWAT MCs are correlated with markers
of AT fibrosis and angiogenesis (224). The number of total
dendritic cells is reduced but that of pDC increases in the scWAT
of subjects with T2D implicating pDCs in scWAT low-grade
inflammation (360).

Epidydimal Adipose Tissue
EpiWAT is a metabolically active visceral fat pad, which
is anatomically attached to the testis and epididymis, then
stretches out toward the diaphragm (361). EpiWAT low-grade
inflammation is thought to contribute to the initiation of
IR, MetS and its related cardiovascular derangements (362).
Indeed, macrophage infiltration and accumulation in EpiWAT
is at the core of this inflammation (222, 362). Interestingly,
Chronic DIO eventually leads to decreased EpiWATmass, which
correlated negatively with body weight and was associated with
a widespread of CLSs and MCs, together with an impaired
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TABLE 6 | Metabolic pathways implicated in B lymphocyte proliferation, differentiation, activation, and function.

Immune cell Metabolic

pathway

Metabolic

reprogramming

Relevance of metabolic pathway

to cellular function

Model References

B cells Glycolysis ⇑ Required for proliferation and

antibody secretion

Rag1−/− mice

LPS, anti-IgM or CpG

oligodeoxynucleotide-stimulated mouse B cells

B cell-specific Glut1 deletion

Chronic BAFF stimulation of B cells

(339)

B cell antigen receptor

(BCR)-mediated growth

p85α-deficient mice (340)

Limited time frame BCR-mediated

metabolic activation

Anti-IgM and CpG-stimulated mouse B cells

B cells of MD4 mice treated with oligomycin,

2-DG and FCCP

(341)

⇓ In germinal center B cells Ex vivo germinal Center B cells

Cpt2-knockdown B cells

(342)

Oxidative

phosphorylation

⇑ Required for B cell growth and

differentiation

IL-4-stimulated and oligomycin-treated primary

mouse B cells

(343)

Limited time frame BCR-mediated

metabolic activation

Anti-IgM and CpG-stimulated mouse B cells

B cells of MD4 mice treated with oligomycin,

2-DG and FCCP

(341)

Pentose phosphate

pathway

⇑ p85α-deficient mice (340)

tca cycle ⇑ IL-4-stimulated and oligomycin-treated primary

mouse B cells

(343)

⇓ In Germinal Center B cells Ex vivo germinal Center B cells

Cpt2-knockdown B cells

(342)

Lipogenesis ⇑ Proliferation and expansion of

endomembrane network in response

to LPS

LPS-stimulated murine splenic B lymphocytes

CH12 B lymphoma cells

(344)

Glutamine

metabolism

⇑ Required for B cell growth and

differentiation

IL-4-stimulated and oligomycin-treated primary

mouse B cells

(343)

⇑, high metabolic rate; ⇓, low metabolic rate.

adipokines gene expression, which could be attributed to the
increased abundance of dysfunctional or dead fat cells (361).

EpiWAT neutrophils of HFD-fed mice exhibited an increased
IL-6 expression in EpiWAT due to an adipocyte-contact-
dependent activation of NF-κB (182). Moreover, it was
suggested that HFD-induced EpiWAT fibrosis was attributed to
macrophages andMCs (222). MCs were also shown to have a role
in HFD-stimulated adipocytes senescence in EpiWAT (222). It
has also been shown that the consumption of a HFD induces an
elevation of NK count and the production of pro-inflammatory
cytokines in EpiWAT at an early phase of obesity induction,
which was linked to increased fasting glucose, insulin levels
and ATMs count (301). Interestingly, NK-mediated EpiWAT
derangements were IFN-γ-dependent at early stages and then
became TNFα-dependent (363). Moreover, studies revealed an
increase in B cells in EpiWAT of HFD-fed mice, which was
associated with IR (320). These B cells were shown to drive
VAT inflammation by regulating the activity of VAT T cells
and macrophages through the production of pro-inflammatory
cytokines including IL-6 and INF-γ (320). HFD induces an
increase of the immature DCs count in EpiWAT, which has a
role in adipose tissue inflammation through triggering a parallel
increased production of Th17 cells via promoting an excessive
production of IL-6, TGF-β, and IL-23 (162).

Perivascular Adipose Tissue
PVAT environs most of the blood vessels including the aorta and
coronary and subcutaneous small arteries. PVAT play a crucial
role in supporting blood vessels by maintaining vasomotor
tone and insulating them from surrounding environment
(364). It communicates with neighboring VSMCs and ECs
in a paracrine manner through the production of various
adipokines influencing the vascular tone (365). Indeed, PVAT-
derived adipokines infiltrate into vasculature and serve as
either vasodilators or vasoconstrictors. As such, an adipokine
profile imbalance in PVAT toward proinflammatory adipokines
is suggested to drive vascular derangements in metabolic
disorders through the disruption of PVAT anticontractile activity.
Furthermore, PVAT inflammation has been reported in states of
nutritional excess through the recruitment of pro-inflammatory
cells. This interaction provides the framework by which PVAT
inflammation impairs vascular function (366–369).

PVAT infiltrating immune cells include macrophages, T cells,
NK cells, and DCs that produce both inflammatory and anti-
inflammatory cytokines, depending on the adipokine profile
shifts (363, 370–373). Interestingly, both B cell subtypes occur
in PVAT, where B-2s promote the development of diet-induced
atherosclerosis and B-1s inhibit it by reducing MCP-1 and TNF-
α production (334, 374, 375). However, PVAT possesses a higher
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B1:B2 ratio and thus, B cells have an anti-inflammatory role in
PVAT (322). Recent studies done on rat PVAT inflammation
demonstrated that the increased production of IL-1β and TGF-
β1 was correlated with a reduced AMPK activity and endothelial
relaxation impairment (32). On the other hand, there was an
increase in AT hypertrophy, oxidative stress, and Rho-associated
kinase (ROCK)-mediated Ca2+ sensitivity (32, 376). Other
factors associated with PVAT inflammation include adipocyte
derived MCP-1 and low-density lipoprotein receptor related
protein-1 (377, 378).

On the other hand, several PVAT adipokines were reported
to have an ameliorative effect on vascular function. Indeed,
the treatment with the adipokine irisin normalizes the reduced
anti-contractile properties of aortic PVAT in obese mice (379).
Adiponectin was also shown to attenuate vascular inflammation
and atherosclerosis possibly through blocking NF-κB signaling
and downregulating the expression of VCAM-1 and ICAM-
1 (380–383). Moreover, PVAT-derived adiponectin normalizes
endothelial function partly through enhancing endothelial eNOS
phosphorylation (384). Similarly, omentin was suggested to
have an anti-atherogenic potential in concert with circulating
adiponectin (385). In fact, omentin was demonstrated to
restore endothelium-dependent relaxation by inhibiting ROS and
enhancing NO production in high glucose-treated endothelial
cells (386, 387).

Other PVAT-derived adipokines include vaspin, which
modulates ER stress by upregulating the phosphorylation of
Akt and AMPK (388), and apelin, which maintains vascular
structure by upregulating endothelial NO (389, 390). Despite
the positive correlation between serum leptin levels and
vascular calcification (391), PVAT-derived leptin was reported
to exert an anticontractile effect when in synergy with other
vasorelaxing factors (392, 393). Nevertheless, PVAT-derived
leptin also promotes VSMC phenotypic switch by increasing
the phosphorylation of p38 MAPK (394–396). Chemerin
was demonstrated to promote aortic atherosclerosis by
promoting NF-κB signaling and p38 MAPK phosphorylation
(397, 398). Additionally, and via the activation of NLRP3
signaling, the adipokine visfatin was shown to induce
vascular endothelial dysfunction and tissue inflammation
(399, 400). Finally, resistin was demonstrated to activate the
renin-angiotensin system inducing hypertension (401, 402).
Changes in PVAT adipokine environment and immune cell
activity brought about by metabolic dysfunction is depicted
in Figure 2.

Epicardial Adipose Tissue
EpiCAT is located in the atrioventricular and interventricular
heart grooves and plays a role in providing FA to the
myocardium. Indeed, EpiCAT represents 15% of the cardiac
mass, and as the epicardial fat increases, the ventricles and
the epicardial surfaces get covered by EpiCAT. Moreover,
EpiCAT surrounds the adventitia of coronary arteries and
plays a cardioprotective role during metabolic and mechanical
insults (33). The endocrine function of EpiCAT has witnessed
extensive investigation as EpiCAT dysfunction was implicated
in cardiovascular diseases. It regulates FA homeostasis to

prevent lipotoxicity, while secreting anti-inflammatory and anti-
atherogenic adipokines under healthy conditions (403, 404).
However, EpiCAT alters its adipokines to release FA and pro-
inflammatory cytokines under metabolic insults (404, 405).
Several studies reported the expression of numerous adipokines
in EpiCAT including adiponectin, omentin, adipsin, leptin,
resistin, visfatin, chemerin and adrenomedullin (406). While
the EpiCAT expression of resistin, leptin and TNF-α increase
in obesity, the expression of adiponectin is markedly reduced
(407, 408). In addition, EpiCAT adiponectin expression is
also decreased while that of leptin increased in CAD patients
(409, 410). Importantly, the administration of recombinant
adiponectin can reverse the harmful effects of dysfunctional
EpiCAT-derived factors (409). Another study demonstrated a
differential expression of adiponectin, visfatin, leptin, chemerin
and vaspin in periaortic, pericoronary and apical EpiCAT,
where these adipokines were correlated with either aortic or
coronary atherosclerosis (411). Furthermore, the expression level
of omentin was decreased in CAD patients (412). Importantly, it
was suggested that exogenous omentin supplementation might
support a cardioprotective role through its anti-inflammatory
effect on EpiCAT (413). Increased levels of resistin in
EpiCAT were also reported in patients with advanced coronary
atherosclerosis and patients with acute coronary syndrome (414,
415). Similarly, higher chemerin levels were observed in CAD
patients which was correlated with an increased EpiCAT volume
(416, 417). Interestingly, the level of chemerin was positively
correlated with the severity of coronary atherosclerosis in CAD
patients (416).

Immunohistochemistry done on EpiCAT confirmed the
presence of infiltrating CD3+ T cells, tryptase+ mast cells, and
CD68+ macrophages. These immune cells have been shown to
be unique to EpiCAT when compared to scWAT (418). A study
showed that patients with coronary artery disease (CAD) had
a significant increase in macrophage infiltration into EpiCAT
compared to individuals without CAD (419). Furthermore,
the levels of IL-6, IL-1β, MCP-1, and TNF-α were higher
in EpiCAT compared to scWAT (418). Changes in EpiCAT
adipokine environment and immune cell activity brought about
by metabolic dysfunction is depicted in Figure 2.

Mesenteric Adipose Tissue
MAT is located between the gut and the liver. Several lines of
evidence associate MAT expansion to an elevated risk for the
development of peripheral and central IR as well as CVDs (327,
420). In response to HFD consumption, MAT adipocytes secrete
high amounts of MCP-1, which intensifies the inflammatory
response by modulating macrophage infiltration driving IR and
atherosclerosis (421). Similar to MCP-1, GM-CSF is highly
expressed in MAT of obese animals. It has been shown that both
GM-CSF and B cells play an important role in the activation
and accumulation of macrophages besides the production of pro-
inflammatory cytokines in MAT of HFD-fed animals (327, 422).
It is worth noting that B cells are among the earliest immune
cells infiltrating MAT in HFD-induced AT inflammation models
(327). Likewise, an increased accumulation of mast cells was
shown in MAT of HFD-fed mice, which was associated with
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FIGURE 2 | Perivascular and epicardiac adipose tissue dysfunction: the emerging role of immune cell and adipokine profile dysregulation. Metabolic impairment

triggers changes in PVAT (left) and EpiCAT (right) adipokine environment and immune cell activity. Inflammation has a direct effect on the neighboring vascular and

cardiac tissue. Changes in UCP1 expression were reported to have opposite effects in either depot. Pathways active in basal PVAT and EpiCAT homeostasis are

depicted in black arrows, while those activated during inflammation are shown in red. ADM2, Adrenomedullin-2; eNOS, Endothelial Nitric Oxide Synthase; EpiCAT,

Epicardial Adipose Tissue; ER Stress, Endoplasmic Reticulum Stress; HIF-1α, Hypoxia-induced Factor 1 Alpha; IL, Interleukin; MCP-1, Monocyte Chemoattractant

Protein 1; NF-κB, Nuclear Factor Kapp-light-chain-enhancer of Activated B cells; NLRP3, NLR Family Pyrin Domain Containing 3; O2, Oxygen; PVAT, Perivascular

Adipose Tissue; RAS, Renin Angiotensin System; ROS, Reactive Oxygen Species; TGF-β, Transforming Growth Factor Beta; TNFα, Tumor Necrosis Factor Alpha;

UCP1, Uncoupling Protein 1.

tissue fibrosis and IR. These alterations occurred coincidently
with the progression of obesity and diabetes (225).

Perirenal Adipose Tissue
PRAT, the AT surrounding the kidney, was previously assumed
to merely mechanically support the kidneys. However, several
studies postulated that not only PRAT has a pronounced
role in regulating kidney function but is also associated with
cardiometabolic risk factors. Clinical studies suggest that excess
PRAT is associated with higher risk of CVDs (423, 424). The
weight of PRAT has the highest partial correlation coefficient
with CVDs among other AT (425). Indeed, excess PRAT is
believed to contribute to the decrease in kidney function,
regardless of obesity, in hypertensive patients (426). A recent
study reviewed the possible mechanisms of PRAT in regulating
CVDs including neural, humoral, and direct kidney related
regulation (425). PRAT is shown to synthesize and secrete
adipokines and several pro-inflammatory cytokines (425, 427).
PRAT in pigs with obesity-related metabolic dysfunction showed
elevated levels of pro-inflammatory macrophage infiltration and
TNF-α expression (428). Moreover, excess PRAT secrets leptin
which in turn activates MAPK pathway and further exacerbates

renal vascular and endothelial damage (429). An interesting
study in rats have shown that injecting Leptin directly into
PRAT activated the adipose afferent reflex without changing
the systemic sympathetic activity, indicating a direct regulation
of cardiovascular function by PRAT (430). Interestingly a
study on diabetic fatty rats found that the inhibition of
PRAT inflammation, mainly inhibiting IL-6, IL-1b, and TNF-α,
reduced renal inflammation and alleviated diabetic nephropathy
(431). As such PRAT inflammation is assorted with adverse
cardiometabolic risk factors and is a main predictor of CVD.

THE ADIPOSE IMMUNE SYSTEM AS O
REGULATOR OF ADAPTIVE
THERMOGENESIS

UCP1-Dependent and Independent
Thermogenesis
Uncoupling protein 1 (UCP1) is an inner mitochondrial
membrane protein that uncouples oxidative phosphorylation
from the production of ATP through a FA/H+ symport
mechanism (2). UCP1 expression is mainly driven through
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β3-adrenoreceptors (β3-AR) stimulation by sympathetically
and non-sympathetically produced norepinephrine in
thermogenically active adipocytes. Although being the most
efficient and qualitatively significant thermogenic effector, it was
demonstrated that UCP1 is dispensable for cold-induced and
diet-induced thermogenesis. Therefore, it was proposed that
less-efficient thermogenic pathways downstream of β3-ARs also
contribute to adaptive thermogenesis (432).

Creatine cycling, that is the phosphorylation of creatine by
creatine kinase and its subsequent hydrolysis, participates in
energy transfer from ATP-rich to ATP-poor cellular regions (2).
Creatine futile cycling appears to occur in all fat depots and
blocking creatine cycling promotes obesity in HFD-fed mice
(2). Lipolysis/re-esterification cycling has also been proposed
to mediate adaptive thermogenesis based on the ATP demand
of triacylglycerol synthesis (2). This pathway proposes that
adipocytes break down fat and subsequently re-esterifies FAs
by way of glycerol 3-phosphate. Importantly, It was also shown
that triglyceride/FA cycling is induced in WAT upon HFD
feeding (433).

A role for calcium transport in non-shivering thermogenesis
has also been proposed (2). Calcium sequestration in the
sarcoplasmic (SR) and endoplasmic (ER) reticulum is mediated
by the SR/ER calcium ATPase (SERCA) pump. SERCA activity in
the AT is regulated by phospholamban (PLB) (434). Interestingly,
it was shown that PLB is upregulated in UCP1-deficient beige
fat with no difference in the expression of SERCA suggesting
compensatory thermogenesis (435).

Finally, the UCP1-independent proton leak by the
ubiquitously expressed inner membrane protein, mitochondrial
ADP/ATP carrier (ACC), that is initiated at high membrane
potential, contributes to adaptive thermogenesis (2).

Adaptive Thermogenesis Across Adipose
Depots
Brown Adipose Tissue
The first insights into the implication of BAT in thermogenesis
and its contribution to energy expenditure started with the
demonstration of a reduced GDP binding to BAT mitochondria
of cold-exposed obese ob/ob mice relative to lean siblings (436).
Then, Rothwell and Stock observed an increased sympathetic
activity in BAT following overnutrition in rats (437). The
identification of human BAT and the subsequent observations
that a reduced BAT level induces obesity ignited investigation
into BAT-mediated non-shivering thermogenesis. In comparison
to WAT, which is more prone to inflammation than BAT
(31), relatively little is known about the processes driving BAT
chronic inflammation. However, increasing evidence suggests
that BAT inflammation alters its thermogenic activity through the
induction of IR (438, 439). Although mainly composed of brown
adipocytes and their precursors, BAT also contains a variety of
immune cells such as neutrophils, macrophages and lymphocytes
(440, 441). Chronic inflammation of BAT was associated with
a shift of BAT immune cells where M1 macrophages drive BAT
whitening (442, 443).

Subcutaneous Adipose Tissue
Cold exposure and β3-AR stimulation induced the expression
of UCP1 in scWAT of humans (444, 445). Nevertheless, despite
the increased UCP1 expression in scWAT, cold acclimation
was shown to reduce mitochondrial uncoupling-mediated fat
oxidation in inguinal scWAT, while increasing the capacity to
export FAs (446). Indeed, the consumption of HFD induced
scWAT inflammatory and immune responses (447). These
derangements were reversed by intermittent fasting, which
increased the expression of UCP1, β3-ARs and adiponectin,
while it attenuated the expression of pro-inflammatory and pro-
apoptotic markers in scWAT (448). In an AMPK gain of function
mutant mice, scWAT exhibited a morphological similarity
to brown adipocytes with no detectable UCP1 expression
but increased energy expenditure suggesting the activation of
UCP1-independent thermogenesis (449). It was demonstrated
that PPARγ agonism induced scWAT browning, while PPARγ

deletion in inguinal scWAT inhibited thermogenesis and was
associated with IR (450, 451).

Perivascular Adipose Tissue
The peculiarity of PVAT, being a hybrid AT and especially the
resemblance of aortic PVAT to classical BAT in morphology
and UCP1 expression, suggests that PVAT possesses a similar
thermogenic potential (369). Indeed, it was shown that PVAT
deletion resulted in a reduction of whole body temperature
(452). The proximity of PVAT to the vascular wall suggests
a possible implication of PVAT thermogenic processes on the
pathophysiology of vascular diseases (33). We recently identified
an increased expression of UCP1 in PVAT of HFD-fed rats, which
was associated with localized PVAT inflammation contributing
to MetS-associated vascular dysfunction (32). The targeting
of PVAT UCP1 was also put forward as means to limit its
detrimental effect on PVAT hypoxic predisposition (33). Such
a proposition was made based on an assumed exaggerated
oxygen consumption triggered by increased UCP1 expression
and further complicated by the observed adipocyte hypertrophy
in a combination of events less likely to occur in other adipose
depots. However, increased UCP1 expression is typically viewed
as beneficial where it serves as a route of energy assimilation that
might be of value in diabetes and obesity. Yet, many of the tools
shown to increase adipocyte glucose consumption and increased
UCP1 expression in vitro failed to produce any effect when used
in vivo, and even resulted in an opposite effect of decreased UCP1
expression (453, 454).

Epicardial Adipose Tissue
EpiCAT adipocytes express genes and secrete adipokines that
are involved in thermogenesis (455). Adult human EpiCAT
was shown to possess molecular features characteristic of beige
adipocytes with relatively abundant expression of UCP1 (456).
Opposite to findings in PVAT, an increased expression of
UCP1 in EpiCAT was associated with a downregulation of ROS
production and immune response (457, 458). Indeed, EpiCAT
thermogenic activity was impaired in patients suffering from
atrial fibrillation and heart failure with reduced ejection fraction
(459, 460). Moreover, during the progression of atherosclerosis,
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EpiCAT was shown to undergo a phenotypic conversion from
BAT to WAT, which further promoted the development of
atherosclerosis (461). Nevertheless, exploiting EpiCAT browning
for the treatment of CVDs remains controversial (33). As such,
detailed examination of the role of thermogenesis modulation in
PVAT and EpiCAT is required since both depots are particularly
pertinent to the development of CVD in metabolic dysfunction.

Perirenal Adipose Tissue
Human PRAT has been shown to possess unilocular and
multilocular UCP1+ adipocytes (462, 463). Indeed, several
studies associated PRAT browning with aging and the female
sex (464, 465). Also, bigger unilocular adipocytes with reduced
UCP1 expression were detected in the PRAT of hypertensive
patients (466).

Epidydimal Adipose Tissue
EpiWAT expresses UCP1 in rats age-dependently (467). The
chronic agonism of PPARγ in EpiWAT promoted UCP1
expression and WAT browning (347). Indeed, the ectopic
expression of very low levels of UCP1 in EpiWAT was shown
to reverse IR in obese mice and epididymal beige adipocytes
were shown to employ prominent creatine cycling (468, 469).
Cold exposure improved metabolic dysfunction in obese mice
through activating BAT thermogenesis and inducing EpiWAT
browning (470). Moreover, cold-induced browning of VAT and
improvement of insulin sensitivity were blunted following the
knockdown of UCP1 in EpiWAT (471). Additionally, housing
mice at room temperature induced EpiWAT thermogenesis,
which was associated with a decreased M1 macrophage
infiltration and improved insulin sensitivity (472). It was also
shown that infused M2 macrophages in obese rats homed to
EpiWAT reversing the M1 macrophage-dominant phenotype,
enhancing UCP1 expression and ameliorating IR (473).

Mesenteric Adipose Tissue
It was demonstrated that β3-AR agonism in HFD-fed rats
not only decreased the mass of WAT but also induced the
appearance of multilocular, UCP1+ adipocytes in MAT (474,
475). These early observations indicated that MAT can be
thermogenically induced. Indeed, cold exposure induced a
sympathetic response in MAT of rats, evidenced by an increased
level of tyrosine hydroxylase (476). Importantly, chronic cold
exposure induces non-sympathetic catecholamine production
leading to an increased level of NE in addition to the stimulation
of M2 macrophage infiltration, pro-inflammatory cytokines
reduction, and UCP1 induction (476, 477).

Adipose Immune System and Adaptive
Thermogenesis
Adipose Immune Cells and β3-AR Stimulation
β-AR stimulation is pivotal to the induction of thermogenesis.
Sympathetically-released NE stimulates the release of adipokines
and FGF21 from adipocytes, promoting PGC1α and UCP1
expression, oxidative metabolism, and mitochondrial biogenesis
(478, 479). FGF21 also induces the release of CCL11 in
murine scWAT, which promotes the recruitment of IL-
4-secreting eosinophils and the proliferation of PDGFRα+

beige adipocytes in an IL-4Rα-dependent manner (480, 481).
Moreover, eosinophils and ILC2s were shown to induce β3-AR
signaling through IL-4/IL-13-dependent induction of tyrosine
hydroxylase expression in ATMs, promoting the release of
NE (215, 482). Also, the selective deletion of Mecp2 in BAT
macrophages reduces UCP1 expression as a result of impaired
innervation (441). Nevertheless, recent evidence suggests that
ATMs are not likely to contribute to the induction of adaptive
thermogenesis by directly producing NE (483). Sympathetic
neuron-associated macrophages increased in HFD-fed mice AT
and were recently shown to express the NE transporter, SLC6A2
and the NE degrader, monoamine oxidase (MAO), where
the inhibition of SLC6A2 increased AT thermogenesis (484).
Conversely, CLS-associated ATMs were shown to phagocytose
white adipocytes and secrete chemokines that drive the
recruitment of beige adipocyte precursors (263). Tregs were
also shown to enhance β3-AR signaling in scWAT but not
in VAT of female and to a lesser extent in male mice by
suppressing M1 and inducing M2 macrophages (485). γδT
cells were also shown to promote AT innervation by driving
the expression of TGFβ1 in parenchymal cells via the IL-17
receptor C (IL-17RC), where the ablation of IL-17RC signaling
pathway or γδT cells impaired sympathetic innervation and
thermogenesis (486). The interaction among immune cells,
adipocytes, and sympathetic nerve terminals is summarized
in Figure 3.

Macrophages
M1 macrophages suppress the induction of thermogenic
adipocytes in obese AT of mice (487). Conversely, adiponectin-
induced M2 macrophages drive scWAT thermogenesis in cold-
exposed mice and the depletion of either the macrophages or
adiponectin reduces scWAT browning (488). The browning
effect of adrenomedullin 2 (ADM2), a white adipocyte-produced
factor that increases UCP1 expression, is also mediated by M2
macrophages (489).

The activation of pattern recognition receptors in AT-
infiltrating macrophages was shown to suppress thermogenesis.
LPS-activated TLR4 receptors of macrophages repressed
β3-AR-induced adipocyte browning, caused mitochondrial
dysfunction, and increased ROS production (490). Moreover,
the activation of NLRP3 inflammasome in macrophages
attenuated UCP1 induction in cultured adipocytes in an
IL-1β-dependent manner (490). Furthermore, adipocyte-
specific deletion of transforming growth factor-activated
kinase 1 (TAK1) but not TNF receptor associated factor 6
(TRAF6), increased the expression of beige markers in WAT.
TAK1 deletion in WAT increases AMPK phosphorylation,
PGC-1α abundance, non-canonical NF-κB signaling, and
markers of M2 macrophages while inhibiting canonical
NF-κB signaling (491). Conversely, the deletion of
TRAF1, an inhibitory adapter of TNFα, IL-1β, and TLRs
enhanced leukocyte accumulation and potentiated the
proinflammatory signaling of macrophages in HFD-fed
mice (492). Nevertheless, TRAF1-deficient mice were protected
from metabolic derangements and exhibited an improved IR
partially by β3-AR-mediated induction of UCP1-dependent
thermogenesis (492).
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FIGURE 3 | Immune cells-mediated regulation of adaptive thermogenesis. Different types of immune cells exert various modes of control on thermogenesis by either

directly modulating the adipocyte function or affecting sympathetic nerve activity and norepinephrine turn-over. Pathways promoting thermogenesis are depicted in

black, while inhibitory pathways are shown in red. ADM2, Adrenomedullin-1; β3-AR, Beta 3-adrenergic Receptor; CCL11, C-C motif chemokine 11; FGF21, Fibroblast

Growth Factor 21; H2R, Histamine 2 Receptor; γGalCer, Alpha-galactosylceramide; IL, Interleukin; ILC, Innate Lymphoid Cell; MAO, Monoamine Oxidase; NE,

Norepinephrine; Opioid R, Opioid Receptor; SCL6A2, Solute Carrier Family 6 Member 2; TGF-β, Transforming Growth Factor Beta; Treg, Regulatory T Lymphocyte.

ILC2s
Activation of murine ILC2s with IL-33 induced the proliferation
of beige adipocyte progenitors and increased WAT browning
through an IL-4/IL-13-dependent pathway involving eosinophils
(480). The recruitment of IL-4+ eosinophils was driven by

ILC2-secreted IL-5 and IL-13. ILC2-produced BMP7 was
also demonstrated to induced the differentiation of adipocyte
progenitors into brown adipocytes (493). ILC2s also induce
thermogenesis through the production of the opioid-like peptide
methionine enkephalin (MetEnk) (316, 494). The stimulation
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of ILC2s with IL-33 induced the production of MetEnk that
signaled through opioid receptors in scWAT and BAT to
promote thermogenesis (316). Mice either treated with MetEnk
or adoptive transfer of IL-33-activated ILC2s increased the
expression of UCP1 in scWAT even in mice deficient in
eosinophils or IL-4Rα demonstrating a direct activity of ILC2s
on opioid receptors to induce thermogenesis (316).

γδT Cells
AT-resident γδT cells were recently shown to regulate body
temperature through the production of IL-17A upon cold
exposure, which regulated IL-33 production by adipose stromal
cells (268). Mice deficient in γδT cells or IL-17A exhibited
decreases in both ST2+ Tregs and IL-33 abundance in VAT
and dysregulated core body temperature at thermoneutrality
and upon cold exposure (268). Given the critical role of IL-33
in regulating insulin homeostasis and thermogenesis (495), IL-
17-deficient mice were cold-intolerant (268). γδT cell-deficient
mice also exhibited a reduced UCP1 expression and energy
expenditure upon cold exposure (268).

iNKT Cells
The selective loss of IL-10Rα in adipocytes as well as the global
depletion of IL-10 enhanced thermogenesis (496). Early reports
demonstrated that the activation of adipose iNKT cells with
αGalCer induced potent weight loss in obese mice (282, 284, 286,
497, 498). It was recently shown that iNKT cell-induced weight
loss occur through the induction of FGF21-dependent adaptive
thermogenesis. The intraperitoneal administration of αGalCer
into obese mice induced a significant reduction of AT mass
under thermoneutral conditions, which was accompanied by an
increased WAT browning and energy expenditure (499). FGF21-
deficient mice exhibited a blunted, but not fully ablated response
toward αGalCer suggesting that iNKT cells drive thermogenesis
through an FGF21-independent mechanism (499).

Mast Cells
BAT MC-released histamine is thought to play a β3-AR-
independent role in thermogenesis through its interaction with
H2 receptors (500). Upon cold exposure, MCs were recruited
to WAT and exhibited an enhanced histamine degranulation in
both lean and obese subjects, which was positively correlated with
UCP1 expression and thermogenesis (501). Indeed, in response
to cold, MCs also release IL-4 along with other factors driving
UCP1 expression and WAT browning (502). Nevertheless, it
was also proposed that MC deficiency in mice increases WAT
browning by promoting adipocyte differentiation as MC-derived
serotonin inhibited WAT browning (503). Nevertheless, these
findings were based on a murine model in which c-kit tyrosine
kinase is mutated and thus, a careful interpretation of the results
is required. Furthermore, several other genetic models of MC
depletion showed no association between MC function and
obesity (228, 229).

T and B Lymphocytes
Several studies revealed a potential function of Tregs of scWAT
and BAT in regulating thermogenic homeostasis. Systemic
deletion of Tregs impaired oxygen consumption upon cold

exposure (504). Additionally, the T cell-specific STAT6/PTEN
axis is thought to mediate the link between β3-AR stimulation
and Treg cell induction in both BAT and scWAT (505, 506).
Indeed, UCP1-deficient mice exhibited reduced Tregs in BAT
and scWAT (506). B and T lymphocytes were also shown to
play a role in thermoregulation. Rag1-deficient HFD-fed mice,
lacking both T and B lymphocytes, exhibited decreased UCP1
expression (507). Conversely, deleting Rag1 in lean mice housed
at room temperature resulted in an increased UCP1 expression
and energy expenditure (508). Moreover, a decreased CD8+ but
not CD4+ T cells is believed to contribute to adipocyte browning
mainly due to a decreased IFN-γ secretion (508).

Eosinophils
Eosinophil-derived IL-4 drives M2 macrophage polarization,
promoting the secretion of catecholamines that drive WAT
browning (215). As mentioned before, the role of M2
macrophages in local catecholamine production has been
questioned. Nevertheless, this does not preclude the implication
of eosinophil-derived catecholamines inWAT browning. Indeed,
PVAT eosinophils were shown to promote PVAT browning
by locally producing catecholamines (509). Moreover, mice
lacking eosinophils exhibited an impaired thermogenic capacity
of scWAT following cold exposure (215). Meteorin-like is
another factor linking eosinophils to WAT browning, where it
was shown to stimulate IL-4 secretion from eosinophils and
macrophage M2 polarization in AT following cold exposure
(510). In addition to ILC2-derived IL-33-dependent eosinophils
recruitment to AT, IL-33 was also shown to recruit eosinophils in
the absence of ILC2s (178). It was recently demonstrated that the
transcriptional repressor krüppel-like factor 3 (KLF3)-deficient
mice exhibited profound WAT beiging, which was accompanied
by an accumulation of AT eosinophils (511).

IMMUNOMODULATING ADIPOSE TISSUE
INFLAMMATION IN METABOLIC
DISORDERS AND CARDIOVASCULAR
DISEASES

Strategies to modulate AT inflammation are multi-faceted, they
include physical exercise, lifestyle modifications, in addition to
several pharmacological and non-pharmacological interventions.
Likewise, treatment of CVDs focuses on similar strategies that
impact AT. In this section, we will tackle the contribution of
different modalities on AT inflammation in CVDs.

Exercise and Lifestyle Modifications
One of the first strategies to decrease the severity and
complications of CVDs is to limit food intake and increase
energy expenditure, this is mainly due to the fact that most
patients with CVDs are overweight or obese. Exercise and lifestyle
modifications lower the mortality risk, improve quality of life
and have been extensively studied. Physical activity improves
insulin sensitivity and alters AT adipokine expression, which
affect whole-body metabolic health in human subjects (512, 513).
Recent studies highlighted the mechanistic pathways, linking

Frontiers in Cardiovascular Medicine | www.frontiersin.org 20 November 2020 | Volume 7 | Article 602088

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


AlZaim et al. Immunomodulation of Adipose Inflammation

those two interventions with decreasing AT inflammation. The
protective effects of regular physical activity is accompanied
with reduction of visceral fat mass along with an anti-
inflammatory pathway (514). Physical exercise exerts a direct
anti-inflammatory effect by inducing an acute elevation in IL-
6 and IL-10 and an inhibition of TNF-α (515). The anti-
inflammatory effect of exercise also comprises the inhibition of
macrophage infiltration and the induction of ATMs phenotypic
switch toward the M2 phenotype in obese mice (515, 516).
Zielger et al. demonstrated that exercise enhances the anti-
inflammatory phenotype in VATs of old mice (517). Endurance
training regardless of weight loss induced an increase in M2
macrophages in scWAT (513, 518). The role of physical activity in
thermogenesis and WAT browning is debated as some reported
scWAT browning with bicycle training programs while another
study failed to find a correlation between aerobic exercises and
recruitment of beige adipocytes (519, 520). Nevertheless, more
studies should target the exact role of AT remodeling following
physical activity. Indeed, long-term anti-inflammatory effects of
chronic physical activity could be required for a pronounced AT
remodeling required to decrease CVD risks.

Diet Modification and Weight Loss
Fasting
Several fasting regimens were introduced as an alternative or
a complementary intervention to restricted caloric diets in
improving cardiometabolic endpoints in related diseases (521,
522). Indeed, several studies on experimental animals and recent
human investigations highlighted the importance of fasting in
metabolic activity regulation, blood pressure, and atherosclerosis
reduction, as well as health optimization (522–524). The most
common types of fasting regimens include intermittent fasting
(IF), periodic fasting (PF), short term fasting, and religious
fasting. IF has a crucial role in adaptive cellular responses
being able to reduce inflammation, oxidative stress, optimize
energy metabolism, and cellular bioenergetics (524). Fasting is an
effective strategy for improving cardiometabolic profile in cases
of IR, stroke, prediabetes, and diabetes (525, 526). Moreover,
IF modulates the susceptibility of inflammatory diseases by
decreasing peripheral monocyte pools and modifying their
metabolic activity through AMPK and PPARα pathways (527).
On the AT level, fasting enhances mitochondrial biogenesis in
visceral adipocytes. Short term fasting suppressed thermogenesis
in inguinal WAT and iBAT in a mouse model (528). Another
fasting regimen, every other day fasting, was shown to induce
beiging of WAT thus reversing HFD-induced obesity and
associated metabolic disorders in mice (529). The metabolic
effects of IF are largely mediated by adipose thermogenesis;
fasting-induced adipose VEGF, which is thought to act on
eosinophils, Th2, and ILC2 to promote M2 polarization was
linked to WAT browning (530). Moreover, fasting induces
a reduction of IL-1 and IL-6 in VAT and scWAT and IL-
6 in intraperitoneal WAT (531). Moreover, biomarkers of
inflammation in EpiWAT and BAT were reduced in mice
following IF. The latter study presented IF as a preventive and
therapeutic intervention to protect mice againstMetS and obesity
(532). On the other hand, fasting reduces leptin levels triggering a

profound metabolic state as well as regulating T lymphocytes and
cytokine production in obese animal models and human trials
(533–535). In addition to that, a new randomized control trial
has also linked fasting to reduction of leptin levels (536).

Dietary Modifications
Dietary modification is the cornerstone in preventing
cardiometabolic diseases. Weight loss approaches as well as
initiating certain diet regimens lower CVD events significantly
and reduce mortality (537). Reports correlating dietary
manipulation, such as in high protein diets, phosphate
diet, and ketogenic diet, to AT inflammation suggest that
certain diet regimens can play a critical role in modulating
cardiometabolic diseases.

Long term intake of high protein diet in obesity-prone rats
reduced food intake and WAT mass while improving basal
blood sugar, insulin levels, leptin, and triglyceride levels in
addition to glucose tolerance (538). On the other hand, a clinical
study suggested that phosphorus supplementation is involved
in modulating glucose and insulin serum levels (539). Another
study reported that high dietary intake of phosphate in rats can
influence lipid and glucose metabolism by upregulating lipolytic
gene expression and reducing WAT accumulation (540).

Ketogenic diet (KD), which consists mainly of ingesting
healthy fats, improved long-term blood glucose control and
subsequently decreased the use of anti-diabetic agents in human
studies (541, 542). KD also improved the CVD biomarkers
in T2DM patients (543). Moreover, short term feeding of KD
was shown to modulate AT immune cells, where it reduced
macrophage infiltration and the expansion of γδ T cells in
VAT (279).

Mediterranean Diet (MD) is composed of a balanced
combination of fruits, vegetables, fibers, fish, poly saturated fats
as well as low intake of meat and dairy products in addition
to moderate intake of red wine (544). The adherence to MD is
known to protect humans against CVDs, MetS, onset of various
types of cancer, and aging (545, 546). Several studies documented
that certain typical food of the MD including olive oil, tomato,
and red wine induce anti-inflammatory properties and could be
even insulin-sensitizing (547, 548). For example, tomato juice
mitigates AT inflammation; a 20-days duration of consumption
could decrease TNF-α, IL-6, and IL-8 (549, 550). Moreover,
tomato juice supplementation could reduce body weight, blood
cholesterol levels as well MCP-1 (551).

Anti-diabetic Drugs
Metformin
Besides being widely used for DM2 treatment, Metformin
reduces CVD risk, induces weight loss, and improves insulin
sensitivity (552). Metformin has been proposed to reduce
adipocyte stores and initiate a metabolically healthy adipocytes
distribution (553). The beneficial effects of metformin also
include reducing visceral AT, a mechanism that is thought to
be related to FA oxidation and an upregulation of adaptive
thermogenesis (554). Emerging body of evidence, including
work done by our team, documented that metformin can
exhibit immunomodulatory features, an anti-inflammatory
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effect that is shown to be independent on glycemic control
(32, 555, 556). Metformin activates the anti-inflammatory
macrophage polarization; it lowers the pro-inflammatory
cytokine production through elevating M2 macrophage and
lowering M1 macrophages (557).

Metformin also decreases MCP-1 in isolated human AT
cultures, suggesting an improved low-grade inflammation (558).
Moreover, metformin has been shown to alter CRP, NF-κB
expression in addition to reducing advanced glycation end
products (559–561). All in all, the anti-inflammatory effects of
metformin and its ability to reduce several inflammatory related
illnesses is becoming more apparent (552).

Thiazolidinediones (TZDs)
Besides the use of TZDs in T2DM, a beneficial role of
Pioglitazone lies in reducing cardiovascular events (562). In
fact, TZDs activation of PPARγ not only enhances adipogenesis
but also reduces fat deposition in tissues, and attenuates the
inflammatory cytokines release in obesity (563, 564). Moreover,
TZDs repress NF-kB thus restore M2 macrophage phenotype,
and prompt the recruitment of regulatory T cells in AT (263,
565, 566). Therefore, this reveals a possible involvement of
TZDs in an immunomodulatory mechanism in AT that may
benefit patients with CVDs, yet the exact definitive pathway
has not been established. Expanding on the beneficial effects of
PPARγ agonism in limiting AT chronic low-grade inflammation
in metabolic disorders, glitazones-like, multi-targeting drug
ligands (MTDLs) were rationally designed (567). Importantly,
these drugs were partial PPARγ agonists, potent COX-2
antagonists and moderate 15-LOX inhibitors. This balanced
modulation of the three inflammatory targets allows for a more
effective targeting of AT inflammation and possibly limit its
cardiovascular complications (568).

Glucagon-Like Peptide-1 (GLP-1) Receptor Agonists
Several GLP-1 receptor agonists, as Liraglutide, have been
developed to mimic the glucose-lowering and anorexic effects of
Glucagon-like peptide-1 (GLP-1) to treat obesity and T2DM. As
AT express GLP-1, Liraglutide has been effective in controlling
glucose levels, promoting weight loss, and reducing total
adiposity (569–571). In addition, in a clinical trial, Liraglutide
has been shown to decrease the risk of myocardial infarction in
patients with T2DM and high CVD risk (572). More studies on
the effect of GLP-1 agonists documented their protective roles
against endothelial cell dysfunction, and therefore atherosclerosis
by reducing CRP and plasma lipids (573, 574). As such, GLP-
1 agonists could provide protection against CVDs through AT
mass reduction and inflammation.

Sodium-Glucose Cotransporter (SGLT2) Inhibitors
Similar to GLP-1 receptor agonists, SGLT-2 inhibitors are shown
to reduce blood glucose levels and CVDs risk and mortality
(575, 576). Treatment with Empagliflozin, an SGLT-2 inhibitor,
has been shown to induce weight loss when given in combination
with other anti-diabetic medication (577, 578). In obese mice,
Empagliflozin was shown to promote utilization and browning of
AT as well as reduction of IR and inflammation, a pathway linked

to M2 macrophage polarization (579). As such, beside the anti-
diabetic effects of SGLT-2 inhibitors, strong evidence appears in
their effect on AT remodeling and anti-inflammatory pathway;
yet the exact mechanism is to be elucidated.

Surgical Interventions
Bariatric surgery is the most effective treatment option in
obese patients for weight loss whether due to food restriction,
malabsorption, or both (580). Following the surgery and
independent on weight loss; IR, CVDs, and mortality rates are
all reduced (537, 581, 582). Importantly, it is expected that a
late phase reduction of AT inflammation could be in favor of all
the metabolic consequences of the surgery (583). However, when
looking back to literature, contradictory results are revealed.
Some have documented a decrease in inflammatory mediators
of AT after the surgery-induced weight loss, and others have
reported no further change (584–587). Reports generally assess
subcutaneous AT depot, as it is easier in sampling. However,
more studies should be warned to confirm or elucidate the
effects of bariatric surgery on AT inflammation. Sampling from
visceral AT and other sites should be done as it is more prone to
inflammatory changes.

NEW AVENUES FOR ADIPOSE TISSUE
IMMUNOMODULATION IN METABOLIC
DISORDERS AND CARDIOVASCULAR
DISEASES

AT inflammation is associated with an increased production
of pro-inflammatory cytokines including IL-1β, TNF-α, IL-
6, and IFN-γ. Anti-inflammatory treatments were proposed
to contribute to the treatment of diabetes and its vascular
complications (588). The antagonism of IL-1R improved IR in
T1D patients and DIO mice (589, 590), and in patients with
impaired glucose tolerance (591). One study however highlighted
the importance of combining IL-1R antagonism treatment with
proper dieting for the treatment of obesity (592). Moreover,
inhibiting TNF-α in psoriasis patients with MetS decreased
macrophage infiltration and pro-inflammatory cytokines levels in
umbilical fat (593). Interestingly, a combined inhibition of IL-1β
and TNF-αwas more effective in improving IR in T2D rats (594).
Similarly targeting IL-6 improved IR and normalized adipokine
levels in MetS and fructose-fed rats (595, 596). Nevertheless, this
mechanistic link was not evident in clinical trials (597). Indeed,
IL-6 was shown to drive exercise-induced weight loss in subjects
with visceral obesity (598). The complexity of the AT immune
landscape driving AT inflammation in the MetS and the response
of these cells to the various pro-inflammatory cytokines dictate
the efficacy of these approaches. However, simply targeting
pro-inflammatory cytokines with either receptor inhibitors or
monoclonal antibodies for the treatment of metabolic and
cardiovascular diseases is not yet a valid therapeutic strategy and
requires further investigation.

The metabolic reprogramming in response to nutritional
excess and scarcity of the various immune cells is not universal.
Indeed, metabolic modulation emerged as a novel concept in
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cancer immunotherapy (599). Th2 immunity in AT supports
metabolic health and thus, targeting Th2 immunometabolism
represents a valuable therapeutic strategy in metabolic disorders.
Several reports on immunometabolism-targeted treatments in
cancer and autoimmunity can be repurposed for metabolic
diseases. For example, in a model of allograft rejection,
blocking glycolysis and glutamine metabolism inhibited CD4+

and CD8+ T cell induction and promoted the generation of
allospecific Treg cells (600). Indeed, expanding AT Treg cells
hold much promise for the treatment of metabolic disorders and
their cardiovascular complications. Additionally, nanoparticles,
liposomes, and glucan-shells carrying siRNA or specific drugs
can be engineered to tissue-specifically target specific immune
cells as exemplified by ATMs (601). Nevertheless, a profound
knowledge of metabolic profile shifts of immune cells within the
AT is still lacking and thus, direct interpretations of such shifts in
other tissues cannot be extrapolated, particularly in the complex,
dynamically-evolving AT. Emerging technologies such as RNA
sequencing, metabolomics, proteomics and phage display will
surely allow for the identification of novel peptide targets (602).
Moreover, adaptive immunity and the acquisition of memory T
cells in HFD-fed mice suggests an effect on subsequent episodes
of weight gain following weight loss (603, 604). Modulating T cell
memory has been achieved by targeting antigen presentation in
conventional and non-conventional APCs (271) and checkpoint
co-inhibitory interactions (605). Finally, emerging evidence
indicates that immunometabolism is controlled epigenetically
and through miRNAs, which affects cellular differentiation and
polarization (606, 607). Nevertheless, further research is required
to determine how metabolic dysfunction drives alterations in
epigenetic histone modifications and howmiRNAs affects the AT
immune profile.

Accumulating evidence suggests a role for the gut microbiota
in modulating metabolic homeostasis. Indeed, it was shown
that the adoptive transfer of Th 17 cells contributed to
metabolic homeostasis through an IL-17-dependent microbiota
development (608). Moreover, it was demonstrated that the M2
macrophage-mediated helminth-associated Th2/Treg responses
induce alterations in microbiota composition which was
accompanied by protection against obesity (609, 610).

We have highlighted a key role for physical activity,
different fasting regimens, and dietary modifications in limiting
AT inflammation and IR. Nevertheless, their implications on
different adipose depots, especially those of cardiovascular
interest are not well-characterized. In fact, a depot-specific
metabolic profiling is pivotal to delineate their differential effects.
Moreover, anti-diabetic drugs and surgical procedures showed a
favorable outcome on metabolic parameters and CVDs. In fact,
these approaches reduced AT inflammation throughmechanisms
being revealed only recently. Therefore, it is pivotal that AT
immune profiles in different depots be characterized following
the administration of anti-diabetic drugs.

Finally, the induction of BAT activity and WAT browning
has been proposed as a mean to curb obesity and combat
CVDs. Indeed, the induction of different AT depots browning
resulted in either favorable or detrimental outcomes. Targeting
UCP1 was even proposed as the induction of browning in PVAT

and EpiCAT was supposed to deteriorate vascular and cardiac
functionality (33). Indeed, this strategy is still debated as clinical
trials have not shown a significant improvement of metabolic
parameters following the induction of thermogenesis (33). In
addition to the non-selective impact on all adipose depots,
the available UCP1 inhibitors possess a fairly high IC50 value
(∼20µM) (611) precluding systemic administration without
significant off-target and adverse effects. As such, immune
modulation of thermogenesis might constitute a lucrative target
for depot-specific intervention. As different depots possess
variable intrinsic brown-like character, it is pivotal to further
characterize this phenotype, the manner by which it is affected
by the immune system in states of health and disease, and
how increased energy expenditure leads to clinical significance.
Significantly, the relative impact of the activation of different
thermogenic pathways on AT inflammation in various adipose
depots requires systematic examination. Whether the selection
of one pathway over the other modulates activity and/or
recruitment of disparate immune cells remains unknown. As
well, the ability of a specific immune cell product/function to
favor one pathway over the other has not been investigated.

CONCLUSION

Metabolic and Cardiovascular diseases are multifactorial
disorders to which contributes the inflammation of the AT.
Several pharmacological and non-pharmacological interventions
have been shown to exert their positive effects in these diseases,
at least in part by modulating AT inflammation. Accumulating
evidence implicates different immune cells in the regulation
of AT inflammation and its consequences including IR.
The metabolic reprogramming of AT immune cells and the
alteration of the AT immune landscape are believed to drive AT
inflammation, BAT thermogenesis and WAT browning. Further
investigation is required to delineate the exact role of different
immune cells and the consequences of their metabolic profile
alteration in different adipose depots inflammation. A better
comprehension of the mechanisms driving AT inflammation
allows for the emergence of novel therapeutic strategies aimed at
immunomodulating the AT.

AUTHOR CONTRIBUTIONS

IA, SH, HA-K, and AG participated in literature review and
screening and contributed to manuscript writing. IA wrote the
first draft of the manuscript. AE helped in overseeing and
coordinating the work and participated in manuscript draft
review. AE-Y developed the idea, supervised the work, reviewed
and modified manuscript draft, and provided research funding
support. All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by AUB-Faculty of Medicine Medical
Practice Plan Grant No. 320148 and an AUB President
Collaborative Research Stimulus Grant to AE-Y.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 23 November 2020 | Volume 7 | Article 602088

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


AlZaim et al. Immunomodulation of Adipose Inflammation

REFERENCES

1. Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions
linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell

Biol. (2008) 9:367–77. doi: 10.1038/nrm2391
2. Chouchani ET, Kazak L, Spiegelman BM. New advances in adaptive

thermogenesis: UCP1 and beyond. Cell Metab. (2019) 29:27–37.
doi: 10.1016/j.cmet.2018.11.002

3. Zatterale F, Longo M, Naderi J, Raciti GA, Desiderio A, Miele C, et al.
Chronic adipose tissue inflammation linking obesity to insulin resistance and
type 2 diabetes. Front Physiol. (2020) 10:1607. doi: 10.3389/fphys.2019.01607

4. Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic
disease. J Clin Invest. (2011) 121:2111–7. doi: 10.1172/JCI57132

5. Kunath A, Klöting N. Adipocyte biology and obesity-mediated adipose tissue
remodeling. Obes Med. (2016) 4:15–20. doi: 10.1016/j.obmed.2016.10.001

6. Tune JD, Goodwill AG, Sassoon DJ, Mather KJ. Cardiovascular
consequences of metabolic syndrome. Transl Res. (2017) 183:57–70.
doi: 10.1016/j.trsl.2017.01.001

7. Stolarczyk E. Adipose tissue inflammation in obesity: a metabolic
or immune response? Curr Opin Pharmacol. (2017) 37:35–40.
doi: 10.1016/j.coph.2017.08.006

8. Choe SS, Huh JY, Hwang IJ, Kim JI, Kim JB. Adipose tissue remodeling: its
role in energy metabolism and metabolic disorders. Front Endocrinol. (2016)
7:30. doi: 10.3389/fendo.2016.00030

9. Trayhurn P, Wood IS. Signalling role of adipose tissue: adipokines
and inflammation in obesity. Biochem Soc Trans. (2005) 33:1078–81.
doi: 10.1042/BST0331078

10. Lee YS, Kim JW, Osborne O, Sasik R, Schenk S, Chen A, et al.
Increased adipocyte O2 consumption triggers HIF-1α, causing
inflammation and insulin resistance in obesity. Cell. (2014) 157:1339–52.
doi: 10.1016/j.cell.2014.05.012

11. Engin A. The pathogenesis of obesity-associated adipose
tissue inflammation. Adv Exp Med Biol. (2017) 960:221–45.
doi: 10.1007/978-3-319-48382-5_9

12. Halberg N, Khan T, Trujillo ME, Wernstedt-Asterholm I, Attie AD,
Sherwani S, et al. Hypoxia-inducible factor 1α induces fibrosis and insulin
resistance in white adipose tissue. Mol Cell Biol. (2009) 29:4467–83.
doi: 10.1128/MCB.00192-09

13. Legrand-Poels S, Esser N, L’homme L, Scheen A, Paquot N, Piette J. Free fatty
acids as modulators of the NLRP3 inflammasome in obesity/type 2 diabetes.
Biochem Pharmacol. (2014) 92:131–41. doi: 10.1016/j.bcp.2014.08.013

14. Morigny P, Houssier M,Mouisel E, Langin D. Adipocyte lipolysis and insulin
resistance. Biochimie. (2016) 125:259–66. doi: 10.1016/j.biochi.2015.10.024

15. Kuroda M, Sakaue H. Adipocyte death and chronic inflammation in obesity.
J Med Invest. (2017) 64:193–6. doi: 10.2152/jmi.64.193

16. Kruglikov IL, Scherer PE. Dermal adipocytes: from irrelevance
to metabolic targets? Trends Endocrinol Metab. (2016) 27:1–10.
doi: 10.1016/j.tem.2015.11.002

17. Lin D, Chun TH, Kang L. Adipose extracellular matrix remodelling
in obesity and insulin resistance. Biochem Pharmacol. (2016) 119:8–16.
doi: 10.1016/j.bcp.2016.05.005

18. Crewe C, An YA, Scherer PE. The ominous triad of adipose tissue
dysfunction: inflammation, fibrosis, and impaired angiogenesis. J Clin Invest.
(2017) 127:74–82. doi: 10.1172/JCI88883

19. Kane H, Lynch L. Innate immune control of adipose tissue
homeostasis. Trends Immunol. (2019) 40:857–72. doi: 10.1016/j.it.2019.
07.006

20. Winer DA, Winer S, Chng MH, Shen L, Engleman EG. B lymphocytes
in obesity-related adipose tissue inflammation and insulin resistance.
Cell Mol Life Sci. (2014) 71:1033–43. doi: 10.1007/s00018-013-
1486-y

21. Zelechowska P, Agier J, Kozłowska E, Brzezińska-Błaszczyk E. Mast cells
participate in chronic low-grade inflammation within adipose tissue. Obes
Rev. (2018) 19:686–97. doi: 10.1111/obr.12670

22. Lu J, Zhao J, Meng H, Zhang X. Adipose tissue-resident immune
cells in obesity and type 2 diabetes. Front Immunol. (2019) 10:1173.
doi: 10.3389/fimmu.2019.01173

23. Weisberg SP, Mccann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW.
Obesity is associated with macrophage accumulation in adipose tissue. J Clin
Invest. (2003) 112:1796–808. doi: 10.1172/JCI200319246

24. Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR. Increased inflammatory
properties of adipose tissue macrophages recruited during diet-induced
obesity. Diabetes. (2007) 56:16–23. doi: 10.2337/db06-1076

25. Olefsky JM, Glass CK. Macrophages, inflammation, and
insulin resistance. Annu Rev Physiol. (2010) 72:219–46.
doi: 10.1146/annurev-physiol-021909-135846

26. Kitade H, Sawamoto K, Nagashimada M, Inoue H, Yamamoto Y, Sai Y, et al.
CCR5 plays a critical role in obesity-induced adipose tissue inflammation
and insulin resistance by regulating both macrophage recruitment and
M1/M2 status. Diabetes. (2012) 61:1680–90. doi: 10.2337/db11-1506

27. Amano SU, Cohen JL, Vangala P, Tencerova M, Nicoloro SM, Yawe
JC, et al. Local proliferation of macrophages contributes to obesity-
associated adipose tissue inflammation. Cell Metab. (2014) 19:162–71.
doi: 10.1016/j.cmet.2013.11.017

28. Ibrahim MM. Subcutaneous and visceral adipose tissue:
structural and functional differences. Obes Rev. (2010) 11:11–8.
doi: 10.1111/j.1467-789X.2009.00623.x

29. Fitzgibbons TP, Kogan S, Aouadi M, Hendricks GM, Straubhaar J, Czech
MP. Similarity of mouse perivascular and brown adipose tissues and their
resistance to diet-induced inflammation. Am J Physiol Heart Circ Physiol.
(2011) 301:H1425–37. doi: 10.1152/ajpheart.00376.2011

30. Roberts-Toler C, O’neill BT, Cypess AM. Diet-induced obesity causes insulin
resistance in mouse brown adipose tissue. Obesity. (2015) 23:1765–70.
doi: 10.1002/oby.21134

31. Dowal L, Parameswaran P, Phat S, Akella S, Majumdar ID, Ranjan J,
et al. Intrinsic properties of brown and white adipocytes have differential
effects on macrophage inflammatory responses. Mediators Inflamm. (2017)
2017:9067049. doi: 10.1155/2017/9067049

32. Elkhatib MW, Mroueh A, Rafeh RW, Sleiman F, Fouad H, Saad EI,
et al. Amelioration of perivascular adipose inflammation reverses vascular
dysfunction in a model of nonobese prediabetic metabolic challenge:
potential role of antidiabetic drugs. Transl Res. (2019) 214:121–43.
doi: 10.1016/j.trsl.2019.07.009

33. Rafeh R, Viveiros A, Oudit GY, El-Yazbi AF. Targeting
perivascular and epicardial adipose tissue inflammation: therapeutic
opportunities for cardiovascular disease. Clin Sci. (2020) 134:827–51.
doi: 10.1042/CS20190227

34. Guzik TJ, SkibaDS, Touyz RM,HarrisonDG. The role of infiltrating immune
cells in dysfunctional adipose tissue. Cardiovasc Res. (2017) 113:1009–23.
doi: 10.1093/cvr/cvx108

35. Mancuso P. The role of adipokines in chronic inflammation. Immun Ther.
(2016) 5:47. doi: 10.2147/ITT.S73223

36. Auguet T, Quintero Y, RiescoD,Morancho B, Terra X, Crescenti A, et al. New
adipokines vaspin and omentin. Circulating levels and gene expression in
adipose tissue from morbidly obese women. BMC Med Genet. (2011) 12:60.
doi: 10.1186/1471-2350-12-60

37. Ohashi K, Shibata R, Murohara T, Ouchi N. Role of anti-inflammatory
adipokines in obesity-related diseases. Trends Endocrinol Metab. (2014)
25:348–55. doi: 10.1016/j.tem.2014.03.009

38. Tan YL, Zheng XL, Tang CK. The protective functions of omentin
in cardiovascular diseases. Clin Chim Acta. (2015) 448:98–106.
doi: 10.1016/j.cca.2015.05.019

39. Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum
protein similar to C1q, produced exclusively in adipocytes. J Biol Chem.
(1995) 270:26746–9. doi: 10.1074/jbc.270.45.26746

40. Lau WB, Ohashi K, Wang Y, Ogawa H, Murohara T, Ma XL, et al.
Role of adipokines in cardiovascular disease. Circ J. (2017) 81:920–8.
doi: 10.1253/circj.CJ-17-0458

41. Yu JG, Javorschi S, Hevener AL, Kruszynska YT, Norman RA, Sinha M,
et al. The effect of thiazolidinediones on plasma adiponectin levels in
normal, obese, and type 2 diabetic subjects. Diabetes. (2002) 51:2968–74.
doi: 10.2337/diabetes.51.10.2968

42. Combs TP, Berg AH, Rajala MW, Klebanov S, Iyengar P, Jimenez-Chillaron
JC, et al. Sexual differentiation, pregnancy, calorie restriction, and aging

Frontiers in Cardiovascular Medicine | www.frontiersin.org 24 November 2020 | Volume 7 | Article 602088

https://doi.org/10.1038/nrm2391
https://doi.org/10.1016/j.cmet.2018.11.002
https://doi.org/10.3389/fphys.2019.01607
https://doi.org/10.1172/JCI57132
https://doi.org/10.1016/j.obmed.2016.10.001
https://doi.org/10.1016/j.trsl.2017.01.001
https://doi.org/10.1016/j.coph.2017.08.006
https://doi.org/10.3389/fendo.2016.00030
https://doi.org/10.1042/BST0331078
https://doi.org/10.1016/j.cell.2014.05.012
https://doi.org/10.1007/978-3-319-48382-5_9
https://doi.org/10.1128/MCB.00192-09
https://doi.org/10.1016/j.bcp.2014.08.013
https://doi.org/10.1016/j.biochi.2015.10.024
https://doi.org/10.2152/jmi.64.193
https://doi.org/10.1016/j.tem.2015.11.002
https://doi.org/10.1016/j.bcp.2016.05.005
https://doi.org/10.1172/JCI88883
https://doi.org/10.1016/j.it.2019.07.006
https://doi.org/10.1007/s00018-013-1486-y
https://doi.org/10.1111/obr.12670
https://doi.org/10.3389/fimmu.2019.01173
https://doi.org/10.1172/JCI200319246
https://doi.org/10.2337/db06-1076
https://doi.org/10.1146/annurev-physiol-021909-135846
https://doi.org/10.2337/db11-1506
https://doi.org/10.1016/j.cmet.2013.11.017
https://doi.org/10.1111/j.1467-789X.2009.00623.x
https://doi.org/10.1152/ajpheart.00376.2011
https://doi.org/10.1002/oby.21134
https://doi.org/10.1155/2017/9067049
https://doi.org/10.1016/j.trsl.2019.07.009
https://doi.org/10.1042/CS20190227
https://doi.org/10.1093/cvr/cvx108
https://doi.org/10.2147/ITT.S73223
https://doi.org/10.1186/1471-2350-12-60
https://doi.org/10.1016/j.tem.2014.03.009
https://doi.org/10.1016/j.cca.2015.05.019
https://doi.org/10.1074/jbc.270.45.26746
https://doi.org/10.1253/circj.CJ-17-0458
https://doi.org/10.2337/diabetes.51.10.2968
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


AlZaim et al. Immunomodulation of Adipose Inflammation

affect the adipocyte-specific secretory protein adiponectin. Diabetes. (2003)
52:268–76. doi: 10.2337/diabetes.52.2.268

43. Kumada M, Kihara S, Sumitsuji S, Kawamoto T, Matsumoto S,
Ouchi N, et al. Association of hypoadiponectinemia with coronary
artery disease in men. Arterioscler Thromb Vasc Biol. (2003) 23:85–9.
doi: 10.1161/01.ATV.0000048856.22331.50

44. Pischon T, Girman CJ, Hotamisligil GS, Rifai N, Hu FB, Rimm EB. Plasma
adiponectin levels and risk of myocardial infarction in men. JAMA. (2004)
291:1730–7. doi: 10.1001/jama.291.14.1730

45. L’abbate A, Neglia D, Vecoli C, Novelli M, Ottaviano V, Baldi S,
et al. Beneficial effect of heme oxygenase-1 expression on myocardial
ischemia-reperfusion involves an increase in adiponectin in mildly
diabetic rats. Am J Physiol Heart Circ Physiol. (2007) 293:H3532–41.
doi: 10.1152/ajpheart.00826.2007

46. Goldstein BJ, Scalia RG, Ma XL. Protective vascular and myocardial
effects of adiponectin. Nat Clin Pract Cardiovasc Med. (2009) 6:27–35.
doi: 10.1038/ncpcardio1398

47. Yamaguchi N, Argueta JG, Masuhiro Y, Kagishita M, Nonaka K, Saito T, et al.
Adiponectin inhibits Toll-like receptor family-induced signaling. FEBS Lett.
(2005) 579:6821–6. doi: 10.1016/j.febslet.2005.11.019

48. Chandrasekar B, Boylston WH, Venkatachalam K, Webster NJ, Prabhu
SD, Valente AJ. Adiponectin blocks interleukin-18-mediated endothelial
cell death via APPL1-dependent AMP-activated protein kinase (AMPK)
activation and IKK/NF-kappaB/PTEN suppression. J Biol Chem. (2008)
283:24889–98. doi: 10.1074/jbc.M804236200

49. Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ. Adiponectin
stimulates production of nitric oxide in vascular endothelial cells. J Biol

Chem. (2003) 278:45021–6. doi: 10.1074/jbc.M307878200
50. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, et al. Cloning

of adiponectin receptors that mediate antidiabetic metabolic effects. Nature.
(2003) 423:762–9. doi: 10.1038/nature01705

51. Ouchi N, Kobayashi H, Kihara S, Kumada M, Sato K, Inoue T, et al.
Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-
activated protein kinase and Akt signaling in endothelial cells. J Biol Chem.
(2004) 279:1304–9. doi: 10.1074/jbc.M310389200

52. Alvarez P, Tapia L, Mardones L, Pedemonte J, Farías J, Castillo R. Cellular
mechanisms against ischemia reperfusion injury induced by the use of
anesthetic pharmacological agents. Chem Biol Interact. (2014) 218:89–98.
doi: 10.1016/j.cbi.2014.04.019

53. Ajuwon KM, Spurlock ME. Adiponectin inhibits LPS-induced NF-κB
activation and IL-6 production and increases PPARγ2 expression in
adipocytes. Am J Physiol Regul Integr Compar Physiol. (2005) 288:R1220–5.
doi: 10.1152/ajpregu.00397.2004

54. Ohashi K, Parker JL, Ouchi N, Higuchi A, Vita JA, Gokce N,
et al. Adiponectin promotes macrophage polarization toward an
anti-inflammatory phenotype. J Biol Chem. (2010) 285:6153–60.
doi: 10.1074/jbc.M109.088708

55. Yamamoto R, Ueki S, Moritoki Y, Kobayashi Y, Oyamada H, Konno Y,
et al. Adiponectin attenuates human eosinophil adhesion and chemotaxis:
implications in allergic inflammation. J Asthma. (2013) 50:828–35.
doi: 10.3109/02770903.2013.816725
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