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Abstract

Background: Higher adiposity increases the risk of colorectal cancer (CRC), but whether this relationship varies by
anatomical sub-site or by sex is unclear. Further, the metabolic alterations mediating the effects of adiposity on CRC
are not fully understood.
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Methods: We examined sex- and site-specific associations of adiposity with CRC risk and whether adiposity-
associated metabolites explain the associations of adiposity with CRC. Genetic variants from genome-wide
association studies of body mass index (BMI) and waist-to-hip ratio (WHR, unadjusted for BMI; N = 806,810), and 123
metabolites from targeted nuclear magnetic resonance metabolomics (N = 24,925), were used as instruments. Sex-
combined and sex-specific Mendelian randomization (MR) was conducted for BMI and WHR with CRC risk (58,221
cases and 67,694 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium, Colorectal Cancer
Transdisciplinary Study, and Colon Cancer Family Registry). Sex-combined MR was conducted for BMI and WHR
with metabolites, for metabolites with CRC, and for BMI and WHR with CRC adjusted for metabolite classes in
multivariable models.

Results: In sex-specific MR analyses, higher BMI (per 4.2 kg/m2) was associated with 1.23 (95% confidence interval
(CI) = 1.08, 1.38) times higher CRC odds among men (inverse-variance-weighted (IVW) model); among women,
higher BMI (per 5.2 kg/m2) was associated with 1.09 (95% CI = 0.97, 1.22) times higher CRC odds. WHR (per 0.07
higher) was more strongly associated with CRC risk among women (IVW OR = 1.25, 95% CI = 1.08, 1.43) than men
(IVW OR = 1.05, 95% CI = 0.81, 1.36). BMI or WHR was associated with 104/123 metabolites at false discovery rate-
corrected P ≤ 0.05; several metabolites were associated with CRC, but not in directions that were consistent with
the mediation of positive adiposity-CRC relations. In multivariable MR analyses, associations of BMI and WHR with
CRC were not attenuated following adjustment for representative metabolite classes, e.g., the univariable IVW OR
for BMI with CRC was 1.12 (95% CI = 1.00, 1.26), and this became 1.11 (95% CI = 0.99, 1.26) when adjusting for
cholesterol in low-density lipoprotein particles.

Conclusions: Our results suggest that higher BMI more greatly raises CRC risk among men, whereas higher WHR
more greatly raises CRC risk among women. Adiposity was associated with numerous metabolic alterations, but
none of these explained associations between adiposity and CRC. More detailed metabolomic measures are likely
needed to clarify the mechanistic pathways.

Keywords: Body mass index, Waist-to-hip ratio, Colorectal cancer, Mendelian randomization, Metabolism, NMR,
Epidemiology, GECCO, CORECT, CCFR

Background
Colorectal cancer (CRC) is one of the most commonly

diagnosed cancers among adults globally [1–3]. Obesity

is viewed as a likely cause of CRC by the International

Agency for Research on Cancer (IARC), the American

Institute for Cancer Research (AICR), and the World

Cancer Research Fund (WCRF) [3, 4], based largely on

positive associations between adiposity and CRC risk

from observational epidemiology. Further, the limited

data available from observational studies suggest that

intentional weight loss lowers the risk of CRC in post-

menopausal women [5]. Mendelian randomization

(MR) studies, which use genetic variants as instruments

(proxies) for adiposity given their randomly allocated

and fixed nature [6], further support causality [7–9].

Despite this growing consensus, it remains unclear

whether the effect of adiposity on CRC risk differs

among men and women, whether the relationship var-

ies by CRC sub-site, and what the underlying biological

mechanisms are. These are important to clarify given

the ongoing obesity epidemic and difficulties in redu-

cing adiposity itself [10, 11].

Observationally, body mass index (BMI) relates more

strongly to CRC risk among men and waist-to-hip ratio

(WHR) relates similarly to CRC risk among men and

women [12]. However, recent MR studies suggest that

higher BMI more greatly raises CRC risk among women,

while higher WHR more greatly raises CRC risk among

men [7, 8]. Whether these MR estimates are robust is

unclear because they were based on relatively small sam-

ple sizes, genetic instruments that were not sex-specific,

and genetic instruments for WHR that were conditioned

on BMI—all potential sources of bias [13–17].

Adiposity alters the systemic metabolism [18–20], but

evidence for the effects of adiposity-altered metabolites

on CRC is scarce. One MR study suggested that total

cholesterol raises CRC risk [21], while others suggested

no effect of blood glucose [22] and mixed support for

fatty acids [23]. Overall, the scope of metabolic traits ex-

amined has also been narrow. Targeted metabolomics

allows deeper phenotyping at a large scale [24], and its

recent integration with genotype data [25] enables us to

examine the associations of metabolites with CRC using

MR. Expanded genotype data for CRC is also available

[26], affording a sample size six times larger than used

in previous MR studies (58,221 cases, 67,694 controls).

This study has two aims. First, we aimed to better esti-

mate sex-specific effects of adiposity on CRC risk using

two-sample MR. We examined associations of BMI and

WHR with CRC risk using expanded GWAS data and
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genetic instruments for exposures that were sex-specific

and were not mutually conditioned, to reduce bias [13–

17]. Second, we aimed to identify potential metabolic

mediators of effects of adiposity on CRC risk using two-

step MR (by examining associations of BMI and WHR

with metabolites, and of BMI- or WHR-related metabo-

lites with CRC risk) and multivariable MR (by adjusting

associations of BMI and WHR with CRC for representa-

tive metabolites).

Methods
Study design

We used two-sample MR to examine the associations

(pertaining to estimates of the effect predicted from gen-

etic variants used as instruments) of adiposity with CRC

risk, of adiposity with metabolites, of adiposity-

associated metabolites with CRC risk, and finally of

adiposity with CRC risk adjusted for representative

metabolites. In two-sample MR, SNP-exposure and

SNP-outcome associations are obtained from different

study sources and combined as a ratio to estimate the ef-

fects of exposures on outcomes [13, 27]. Our study aims

and assumptions are shown in Fig. 1.

Adiposity instruments

We identified SNPs that were independently associated

(low linkage disequilibrium (LD), R2 < 0.001) with BMI

and WHR (unadjusted for BMI) at P < 5 × 10−8 from a

recent large-scale genome-wide association study

(GWAS) meta-analysis of 221,863 to 806,810 male and

female adults of European ancestry from the Genetic In-

vestigation of ANthropometric Traits (GIANT) consor-

tium and the UK Biobank [33] (Additional file 1: Table

S1). BMI and WHR are expressed in standard deviation

(SD) units. For sex-combined analyses of BMI and

WHR, 312 and 209 SNPs were used, respectively. For

sex-specific analyses of BMI, 185 and 152 SNPs were

used for women and men, respectively. For sex-specific

analyses of WHR, 153 and 64 SNPs were used for

women and men, respectively. The proportion of vari-

ance explained in adiposity traits by instruments ranged

from 0.3 to 5.04% (these were based on approximations

for BMI using the equation described by Shim et al.

[34]), and F-statistics (a formal test of whether variance

explained is sufficiently high to avoid weak instrument

bias) for adiposity instruments ranged from 75.81 to

124.49 (Additional file 1: Table S2) which indicated

Fig. 1 Study aims and assumptions. Study aims are to (1) estimate the total effect of adiposity on CRC risk using genetic instruments for BMI and
WHR ((i) unadjusted for BMI) and (2) estimate the mediated effect of adiposity on CRC risk by metabolites from targeted NMR metabolomics. Aim
2 is addressed using two approaches: (1) two-step MR wherein effects are examined of adiposity on metabolites (ii) and of adiposity-related
metabolites on CRC risk (iii) and (2) multivariable MR wherein effects of adiposity on CRC (i) are examined with adjustment for the effect of
representative metabolite classes on CRC (iii). Sex-specific analyses were performed when sex-specific GWAS estimates for exposure and outcome
were both available. When ≥ 2 SNP instruments were available, up to 4 MR models were applied: the inverse-variance-weighted (IVW) model
which assumes that none of the SNPs are pleiotropic [28], the weighted median (WM) model which allows up to half of the included SNPs to be
pleiotropic and is less influenced by outliers [28], the weighted mode model which assumes that the most common effect is consistent with the
true causal effect [29], and the MR-Egger model which provides an estimate of association magnitude allowing all SNPs to be pleiotropic [30].
Analyses with metabolites as outcomes were conducted within discovery aims wherein P value thresholds are applied to prioritize traits with the
strongest evidence of association to be taken forward into further stages of analysis (with CRC risk). Analyses with CRC as outcomes were
conducted within estimation aims wherein P values are interpreted as continuous indicators of evidence strength and focus is on effect size and
precision [31, 32]
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instrument strength above the recommended minimum

levels [35].

Metabolite instruments

We identified SNPs that were independently associated

(R2 < 0.001 and P < 5 × 10−8) with metabolites from a

GWAS of 123 traits from targeted nuclear magnetic res-

onance (NMR) metabolomics (Additional file 1: Table

S1); these included lipoprotein subclass-specific lipids,

amino acids, fatty acids, inflammatory glycoproteins, and

others [25]. Between 13,476 and 24,925 adults (men and

women combined) of European ancestry were included.

Metabolic traits are expressed in SD units. The propor-

tion of variance explained in metabolites by instruments

ranged from 0.44 to 12.49%, and F-statistics for metabol-

ite instruments ranged from 30.2 to 220.8 (Add-

itional file 1: Table S2) which indicated sufficient

instrument strength for univariable analyses.

Colorectal cancer GWAS data

We obtained SNP estimates from the most comprehen-

sive GWAS of CRC to date [26], including 58,221 cases

and 67,694 controls (sexes combined) from 45 studies

within 3 consortia: Genetics and Epidemiology of Colo-

rectal Cancer Consortium (GECCO), Colorectal Cancer

Transdisciplinary Study (CORECT), and Colon Cancer

Family Registry (CCFR). Across these studies, there were

28,207 CRC cases and 22,204 controls among men, and

24,568 CRC cases and 23,736 controls among women.

Cases were diagnosed by a physician and recorded over-

all and by site (colon, proximal colon, distal colon, rec-

tum). Approximately 92% of the participants were

White-European (~ 8% were East Asian). Case distribu-

tions are outlined in Additional file 1: Table S3; other

study characteristics are detailed elsewhere [26]. Ethics

were approved by respective institutional review boards.

Statistical approach

First, we examined the associations of BMI and WHR

with overall and site-specific CRC using SNP estimates

from sex-combined GWAS of exposures as well as out-

comes. We then examined the associations of BMI and

WHR with overall CRC based on SNP estimates from

sex-specific GWAS of exposure as well as outcome (sex-

specific GWAS were not available and thus not used for

site-specific CRC). Summary statistics were harmonized

using the harmonise_data function within the TwoSam-

pleMR R package [36]. All GWAS were assumed to be

coded on the forward strand, and harmonization was

confirmed as consistent using option 2 of the “action”

argument. As sensitivity analyses, up to four MR

methods were used to generate effect estimates using

the TwoSampleMR R package [36] which make differing

pleiotropy assumptions (detailed in Fig. 1 legend) [29,

36, 37]. When only a single SNP was available, the Wald

ratio was used [38]. When ≥ 2 SNPs were available,

random-effects inverse-variance-weighted (IVW) [36],

MR-Egger [30], weighted median (WM) [28], and

weighted mode [29] models were used. Cochrane’s Q-

statistic was used to assess the heterogeneity of SNP ef-

fects (smaller P values indicating higher heterogeneity

and higher potential for directional pleiotropy [39]).

Scatter plots were used to compare MR models, and

“leave-one-SNP-out” analyses were used to detect SNP

outliers [40].

Second, we examined associations of BMI and WHR

with metabolites using results from sex-combined

GWAS for exposures as well as outcomes (sex-specific

GWAS were not available for metabolites, and so sex-

specific analyses were not conducted) and the MR

models described above. Each metabolite (analyzed as an

outcome) that was associated with either BMI or WHR

based on an IVW model P value ≤ 0.05 following a false

discovery rate (FDR) correction (Benjamini-Hochberg

method [41]) was taken forward and examined for asso-

ciation with CRC risk using the IVW model (if ≥ 2

SNPs) or the Wald ratio (if 1 SNP). Multivariable MR

[42] was also used to examine the associations of BMI

and WHR with CRC risk, adjusting for single metabo-

lites that were representative of various metabolite clas-

ses based on previous network analyses [43] and that

had the highest instrument strength based on the F-stat-

istic (Additional file 1: Table S2). As a positive control,

we adjusted BMI for WHR as a covariate (which is ex-

pected to attenuate the association of BMI with CRC

risk), and likewise, we adjusted WHR for BMI as a co-

variate with the same expectation. A smaller set of SNPs

for BMI and WHR based on earlier GWAS [44, 45] was

used for these multivariable models to avoid a relative

dilution of metabolite instrument strength given that the

number of SNPs for BMI and WHR from expanded

GWAS far outnumbered those for metabolites. Condi-

tional F-statistics were calculated for exposures in multi-

variable models [46].

In each instance, MR estimates are interpreted as the

change in outcome per SD unit change in the exposure.

Estimates for metabolite outcomes reflect SD unit

change, and estimates for CRC outcomes reflect odds ra-

tios (OR). Statistical analyses were performed using R

(version 3.5.2).

Results
Associations of BMI and WHR with CRC risk

In sex-combined analyses (Fig. 2; Additional file 1: Table

S4), higher BMI (per 4.8 kg/m2) was associated with a

higher risk of overall CRC (IVW OR = 1.16, 95% CI =

1.07, 1.26). The WM estimate was similar, but the MR-

Egger and weighted mode estimates were both reduced
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(e.g., MR-Egger OR = 1.02, 95% CI = 0.84, 1.25). BMI as-

sociations were consistent across CRC sites. Associations

were directionally consistent for WHR as for BMI but

were marginally stronger—e.g., higher WHR (per 0.09

ratio) was associated with 1.28 (95% CI = 1.16, 1.42)

times higher odds of CRC in an IVW model (MR-Egger

and weighted mode estimates were each positive but of

a smaller magnitude with wide intervals spanning the

null). WHR associations were more consistent for colon

rather than rectal sub-sites. SNP heterogeneity was simi-

larly high for BMI and WHR (P value range across

models = 9.54 × 10−10 to 1.97 × 10−8).

In sex-specific IVW models (Fig. 2; Additional file 1:

Table S4), higher BMI (per 4.2 kg/m2) was associated

with 1.23 (95% CI = 1.08, 1.38) times higher odds of

CRC among men and 1.09 (95% CI = 0.97, 1.22) times

higher odds of CRC (per 5.2 kg/m2) among women.

In a WM model, this BMI estimate was robust among

men (OR = 1.22, 95% CI = 1.02, 1.46) but reduced

among women (OR = 1.04, 95% CI = 0.86, 1.26). MR-

Egger and weighted mode estimates were similarly

imprecise among men and women, and SNP hetero-

geneity was similar for both. In IVW models, higher

WHR (per 0.07 ratio) was associated with 1.25 (95%

CI = 1.08, 1.43) times higher odds of CRC among

women; this estimate was 1.05 (95% CI = 0.81, 1.36)

among men (per 0.07 ratio). This pattern was also

supported by WM estimates (OR = 1.14, 95% CI =

0.91, 1.42 among women and OR = 0.95, 95% CI =

0.90, 1.29 among men), and by MR-Egger and

weighted mode estimates. SNP heterogeneity was

similarly high among men and women.

Scatter plots comparing different MR models and re-

sults of the “leave-one-SNP-out” analyses are presented

in Additional file 2: Figures S1-42.

Associations of BMI and WHR with metabolites

In sex-combined analyses, higher BMI (per 4.8 kg/m2) or

WHR (per 0.09 ratio) was associated with 104 metabo-

lites based on FDR-corrected P value ≤ 0.05 in IVW

Fig. 2 Associations of BMI and WHR with CRC risk based on two-sample MR. Sex-combined estimates are based on GWAS done among women
and men together (for both exposure and outcome). Sex-specific estimates are based on GWAS done separately among women and men (for
exposure as well as outcome)
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models (Additional file 2: Figures S43-47; Add-

itional file 1: Table S5). Evidence was strong in relation

to lipids including total cholesterol and triglycerides in

very low-density lipoproteins (VLDL), low-density lipo-

proteins (LDL), and high-density lipoproteins (HDL)—

e.g., 0.23 SD (95% CI = 0.15, 0.31) higher triglycerides in

large VLDL from higher BMI. Associations of higher

BMI were also strong with lactate, pyruvate, and

branched-chain amino acids—e.g., 0.19 SD (95% CI =

0.13, 0.25) higher isoleucine—and with inflammatory

glycoproteins (0.28 SD, 95% CI = 0.20, 0.36 higher).

Similar patterns were seen for WHR.

Associations of BMI- or WHR-related metabolites with

CRC

Of 104 metabolites associated (as outcomes) with BMI

or WHR in sex-combined analyses, 100 had SNPs for

use in Wald or IVW models. As shown in Add-

itional file 1: Table S1, 321 unique SNPs were used to

instrument 100 metabolites (3 metabolites had 1 SNP,

13 metabolites had < 5 SNPs, and 51 metabolites had <

10 SNPs; SNP counts across metabolites ranged from 1

to 26). Lipid traits showed generally weak associations

with CRC which were also in directions inconsistent

with the mediation of the adiposity-CRC relationship—

e.g., lipids in medium HDL were positively associated

with CRC, but these had been negatively associated with

BMI or WHR (Fig. 3; Additional file 1: Table S6). In

contrast, there was more consistent evidence of a posi-

tive association of lipids in intermediate-density lipopro-

tein (IDL), VLDL, and LDL with a risk of distal colon

cancer, and these lipids had been positively associated

with higher BMI or WHR. For example, higher total

lipids in IDL (per SD) were associated with 1.09 (95%

CI = 1.02, 1.15) times higher odds of distal colon cancer.

Lipids were unassociated with the risk of proximal colon

cancer. Fatty acids were unassociated with CRC risk ex-

cept for higher monounsaturated fatty acid levels which

were associated with a lower risk of rectal cancer (IVW

OR = 0.85, 95% CI = 0.75, 0.95; Fig. 4). Lactate and pyru-

vate were inversely associated with CRC at 0.66 (95%

CI = 0.42, 1.03) times lower odds and 0.64 (95% CI =

0.52, 0.80) times lower odds, respectively. However,

these metabolites were positively associated with BMI,

and so directions were inconsistent with the mediation

of the adiposity-CRC relationship. Amino acids and

glycoprotein acetyls were unassociated with CRC risk.

Associations of BMI and WHR with CRC risk independent

of metabolites

The association of BMI with overall CRC was not atten-

uated following adjustment for various metabolite clas-

ses (Fig. 5; Additional file 1: Table S7). The univariable

IVW OR for BMI (per 4.77 kg/m2 higher, based on 67

SNPs) in relation to CRC was 1.12 (95% CI = 1.00, 1.26),

whereas this IVW OR was 1.14 (95% CI = 1.01, 1.29)

adjusting for VLDL lipids and 1.11 (95% CI = 0.99, 1.26)

adjusting for IDL and LDL lipids. Attenuation was

greater when adjusting the BMI-CRC association for

WHR (positive control), at IVW OR = 0.93 (95% CI =

0.78, 1.11). Results for WHR in relation to CRC were

directionally consistent as seen for BMI, with a lack of

attenuation upon adjustment for metabolite classes.

Discussion
We aimed to better estimate sex-specific effects of adi-

posity on CRC risk and to identify potential metabolic

mediators of the effects of adiposity on CRC, using two-

sample MR methods and expanded sample sizes. Our re-

sults, based on genetic instruments for adiposity that

were sex-specific and were not mutually conditioned,

suggest that higher BMI more greatly raises CRC risk

among men, whereas higher WHR more greatly raises

CRC risk among women. In sex-combined mediation

analyses, adiposity was associated with numerous meta-

bolic alterations, but none of these alterations explained

the associations between adiposity and CRC. More de-

tailed metabolomic measures are likely needed to clarify

the mechanistic pathways.

Observational [3, 47] and MR [7–9] studies have sug-

gested adverse effects of adiposity on CRC risk, but

causal evidence has been lacking regarding sex specifi-

city. Previous MR studies suggested stronger effects of

BMI on CRC risk among women [7–9], which contra-

dicts observational suggestions of stronger effects among

men [12]. The genetic regulation of BMI and WHR

shows strong sexual dimorphism, thought attributable to

the influence of sex hormones, namely estrogen, and it

is important to capture these differences in MR esti-

mates [48, 49]. Our new results are based on instru-

ments for BMI and WHR that were sex-specific and a

sample size for CRC that was six times larger than used

previously which enabled higher power relative to two

previous MR studies of BMI, WHR, and CRC risk [7, 8]

(Additional file 2: Figure S48). These new results suggest

that BMI more greatly raises CRC risk among men—a

reversal of previous MR estimates. This new pattern for

BMI and CRC (22% higher risk among men per 4.2 kg/

m2 and 9% higher risk among women per 5.2 kg/m2) is

highly consistent with observational estimates reviewed

by IARC (22% higher risk in men and 9% higher risk in

women per 5 kg/m2 [4]). Our results also support a re-

versal of previous MR estimates for WHR, with risk now

appearing higher among women than among men. This

is unexpected since BMI and abdominal fat measures

correlate highly [50, 51]; however, given that fat storage

is more peripheral in women [18, 19], WHR (unadjusted

for BMI) may be a better proxy for the extremeness of
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Fig. 3 Associations of BMI- or WHR-related lipid metabolites with CRC risk based on two-sample MR (IVW method). Estimates reflect the OR (95%
CI) for CRC per SD higher metabolite that is associated (as an outcome) with BMI or WHR. +/− symbols indicate the direction of association of
BMI or WHR with that metabolite
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fat volume among women since fat may be stored more

abdominally only when peripheral fat stores are over-

whelmed. As a post hoc comparison, we repeated ana-

lyses of the main effects of adiposity on CRC using the

sex-combined adiposity instruments in relation to split

samples of men and women (Additional file 1: Table S8,

A) to examine the potential for biased results. These

suggest that use of sex-combined instruments for BMI

and WHR would lead to the conclusion that both are as-

sociated with higher CRC risk in males as well as fe-

males, but with still higher risk with BMI among males

and with WHR among females, in contrast to previous

Fig. 4 Associations of BMI- or WHR-related non-lipid metabolites with CRC risk based on two-sample MR (IVW method). Estimates reflect the OR
(95% CI) for CRC per SD higher metabolite that is associated (as an outcome) with BMI or WHR. +/− symbols indicate the direction of association
of BMI or WHR with that metabolite
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MR studies [7, 8]. This suggests that discrepancies in the

result patterns are most likely due to the differences in

the power of the main adiposity-CRC relationship (Add-

itional file 2: Figure S48).

SNP heterogeneity was high for BMI and WHR with

CRC, although this was similar between sexes and direc-

tions of effect from sensitivity models were consistent,

suggesting balanced SNP heterogeneity. One cause of

heterogeneity may be pleiotropy in violation of the ex-

clusion restriction criteria (assumption 3, Fig. 1). This is

not unexpected due to the large number of SNPs in-

cluded in the adipose trait instruments and the many

underlying biological pathways that explain variation in

adiposity. A future approach to minimizing heterogen-

eity in instrument selection could be to analyze the asso-

ciation between subsets of genetic variants related to

specific pathways of BMI and WHR in relation to CRC;

this requires more biological knowledge of these genetic

variants than currently exists.

Given the difficulty of weight loss [11] and the ongoing

obesity epidemic, it is increasingly important to identify

the biological pathways which explain the effect of adi-

posity on the risk of chronic diseases including CRC

[10]. Adipose tissue is highly metabolically active and

Fig. 5 Associations of BMI and WHR with CRC risk independent of various metabolite classes based on multivariable MR. Metabolite classes are
based on a single representative metabolite from a previous network analysis [43], as follows: VLDL (triglycerides in small VLDL); IDL and LDL
(total cholesterol in medium LDL), HDL (triglycerides in very large HDL), Omega-3 and PUFA (other polyunsaturated fatty acids than 18:2), Omega-
6 (18:2, linoleic acid), MUFA and other fatty acids (Omega-9 and saturated fatty acids), glycemia (glucose), substrates (citrate), branched-chain
amino acids (leucine), and other amino acids (glutamine). Adipose adjustments include the alternative adiposity trait (WHR or BMI) as a
positive control
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secretes pro-inflammatory cytokines such as interleukin

(IL)-6 and tumor necrosis factor (TNF)-alpha which may

promote tumor initiation [52]. Adipose tissue-derived

inflammation also promotes insulin resistance in glucose

storage tissues that can lead to hyperinsulinemia [53],

and insulin and insulin-like growth factors (IGF) such as

IGF-1 have pro-mitogenic and anti-apoptotic effects that

are cancer promotive [47, 54–58]. Our current results

suggest effects of BMI or WHR on numerous lipids and

pre-glycemic traits; however, few of these traits had any

strong association with CRC risk, and the few that did

were in a direction that was inconsistent with a mediat-

ing role in the adiposity-CRC relationship. Results of a

series of multivariable MR models, which adjusted for

various metabolites considered representative of broader

metabolite classes [42], suggested that associations of

BMI and WHR with CRC risk were highly independent

of these metabolites. However, this analysis may be lim-

ited by weak instrument bias [59] given that F-statistics

for metabolite instruments included in each multivari-

able MR model were relatively low. Nevertheless, the re-

sults of two complementary approaches to mediation

(two-step MR and multivariable MR) provide little evi-

dence that the effects of adiposity on CRC risk are medi-

ated by adiposity-related metabolites that are detectable

by NMR metabolomics. Future studies could examine

metabolites, proteins, hormones, and inflammatory fac-

tors that are detectable by other metabolomic and prote-

omic platforms.

The few traits that did show consistent directions of

effect included total lipids in IDL, LDL, and VLDL parti-

cles which were raised by BMI and which in turn raised

the risk of distal colon cancer specifically (not proximal

colon or rectal cancer). If robust, this pattern may reflect

differential sensitivity of colon regions to lipid exposure

owing to divergent functions (the distal colon functions

primarily in the storage of resultant fecal matter whereas

the proximal colon functions primarily in water absorp-

tion and fecal solidification [60]), or it may reflect differ-

ential detectability through screening (proximal colon

tumors tend to be detected in older ages and at more

advanced stages [60]). Colorectal anatomical regions

may also have distinct molecular features [61], e.g., the

distal colon may be more susceptible to p53 mutations

and chromosomal instability [62], whereas the proximal

colon may be more mucinous and susceptible to micro-

satellite instability and B-Raf proto-oncogene expression

[63, 64]. Several meta-analyses of long-term follow-ups

of randomized controlled trials of LDL cholesterol-

lowering statin use suggested no strong evidence of a

protective effect of statin used on CRC risk [65–67];

CRC sub-sites were largely unexamined. One previous

MR study suggested an adverse effect of higher LDL

cholesterol, and a protective effect of genetically proxied

statin use, on overall CRC risk [21]; again, CRC sub-sites

were not examined. Prospective observational evidence

for LDL cholesterol and CRC risk is less consistent than

for total cholesterol or triglycerides; heterogeneity in

meta-analyzed effect estimates is much higher for LDL

cholesterol (82.7% based on an I
2 statistic) compared

with total cholesterol and triglycerides (46.7% and 47.8%,

respectively) [68]. Prospective estimates of lipoprotein

subclass measures from metabolomic platforms are lack-

ing as these are only recently available at scale.

The limitations of this study include the non-specificity

of genetic variants used as instruments for some metabo-

lites which stems from their expectedly correlated nature

(e.g., rs1260326, a SNP in GCKR, was included in genetic

instruments for 54 metabolites). A total of 321 unique

SNPs was used to instrument 100 metabolites, but the

number of instruments available for a given metabolite was

typically small. This limits causal inference for individual

traits but should not prevent the identification of relevant

classes of traits (e.g., lipid, amino acid). It should also be

stressed that genetic variants used for metabolites may

alter the enzyme expression and so serve as instruments

for the metabolizing enzyme itself, not factors influenced

downstream of that enzyme. Since inference in MR applies

to the most proximal trait that the genetic variant relates

to [15], directing inference to specific glycolytic traits as

distinct from their downstream consequences like insulin

resistance [69] (a key result of higher fatness and trigger of

tumorigenesis [61]) is difficult and requires stronger gen-

etic instruments alongside mechanistic insights from pre-

clinical studies [70]. Adiposity was measured indirectly

using BMI and WHR because these correlate highly with

more objectively measured fat indexes [50, 51] and allow

much larger GWAS sample sizes than otherwise possible

(comparably strong GWAS were unavailable for waist cir-

cumference). UK Biobank data are included within GWAS

for both the exposure and outcome used for MR estimates

of adiposity for CRC risk. Sample overlap in a two-sample

MR setting is reported to contribute to weak instrument

bias and inflated type one error rates, resulting in MR esti-

mates that are biased towards confounding-prone observa-

tional estimates [71]. However, given that the proportion

of sample overlap is presently low (< 5%) and estimated F-

statistics are relatively high (each > 70 for adiposity traits),

we do not expect considerable bias here. As a post hoc

comparison, we obtained CRC summary GWAS statistics

with UK Biobank excluded and repeated MR analyses of

adiposity for CRC risk. Estimates were largely consistent

with or without the inclusion of UK Biobank data (Add-

itional file 1: Table S8, B). Our sex-specific MR investiga-

tions were confined to effects of adiposity on overall CRC

because sex-specific GWAS were unavailable for site-

specific CRC and metabolite outcomes. Sex-stratified

GWAS of such outcomes would enable these in the future.
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Conclusions
Our results based on sex-specific MR instruments and

expanded sample sizes suggest that higher BMI more

greatly raises CRC risk among men, whereas higher

WHR more greatly raises CRC risk among women. In

sex-combined mediation analyses, adiposity was associ-

ated with numerous metabolic alterations, but none of

these alterations explained the associations between adi-

posity and CRC. More detailed metabolomic measures

are likely needed to clarify the mechanistic pathways.
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