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Abstract

The Multiple Choice Polytope (MCP) is the prediction range of a
random utility model due to Block and Marschak (1960). Fishburn
(1998) offers a nice survey of the findings on random utility models
at the time. A complete characterization of the MCP is a remarkable
achievement of Falmagne (1978). Apart for a recognition of the facets
by Suck (2002), the geometric structure of the MCP was apparently
not much investigated. Recently, Chang, Narita and Saito (2022) refer
to the adjacency of vertices while Turansick (2022) uses a condition
which we show to be equivalent to the non-adjacency of two vertices.
We characterize the adjacency of vertices and the adjacency of facets.
To derive a more enlightening proof of Falmagne Theorem and of Suck
result, Fiorini (2004) assimilates the MCP with the flow polytope of
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some acyclic network. Our results on adjacencies also hold for the flow
polytope of any acyclic network. In particular, they apply not only to
the MCP, but also to three polytopes which Davis-Stober, Doignon,
Fiorini, Glineur and Regenwetter (2018) introduced as extended for-
mulations of the weak order polytope, interval order polytope and
semiorder polytope (the prediction ranges of other models, see for in-
stance Fishburn and Falmagne, 1989, and Marley and Regenwetter,
2017).

1 Introduction

Block & Marschak (1960) introduce “random utility models”, showing in
many cases their equivalence with “random ordering models”. In partic-
ular, the Multiple Choice Model (MCM) predicts stochastic choices from
latent probability distributions over strict rankings; all sets of alternatives
are choice sets, and the subject selects one alternative in the choice set1 (for
a precise definition, see Section 3).

A complete characterization of the MCM is a remarkable result due to
Falmagne (1978): the predictions of the MCM form the Multiple Choice
Polytope (MCP), for which Falmagne obtains an affine description—that is,
a system of affine inequalities whose solution set is the MCP.

In economics, since Marschak (1960) and Block & Marschak (1960), the
MCM has been used in many different contexts. In discrete choice analysis,
economists often use the MCM to describe unknown data generating process
of stochastic choice, for instance over transportation methods, schools, and
products (although in practice, they frequently make use of parametric mod-
els such as the mixed logit model, McFadden, 2001). The interest for the
MCM is exemplified by McFadden & Richter (1970); McFadden & Richter
(1990)2, Barberá & Pattanaik (1986)3 and Monderer (1992)4.

1Other random utility models restrict choice sets, for instance to two-element sets. In
economics, the term “random utility model” refers to models based on probability distri-
butions over strict rankings, that is irreflexive linear orderings. In psychology, relations of
another type often replace rankings (see for instance the references in Davis-Stober et al.,
2018).

2McFadden and Richter establish another characterization of the model (a more in-
volved one than Falmagne’s one).

3Barbera and Pattanaik obtain a proof similar to Falmagne’s one.
4Monderer derives another proof from a result of Weber, 1988 in game theory, namely
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In psychology, several papers refer to Falmagne Theorem, for instance
Regenwetter et al. (2002), Suck (2002b), Fiorini (2004), Suck (2016). Re-
cently, Kellen et al. (2021) use the MCM in signal detection theory.

In both psychology and economics, and also in operations research, an-
other setup in which the only choice sets are binary is the object of many
publications: see Fishburn (1992) for a classical survey, and Mart́ı & Reinelt
(2011) for a more recent overview. For example, Fishburn & Falmagne (1989)
provide necessary conditions for binary choice probabilities to be induced by
a probability distribution on rankings. They also show that no finite set of
simple necessary conditions is sufficient for inducement when the alterna-
tive set is finite but can be arbitrarily large. Today, finding a manageable
characterization of the binary choice polytope appears to be out of reach in
view of a related NP-hard problem (see for instance Charon & Hudry, 2010,
Problem 5 and Theorem 7).

For the MCP, Fiorini (2004) provides an alternative proof of Falmagne
Theorem, which is enlightening: he starts with a change of space coordinates
or, in another interpretation, he works on the image of MCP by a well-
chosen affine transformation. Next he shows that in the new viewpoint the
vertices of MCP are (the characteristic vectors of) all paths from the source
to the sink in a special network. Hence, the MCP is the flow polytope of the
network. A characterization of the MCP by a system of affine inequalities
then follows from the fundamental theorem on network flows (Gallai, 1958
and Ford & Fulkerson, 1962). In Economics, Chambers et al. (2021) apply
Fiorini’s technique to study a “correlated random utility model”.

However, not much is known about the geometric structure of the MCP
other than its facets (Suck, 2002a). We characterize the adjacency of ver-
tices and the adjacency of facets. As a matter of fact, our characterizations
hold for the flow polytope of any acyclic network (the MCP being a par-
ticular case). So they are also valid for the three flow polytopes built in
Davis-Stober et al. (2018) to get extended formulations of the weak order
polytope, interval order polytope and semiorder polytope5 (see Figure 1).
In Economics, Turansick (2022), in his Theorem 2 on the identifiability in
the MCM (see Fishburn, 1998, for previous results), introduces a condition

a characterization of random order values.
5We refer the reader to the last paper (and its references) for the terminology. Note

that the mastery of the adjacencies on the four extended formulations should be useful
in the design of optimization algorithms, particularly for the statistical tests evoked in
Davis-Stober et al. (2018).
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on two vertices of the MCP which we show to be equivalent to their non-
adjacency (see Subsection 8.1). To check whether the mixed logit model
can approximate the MCM, Chang et al. (2022) use the fact that a convex
combination between two adjacent vertices of the MCP is a prediction of
the MCM that is uniquely represented. Thus a characterization of vertex
adjacency can be useful.

Fishburn published papers on the linear ordering polytope, notably Fishburn & Falmagne
(1989) and Fishburn (1992), and also on the weak order polytope, Fiorini & Fishburn
(2004). He has also introduced the concept of an interval order (Fishburn,
1970) as an extension of the one of a semiorder (Luce, 1956). We dedicate
our contribution to the memory of Peter Fishburn, whose influence on the
fields addressed in this paper remains so strong.
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Figure 1: A scheme of the various polytopes mentioned in the paper. Here
PC

MC designates the Multiple Choice Polytope MCP on the alternative set C
(Section 3), and F(D) designates the flow polytope of the network D (see
Sections 8 and 9 for the four specific networks).

2 Basic Definitions and Results

2.1 Polytopes

A polytope P in R
d is the convex hull of some finite subset of Rd, say P =

conv(V ) with V ⊂ R
d, V finite. A face F of the polytope P is any subset

F of P equal to P, or for which there exists an (affine) hyperplane H which
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satisfies P ∩ H = F and is valid for P, that is, P ⊆ H+ with H+ a closed
side of H . If H+ = {p ∈ R

d α(p) ≥ (r)} for a linear form α on R
d and a

real number r, the inequality α(x) ≥ r defines the face F . A vertex of P is
a point p such that {p} is a face of P. An edge is a segment which forms a
face. A facet of P is a proper6, maximal face of P.

For our polytope P = conv(V ), all vertices belong to V (but points in
V are not necessarily vertices). Even more, the vertices form the single,
inclusion-minimal subset V such that P = conv(V ). Any face is the convex
hull of the vertices it contains. A simplex is a polytope whose vertices are
affinely independent points.

Each polytope P in R
d is the set of solutions of a (finite) system S of

affine equations and affine inequalities on R
d. Under the restriction that the

solution set is bounded, the converse does hold. The system S then forms an
affine description of the polytope. Suppose now that S is an affine description
with a minimum number of (in)equalities. If any inequality in S is satisfied
with equality on the whole polytope P, we replace the inequality sign with
an equality sign. Then the number of equalities in S equals the codimension
of P (that is, d − dim(P), where dim always means the affine dimension).
Moreover, there is in S one inequality per facet of P. When dimP < d, the
affine inequality for a given facet can be chosen among infinitely many ones.

For more details (especially proofs) on polytopes, see for instance Korte & Vygen
(2008), Schrijver (2003), Ziegler (1998).

2.2 Directed graphs

A directed graph G is a pair (N,A), where N is a finite set of nodes7 and A
is a set of arcs, each arc being a pair of distinct nodes (the definition excludes
loops as well as parallel arcs). For any arc a = (u, v), we call u the tail and
v the head of the arc a.

Let G = (N,A) be a directed graph. A walk in G is a finite sequence
(u1, v1), (u2, v2), . . . , (uk, vk) of arcs with k ≥ 1, vi−1 = ui for i = 2, 3, . . . ,
k. The latter walk starts at its initial node u1 and ends at its terminal node
vk, it is from u1 to vk. It passes through its internal nodes u2, u3, . . . , uk.
The walk is a path when its nodes are two by two distinct. A cycle in G has
a definition similar to the one of a path, except that u1 = vk is required.

6Recall that A is a proper subset of B when A ⊂ B (strict inclusion).
7We reserve the word “vertex” for polytopes. In only a few other occasions when

speaking of directed graphs, we depart from the exposition of Bang-Jensen & Gutin (2001).
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A directed graph is acyclic if it does not possess any cycle. In an acyclic
graph (N,A), any walk is a path because any acyclic graph has a so-called
topological sort, that is a linear ordering L of its nodes such that for any
arc (u, v) there holds u >L v. Although paths are by definition sequences
of arcs, we often treat them as sets of arcs (for instance when we say that
a path includes another one). In an acyclic graph, the set of arcs in a path
determines in a unique way the path (as a sequence of these arcs).

Any set B of arcs from A (for example, B is the set of arcs in a path)
has its characteristic vector χB in R

A: for any arc a in A, we set χB(a) = 1
if a ∈ B and χB(a) = 0 if a ∈ A \B. For a point x in R

A and B ⊆ A, define
the number

x(B) :=
∑

a∈B

x(a). (1)

For each node v, we denote the sets of arcs with either head or tail v by δ−(v)
and δ+(v), respectively:

δ−(v) := {a ∈ A ∃u ∈ N : a = (u, v)},

δ+(v) := {a ∈ A ∃w ∈ N : a = (v, w)},

and define the in-degree and out-degree of v by

d−(v) := |δ−(v)|,

d+(v) := |δ+(v)|.

2.3 Network Flows

A network D = (N,A, s, t) is8 an acyclic, directed graph (N,A) in which two
special nodes are designated as the source s and the sink t. An s–t path is
a path starting at s and ending at t.

There are reasons to consider only acyclic networks D, rather than more
general networks allowing for cycles. First, the results often take an interest-
ing, simpler form (also, we do not have the extensions to general networks of
all the results presented here). Second, in the applications we have in view,
the network happens to be acyclic (as in Sections 8 and 9).

8Here we follow Korte & Vygen (2008) and depart from Bang-Jensen & Gutin (2001).
Notice however that we set no cost, no capacity on the arcs and especially that we postulate
acyclicity of the graph.
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Consider a network D = (N,A, s, t) for the rest of the subsection. A flow
(of value 1) of D is a point9 x from R

A, associating a nonnegative number
x(a) to each arc a of the network, such that the outflow x(δ+(v)) equals the
inflow x(δ−(v)) at each node v distinct from the source s and the sink t, and
at the source s the outflow x(δ+(s)) equals 1 plus the inflow x(δ−(s)). All
flows of D form a polytope in R

A, because by their definition they are the
solutions of the following system of affine (in)equalities on R

A





x(δ+(v))− x(δ−(v)) = 0, ∀v ∈ N \ {s, t},
x(δ+(s))− x(δ−(s)) = 1,

x(a) > 0, ∀a ∈ A,
(2)

and they form a bounded set because for any flow x and any a in A there holds
0 ≤ x(a) ≤ 1 (the latter inequality follows for instance from Theorem 2.2
below, or directly by proving, for any topological sort L of the acyclic directed
graph (N,A) and any node w in N , that the sum of the x(u, v)’s with u >L

w ≥L v equals 0 or 1—which is easily done by recurrence along the nodes w
in L).

Definition 2.1. The (value 1-) flow polytope F(D) of a network D consists
of all flows of D, in other words of all points x in R

A that satisfy the system
in (2). The latter system10 is the canonical (affine) description of the flow
polytope F(D).

For any flow in F(D), the net inflow at t equals 1; in other words, the
flow polytope moreover satisfies

x(δ+(t))− x(δ−(t)) = −1. (3)

This is derived from Equations (2) together with

(
∑

v∈N

x(δ+(v))

)
−

(
∑

v∈N

x(δ−(v))

)
= 0. (4)

9In the literature, flows are often denoted by the letter Φ; we prefer to use the letter x
because we view flows as particular points in the space R

A. When writing the coordinate
of the point x w.r.t. an arc (u, v), we abbreviate x((u, v)) into x(u, v).

10In Section 6 we will removed repeated inequalities from the canonical description.
Note that the canonical description is an affine description, but not necessarily one of
minimum size (as shown by Example 2.4).
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The latter equation holds because for any a ∈ A, the term x(a) appears once
in each of the two summations.

There can be superfluous inequalities in the canonical description of
F(D). If for some node v we have δ−(v) = {(u, v)} and δ+(v) = {(v, w)},
the conservation law at v implies x(u, v) = x(v, w) for any x in F(D), and
so we may keep only one of the two inequalities x(u, v) ≥ 0 and x(v, w) ≥ 0.
Equation (36) displays a minimum affine description of the polytope F(D).

The next statement is the particular case for acyclic networks of the Flow
Decomposition Theorem due to Gallai (1958) and Ford & Fulkerson (1962)
(see also, for instance, Korte & Vygen, 2008, page 169).

Theorem 2.2. Consider a network D = (N,A, s, t). Any flow x of D equals
a convex combination of the characteristic vectors χP of the s–t paths P of
D.

Because the converse of Theorem 2.2 also holds (as easily seen), and the
χP are 0–1 points, we derive a geometric reformulation.

Theorem 2.3. For any network D = (N,A, s, t), the vertices of the flow
polytope F(D) are exactly the characteristic vectors χP of all the s–t paths
P of D.

s

t

u

v

w

v1

v2

(s, t) 1 0 0
(s, u) 0 1 1
(u, v) 0 0 1
(u, w) 0 1 0
(v, w) 0 0 1
(w, t) 0 1 1

any other arc 0 0 0

Figure 2: A network D together with the ten coordinates (in columns) of the
three vertices of the flow polytope F(D) (see Example 2.4).

Example 2.4. Figure 2 displays a network D. As D has three s–t paths,
the flow polytope F(D) has three vertices (the characteristic vectors of the
paths). The three columns contain the coordinates of the three vertices,
respectively for the s–t paths (s, t), next (s, u), (u, w), (w, t), and finally

8



(s, u), (u, v), (v, w), (w, t). The flow polytope F(D) is a convex triangle ly-
ing in a space of dimension 10. Its canonical description is formed of six
affine equalities and ten affine inequalities (so it is not a minimum-size affine
description).

Many manuals on combinatorial optimization quote Theorem 2.2, which
plays an important role in many applications. However, they do not say
much on the geometric structure of the flow polytope F(D) of a network D.
We collect in subsequent sections some related information.

Note that for each arc a in A, the inequality x(a) ≥ 0 defines a face of
the flow polytope F(D) (as explained in Subsection 2), whose vertices are
the (characteristic vectors of the) s–t paths avoiding a; the latter property
will be often used in the sequel. Proposition 6.6 characterizes the arcs for
which the face is a facet.

There are many variants of the flow polytope F(D): when each arc of the
network comes with a maximum capacity (see for instance Korte & Vygen,
2008); for flows not satisfying the conservation law (Borgwardt et al., 2018);
or under restrictions on the s–t paths, Stephan, 2009; etc.

In the introduction, we mentioned that the MCP can be seen as a flow
polytope. This result, due to Fiorini (2004), is explained in the next section.
In Section 9 we exhibit three other networks, whose flow polytopes play a
role for the random utility models based on respectively weak orders, interval
orders, and semiorders.

3 TheMultiple Choice Polytope and Falmagne

Theorem

Let LOC be the collection of all linear orderings of the alternative set C. Let
moreover Λ(LOC) be the collection of all probability distributions on LOC .
We also set

E := { (i, S) i ∈ S ∈ 2C }. (5)

For each distribution Pr in Λ(LOC), the Multiple Choice Model (MCM)
predicts11 the various multiple choice probabilities p(i, S) for (i, S) ∈ E as

p(i, S) :=
∑

{ Pr(L) L ∈ LOC and ∀j ∈ S \ {i} : i >L j }. (6)

11We use classical terminology related to probabilistic models, see for instance
Doignon et al. (2018).
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We see the p(i, S) as the coordinates of a point p in R
E . So the MCM is

captured by the surjective mapping

f : Λ(LOC) → R
E : Pr 7→ p. (7)

We extend f to the mapping

f̄ : R
LOC → R

E : t 7→ p (8)

by setting for (i, S) ∈ E

p(i, S) :=
∑

{ t(L) L ∈ LOC and ∀j ∈ S \ {i} : i >L j }. (9)

Then f is a linear mapping (each coordinate of f̄(t) is a sum of coordinates of
t). The set of points predicted by the MCM is equal to f(Λ(LOC)), and also
to f̄(Λ(LOC)). Because Λ(LOC) is a simplex and f̄ is a linear mapping, the
predicted points form a convex polytope, which we call the multiple choice
polytope (MCP) and denote as PC

MC . In summary

R
LOC

f̄
−→ R

E

∪ ∪

Λ(LOC)
f

−→ PC
MC

∈ ∈

Pr
f

7−→ p

(10)

Now for the probability distribution PrL concentrated on the linear order-
ing L of C, denote by pL = f(PrL) the predicted point in PC

MC . The various
PrL are the vertices of the simplex Λ(LOC). The image f(PrL) = f̄(PrL)
is a point in R

E , which we denote pL. For (i, S) ∈ E, we have pL(i, S) equal
to 1 when i >L j for all j ∈ S \ {i}, and 0 otherwise. The polytope PC

MC is
the convex hull of the images pL of the vertices PrL of the simplex Λ(LOC).
Because the images pL have coordinates 0 or 1, they are the vertices of PC

MC .
We reformulate the problem of characterizing the MCM as the problem of

finding an affine description for the convex polytope MCP. As we saw in the
introduction, Falmagne (1978) proves that the MCP is exactly the solution
set of the system of (his generalized) Block Marschak inequalities. Moreover,
Fiorini (2004) provides another proof of Falmagne Theorem by viewing the
MCP as a flow polytope. Let us explain this.

10



For i ∈ C and L ∈ LOC , the beginning set L−(i) and the ending set L(i)
are respectively

L−(i) := {j ∈ C j ≥L i} (11)

L(i) := {j ∈ C i ≥L j}. (12)

In the present paragraph, we consider a fixed distribution Pr on LOC, pre-
dicting the point p = f(Pr) in PC

MC . We moreover define for i ∈ T ∈ 2C

q(i, T ) :=
∑

{ Pr(L) L ∈ LOC and T = L(i) }. (13)

Because if i is ranked first in S in some linear order L there is only one
superset T of S with T = L(i), there holds

p(i, S) =
∑

T∈2C : T⊇S

q(i, T ). (14)

There follows from previous equation

q(i, T ) =
∑

S∈2C : S⊇T

(−1)|S\T | p(i, S), (15)

by an application of the Möbius inversion to the partially ordered set ({S ∈
C i ∈ S},⊆) (see for example van Lint & Wilson, 2001). By its definition
in Equation (13), q(i, T ) is nonnegative on PC

MC ; therefore for all pairs (i, T )
in E and p in PC

MC

∑

S∈2C : S⊇T

(−1)|S\T | p(i, S) ≥ 0. (16)

For |T | = 2, Block & Marschak (1960) prove that the last inequality holds
for the MCM, and Falmagne (1978) extends the result to all T ’s. Just above,
we followed Fiorini (2004) to derive the validity of (16) for PC

MC . Falmagne
Theorem states that the system on R

E formed by all these affine inequalities,
for (i, T ) ∈ E, together with the obvious equations for S in 2C

∑

i∈S

p(i, S) = 1 (17)

has PC
MC as solution set. Next comes a summary of Fiorini’s proof.

11



Consider the network DC
LO = (2C,≺,∅, C) where the nodes are the subsets

of C, the arcs are the covering pairs of the inclusion relation on 2C (that is,
all pairs (T \ {i}, T ) for i ∈ T ∈ 2C), the source is the empty set ∅, and the
sink is C. Denote by F(DC

LO) the flow polytope of the network DC
LO, which

lies in the space R
A for A =≺. Define now a mapping ρ by

ρ : R
E → R

A : p 7→ r, (18)

where for (T \ {i}, T ) in A we set

r(T \ {i}, T ) := q(i, T ) (19)

with q(i, T ) as in (15). Note that ρ is a linear mapping (each coordinate of
ρ(p) is a linear combination of coordinates of p). Moreover, ρ has an inverse
equal to the mapping

σ : R
A → R

E : r 7→ p, (20)

with p(i, S) given by a rewriting of (14):

p(i, S) =
∑

T∈2C : S⊆T

r(T \ {i}, T ). (21)

The mapping ρ induces a bijection from the vertices of the multiple choice
polytope PC

MC to the vertices of the flow polytope F(DC
LO): for any order L

with
i1 >L i2 >L . . . >L in (22)

ρ maps the vertex pL of PC
MC onto the vertex of F(DC

LO) which is the char-
acteristic vector of the s–t path

(∅, {i1}), ({i1}, {i1, i2}), . . . , ({i1, i2, . . . , in−1}, C) (23)

(so the beginning sets of L are the nodes on the ∅–C path, in the same
order). Consequently, the invertible linear mapping ρ from R

E to R
A (where

A =≺) transforms the multiple choice polytope PC
MC into the flow polytope

F(DC
LO). Falmagne Theorem now follows at once from Theorem 2.312 for the

particular network (2C,≺,∅, C).
Fiorini (2004) proof shows the interest of flow polytopes to solve formal

problems appearing in mathematical psychology. More flow polytopes play a

12Fiorini (2004) rather refers to the total unimodularity of a certain matrix.
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central role in Davis-Stober et al. (2018) (see our Section 9). Very recently,
flow polytopes make their apparition in theoretical economics papers: for
instance, Turansick (2022) uses them to analyze the identification of the
multiple choice model. Also, Chang et al. (2022) refers in a proof to the
adjacency of vertices on the multiple choice polytope.

In the next section we characterize the adjacency on any flow polytope,
thus covering the adjacency on the multiple choice polytope as a particular
case.

4 Adjacency of Vertices on a Flow Polytope

In this section and the next three ones, we consider the flow polytope F(D)
of a network D = (N,A, s, t). We may assume that D has at least one s–t
path, because otherwise F(D) is empty. A characterization of the adjacency
of vertices on a flow polytope is the object of Proposition 4.2 below. By
Theorem 2.3, the vertices of F(D) are the characteristic vectors χP of the
s–t paths P of D.

Lemma 4.1. Let χP1, χP2, . . . , χPk be vertices of the flow polytope F(D),
that is, the characteristic vectors of s–t paths P1, P2, . . . , Pk of the network
D. The vertices of the smallest face of F(D) containing χP1, χP2, . . . , χPk

are exactly the vertices χR for R an s–t path such that R ⊆ P1∪P2∪· · ·∪Pk.

Proof. Let U := P1 ∪ P2 ∪ · · · ∪ Pk, and F be the face of F(D) defined by
the inequality ∑

a∈A\U

x(a) ≥ 0. (24)

Any vertex of F(D) equals χP for some s–t path P ; this vertex χP belongs
to F if and only if a /∈ P for each a ∈ A \ U (so that the coordinate x(a)
takes value 0 at χP ), that is, if and only if P ⊆ U .

It remains to prove that the face F is the smallest face of F(D) containing
χP1, χP2 , . . . , χPk . Let G be any facet of F(D); thus G is defined by the
inequality x(b) ≥ 0 for some arc b of D. If G contains χP1, χP2, . . . , χPk then
b ∈ A \ U . Therefore F ⊆ G (because if (24) is satisfied with equality at
some point x of F(D), then x(b) = 0). Hence any facet containing χP1 , χP2 ,
. . . , χPk includes F . Thus F is the smallest face of F(D) containing χP1 ,
χP2, . . . , χPk .

13



Proposition 4.2. Let P and Q be two s-t paths of a networkD = (N,A, s, t).
The vertices χP and χQ of F(D) are adjacent if and only if

(∗) whenever P and Q pass through a common internal node v,
then P and Q coincide either before v or after v.

Proof. By Lemma 4.1, a vertex χR of F(D) (for some s–t path R) belongs
to the smallest face containing χP and χQ if and only if R ⊆ P ∪Q.

If P and Q do not satisfy (∗) for some common internal node v, we form
a walk R from s to t by following P from s to v, next Q from v to t. Because
of acyclicity, R must be an s–t path, and so the vertex χR belongs to the
smallest face containing χP and χQ. Because χR differs from both χP and
χQ, the two latter vertices are nonadjacent.

Conversely, assume that (∗) holds. We prove that the smallest face of
F(D) containing the vertices χP and χQ does not contain any further vertex.
Proceeding by contradiction, assume such a third vertex χR does exist. Then
R is an s–t path such that R ⊆ P ∪Q and R 6= P,Q.

Now let (u, u′) be the first arc of R which lies outside P or outside Q.
Assume (u, u′) /∈ Q, and thus (u, u′) ∈ P (otherwise, exchange the notations
P , Q). Because R 6= P , there must be a first arc (v, v′) in R after (u, u′)
such that (v, v′) /∈ P . So (v, v′) ∈ Q in view of R ⊆ P ∪Q. Then the node v
shows that Condition (∗) does not hold, a contradiction.

Remark 4.3. In the notation of the second paragraph of the proof above,
we can create a second s–t path S by following Q from s to v, next P from v
to t. We have then (χP +χQ)/2 = (χR+χS)/2 because the equality holds for
each coordinate x(a), where a ∈ A. Consequently, the flow polytope F(D) is
a combinatorial polytope in the sense of Naddef & Pulleyblank (1981): it is
a 0/1-polytope in which for any pair of nonadjacent vertices, there is another
pair of vertices having the same midpoint as the first pair.

As a matter of fact, the last assertion follows also from Matsui & Tamura
(1995). Any flow polytope F(D) is an equality constraint polytope, that
is, its set of vertices is the set of 0–1 points satisfying a given system of
affine equations (in our case, the equalities in the canonical description of
F(D)). It is thus also a polytope satisfying Properties A and B of Matsui
and Tamura. Consequently all the findings of Matsui and Tamura hold for
F(D), for instance those about linear optimization, or the fact that F(D) is
a combinatorial polytope. However, the results we present on flow polytopes
(in particular on the MCP) differ in that they refer to s–t paths and thus
require the networks from which the polytopes are built.
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w2

wd−1

ud

...

Figure 3: A network for Example 4.4, for each a natural number d with
d ≥ 1.

Example 4.4. For the network D in Figure 3, it is an exercise to check that
the flow polytpe F(D) is a d-dimensional 0/1-cube (the vertices of F(D)
are completely specified by the values, 0 or 1, of the coordinates x(u1, w1),
x(u2, w2), . . .x(ud−1, wd−1), and x(ud, t)). As announced in Remark 4.3, it is
indeed a combinatorial polytope. Moreover, the diameter of (the graph of )
the flow polytope equals d.

5 The Dimension of a Flow Polytope

Consider again the flow polytope F(D) of a network D = (N,A, s, t), assum-

ing that D has at least one s–t path. Let Ã denote the subset of A formed by
all arcs of D that belong to at least one s–t path, and let Ñ be the subset of
N formed by all nodes ofD that appear on at least one arc in Ã. The network
D̃ = (Ñ, Ã, s, t) is called the reduced network of D, or the reduction of D
(for an illustration, see Figure 4). For any node u of Ñ , denote with δ̃−(u),
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resp. δ̃+(u), the sets of arcs in Ã with head, resp. tail u. By Theorem 2.2,

the flow polytope F(D) satisfies x(a) = 0 for any arc in A\ Ã. Thus the flow

polytopes F(D̃) and F(D) are essentially the same polytope (they become

equal when we naturally assimilate the space R
Ã with the linear subspace

of the space R
A specified by x(a) = 0 for all a ∈ A \ Ã). A network D is

reduced if D = D̃.

s

t

u

v

w

v1

v2

s

t

u

v

w

Figure 4: On the left, a nonreduced network; on the right, its reduction.

Proposition 5.1. Suppose the network D = (N,A, s, t) has at least one s–t

path, and let D̃ = (Ñ, Ã, s, t) be its reduced network. Then the dimension of

the flow polytope F(D) equals |Ã| − |Ñ |+ 1.

Proof. As we saw in the paragraph before the statement we may assimilate
F(D) with F(D̃), a polytope lying in RÃ. By definition, F(D̃) is the solution

set of the system on RÃ






x(δ̃+(v))− x(δ̃−(v)) = 0, ∀v ∈ Ñ \ {s, t},

x(δ̃+(s))− x(δ̃−(s)) = 1,

x(a) > 0, ∀a ∈ Ã.

(25)

Hence F(D̃) lies in the subspace of RÃ defined by the |Ñ |−1 affine equations

in (25). We first show that the subspace has dimension at most |Ã|−(|Ñ |−1)

by establishing that the |Ñ | − 1 affine equations are independent. It suffices

to exhibit, for each of the equalities in (25), a point in R
Ã which satisfies all

equalities in (25) but the one considered. Let first v be a node in Ã \ {s, t}.

Take any path U in (Ñ , Ã, s, t) from s to v (such a path exists because v is
on some s–t path). The characteristic vector χU satisfies all inequalities in
(25) as well as all equalities but the one for v. Second, assume v = s. The

null vector in R
Ã does the job.
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From previous paragraph dimF(D̃) ≤ |Ã| − (|Ñ | − 1). To prove the

opposite inequality, we show the existence of 1 + |Ã| − (|Ñ | − 1) affinely

independent vertices in F (D̃) (Remark 5.2 below provides an alternate ar-

gument). Because the reduced network D̃ is acyclic, it admits a topological
sort L of its nodes, say

u1 >L u2 >L . . . >L um, (26)

with u >L v for any arc (u, v) in Ã and m = |Ñ | (necessarily u1 = s and

um = t in view of the definition of D̃). Now for each node u distinct from

u1, paint in green one arbitrarily chosen arc in Ã with head u. Thus |Ñ | − 1
arcs were just painted in green; paint in blue all the other arcs.

Form a first s–t path PG using only green arcs. This path is uniquely
determined: its last arc is the green arc (uk, um) with head um (for some
unique k), the arc before (uk, um) is the green arc with head uk, etc.

Next, for any of the |Ã| − (|Ñ | − 1) blue arcs, say (u, v), form an s–t
path by first following green arcs from s to u (there is only one suitable
sequence of green arcs), next follow the blue arc(u, v) and finally arcs (green
or blue) from v to t (such arcs do exist because v is on some s–t path). The

characteristic vectors of the resulting s–t paths, in number 1+ |Ã|−(|Ñ |−1),
are affinely independent, as we next show.

Build as follows a list M of the |Ã|−|Ñ |+2 s–t paths we just constructed:
M collects first, in any order, all the s–t paths formed for the blue arcs with
tail u1 (if any); next in any order the s–t paths formed for the blue arcs
with tail u2 (if any); . . . ; the s–t paths formed for the blue arcs with tail
um−1 if any; finally, the last item in the list M is the s–t path PG consisting
only of green arcs. Then the characteristic vector of any s–t path P in M
distinct from PG is affinely independent from the characteristic vectors of all
the s–t paths listed in M after P . Indeed, if P was formed for the blue arc
(u, v), then (u, v) belongs to P but not to any of the s–t paths listed after
P in M . Thus the characteristic vector χP satisfies x(u, v) 6= 0 while all the
characteristic vectors of the s–t paths after P in M satisfy x(u, v) = 0.

Remark 5.2. The proof of the second inequality can be replaced with a
call to Theorem 5.6 of Schrijver (2003). Because no inequality x(a) ≥ 0, for

a ∈ Ã, is satisfied with equality by F(D), the dimension of F (D̃) equals |Ã|

(the dimension of the space in which F (D̃) lies) minus the rank of the matrix
of coefficients of the variables in the affine equations in (25). From the first

half of the proof, we know that the rank equals |Ñ | − 1.
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6 The Facets of a Flow Polytope

We now aim at recognizing the facets of the flow polytope F(D) of a network
D = (N,A, s, t). In view of the canonical description of F(D) in (2), any

facet is for sure defined by an inequality x(a) ≥ 0 for some arc in Ã (remember

from Section 5 that for b ∈ A\ Ã, the flow polytope F(D) satisfies x(b) = 0).
Proposition 6.6 below characterizes the arcs a such that x(a) ≥ 0 defines
a facet of F(D), referring to the notions of ‘corridors’ and ‘good arcs’ (see
Example 6.2 and Figure 4 for an illustration).

For a node u in the network D = (N,A, s, t), set d̃−(u) = |δ̃−(u)| and

d̃+(u) = |δ̃+(u)|.

Definition 6.1. A corridor of the networkD is a path of the reduced network
D̃ = (Ñ, Ã, s, t)

(u1, u2), (u2, u3), . . . , (um−1, um) (27)

such that

d̃−(u2) = d̃+(u2) = d̃−(u3) = d̃+(u3) = · · · = d̃−(um−1) = d̃+(um−1) = 1
(28)

which is maximal (w.r.t. the inclusion of arc sets) for this property, that is

(
d̃−(u1) 6= 1 or d̃+(u1) 6= 1

)
and

(
d̃−(um) 6= 1 or d̃+(um) 6= 1

)
. (29)

The corridor in (27) is good when d̃+(u1) ≥ 2 and d̃−(um) ≥ 2. An arc is
good if it belongs to some good corridor. We call arcs or corridors bad if
they are not good.

Example 6.2. The network D on the left in Figure 4 is not reduced. Its
reduction D̃ is on the right. Both networks have three good corridors, namely

(s, t), (u, w), and (u, v), (v, w), (30)

and two bad corridors, namely

(s, u) and (w, t). (31)
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Definition 6.1 implies that no arc in A \ Ã belongs to any corridor, while

each arc a in Ã belongs to a unique corridor (sometime reduced to itself),
which we denote as cor(a). Said otherwise, the corridors of the network

D = (N,A, s, t) form a partition of Ã. Moreover, if an s–t path contains any
arc of some corridor, then it includes the whole corridor.

For the corridor in (27), the flow polytope satisfies

x(u1, u2) = x(u2, u3) = . . . = x(um−1, um) (32)

(because of the conservation law at nodes u2, u3, . . . , um−1). In the canonical
description of F(D), from all the inequalities x(ui−1, ui) ≥ 0 for i = 2, 3, . . . ,
m, we keep only one, namely x(u1, u2) ≥ 0.

Lemma 6.3. Let D = (N,A, s, t) be a network, and (u, v) be an arc in Ã
satisfying at least one of the two following conditions:

(i) d̃−(u) 6= 1 and d̃+(u) = 1;

(ii) d̃−(v) = 1 and d̃+(v) 6= 1.

Then the face F of the flow polytope F(D) defined by the inequality x(u, v) ≥
0 cannot be a facet of F(D).

Proof. We consider only Assumption (ii), the proof under Assumption (i)
being similar. A priori, there are three cases for v.

If v = t, then we have for each point x of F(D) (because the net inflow
at t equals 1, see Equation (3))

x(u, v) = 1 +
∑

{x(t, w) (t, w) ∈ δ+(t)}. (33)

Even if there is no term in the summation, the last equation implies that
x(u, v) = 0 is impossible, so F is the empty face. For the empty set to be a
facet of F(D), it must be that D has a single s–t path. This contradicts (ii).

The case v = s is impossible because of the acyclicity of D (remember

that (u, v) ∈ Ã means that (u, v) belongs to some s–t path).
Letting now v 6= s, t, we prove that F cannot be a facet. From the present

assumptions (u, v) ∈ Ã, v 6= t, and d̃+(v) 6= 1, we derive d̃+(v) ≥ 2. For any
flow x in F(D), the conservation law at v gives

x(u, v) =
∑

{x(v, w) (v, w) ∈ δ̃+(v)}. (34)
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Hence x(u, v) = 0 if and only if x(v, w) = 0 for all (v, w) ∈ δ̃+(v). Thus
the face defined by x(u, v) ≥ 0 is the intersection of the faces defined by

x(v, w) ≥ 0, for (v, w) ∈ δ̃+(v), each of the latter faces being proper because

δ+(v) ⊆ Ã. Moreover, at least two such faces must differ because any s–t path

P containing (u, v) contains exactly one arc (v, w) in δ̃+(v), hence the vertex

χP satisfies x(v, w) 6= 0 and also x(v, w′) = 0 for (v, w′) ∈ δ̃+(v) \ {(v, w)}.
We conclude that F cannot be a facet.

Lemma 6.4. Let D = (N,A, s, t) be a network. For the two arcs a and b of

Ã, assume that both inequalities x(a) ≥ 0 and x(b) ≥ 0 on R
A define facets

Fa and Fb of F(D) respectively. Then Fa = Fb if and only if a and b belong
to the same corridor.

Proof. If cor(a) = cor(b), then x(a) = x(b) for any flow x in F(D) and so
Fa = Fb.

To prove the converse, assume Fa = Fb. Because an empty polytope has
no facet, D must have at least one s–t path. If D has a single s–t path, a
and b belong for sure to the unique corridor of D. Assume from now on that
D has at least two s–t paths. There exists some s–t path P containing the
arc a (because the facet Fa must exclude some vertex of F(D)). Because Fa

and Fb avoid exactly the same vertices, P must also contain b; say that a
comes before b in P (otherwise relabel a and b). Now cor(a) and cor(b) are
subsets of P . If they differ, we derive a contradiction as follows. The last
node v on cor(a) must then come along P before cor(b) (here v can be the

head of a and/or the tail of b). We have d̃−(v) ≥ 2 or d̃+(v) ≥ 2.

If d̃−(v) ≥ 2, there exists some arc (u, v) in δ̃−(v) not in cor(a). The arc
(u, v) is in some s–t path Q. Following Q from s to v, and next P from v to t,
we get an s–t path R (in view of the acyclicity of D). As R excludes the arc
a but contains the arc b, the vertex χR is in Fa but not in Fb, a contradiction.

If d̃−(v) < 2, then d̃−(v) = 1 and d̃+(v) ≥ 2. Let u be this time the node
preceding v on P . Then x(u, v) ≥ 0 also defines the facet Fa (because the
arcs (u, v) and a belong to the same corridor). By Lemma 6.3(ii), Fa cannot
be a facet, a contradiction.

Remark 6.5. In the proof of sufficiency in Lemma 6.4 (from right to left)
we do not need the assumption that Fa and Fb are facets, faces is enough. To
the contrary, the necessity part (left to right) of Lemma 6.4 does not remain
true if we replace ‘facet’ by ‘face’ in the statement. This is shown by the
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arcs (s, u) and (w, t) in the network D displayed in Figure 4. Here the flow
polytope F(D) has three vertices. Its three facets are respectively defined by
the inequalities x(s, t) ≥ 0, x(u, w) ≥ 0, x(u, v) ≥ 0 (or x(v, w) ≥ 0). Both
inequalities x(s, u) ≥ 0 and x(w, t) ≥ 0 define the same 0-dimensional face;
however, they are in distinct corridors.

Proposition 6.6. Given an arc a in the network D = (N,A, s, t), the in-
equality x(a) ≥ 0 defines a facet of the flow polytope F(D) if and only if the

arc a belongs to Ã and moreover either the network D has a single s–t path,
or the arc a is good.

Proof. When a belongs to some s–t path, we assume that the successive arcs
in cor(a) (the corridor containing a) are

(u1, u2), (u2, u3), . . . , (um−1, um). (35)

For all arcs b in cor(a) the polytope F(D) satisfies x(a) = x(b) (as in (32)).
Therefore, in the canonical description of F(D), we keep only one of the
inequalities x(b) ≥ 0 for b ∈ cor(a), namely x(a) ≥ 0.

To prove sufficiency, first note that if D has a single s–t path, then F(D)
has only one point and moreover x(a) ≥ 0 defines the empty facet, which
is here a facet of F(D). Now suppose that the arc a is good, which in

the notation of (35) means d̃+(u1) ≥ 2 and d̃−(um) ≥ 2. To show that
the inequality x(a) ≥ 0 defines a facet, it suffices to exhibit some point y
of RA that satisfies all the affine equations and inequalities of the canonical
description of F(D) except for the inequality x(a) ≥ 0. Take some arc (u, um)

in δ̃−(um)\{(um−1, um)}. Thus there exists some s–t path containing (u, um),
and so also a path M starting at s with last arc (u, um). Now take some arc

(u1, v) in δ̃+(u1) \ {(u1, u2)}. There exists some s–t path containing (u1, v),
and so a path P with first arc (u1, v) and ending at t. Set C := cor(a). The
point y = χM + χP − χC in R

A has the desired property (even if M and P
pass through some common nodes and/or share some arcs).

To prove necessity, assume that the inequality x(a) ≥ 0 defines a facet.
First note that a must belong to some s–t path otherwise the facet defined
by x(a) ≥ 0 would contain all vertices of F(D). Hence a ∈ Ã. Assume
further that the arc a is bad. Then for its corridor cor(a) written as in (35),

there holds d̃+(u1) = 1 or d̃−(um) = 1. In the first case, we must also have

d̃−(u1) 6= 1 (by (29)), and so a contradiction follows from Lemma 6.3(i).
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In the second case, we have d̃+(um) 6= 1, and a contradiction follows from
Lemma 6.3(ii).

Corollary 6.7. The number of facets of the flow polytope F(D) of a network
D equals the number of good corridors of D.

Proof. This follows at once from Proposition 6.6 and Lemma 6.4.

From Proposition 5.1 and the proof of Proposition 6.6 we derive a mini-
mum-size affine description of F(D). Let B be a subset of A which is a
transversal of the collection of corridors, that is, B contains exactly one arc
from each corridor. The system





x(a) = 0, ∀a ∈ A \ Ã,

x(δ̃+(v))− x(δ̃−(v)) = 0, ∀v ∈ Ñ \ {s, t},

x(δ̃+(s))− x(δ̃−(s)) = 1,
x(b) > 0, ∀b ∈ B

(36)

is an affine description of F(D) having minimum size.

7 The Adjacency of Facets of a Flow Poly-

tope

By definition, two facets of a polytope are adjacent if their intersection is
a face of dimension equal to the dimension of the polytope minus 2. See
Figure 5 for an illustration of the next characterization of (non-)adjacency
of facets of a flow polytope.

Proposition 7.1. For two good arcs a and b in a network D = (N,A, s, t),
let Fa and Fb be the facets of the flow polytope F(D) respectively defined by
x(a) ≥ 0 and x(b) ≥ 0. The facets Fa and Fb are not adjacent if and only if
at least one of the two following conditions holds:

(i) the corridors cor(a) and cor(b) have the same initial node, say v,

with d̃+(v) = 2, and

(1) either d̃−(v) ≥ 2,

(2) or δ̃−(v) = {(u, v)} and the initial node of cor(u, v) has
in-degree at least 2;

22



v

cor(a) cor(b)

u u′

v

cor(a) cor(b)

cor(u, v)

u

cor(a) cor(b)

v v′

u

cor(a) cor(b)

cor(u, v)

Figure 5: An illustration of Proposition 7.1: on top, Condition (i) with the

half-circle indicating d̃+(v) = 2; on bottom, Condition (ii) with the half-circle

indicating d̃−(u) = 2.

(ii) the corridors cor(a) and cor(b) have the same terminal node, say

u, with d̃−(u) = 2, and

(1) either d̃+(u) ≥ 2,

(2) or δ̃+(u) = {(u, v)} and the final node of cor(u, v) has
out-degree at least 2.

Proof. (Necessity). For any polytope, two of its facets F and G are not
adjacent if and only if there exists some facet K such that F ∩G ⊆ K with
K distinct from F and G.

In view of Proposition 6.6, nonadjacency of the given facets Fa and Fb of
F(D) implies the existence of some good arc c for which the facet Fc defined
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by the inequality x(c) ≥ 0 includes Fa ∩ Fb and is distinct from Fa and Fb

(note that Fa 6= Fb implies that the network has more than one s–t path).
Then by Lemma 6.4 cor(c) 6= cor(a), cor(c) 6= cor(b). All vertices of the face
Fa∩Fb are vertices of Fc, equivalently all s–t paths containing c also contain
a or b.

Take some s–t path P containing c (there exists such a P because Fc 6=
F(D)). Say that P contains a (if P does not contain a, exchange the notation
a and b), then P includes cor(a). In P , the arc a comes either after the arc
c or before c. Treating only the second case, we will derive (ii) (in a similar
way, the first case leads to (i)).

Let u be the final node of cor(a), and v be the final node of cor(b). We
first prove u = v. Because a is good, there exists some arc (u′, u) in Ã outside
cor(a), thus also outside P . Take an s–t path Q containing the arc (u′, u).
Following Q from s to u, next P from u to t we get an s–t path R containing
c which avoids a and passes through u. Then R must contain b, thus R
includes cor(b). Now if u 6= v, we derive a contradiction in each of the two
remaining possible positions of v in R with respect to cor(c):

(i) v comes in R after the last node of cor(c). Then the initial node v1 of
cor(b) comes on R at or after the last node of cor(c). Because the arc b

is good, there is some arc (v1, w) in δ̃+(v1) outside cor(b). Following R
from s to v1, next (v1, w), finally some path from w to t, we obtain an
s–t path containing c but neither a nor b, a contradiction.

(ii) v comes in R before or at the initial node of cor(c). Because the arc b is
good, there is an arc (v′, v) outside cor(b), thus an s–t path containing
(v′, v). Following this last path from s to v, next R from v to t, we get
an s–t path S containing c but not b. If S happens to avoid a, we have
a contradiction. If S contains a, then a must be before b on S and we
can then similarly build an s–t path S containing c but neither b nor
a, the same contradiction.

We have thus proved u = v. In view of cor(a) 6= cor(b), there holds

d̃−(u) ≥ 2. If d̃−(u) > 2 were true, there would exist some arc (w, u) outside
cor(a)∪ cor(b). Following some s–t path from s to w, next (w, u) and finally
the part after u of the path R (as above), we form an s–t path containing c

but neither b nor a, contradiction. Thus d̃−(u) = 2.
Next assuming (1) were not true, we prove (2) still referring to the arc c

and the s–t path R met in previous paragraph. Note |δ̃+(u)| ≥ 1 because of
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the arc c. Now if δ̃+(u) = {(u, v)}, then cor(u, v) is on the s–t path R and
entirely before the arc c (we cannot have cor(u, v) = cor(c) because c is a

good arc and the assumption δ̃+(u) = {(u, v)}). Let w be the final node of
cor(u, v). If w had out-degree less than 2, then w would have in-degree as

least 2 (by the definition of cor(u, v)). Any arc (w′, w) in Ã \ cor(u, v) is on
some s–t path. Following the latter from s to w, then R to t, we get an s–t
path containing c but avoiding both a and b: contradiction.

(Sufficiency). For any polytope, two of its facets F and G are not adjacent
if and only if there exists some proper face K such that F ∩ G ⊆ K and
moreover K 6⊆ F and K 6⊆ G (indeed, any facet including K is a facet which
includes F ∩G and differs from F and G ).

Assuming (ii) (assuming (i) leads to similar arguments), either (1) or (2)
holds:

(1) If d̃+(u) ≥ 2, let (u, v) and (u, v′) be arcs in δ̃+(u). For the face K

defined by x(u, v) ≥ 0, we have Fa ∩ Fb ⊆ K (because in view of d̃−(u) = 2,
any s–t path containing (u, v) contains a or b). Moreover K 6⊆ Fa (an s–t
path including cor(a) and containing (u, v′) gives a vertex in K but not in
Fa), and similarly K 6⊆ Fb. Thus the facets Fa and Fb are not adjacent.

(2) If δ̃+(u) = {(u, v)}, let w be the final node of cor(u, v). By assumption,

d̃+(w) ≥ 2, so let (w, z), (w, z′) be two arcs in Ã. Letting K be the face
defined by x(w, z) ≥ 0, we conclude as in previous paragraph that the facets
Fa and Fb are not adjacent.

Remark 7.2. For many networks D, the facets of the flow polytope F(D)
are two by two adjacent: it suffices that the network has no node of in- or
out-degree equal to 2.

8 Consequences for the Multiple Choice Poly-

tope

We saw in Section 3 that the multiple choice polytope PC
MC is affinely iso-

morphic to the flow polytope F(DC
LO) of the network DC

LO = (2C,≺,∅, C); we
keep this notation here, with n := |C|. By Proposition 5.1, the dimension of
both F(DC

LO) and PC
MC equals 2n−1 (n−2)+1. Proposition 4 of Chang et al.

(2022) also implies this result.
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The vertices of the multiple choice polytope PC
MC are the points pL, where

L is a linear ordering of the set C of alternatives. The linear mapping (as in
(18))

ρ : R
E → R

A : p 7→ r, with r(T \ {i}, T ) := q(i, T ) (37)

maps the vertex pL of PC
MC onto the vertex χP of F(DC

LO), where if L is given
by

i1 >L i2 >L . . . >L in (38)

then P is the ∅–C path

(∅, {i1}), ({i1}, {i1, i2}), . . . , ({i1, i2, . . . , in−1}, C). (39)

To determine when two vertices of PC
MC are adjacent, we rather look at their

images by ρ in F(DC
LO).

Proposition 4.2 states when two vertices of any flow polytope are adjacent.
Its particularization to F(DC

LO) translates as follows to the MCP:

Proposition 8.1. For any two linear orderings L1 and L2 of C, the vertices
pL1 and pL2 of PC

MC are adjacent if and only if

whenever a nontrivial13 subset S of C is a beginning set of both
L1 and L2, then L1 and L2 coincide in S or in C \ S.

For |C| = 2, 3, the graph of the flow polytope F(DC
LO) has diameter 1 (the

polytope is a segment, a 5-dimensional simplex respectively).

Corollary 8.2. For |C| ≥ 4, the diameter of the graph of the flow polytope
F(DC

LO) equals 2.

Proof. Again, we work on the flow polytope F(DC
LO). Given two ∅–C paths

P and Q, we show the existence of a ∅–C path R such that the vertex χR is
adjacent to both vertices χP and χQ. If (∅, {i1}) and (∅, {j1}) are the two
first arcs on respectively P and Q, we consider two cases. If i1 = j1, we let R
be any ∅–C path with last arc (C \ {i1}, C). If i1 6= j1 we let R be any ∅–C
path with two last arcs (C \ {i1, j1}, C \ {i1}) and (C \ {i1}, C). Then no node
on R, distinct of both ∅ and C, is on P or Q (because the only node on R
that contains i1 is C, and if i1 6= j1, the only two nodes on R that contain
j1 are C \ {i1} and C). By Proposition 8.1 χR is adjacent to both χP and
χQ.

13Recall that A is a nontrivial subset of B when ∅ 6= A ⊂ B.
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We now turn to the adjacency of facets of the MCP, and again reason on
the flow polytope F(DC

LO). By Proposition 6.6, a facet of the latter polytope
is defined by an inequality x(a) ≥ 0 where a is a good arc in the network DC

LO

(as soon as |C| ≥ 3 all corridors consist of a single arc, hence distinct good
arcs define distinct facets). For the network DC

LO, the arc a = (T \ {i}, T ) is
good if and only if 2 ≤ |T | ≤ |C| − 1. We deduce that an inequality as in
(16), that is for (i, T ) ∈ E (or i ∈ T ∈ 2C)

∑

S∈2C : S⊇T

(−1)|S\T | p(i, S) ≥ 0, (40)

defines a facet of PC
MC if and only if 2 ≤ |T | ≤ |C|−1 (Suck, 1995, unpublished,

and Fiorini, 2004). We derive from Proposition 7.1:

Proposition 8.3. Assume |C| ≥ 4. Consider the two facets of PC
MC defined

by inequalities as in (40), for the two distinct pairs (i, T ) and (i′, T ′) in E
with 2 ≤ |T |, |T ′| ≤ |C|−1. The two facets are adjacent if and only if neither
of the two following cases occurs:

(i) T = C \ {i′} and T ′ = C \ {i};

(ii) T = T ′ = {i, i′}.

For n := |C| ≥ 4, it readily follows that the adjacency graph on the
collection of facets of PC

MC is the complete graph on 2n (2n−2 − 1) nodes
minus n (n−1) two by two disjoint links; thus the graph has diameter 2. For
n ≤ 3, the graph is complete.

8.1 Identifiability in the MCM

It is well known that the MCM is not identifiable (see Falmagne, 1978;
Fishburn, 1998 collects several results and references). In terms of (7), it
means the existence of at least one predicted point p in PC

MC for which there
exists more than one point Pr in Λ(LOC) such that f(Pr) = p; in this sit-
uation, we say that the point p is non-identifying, and the points Pr are
non-identified14. Proposition 1 in McClellon (2015) states that all points in
the relative interior of PC

MC are non-identifying. Theorem 2 in Turansick
(2022) characterizes as follows the non-identified points in Λ(LOC), in terms
of beginning sets of linear orderings (beginning sets were defined in (11)).

14As in Doignon et al. (2018), the term “non-identifiable” is currently used in both cases,
but we prefer to reserve it to qualify the model.
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Proposition 8.4 (Turansick, 2022). In the MCM, the distribution Pr on
LOC is identified if and only if there is no pair of linear orderings L, L′ of C
such that

(1) Pr(L) > 0 and Pr(L′) > 0;

(2) there exist alternatives i, j, k with

(a) i >L k, j >L k, i >L′ k, and j >L′ k;

(b) i 6= j;

(c) L−(k) 6= L′−(k);

(d) L−(i) = L′−(j).

Here is a geometric interpretation of Condition (2) from Proposition 8.4.
Recall that PrL designates the distribution on LOC that is concentrated on
the linear ordering L; in other terms, PrL is a vertex of the simplex Λ(LOC).
Moreover, the vertices of the polytope PC

MC are the images by f of the vertices
of Λ(LOC); we set pL = f(PrL).

Proposition 8.5. The three following conditions on two linear orderings L
and L′ of C are equivalent:

(A) L and L′ satisfy Conditions (2) in Proposition 8.4;

(B) there exists a nontrivial subset U of C such that

(α) U is a beginning set of both L and L′, and

(β) L and L′ do not coincide on U nor on C \ U ;

(C) the vertices pL and pL
′

of PC
MC are not adjacent.

Proof. (A) ⇒ (B) Letting U = L−(i), we prove that U satisfies (α) and (β).
Necessarily i ∈ U , and because L−(i) = L′−(j), also j ∈ U . Moreover, i
and j being distinct and also the smallest elements in U for respectively the
orderings L and L′, the two orderings do not coincide on U . Next, because
by (a) we have k /∈ U , (c) implies that L and L′ do not coincide on C \ U .

(B) ⇐ (A) Among all the nontrivial subsets U of C satisfying (α) and (β),
take the minimum one w.r.t. set inclusion. Then U = L−(i) = L′−(j) for
some i, j in C; moreover by the minimality requirement, i 6= j. Because L
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and L′ do not coincide on C \ U , there must be some alternative k in C \ U
which is ranked differently by L and L′. The alternatives i, j and k “do the
job”.

The equivalence of (B) and (C) is the object of Proposition 8.1.

Thus Turansick’s result (here Proposition 8.4) states in a hidden way that
the point Pr in LOC is identified if and only if for any two linear orderings
L and M of C

Pr(L) > 0 ∧ Pr(M) > 0 =⇒

the vertices pL and pM of PC
MC are adjacent.

In a future project, we intend to search for a more efficient characterization
of adjacency.

9 Consequences for some other particular Flow

Polytopes

The multiple choice polytope appears in Davis-Stober et al. (2018) as an
‘extended formulation’ for the ‘linear order polytope’ (we refer the reader
to this paper for the definitions of technical terms used only in the present
section). Three more flow polytopes appear there, also as extended formula-
tions, these times for the ‘weak order polytope’, the ‘interval order polytope’
and the ‘semiorder polytope’. We provide characterization of the adjacencies
of vertices and of facets for the three flow polytopes.

9.1 An extended formulation for the weak order poly-

tope

Consider the network DC
WO = (2C,⊂,∅, C), where the arcs are pairs (S, T )

of subsets of C with S ⊂ T . The ∅–C path P equal to (where S0 = ∅ and
Sk = C)

(S0, S1), (S1, S2), . . . , (Sk−1, Sk) (41)

derives from exactly one weak order on C (a weak order is a binary relation
which is transitive and complete), namely the weak order W whose equiva-
lence classes are

S1 \ S0 ≻W S2 \ S1 ≻W · · · ≻W Sk \ Sk−1. (42)
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A beginning set of a weak order V on C is any subset S of C such that i ∈ S
and i ≥V j implies j ∈ S (this extends the definition given in (11) for linear
orders). The weak order W characterized in (42) is the weak order whose
beginning sets are

S0, S1, S2, · · · , Sk. (43)

We say that the vertex χP of the flow polytope F(DC
WO) corresponding to

the ∅–C path P also corresponds to the weak order W .

∅

C

{1} {2}

Figure 6: The network in Example 9.1.

Example 9.1. For C = {1, 2}, the network DC
WO = (2C,⊂,∅, C) is displayed

in Figure 6. The flow polytope F(DC
WO) is a triangle.

Note that for |C| ≥ 3, all corridors of the network (2C,⊂,∅, C) have size 1.

Proposition 9.2. Assume |C| ≥ 3. The two vertices of the flow polytope
F(DC

WO) corresponding to the two weak orderings W1 and W2 of C are adja-
cent if and only if when a nontrivial subset S of C is a beginning set of both
W1 and W2, then W1 and W2 coincide in S or in C \ S.

Corollary 9.3. When |C| ≥ 3, the diameter of the flow polytope F(DC
WO)

equals 2.

Proof. The weak order C×C (with C as its single equivalence class) produces
a vertex of F(DC

WO) which is adjacent to all other vertices.

Proposition 9.4. Assume |C| ≥ 3. An inequality x(a) ≥ 0, for a = (S, T )
with S ⊂ T ⊆ C, defines a facet of the flow polytope F(DC

WO) if and only if
∅ 6= S and T 6= C. Any two facets of F(DC

WO) are adjacent.

More terminology is needed to describe the next two flow polytopes. To
keep the length of this paper (hopefully) acceptable, we state our results
without repeating all definitions from Davis-Stober et al. (2018).
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9.2 An extended formulation for the interval order

polytope

For any set C of n alternatives, the network DC
IO = (N,A, s, t) is defined as

follows (see Figure 7 for |C| = 2):

N := {(X, Y ) Y ⊆ X ⊆ C},

A :=




((X, Y ), (Z, T )) ∈ N ×N
X ⊆ Z, Y ⊆ T, and
either |Z| = |X|+ 1, |T | = |Y |

or |Z| = |X|, |T | = |Y |+ 1




 ,

s := (∅,∅),

t := (C, C).

The flow polytope F(DC
IO) is an extended formulation of the interval order

polytope (the vertices of the last polytope are the characteristic vectors of
the interval orders on C), see Davis-Stober et al. (2018). The numbers of
nodes and arcs in the network DC

IO are respectively, for n := |C|,

|N | = 3n and |A| = 2n 3n−1 (44)

(several (∅,∅)–(C, C) paths encode the same interval order).

({1, 2}, {1, 2})

({1, 2}, {1}) ({1, 2}, {2})

({1}, {1}) ({2}, {2})

({1},∅) ({2},∅)

(∅,∅)

Figure 7: The network DC
IO used in the investigation of interval orders, for

|C| = 2. The label of the central node is ({1, 2},∅).

When |C| ≥ 3, all corridors of the network DC
IO have size 1. For the adja-

cency of vertices, we cannot tell more than the characterization in Proposi-
tion 4.2 (note that the vertices of F(DC

IO) do not have a simple interpretation
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while the vertices of F(DC
LO) and F(DC

WO) exactly correspond to linear or-
ders and weak orders on C respectively; see Davis-Stober et al., 2018, for
more details on F(DC

IO)). For the facets we have:

Proposition 9.5. Let a be any arc in DC
IO, with |C| ≥ 3. The inequality

x(a) ≥ 0 defines a facet Fa of the flow polytope F(DC
IO) if and only if the

arc a is good, equivalently a is not of any of the four forms, for some i ∈ C,

( (∅,∅), ({i},∅) ), ( ({i},∅), ({i}, {i}) ),

( (C \ {i}, C \ {i} ), ( C, C \ {i} )), ( (C, C \ {i}), (C, C) ).

If the two arcs a and b of DC
IO are good, then the two facets Fa and Fb are

not adjacent if and only if {a, b} is, for some distinct alternatives i and j,
one of the six pairs of arcs shown in Figure 8.

(C, C \ {i}) (C, C \ {j})

(C, C \ {i, j})

(C, C \ {i, j}) (C \ {i}, C \ {i})

(C \ {i}, C \ {i, j})

(C \ {i}, C \ {i, j}) (C \ {j}, C \ {i, j})

(C \ {i, j}, C \ {i, j})

({i, j},∅)

({i},∅) ({j},∅)

({i, j}, {j})

({j}, {j}) ({i, j},∅)

({i, j}, {i, j})

({i, j}, {i}) ({i, j}, {j})

Figure 8: The six types of pairs of arcs producing pairs of nonadjacent facets
of F(DC

IO).

Proof. By Proposition 6.6 and because the network DC
IO has more than one

∅–C path, x(v) ≥ 0 defines a facet if and only if the arc v is good. When
|C| ≥ 3, any corridor is formed by a single arc. Note that a node (X, Y )
has in-degree |X| and out-degree |C \ Y |. Hence the in-degree of any node
v in DC

IO is at least 2 except when v equals (∅,∅), ({i},∅), or ({i}, {i})
for some alternative i (here again we need |C| ≥ 3, as testified by Figure 7).
Similarly, the out-degree of any node w in DC

IO is at least 2 except when w
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equals (C \{j}, C \{j}), (C, C \{j}) or (C, C) for some alternative j. It follows
that the only bad arcs are those mentioned in the statement.

Now suppose that the two arcs a and b are good. Referring to Proposi-
tion 7.1, we see that the facets Fa and Fb are not adjacent exactly if either
a and b have the same initial node, say u, with d+(u) = 2, or a and b have
the same terminal node, say v, with d−(v) = 2 (here the cases (2) in Propo-
sition 7.1 cannot occur in view of |C| ≥ 3). When |C| ≥ 3, the latter happens
exactly for any of the six types of arcs displayed in Figure 8.

9.3 An extended formulation for the semiorder poly-

tope

Davis-Stober et al. (2018) introduce still another network DC
SO = (N,A,

s, t) with n := |C|, whose flow polytope makes an extended formulation
of the ‘semiorder polytope’. The definition of DC

SO goes as follows, where
L + i means that we append alternative i at the end of the linear ordering
L of some subset of C excluding i. Moreover L− j denotes the removal of j
from the ground set of the linear order L. As a convention, the only linear
ordering of the empty set is L = ∅.

N = {(X, Y, L) C ⊇ X ⊇ Y, L linear ordering of X \ Y };

A = {
(
(X, Y, L), (Z, T,M)

)
∈ N2

either for some i ∈ C \X :





Z = X ∪ {i},
T = Y,
M = L+ i,

or for the alternative j in X \ Y which is the first one in L :



Z = X,
T = Y ∪ {j},
M = L− j;

s = (∅,∅,∅);

t = (C, C,∅).

Each (∅,∅,∅)–(C, C,∅) path is a sequence of 2n arcs (here, again, n :=
|C|). See Figure 9 for DC

SO when n = 2.
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({1, 2}, {1, 2},∅)

({1, 2}, {1}, L) ({1, 2}, {2}, L)

({1}, {1},∅) ({2}, {2},∅)

({1},∅, L) ({2},∅, L)

(∅,∅,∅)

Figure 9: The network DC
SO used in the investigation of semiorders, for |C| =

2. When |X \ Y | ≤ 1, the linear ordering of X \ Y is obvious; we simply
write ∅ or L for it. The labels of the central nodes are ({1, 2},∅, 1 <L 2)
and ({1, 2},∅, 2 <L 1) respectively.

Lemma 9.6. For any node (X, Y, L) in the network DC
SO,

d̃+(X, Y, L) =

{
n− |X| if X = Y,

n− |X|+ 1 if X ⊃ Y ;
(45)

d̃−(X, Y, L) =

{
|Y | if X = Y,

|Y |+ 1 if X ⊃ Y.
(46)

Proof. The first two equations derive from the definition of arcs with tail
(X, Y, L). To derive the last two equations, rewrite the definition as follows.
For two nodes (Z, T,M) and (X, Y, L), the pair

(
(Z, T,M), (X, Y, L)

)
is an

arc if and only if

for i ∈ X \ Y which is the last for L :






Z = X \ {i},
T = Y,
M = L− i,

(47)

or

for some j in Y :





Z = X,
T = Y \ {j},
M = j + L.

(48)
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Here again, as for the interval order case, there is no more about adjacency
of vertices that we can say beside Proposition 4.2. We thus turn to the
adjacency of facets.

Proposition 9.7. Assume |C| ≥ 3. All corridors of DC
SO consist of either

one arc or two arcs. The corridors of size 2 have central nodes of the form
(C,∅, L), for some linear ordering L of C; both of their arcs are good. An
arc of DC

SO is good if and only if it is not of any of the following types:

((X,∅, L), (X ∪ {i},∅, L+ i)) where X ⊂ C, i ∈ C \X ; (α)

((C \ {i}, C \ {i},∅), (C, C \ {i}, L)) where i ∈ C; (β)

(X,∅, L), (X, {j}, L− j) where j ∈ X ⊆ C (γ)

((C, Y, L), (C, Y ∪ {j}, L− j) where Y ⊂ C, j ∈ C \ Y. (δ)

Proof. By Lemma 9.6, the only nodes of DC
SO having both in- and out-degree

1 are the (C,∅, L)’s with L any linear ordering of C. So the corridors are of
size 1 or 2, and the corridors of size 2 have (C,∅, L) as their middle nodes.
Note moreover that each arc in a corridor of size 2 is good because both the
terminal node (C, {j}, L − j) of the corridor (with j the first element in L)
has in-degree at least 2 and the initial node (C \ {i},∅, L− i) of the corridor
(with i the last element in L) has out-degree at least 2.

According to the definition of DC
SO, there are two types of arcs, which we

now review for badness:

⊲ If the arc ((X, Y, L), (X ∪ {i}, Y, L + i)) is bad (where i ∈ C \ X), then
d−((X ∪ {i}, Y, L+ i)) = 1 or d+((X, Y, L)) = 1. By Lemma 9.6, in the first
case, (X ∪ {i} = Y and |Y | = 1) or (Y = ∅ and X ∪ {i} ⊃ Y ). The first
eventuality being impossible because by assumption X ⊇ Y , we get (α). In
the second case, again by Lemma 9.6 and with n := |C|, we have (X = Y
and |X| = n− 1) or (X = C ⊃ Y ). The second eventuality being impossible
(because we need i in C \X), we get (β).

⊲ If the arc (X, Y, L), (X, Y ∪{j}, L− j) is bad (where j ∈ X \Y is the first
element in the linear ordering L of X \ Y ), then d−((X, Y ∪ {j}, L− j)) = 1
or d+((X, Y, L)) = 1. By Lemma 9.6, in the first case, (X = Y ∪ {j} and
|Y ∪{j}| = 1) or (X ⊃ Y ∪{j} and Y = ∅), so we get (γ). In the second case,
(X = Y and |X| = n − 1) or (X ⊃ Y and |X| = n). The first eventuality
being impossible (in view of j ∈ X \ Y ), we get (δ).
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Proposition 9.8. Assume n := |C| ≥ 3. Take the two facets of F(DC
SO)

defined by the inequalities x(a) ≥ 0 and x(b) ≥ 0, where a and b are two good
arcs. The two facets are not adjacent if and only if the corridors cor(a) and
cor(b)

(i) have the same tail of the form either (X,X,∅) with |X| = n−2 ≥ 2,
or (X, Y, L) with |X| = n− 1 and X 6= Y ,

(ii) or they have the same head of the form either (X,X,∅) with |X| = 2
and n ≥ 4, or (X, Y, L) with |Y | = 1 and X 6= Y .

Proof. Refer to Proposition 7.1 and Proposition 9.7.
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