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ADJACENCY PRESERVING MAPPINGS
OF INVARIANT SUBSPACES OF A NULL SYSTEM

WEN-LING HUANG

(Communicated by Christopher Croke)

Abstract. In the space Ir of invariant r-dimensional subspaces of a null sys-
tem in (2r + 1)-dimensional projective space, W.L. Chow characterized the
basic group of transformations as all the bijections ϕ : Ir → Ir, for which both
ϕ and ϕ−1 preserve adjacency. In the present paper we show that the two
conditions ϕ : Ir → Ir is a surjection and ϕ preserves adjacency are sufficient
to characterize the basic group. At the end of this paper we give an application
to Lie geometry.

1. Introduction

Let n, r be positive integers, 3 ≤ n = 2r+1. Let Π be an arbitrary n-dimensional
Pappian projective space. A null system δ on Π is a polarity on Π which satisfies
x ∈ xδ for every point x of Π. The space of the r-dimensional subspaces of Π which
are invariant under a fixed null system δ will be denoted by Ir := {a ∈ [r] | aδ = a},
where [k], −1 ≤ k ≤ n, is the set of all k-dimensional subspaces of Π.

The basic group of transformations in the space Ir (also called the group of
semi-symplectic transformations) consists of the transformations induced by all the
collineations f of Π which satisfy δf = fδ. Two invariant r-dimensional subspaces
a, b are at distance d, if their intersection is (r−d)-dimensional. If d = 1, then they
are called adjacent.

W.L. Chow [4] has shown that any bijection ϕ : Ir → Ir for which both ϕ
and ϕ−1 preserve adjacency is induced by a collineation of Π. Observably, any
collineation ϕ of Π with δϕ = ϕδ preserves adjacency in both directions. From a
different point of view, L.K. Hua [5], [6] proved the fundamental theorem in the
geometry of symmetric matrices under further hypotheses. For a brief history of
the development of this problem see Wan [9], [10]. We may consider the theorem of
Chow as a Beckman-Quarles type theorem [8] on distance preserving mappings of
the space Ir . Thus Chow’s theorem may be seen as an early result in the discipline
characterizations of geometrical mappings under mild hypotheses [3].

In the present paper we characterize the basic group under mild hypotheses:

Theorem. Let r, n ∈ N, 3 ≤ n = 2r + 1. Let Ir be the space of all invariant
r-dimensional subspaces of a null system δ in an n-dimensional Pappian projective
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space Π. Let ϕ : Ir → Ir be a surjection satisfying

if a, b are adjacent, then aϕ, bϕ are adjacent(1.1)

for all a, b ∈ Ir. Then ϕ is a transformation of the basic group of Ir.

2. Preliminaries

In this paper, by dimension, intersection, and subspace we understand projective
dimension, intersection, and subspace.

Let n, r be integers, 3 ≤ n = 2r+1. Let Π be an arbitrary n-dimensional Pappian
projective space, and let δ be a null system on Π. For any subspaces a, b of Π, we
have the following well-known properties: dim a+ dim aδ = 2r, (a + b)δ = aδ ∩ bδ,
(a ∩ b)δ = aδ + bδ, and a ⊂ b implies bδ ⊂ aδ. For −1 ≤ k ≤ n let [k] be the set of
all k-dimensional subspaces of Π. For each a ∈ [k], we call a := aδ ∈ [2r − k] the
conjugate of a. An element a ∈ [k] is called invariant, if a ⊂ a or a ⊂ a. Let

Ik := {a ∈ [k] | a is invariant }.
Two elements a, b ∈ Ir are called adjacent if their intersection has dimension r−1.

Let a, b ∈ Ir. The distance between a and b is defined to be d(a, b) := r−dim(a∩b).
If a 6= b, then d = d(a, b) is the smallest positive integer with the property that
there exists a sequence of d + 1 invariant and consecutively adjacent subspaces
a1 = a, a2, . . . , ad+1 = b ∈ Ir (see [4]). From this property we obtain the triangle
inequality d(a, c) ≤ d(a, b) + d(b, c) for all a, b, c ∈ Ir. Let P ∈ Ir−1, a ∈ Ir. We
define the distance between P and a by

d(P, a) := min{d(a, b) | b ∈ P ∗} = r − dim(P ∩ a)− 1

where P ∗ := {l ∈ Ir | P ⊂ l}.
A subset M of Ir is called a maximal set of adjacent elements in Ir if any two

distinct elements of M are adjacent and if there are no other elements of Ir which
are adjacent to each element of M .

Lemma 2.1. A set M ⊂ Ir is maximal iff there is a P ∈ Ir−1 with M = P ∗.

Proof. Assume there exists a “triangle” a, b, c ∈ Ir, such that a, b, resp. b, c, resp.
c, a, are adjacent and P := a ∩ b 6= b ∩ c =: Q. Then H := a + b = b + c =
c + a ∈ [r + 1]. Since P ⊂ a, we have a = aδ ⊂ P δ ∈ Ir+1 and H = a + b = P δ.
Similarly, H = b + c = Qδ, i.e. P δ = Qδ in contradiction to that δ is a one-to-one
correspondence.

Let ϕ : Ir → Ir be a mapping which satisfies (1.1). Then (P ∗)ϕ is contained in
a unique maximal set Q∗. We define

Pϕ := Q if (P ∗)ϕ ⊂ Q∗.(2.1)

Furthermore, following the definition of distance, for any a, b ∈ Ir we have

d(a, b) ≥ d(aϕ, bϕ).(2.2)

Lemma 2.2. For any invariant subspaces x ∈ Is, y ∈ It, t, s ≤ r, the subspace
x+ (x ∩ y) is invariant and has dimension ≤ r. In the case r = t, x+ (x ∩ y) has
dimension r.

Lemma 2.3. For any a ∈ Ir there exists b ∈ Ir with a∩ b = ∅, i.e. d(a, b) = r+ 1.

For a proof of Lemma 2.2 and Lemma 2.3 see [4].
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Lemma 2.4. For any a, b ∈ Ir, a 6= b, there exists c ∈ Ir with d(a, c) = r + 1 and
d(b, c) < r + 1.

Proof. Let l ∈ Ir with a ∩ l = ∅. If b ∩ l 6= ∅, then take c := l. Suppose l satisfies
l ∩ b = ∅. Let k := dim(a ∩ b) < r. Let s be an (r − k − 1)-dimensional subspace
of b with s + (a ∩ b) = b. Following Lemma 2.2, c := s + (s ∩ l) is an invariant
element with dimension r. It is clear that b ∩ c = s and a ∩ b ∩ c = ∅. Suppose
d(a, c) 6= r + 1. There is an x ∈ a ∩ c. Hence x ∈ c ⊂ s, and s ⊂ x. On the other
hand, x ∈ a ⊂ x implies a ∩ b ⊂ x, b = (a ∩ b) + s ⊂ x and x ∈ b, a contradiction
to a ∩ b ∩ c = ∅.

Lemma 2.5. Let P ∈ Ir−1, a ∈ Ir. Then d(P, a) = k iff there is a uniquely
determined b ∈ P ∗ with d(a, b) = k and d(a, l) = k + 1 for any l ∈ P ∗ \ {b}.

Proof. “⇒”: Let b := P + (a ∩ P ) ∈ Ir. Then a ∩ b = a ∩ P = a+ P , hence
dim(a ∩ b) = 2r − dim(a + P ) = r − k and d(a, b) = k. For any l ∈ P ∗ \ {b}
we have k ≤ d(a, l) ≤ d(a, b) + d(b, l) = k + 1. Let l ∈ P ∗ with d(a, l) = k, i.e.
dim(a∩ l) = r−k. Since a∩ l ⊂ a∩P and dim(a∩ l) = dim(a∩P ), a∩P = a∩ l ⊂ l.
Hence l = P+(a∩P ) = b. “⇐” follows straightforwardly from the definition.

Lemma 2.6. Let a, b ∈ Ir with d(a, b) = k. Then

min{d(P, a) | P ⊂ b, P ∈ Ir−1} = k − 1.

Furthermore, for all P ⊂ b, P ∈ Ir−1 we have d(P, a) = k − 1 iff a ∩ b ⊂ P .

Proof. From Lemma 2.5, for all P ⊂ b, P ∈ Ir−1,

k = d(a, b) ∈ {d(P, a), d(P, a) + 1} = {r − 1− dim(P ∩ a), r − dim(P ∩ a)}.
Thus a ∩ b ⊂ P is equivalent to dim(P ∩ a) = dim(a ∩ b) = r − k and to d(P, a) =
k − 1.

Lemma 2.7. For any a ∈ Ir and any projective point x ∈ a, there exists b ∈ Ir
with d(a, b) = r and a ∩ b = {x}.

Proof. Let l ∈ Ir , l ∩ a = ∅. Define b := x+ (x ∩ l) ∈ Ir.

Lemma 2.8. Let P ∈ Ir−1, a ∈ Ir. Then for any mapping ϕ : Ir → Ir satisfying
(1.1) we have d(P, a) ≥ d(Pϕ, aϕ) where Pϕ is defined in (2.1).

Proof. Let b ∈ P ∗ with d(a, b) = d(P, a). Then bϕ ∈ (Pϕ)∗ and

d(P, a) = d(a, b) ≥ d(aϕ, bϕ) ≥ d(Pϕ, aϕ).(2.3)

3. Proof of the theorem

1. If there are a, b ∈ Ir with d(a, b) = r + 1 and d(aϕ, bϕ) = r, then for any
P ∈ Ir−1, P ⊂ a we have aϕ ∩ bϕ ⊂ Pϕ.

Proof. For any P ∈ Ir−1, P ⊂ a we have Pϕ ⊂ aϕ. Let c ∈ P ∗\{a} with d(b, c) = r.
Then d(bϕ, cϕ) ≤ r and cϕ ∈ (Pϕ)∗. Since a, c are adjacent, also aϕ, cϕ are adjacent,
and we have cϕ 6= aϕ. From Lemma 2.5, d(Pϕ, bϕ) = r − 1 and aϕ ∩ bϕ ⊂ Pϕ.

2. For any a, b ∈ Ir, d(aϕ, bϕ) = r implies d(a, b) = r.
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Proof. Suppose not; then d(a, b) = r+ 1. Choose c1, . . . , cr ∈ Ir with d(cϕi , a
ϕ) = r

and such that the set {aϕ ∩ cϕi | i = 1, . . . , r} ∪ {aϕ ∩ bϕ} is a projective basis of
aϕ. Then r ≤ d(ci, a) ≤ r + 1 for all i = 1, . . . , r. Choose Q ⊂ a, Q ∈ Ir−1 with
Q∩ci = a∩ci for all i = 1, . . . , r. In the case d(a, ci) = r+1, from 1., aϕ∩cϕi ⊂ Qϕ.
In the other case d(a, ci) = r we have d(Qϕ, cϕi ) ≤ d(Q, ci) = r−1, so aϕ∩cϕi ⊂ Qϕ
for all i = 1, . . . , r. Furthermore, aϕ ∩ bϕ ⊂ Qϕ. This is a contradiction to that
{aϕ ∩ cϕi | i = 1, . . . , r} ∪ {aϕ ∩ bϕ} is a basis of aϕ.

3. For any a ∈ Ir , Q ∈ Ir−1, Q ⊂ aϕ, there exists P ∈ Ir−1, P ⊂ a with Pϕ = Q.

Proof. Choose c1, . . . , cr ∈ Ir with d(aϕ, cϕi ) = r such that {aϕ ∩ cϕi | i = 1, . . . , r}
is a basis of Q. Then for any P ∈ Ir−1 with P ⊂ a, a∩ci ⊂ P implies aϕ∩cϕi ⊂ Pϕ
and Pϕ = Q.

4. For any a, b ∈ Ir with d(a, b) = r + 1, we have d(aϕ, bϕ) = r + 1.

Proof. We prove 4. by induction. From 2., d(aϕ, bϕ) 6= r. Let d(aϕ, bϕ) 6= r+ 1− k
for some k ∈ {1, . . . , r}. Assume that d(aϕ, bϕ) = r − k. Let Q ⊂ aϕ with
d(Q, bϕ) = r−k. Let P ⊂ a with Pϕ = Q. Choose l ∈ P ∗ \ {a} with d(l, b) = r+ 1.
Then, by Lemma 2.5, lϕ ∈ Q∗ \ {aϕ} implies d(lϕ, bϕ) = r+ 1− k, a contradiction.
Hence d(aϕ, bϕ) 6= r − k.

5. ϕ is injective.

Proof. For any a 6= b ∈ Ir , from Lemma 2.4 there exists c ∈ Ir with d(a, c) = r + 1
and d(b, c) < r+ 1. Since d(aϕ, cϕ) = r+ 1 and d(bϕ, cϕ) ≤ d(b, c) < r+ 1, we have
aϕ 6= bϕ.

6. a, b ∈ Ir are adjacent if aϕ, bϕ are adjacent.

Proof. Choose c ∈ Ir with d(aϕ, cϕ) = r+1 and d(bϕ, cϕ) = r. Denote Q := aϕ∩bϕ.
Let P ⊂ a, P ∈ Ir−1 with Pϕ = Q. Let l ∈ P ∗ with d(l, c) = r; then l 6= a. Since
lϕ ∈ Q∗, r = d(Q, cϕ) ≤ d(lϕ, cϕ) ≤ d(l, c) = r. Following Lemma 2.5, we have
lϕ = bϕ. ϕ is injective, hence l = b. So a and b are adjacent.

7. ϕ is a transformation of the basic group of Ir .

Proof. From 5. and 6., ϕ is a bijection of Ir, and ϕ and ϕ−1 preserve adjacency of
pairs of elements of Ir. Chow’s theorem completes the proof of the theorem.

4. Application to lie geometry

Let Q denote the Lie quadric

x1x2 + x3x4 + x2
5 = 0

in the four-dimensional projective space Π4(K) over a commutative field K, chK 6=
2. We call two elements X = K(x1, . . . , x5), Y = K(y1, . . . , y5) of Q conjugate if

X ∼ Y :⇔ x1y2 + x2y1 + x3y4 + x4y3 + 2x5y5 = 0.

The Lie transformations of (Q,∼) are defined as bijections α of Q satisfying X ∼ Y
iff Xα ∼ Y α. Every Lie transformation is induced by a collineation of Π4(K) (see
e.g. [2]).

On the three-dimensional projective space Π3(K) we define a null system δ by

P δ = {Q | p1q3 − p3q1 + p2q4 − p4q2 = 0}
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where P = K(p1, . . . , p4), Q = K(q1, . . . , q4). There is a one-to-one correspondence
γ between the space of invariant lines I1 and the Lie quadric Q which satisfies

a, b are adjacent ⇔ aγ , bγ are distinct and conjugate

for all a, b ∈ I1. This transformation γ is defined as follows. For every line a
of Π3(K) consider the Plücker coordinates K(a12, a13, a14, a34, a42, a23) of a where
aij = piqj − pjqi for any two distinct points P,Q ∈ a, P = K(p1, . . . , p4), Q =
K(q1, . . . , q4). Then a13 = a42 if, and only if, a = aδ, i.e. a ∈ I1. Define γ : I1 →
Q by a 7→ K(a12, a34, a14, a23, a13). γ is a bijection. Furthermore, any distinct
a, b ∈ I1 with Plücker coordinates K(a12, a34, a14, a23, a13), K(b12, b34, b14, b23, b13)
are adjacent if, and only if,

a12b34 + a34b12 + a13b42 + a42b13 + a14b23 + a23b14 = 0
⇔ a12b34 + a34b12 + a14b23 + a23b14 + 2a13b13 = 0
⇔ aγ , bγ are conjugate.

In the case (r, n) = (1, 3), the theorem implies the following corollary.

Corollary 4.1. Let ψ : Q → Q be a surjective mapping which takes pairs of
distinct conjugate points of Q to pairs of distinct conjugate points. Then ψ is a Lie
transformation.
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