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ADJACENCY PRESERVING MAPPINGS
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ABSTRACT. In the space I, of invariant r-dimensional subspaces of a null sys-
tem in (2r + 1)-dimensional projective space, W.L. Chow characterized the
basic group of transformations as all the bijections ¢ : I, — I, for which both
¢ and ¢! preserve adjacency. In the present paper we show that the two
conditions ¢ : I, — I, is a surjection and ¢ preserves adjacency are sufficient
to characterize the basic group. At the end of this paper we give an application
to Lie geometry.

1. INTRODUCTION

Let n, r be positive integers, 3 < n = 2r+1. Let II be an arbitrary n-dimensional
Pappian projective space. A null system § on II is a polarity on II which satisfies
x € 2% for every point z of II. The space of the r-dimensional subspaces of IT which
are invariant under a fixed null system ¢ will be denoted by I, := {a € [r] | a® = a},
where [k], —1 < k < n, is the set of all k-dimensional subspaces of II.

The basic group of transformations in the space I, (also called the group of
semi-symplectic transformations) consists of the transformations induced by all the
collineations f of II which satisfy 6 f = fé. Two invariant r-dimensional subspaces
a,b are at distance d, if their intersection is (r — d)-dimensional. If d = 1, then they
are called adjacent.

W.L. Chow [4] has shown that any bijection ¢ : I, — I, for which both ¢
and ¢! preserve adjacency is induced by a collineation of II. Observably, any
collineation ¢ of II with d¢ = pd preserves adjacency in both directions. From a
different point of view, L.K. Hua [5], [6] proved the fundamental theorem in the
geometry of symmetric matrices under further hypotheses. For a brief history of
the development of this problem see Wan [J], [10]. We may consider the theorem of
Chow as a Beckman-Quarles type theorem [8] on distance preserving mappings of
the space I,.. Thus Chow’s theorem may be seen as an early result in the discipline
characterizations of geometrical mappings under mild hypotheses [3].

In the present paper we characterize the basic group under mild hypotheses:

Theorem. Let r,n € N, 3 < n = 2r+ 1. Let I, be the space of all invariant
r-dimensional subspaces of a null system § in an n-dimensional Pappian projective
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space I1. Let ¢ : I, — I, be a surjection satisfying
(1.1) if a,b are adjacent, then a¥, b¥ are adjacent

for all a,b € I,.. Then ¢ is a transformation of the basic group of I..

2. PRELIMINARIES

In this paper, by dimension, intersection, and subspace we understand projective
dimension, intersection, and subspace.

Let n,r be integers, 3 < n = 2r+1. Let Il be an arbitrary n-dimensional Pappian
projective space, and let § be a null system on II. For any subspaces a,b of II, we
have the following well-known properties: dima + dima’ = 2r, (a +b)° = a’ N7,
(anb)® =a®+b°, and a C b implies b° C a’. For —1 < k < n let [k] be the set of
all k-dimensional subspaces of II. For each a € [k], we call @ := a® € [2r — k] the
conjugate of a. An element a € [k] is called invariant, if a C@ or @ C a. Let

I, :={a € [k] | a is invariant }.

Two elements a, b € I,. are called adjacent if their intersection has dimension r—1.
Let a,b € I,.. The distance between a and b is defined to be d(a,b) := r—dim(anNb).
If a # b, then d = d(a,b) is the smallest positive integer with the property that
there exists a sequence of d + 1 invariant and consecutively adjacent subspaces
ay = a,az2,...,a4+1 = b € I, (see [4]). From this property we obtain the triangle
inequality d(a,c) < d(a,b) 4+ d(b,c) for all a,b,c € I,. Let P € I,_1, a € I,. We
define the distance between P and a by

d(P,a) == min{d(a,b) |be P*} =r —dim(PnNa)—1
where P*:={l eI, | P Cl}.
A subset M of I, is called a maximal set of adjacent elements in I, if any two

distinct elements of M are adjacent and if there are no other elements of I, which
are adjacent to each element of M.

Lemma 2.1. A set M C I, is mazximal iff there is a P € I, with M = P*.

Proof. Assume there exists a “triangle” a,b,c € I,., such that a,b, resp. b, ¢, resp.
c,a, are adjacent and P :=anNb #* bNc=:Q. Then H :=a+b=>b+c =
c+a € [r+1]. Since P C a, we have a = a® C P’ € I,y and H = a +b = P°.
Similarly, H = b+ ¢ = Q°, i.e. P’ = Q? in contradiction to that § is a one-to-one
correspondence. O

Let ¢ : I, — I, be a mapping which satisfies (ILT]). Then (P*)? is contained in
a unique maximal set Q*. We define

(2.1) PY:=Q if (P)? C Q.
Furthermore, following the definition of distance, for any a,b € I,. we have
(2.2) d(a,b) > d(a?®,b?).

Lemma 2.2. For any invariant subspaces x € Is, y € Iy, t,s < r, the subspace
x + (T Ny) is invariant and has dimension < r. In the case r =1t, x + (T Ny) has
dimension r.

Lemma 2.3. For any a € I, there exists b € I, withanb =10, i.e. d(a,b) =7+ 1.

For a proof of Lemma and Lemma see [4].
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Lemma 2.4. For any a,b € I, a # b, there exists ¢ € I, with d(a,c) =r+ 1 and
d(b,c) <r+1.

Proof. Let l € I, with anl = 0. If bN1 # 0, then take ¢ := . Suppose [ satisfies
INb=0. Let k := dim(aNb) <r. Let s be an (r — k — 1)-dimensional subspace
of b with s + (a Nbd) = b. Following Lemma [2:2] ¢ := s+ (5N 1) is an invariant
element with dimension 7. It is clear that bNe¢ = s and aNbNc¢ = (. Suppose
d(a,c) #r+1. Thereis an x € anNc. Hence z € ¢ C 3, and s C T. On the other
hand, x € a C T implies aNb C T, b= (aNb)+ s C T and = € b, a contradiction
toanbne=0. O

Lemma 2.5. Let P € I,_1, a € I.. Then d(P,a) = k iff there is a uniquely
determined b € P* with d(a,b) =k and d(a,l) =k + 1 for any l € P*\ {b}.

Proof. “=": Let b:= P+ (anNP) € I,. Then anb=anNP = a+ P, hence
dim(a Nb) = 2r —dim(a + P) = r — k and d(a,b) = k. For any | € P*\ {b}
we have k < d(a,l) < d(a,b) +d(b,l) = k+ 1. Let I € P* with d(a,l) = k, i.e.
dim(anl) = r—k. Since aNl C aNP and dim(aNl) = dim(aNP), aNP = anl C .
Hencel = P+(anP) =b. “<” follows straightforwardly from the definition. O

Lemma 2.6. Let a,b € I, with d(a,b) = k. Then
min{d(P,a) | P Cb, P €I, } =k—1.
Furthermore, for all P C b, P € I,_1 we have d(P,a) =k — 1 iffanb C P.
Proof. From Lemma B2, for all P C b, P € I,_1,
k =d(a,b) € {d(P,a),d(P,a) +1} ={r — 1 —dim(PNa),r —dim(P Na)}.

Thus aNb C P is equivalent to dim(P Na) = dim(aNbd) =r — k and to d(P,a) =
k—1. O

Lemma 2.7. For any a € I, and any projective point x € a, there exists b € I,
with d(a,b) =r and aNb = {x}.

Proof. Let l € I, INa=0. Define b:=x+ (xNI) € . O

Lemma 2.8. Let P € I,_1, a € I.. Then for any mapping ¢ : I, — I, satisfying
(CT) we have d(P,a) > d(P¥,a?) where P? is defined in ([2.1).

Proof. Let b € P* with d(a,b) = d(P,a). Then b¥ € (P¥?)* and
(2.3) d(P,a) = d(a,b) > d(a?,b¥) > d(P?,a¥).

3. PROOF OF THE THEOREM

1. If there are a,b € I, with d(a,b) = r + 1 and d(a¥,b¥) = r, then for any
Pel._1, PCawehave a® Nb*¥ C P¥.

Proof. For any P € I,_1, P C a we have P¥ C a%. Let ¢ € P*\{a} with d(b,c) = r.
Then d(b%,¢?) < rand ¢®? € (P¥)*. Since q, ¢ are adjacent, also a?, ¢¥ are adjacent,
and we have ¢¥ # a?. From Lemma[2.5] d(P?,b%) =r —1 and a® Nb? C P?. O

2. For any a,b € I, d(a®,b¥) = r implies d(a,b) = 7.
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Proof. Suppose not; then d(a,b) = r+ 1. Choose c1,... ,¢, € I, with d(c],a®) =r
and such that the set {a® N¢ |i=1,...,r} U{a? Nb¥} is a projective basis of
a?. Then r < d(¢;,a) <r+1foralli=1,...,r. Choose Q C a, Q € I,_; with
QNec; =ang; foralli=1,...,r. Inthe case d(a, ¢;) = r+1, from[l, a?Ncf C Q.
In the other case d(a, ¢;) = r we have d(Q¥,cf) < d(Q,c;) =r—1,s0 a?Ncf C Q¥
for all i = 1,...,r. Furthermore, a¥ Nbd¥ C Q¥. This is a contradiction to that
{a?nef |i=1,...,r}U{a¥ Nb¥} is a basis of a®.

3. Foranya eI, Q € I._1, Q C a¥, there exists P € I,._1, P C a with P¥ = Q.

Proof. Choose ¢, ... ¢ € I, with d(a®,¢f) = r such that {a? N¢f |i=1,...,r}
is a basis of Q). Then for any P € I,_; with P C a, aN¢; C P implies a? N¢f C P?
and P¥ = Q.

4. For any a,b € I, with d(a,b) = r + 1, we have d(a®,b?) =r + 1.

Proof. We prove @l by induction. From [, d(a®,b¥) # r. Let d(a¥,b%) #r+1—k
for some k € {1,...,r}. Assume that d(a®,b¥) = r — k. Let Q C a¥ with
d(Q,b¥) =r—k. Let P C a with P¥ = Q. Choose !l € P*\ {a} with d({,b) =r+1.
Then, by Lemmal[2ZH I¥ € Q* \ {a¥} implies d(I¥,b¥) = r 4+ 1 — k, a contradiction.
Hence d(a?,b%) #r — k.

5. ¢ is injective.

Proof. For any a # b € I, from Lemmal[2.4] there exists ¢ € I, with d(a,c) =r+1
and d(b,c) < r+ 1. Since d(a¥,c?) =r+1 and d(b¥,¢?) < d(b,¢) < r+ 1, we have
a¥ # b”.

6. a,b € I, are adjacent if a®, b¥ are adjacent.

Proof. Choose ¢ € I, with d(a¥,¢?) = r+1 and d(b¥, ¢?) = r. Denote @Q := a¥Nb%.
Let P C a, P € I,_; with P? = Q. Let | € P* with d(l,¢) = r; then [ # a. Since
1 € Q% r =dQ,c?) <d(l?,¢?) < d(l,¢) = r. Following Lemma [2.5, we have
1Y = b®. p is injective, hence [ = b. So a and b are adjacent.

7. ¢ is a transformation of the basic group of I,.

Proof. From[Bl and B., ¢ is a bijection of I,., and ¢ and ¢! preserve adjacency of
pairs of elements of I,.. Chow’s theorem completes the proof of the theorem. O
4. APPLICATION TO LIE GEOMETRY

Let Q denote the Lie quadric
T1To + T3xg + :cg =0

in the four-dimensional projective space I1*(K) over a commutative field K, ch K #
2. We call two elements X = K(z1,...,25), Y = K(y1,...,ys) of Q conjugate if

X~Y & z21y2 + xoy1 + x3ys + 24y3 + 2x5y5 = 0.

The Lie transformations of (Q, ~) are defined as bijections « of Q satisfying X ~Y
iff X® ~ Y. Every Lie transformation is induced by a collineation of IT*(K) (see

e.g. [2]).
On the three-dimensional projective space IT13(K) we define a null system § by

P° ={Q | p1gs — p3q1 + p2qs — pags = 0}
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where P = K(p1,... ,p4), @ = K(q1,...,q4). There is a one-to-one correspondence
~ between the space of invariant lines I; and the Lie quadric Q which satisfies

a,b are adjacent < a”,b7 are distinct and conjugate

for all a,b € I;. This transformation 7 is defined as follows. For every line a
of IT3(K) consider the Pliicker coordinates K (a12, 13, @14, a34, a2, azs) of a where
a;j = pig; — p;¢; for any two distinct points P,Q € a, P = K(p1,... ,p4), Q@ =
K(q1,...,q4). Then aj3 = a4e if, and only if, a = a’, i.e. a € I;. Define v : I} —
Q by a — K(ai2,as4,a14,0a23,a13). 7 is a bijection. Furthermore, any distinct
a, be Il with Pliicker coordinates K(alg, as4, 14, a23, a13), K(blg, b34, b14, b23, bm)
are adjacent if, and only if,

a12b34 + azabi2 + a13ba2 + a42b13 + a14b23 + az3b1y = 0
& a12bzg + azabiz + a14be3 + az3big + 2a13b13 =0
& a”,b” are conjugate.
In the case (r,n) = (1, 3), the theorem implies the following corollary.

Corollary 4.1. Let v : Q — Q be a surjective mapping which takes pairs of
distinct conjugate points of Q to pairs of distinct conjugate points. Then 1 is a Lie
transformation.
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