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Multiplex imaging technologies are now routinely capable of measuring more than 40

antibody-labeled parameters in single cells. However, lateral spillage of signals in densely

packed tissues presents an obstacle to the assignment of high-dimensional spatial

features to individual cells for accurate cell-type annotation. We devised a method to

correct for lateral spillage of cell surface markers between adjacent cells termed

REinforcement Dynamic Spillover EliminAtion (REDSEA). The use of REDSEA

decreased contaminating signals from neighboring cells. It improved the recovery of

marker signals across both isotopic (i.e., Multiplexed Ion Beam Imaging) and

immunofluorescent (i.e., Cyclic Immunofluorescence) multiplexed images resulting in a

marked improvement in cell-type classification.

Keywords: multiplexed tissue imaging, spatial proteomics, signal spillover, image correction, single-cell biology,

cell annotation

INTRODUCTION

High-dimensional tissue imaging approaches such as CODetection by indEXing (CODEX),

Multiplexed Ion Beam Imaging (MIBI), Cyclic Immunofluorescence (CyCIF), and imaging mass
cytometry have contributed to our understanding of tissue biology and microenvironmental

changes in disease (1–7). These methods, which are based on either fluorescence or isotope

detection, retain the tissue context of single cells while enabling deep phenotyping capabilities (8).

The accuracy of the phenotypic assignment of individual cells relies on several factors including

marker specificity, instrument sensitivity, and segmentation accuracy. A significant amount of

signal spillover can occur between segmented neighboring cells, particularly for signals due to

robustly stained surface markers in regions of tissues densely packed with cells (i.e. lymph nodes,
spleen, tumors, etc.). This lateral marker spillover differs from that due to overlapping excitation/
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emission spectra of fluorophores and from isotopic

contamination and oxidation states (9, 10). Although the

imperfect nature of cell segmentation contributes to this

spillover, this phenomenon is observed even in well-segmented

cells due to proximity and the interleaving of cell membranes of

adjacent cells (3).
The confounding effects of signal spillover are usually

identifiable by the false positive presence of markers on a cell

that are generally considered mutually exclusive. Examples of

mutually exclusive markers are CD3 and CD20, which are

expressed on T and B cells, respectively, and CD4 and CD8,

which are usually only simultaneously expressed on maturing T
cells in the thymus (11). In mouse spleens imaged using CODEX,

CD4/CD8 double positivity as high as 10% were observed seen

due to spillover effects (3). Although the extent of these

artifactual signals varies from platform to platform and

depends on the markers stained and the tissue preparation

methods, the effects complicate the identification of cell types,
whether using manual gating methods or unsupervised

algorithms. Considering that a large number of antibody tags

(>40) are now routinely imaged in multiplexed studies (4, 7, 12–

14), cumulative pairwise spillovers can have detrimental effects

on data quality.

Here, we present a spillover compensation algorithm,

REinforcement Dynamic Spillover EliminAtion (REDSEA), that is
robustly applicable to several imaging modalities. We reasoned that

spillover from segmented adjacent cells could be corrected based on

the proportion of the shared boundary between cells, focusing only

on pixels near the periphery between adjacent cells. Importantly,

REDSEA correctly reassigns spillover signal, even low-abundance

ones, to the cell of origin.
An ideal correction algorithm should be unsupervised and

require no a priori knowledge of how the markers are distributed

with the inputs being the segmentation map and the single-channel

TIFF files (or equivalent) from the multiplexed images. The output is

an FCS file containing the extracted per-channel quantification of the

single-cell data in both the original and compensated formats which

can then be used in various clustering algorithms to “recolor” the
original image with cell types or other derived features such as cell

neighborhood participation or cell activation state. The modular

nature of such software should allow the use of pre-processing

methods, and the algorithmic output that can be used directly in

various downstream analysis approaches. REDSEA is thereby our

contribution towards such a goal. The software implemented here is
freely available from https://github.com/nolanlab/REDSEA. We

applied REDSEA to datasets from two types of highly multiplexed

tissue imaging approaches: mass spectrometry based MIBI and

immunofluorescence-based CyCIF. Application of REDSEA

resulted in a marked reduction in double positivity for known

mutually exclusive markers (e.g., CD3 and CD20; CD4 and CD8a)

and enrichment of cell lineage markers in expected cell types. The
signals from low abundance tags remained robust after correction,

indicating that the signal was appropriately reassigned to cells of

origin.We finally demonstrated the use of REDSEA for sensitive and

accurate stratification of cell types using unsupervised methods. The

REDSEA method will improve the sensitivity and accuracy of cell-

type annotation of segmented cells in highly multiplexed imaging

studies using both fluorescence and isotope-based strategies.

RESULTS

REDSEA Reduces Lateral Spillover and
Boosts Marker-Specific Signals in
Multiplexed Ion Beam Images
Cell segmentation is commonly used to assign and extract

features from images to individual cells, allowing downstream
analysis to be performed while retaining the spatial contexts of

features as we previously observed (15–18). Segmentation

algorithms can vary in performance, and we generally find

DeepCell performs well in MIBI images compared to other

alternatives (Figure S1A) (4, 18). Even in well segmented cells,

however, lateral signal spillover from surface markers into

adjacent cells is common (Figures 1A, B and S1B).
We observed that antibody-dependent signals in cell staining

and imaging are generally evenly distributed around a cell for most

markers in common use. Further, the quantity of the spillover signal

from a single channel into a neighboring cell is directly associated

with the strength of that channel signal in the originating cell. Thus,

we reasoned that the subtraction of this artifactual signal as a
fraction of the signal in the originating cell would allow the correct

assignment of signals to individual cells. We also hypothesized that

a border-based subtraction, instead of whole-cell subtraction, would

better model the nature of the spillover. Finally, we postulated that a

reinforcement methodology would allow the attribution of missing

signals back to their originating cell.
Reasonable unsupervised performance of REDSEA requires at

least two underlying assumptions: 1) The signals from themarker to

be corrected are generally uniformly distributed around the

boundary of the originating cell, and 2) the signals from the tag

to be corrected is higher inside the originating cell compared to the

spillover signals outside. Thus, the REDSEA approach first

calculates the percentage boundary overlap of adjacent cells and
extracts signals with respect to this boundary (Figure 1A). To allow

flexibility for application to any imaging modality and resolution,

the determination of this boundary can be user defined by the

distance from the boundary (Figure S1C). Next, the signals are

compensated in the overlapping boundary region or the whole cell

for each pair of adjacent cells (Figures 1A and S1D).
We first validated our approach using multiplexed MIBI

images of rhesus macaque lymph nodes. MIBI data were

processed as previously described (14), and segmentation

performed via DeepCell by training the segmentation model

on manually segmented cells based on dsDNA (Figure S1E). The

four spillover correction strategies were implemented on the

features extracted from single-cells after nuclear segmentation
(4). The four correction strategies were 1) spillover subtraction

on the whole cell, 2) spillover subtraction on only the border

region, 3) REDSEA compensation on the whole cell, and

4) REDSEA only on the border regions. We first tested the

algorithms on two markers with expression known to be
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FIGURE 1 | REDSEA Corrects Signal Spillover between Adjacent Cells. (A) A schematic representing the workflow and principles of REDSEA compensation. The

spillover signal from neighboring cells is dynamically eliminated based on the fraction of the shared boundary between neighboring cells and the signal intensity.

(B) Left: A representative 150 µm x 150 µm MIBI image of a rhesus macaque lymph node. Two mutually exclusive markers are shown (CD3, magenta; CD20, green),

and the numerical counts of CD3 are indicated in each segmented cell before and after images were subjected to spillover subtraction using the following four

methods: 1) spillover subtraction on the whole cell, 2) spillover subtraction on only the border region, 3) REDSEA compensation on the whole cell and 4) REDSEA

only on the border regions. The CD3 and CD20 counts per cell are colored on the same scale for the segmented cells across compensation settings. Right: Zoomed

images of the yellow boxed regions on the left. The yellow arrows indicate representative cells for which CD3 spillover was successfully corrected by all the four

methods; red arrows indicate successful correction by all but the whole cell subtraction method, and blue arrows indicated successful correction only by REDSEA-

based and not the other compensation methods. (C) A representative 1200 µm x 1200 µm MIBI image of a rhesus macaque lymph node subjected to spillover

corrections as indicated above in (B). (D) Top: Biaxial plots of marker intensities of 68,739 single cells from segmented MIBI images of rhesus macaque lymph

nodes. The percentage of single-positive (top left and bottom right quadrants), double-positive (top right quadrant), and double-negative (bottom left quadrant) cells

are shown for each compensation method. Bottom: A log2 fold change plot (compensated over original non-compensated) for single-positive, double-positive, and

double-negative gated populations.
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mutually exclusive, CD3 and CD20. If the compensation works

well, one would expect a reduction of single-cells with both CD3

and CD20 signals, while retaining a comparable number of CD3+

and CD20+ single-positive cells. Although all the strategies

effectively removed spillover signals (Figures 1B–D), border-

based subtraction methods better modeled the nature of the
spillover with less diminution of channel signals than did whole-

cell subtraction methods while retaining the ability to correct for

spillover (Figures 1B, D). Specifically, REDSEA based

compensation methods retained the robustness of the CD3 and

CD20 signal counts per cell, similar to the original non-

compensated levels (Figure 1B, left and Figure 1C). While all
four methods were able to correct the spillover in some cells

(exemplified in Figure 1B, right, yellow arrows), the subtraction-

only based correction methods failed in various circumstances

(illustrated in Figure 1B, right, red and blue arrows).

REDSEA, which has both subtraction and reinforcement

components, maintained signal intensity after correction to a
greater extent than the spillover subtraction algorithm

(Figure 1B, see right panels for magnified image). Quantification

of single- or double-positive cells in the pre- and post correction

strategies demonstrated that the REDSEA method outperformed

the subtraction strategy (Figure 1D). The initial double-positive cell

rate of 26.71% (total: 68,729 cells) was reduced after compensation

to 6% for whole cell compensation, 11.67% for border
compensation, 14.97% for whole cell REDSEA and 18.67% for

border REDSEA (Figure 1D, right panel, upper right quadrant).

Although the subtraction-only correction methods resulted in a

greater decrease in double-positive cells, this strategy also resulted in

a marked increase in double-negative cells from 3.1% initially to

47.43% for whole cell compensation, 24.12% for border
compensation (Figure 1D, right panel, lower left quadrant). This

substantial loss of marker signal was rescued by applying the

REDSEA algorithm to a lower 16.18% for whole cell REDSEA

and 10.26% for border REDSEA (Figure 1D, right panel, lower left

quadrant). Proportions of both the CD3+ and CD20+ single-positive

cells also diminished after subtraction-only corrections but was

maintained or increased by REDSEA from the initial 49.64/17.55%
(CD3+/CD20+) to 30.28/15.41% for whole cell compensation, 43.98/

18.87% for border compensation, 47.39/20.18% for whole cell

REDSEA and 49.59/20.15% for border REDSEA (Figure 1D,

right panel, upper left and lower right quadrants).

Inspection of a number of double-positive cells not corrected by

REDSEA indicates REDSEA-independent factors, such as
segmentation imperfections or physically overlapping cells

(Figures S1F, G). In subsequent analyses, unless otherwise noted,

REDSEA corrections were performed with the REDSEA border

compensation method to maximize spillover compensation while

minimizing signal loss.

REDSEA Reduces Non-Specific
Spillover Signals and Boosts Marker
Specific Signals
We next assessed how REDSEA reduced and reinforced cell-type-
specific counts for various lineage specific cell surface markers.

By plotting the original or REDSEA compensated surface marker

signals per cell for each group of cell types identified using

unsupervised means (see Materials & Methods), we hypothesized

that lineage-specific markers would increase while nonspecific

markers should decrease. Indeed, we observed an increase or

retention in the signal after REDSEA for CD3 and CD4 T cell

markers in CD4 T cells (Figure 2, row 1), CD3 and CD8 T cell
markers inCD8Tcells (Figure2, row2),BcellmarkerCD20 inBcells

(Figure 2, row 3), CD68 and CD163 macrophage markers

in macrophages (Figure 2, row 4 and Figure S2). Together, this is

indicative that the reinforcementaspectofREDSEAoperates correctly

to boost lineage specific marker signals in respective cell-types.

Conversely, we observed a decrease in non-lineage specific
markers for CD4 T cells, CD8 T cells, B cells, and macrophages

(Figures 2 and S2). These results confirm that non-specific

marker signals, such as lateral membrane spillover from

adjacent cells, were successfully reduced or eliminated by

REDSEA. Representative examples of cells with increased cell-

type specific signals and reduced cell-type non-specific signals
are highlighted (Figures 2 and S2, right).

We then devised a strategy to calculate whether previously

identified cell-types were enriched in a marker-specific manner

after REDSEA: 1) Only cells containing positive counts for a

specific marker of interest (e.g., CD20) were considered initially,

and the percentage composition of each cell type calculated.

2) Cells with 0 counts for the marker of interest after REDSEA
compensation are dropped, and the new percentage composition

of each cell type recalculated. 3) The relative change in

percentage composition (after/before) of each cell type was

then determined and plotted (Figure 3A, row 1 left).

We observed a post-REDSEA enrichment of B cells after CD20

cleanup andmacrophages after CD68 or CD163 cleanup (Figure 3A,
top row). Similarly, CD4 and CD8 T cells were enriched after cleanup

of CD4 and CD8a respective, and both improved upon pan-T cell

marker CD3 cleanup (Figure 3A, bottom row). CD56 yielded an

enriched composition of NK cells, while CD21 cleanup appears to

enrich cell types not annotated as part of this study. These CD21

enriched, unannotated cells are likely follicular dendritic cells (19).

This quantification of the enrichment for cell types associated with a
particular surface marker demonstrated the effectiveness of this

methodology of spillover clean up.

REDSEA Corrects Aberrant Spillover
Signal in Immunofluorescence
Multiplexed Images
To ensure the platform-agnostic nature of this method, we applied

REDSEA to publicly available images generated using CyCIF, an

immunofluorescence-based multiplexed imaging modality (6, 20).
For this study, we focused on CyCIF images generated from human

tonsils, to demonstrate the robustness of REDSEA for tightly packed

lymphoid tissues. To improve original cell segmentation provided,

we retrained an established convolutional neural network to better

identify and segment single cells (Figure S3A). We next extracted

single-cell features before and after REDSEA correction and

calculated the difference in signal intensity for mutually exclusive
markers CD3 & CD20, CD4 & CD8a, and CD68 & CD20 due to

REDSEA correction (Figure 3B, left). We observed an increase in

Bai et al. Imaging Marker Lateral Spillover Correction

Frontiers in Immunology | www.frontiersin.org July 2021 | Volume 12 | Article 6526314

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


CD20 counts due to REDSEA in B cell follicles, and an increase in

CD3, CD4, and CD8a counts in T cell zones (Figure 3B left and

Figure S3B, rows 1-2, red arrows). An increase in CD68 positive

cells was also distributed throughout the B cell follicle and T cell
zones, indicative of robust compensation of macrophages

(Figure 3B left and Figure S3B, row 3, red arrows). Biaxial

quantification of these single-cell signals before and after REDSEA

corroborated with the spatial representation, showing a decrease of

double-positive cells for these of mutually exclusive markers

(Figure 3B, right). These results demonstrated that REDSEA
corrects aberrant spillovers in mass spectrometry-based and

fluorescence-based multiplexed imaging modalities.

Unsupervised Cell-Type Annotation Is
Improved After REDSEA Correction
To assess the material benefit of REDSEA to empirical data, we

performed unsupervised meta clustering, and cell-type
identification (21, 22) of 1836 cells from a single MIBI field-of-

view acquired on a rhesus macaque lymph node stained with 11

markers (see Materials & Methods), using the uncompensated

original markers values and compensated values from each of the

four correction methods described above (whole-cell subtraction

or REDSEA, border subtraction or REDSEA).
From our experience with MIBI data, a few iterative rounds of

unsupervised classification are generally sufficient to identify

most cell types present. This is generally due to variable

expression of the markers of interest, or confounding factors

such as lateral marker spillover. We postulated that a proper way

to benchmark the benefits of lateral spillover on unsupervised
cell-type annotation would be to perform a single round of

classification, at a fixed number of pre-set clusters. Comparisons

to a manually curated set of cell-type annotations would then

allow quantification of sensitivity and accuracy between the

original state and four methods.

Of the five conditions above (original and four compensation
algorithms), 30 clusters were identified via the FlowSOM algorithm

(22)usingCD3,CD4,CD8a,CD20,CD21,Pax-5,CD56,CD163, and

CD68, before subjection to Marker Enrichment Modeling (21) to

FIGURE 2 | REDSEA Reduces Non-Specific Spillover Signals. Left: Arcsine and square root transformed counts per cell for CD3, CD4, CD8a, CD20, and CD68

were plotted before and after REDSEA border compensation for each of the cell types identified. Right: Representative images of each cell type with marker counts

before and after REDSEA compensation.
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classifyCD4Tcells, CD8Tcells, B cells,NKcells andmacrophages in

an unsupervised fashion. The effects of lateral compensation were
immediately apparent: marker expressions within the cell clusters

identified in the original population were more ambiguous than the

distinctive compensated plots (Figure S4A). Indeed, REDSEA

border correction resulted in a notable decrease in the number of

cells requiring further iterative clustering and an increase in cells that

were confidently annotated (Figure4A left andFigureS4B). For cells
that could not be assigned a cell type from this single-round of

classification, we identified 841 in the original condition, 754 after

whole cell subtraction, 682 afterwhole cell REDSEA, 732 after border
subtraction and 259 after border REDSEA compensation.

This indicates that lateral correction using border REDSEA can

reduce non-specific signals which confound the unsupervised

classification process.

We then evaluated the accuracy and sensitivity of cell-type

classification using manual cell-type annotations from three
independent individuals (ground truth). We defined accuracy as

A

B

FIGURE 3 | REDSEA Enriches for Cell-type-specific Signals and is Platform Agnostic. (A) Schematic of the workflow for calculation of enrichment and depletion of

various cell types for each channel before and after REDSEA correction. Cells with no counts in the channel of interest after REDSEA correction were discarded, and

the percentage composition of each cell type remaining was calculated. The relative change is the difference in percentage composition of each cell type before and

after REDSEA correction. (B) Left: A representative 900 µm x 900 µm CyCIF image of a human tonsil. Three pairs of mutually exclusive markers are shown: CD3

(magenta) and CD20 (green); CD4 (magenta) and CD8a (green); and CD68 (magenta) and CD20 (green). The differences in percentage compositions between the

REDSEA image and the original in counts of both markers per segmented cell are shown on a visual scale. Right: Biaxial plots of marker signals from each of the

6,295 single cells extracted from the segmented CyCIF images. The percentage composition of double-positive (top right quadrant) cells is shown for each

compensation method.
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the portion of unsupervised cell annotations that was correct

compared to the ground truth. 710 cells were correctly identified
in the original condition, 851 after whole cell subtraction, 926 after

whole cell REDSEA, 914 after border subtraction, and 1033 after

border REDSEA compensation (Figure 4Amiddle). The percentage

accuracy for each cell type were also comparable across the methods

(Figure S4C, left), with more variability for NK cells due to the low

numbers present.

We next defined sensitivity as the portion of cell types annotated

in the ground truth thatwas identified by the unsupervised clustering
under each condition. 56.0% of cells were successfully identified

in the original condition, 67.1% after whole cell subtraction, 73.0%

after whole cell REDSEA, 72.1% after border subtraction, and 81.5%

after border REDSEA compensation (Figure 4A right). The

percentage sensitivity for each cell type was also generally

increased for REDSEA corrected cells (Figure S4C, right).

A

B C

FIGURE 4 | REDSEA Improves Cell-type Annotation of MIBI images. (A) Single-cell marker values were determined from a single MIBI field of view of a rhesus

macaque lymph node (400 µm x 400 µm) with no corrections (Original) or 1) spillover subtraction on the whole cell, 2) REDSEA compensation on the whole cell,

3) spillover subtraction on only the border region and 4) REDSEA only on the border regions. A single iteration of unsupervised cell type classification was performed

with identical parameters on extracted single cell marker values under each of the conditions. The quantification of cell types identified in terms of fold change (left)

and cumulative number (right) are represented here. Not determined (yellow) denotes cell types that could not be confidently assigned to clusters identified during

classification. (B) Spatial positions of cell types identified under each condition are represented as phenotype maps. Phenotype maps for cell types identified without

correction (Original), with whole cell-based spillover subtraction (Whole Cell Subtraction), with consensus-based manual annotation from three independent

individuals (Manual Annotation) and with border-based REDSEA [REDSEA (Border)] are shown. (C) Pseudo-colored MIBI images containing various combinations of

cell-type-specific markers from the same field of view.
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The median marker expression for cell types identified in each

case also reflects a reduction of non-specific signals, and

enrichment of the appropriate cell-type-specific signals, such as

CD3 for T cells and CD68 and CD163 for macrophages (Figure S4D).

To visually confirm our annotations, annotated cells under each

condition were plotted by their phenotypes spatially, showing an
expected cell-type distribution when compared to ground truth

(Figures 4B and S4E). The lower sensitivity of the original and

subtraction methods was apparent from the large patches of white,

unannotated cells in the phenotype maps (Figures 4B and S4E). We

also plotted pseudo-colored MIBI images of the lineage-specific

markers used for the unsupervised annotation (Figure 4C).
These results indicate that REDSEA will improve unsupervised

cell-type classification real-world performance, speeding up a

process that can be confounded otherwise by signal spillover.

DISCUSSION

Increases in the number of markers measured on the same

section of tissue, coupled with the use of unsupervised methods
to identify cell populations, have allowed breakthroughs in our

understanding of tumor microenvironments and cellular

interactions (1–7, 14). However, the spillover of marker signals

between segmented cells can confound unsupervised identification

methods leading to misinterpretation of the data, and spillover is

particularly difficult to isolate in the presence of 40 or moremarkers.

To resolve this in a systematic and unsupervised way, we have
developed the REDSEA algorithm to correct for marker spillover

between segmented cells in multiplexed images.

Here, we validated REDSEA by analysis of mass spectrometry

and immunofluorescence imaging experiments and demonstrated

the platform-agnostic capabilities of our method. Although the

focused nature of a primary oxygen beam on the MIBI results in
fewer spillover issues than observed with immunofluorescence

lasers (1, 5), the number of cells positive for both CD3 and CD20,

which are not expressed on the same cell, show that spillover is a

challenge for both modalities of imaging on packed lymphoid

tissues (MIBI and CyCIF).

The current iteration of REDSEA has some limitations: First, it
does not perform 3D corrections. Second, it is unable to correct for

situations where multiple cells physically overlap. Third, REDSEA

can only correct for lateral marker spillover, and not signal spillovers

due to autofluorescence or imaging artefacts such as overlapping

excitation/emission spectra or isotopic contamination. Fourth, its

performance is dependent upon proper segmentation of cells,

possible now with recently improved methods (17, 18, 23).
Despite this, we show that it mitigates spillover issues in multi-

parametric spatial data analysis (24) and enables greater cell

recovery from imaging datasets.

In conclusion, REDSEA effectively corrects for channel

spillover between adjacent cells in multiplexed imaging data in

an unsupervised fashion that requires only the raw per channel
TIFF images and a segmentation layer. Thus, REDSEA can be

used to minimize confounding effects, reduce misinterpretation

of the imaging data, and has practical applications for improving

unsupervised cell type identification with current state-of-the-

art methods.

MATERIALS AND METHODS

Antibodies
Antibodies were conjugated to metal polymers using the Maxpar

X8 Multimetal Labeling Kit (201300, Fluidigm) as per

manufacturer protocols. The antibodies used, their respective
clones and channels are listed in Table S1.

Gold Slide Preparation
Gold slides were prepared as previously described (14). Briefly,
Superfrost Plus glass slides (Thermo Fisher Scientific, #12-552-3)

were soaked in dish detergent, rinsed with distilled water, and

dried with airflow to remove water drops. The slides were first

coated with 30 nm of Tantalum and then with 100 nm of gold at

the Stanford Nano Shared Facility (SNSF).

Animal Ethics Statement
FFPE tissues were obtained from SIV-infected and SIV-negative

rhesus macaques (Macaca mulatta) of Indian origin that were

housed at the Oregon National Primate Research Center (OR,
USA) and at the National Institutes of Health (Bethesda, MD,

USA) with the approval of the respective Institutional Animal

Care and Use Committees. Animal experiments were conducted

following guidelines set forth by the NIH and the Animal

Welfare Act and in accordance with American Association for

the Accreditation of Laboratory Animal Care (AAALAC)
standards in AAALAC-accredited facilities.

Vectabond Pre-treatment of Gold Slides
Gold slides were immersed in 100% acetone for 5 min and then
incubated in a mixture of 2.5 ml Vectabond (Vector Labs,

#SP1800) and 125 ml of 100% acetone in a glass beaker for

30 min. Slides were subsequently washed in 100% acetone for 30

s, then dipped in distilled water to remove any residues, air dried,

and stored at room temperature.

Staining
The tissue was sectioned onto gold slides at 4-µm thickness and

stored in a vacuum chamber. Before staining, slides were baked

for 1 h at 70°C and soaked in xylene for 3 x 10 min. Standard
deparaffinization was performed thereafter (3 x xylene, 2 x 100%

EtOH, 2 x 95% EtOH, 1 x 80% EtOH, 1 x 70% EtOH, 3 x ddH2O;

3 min each). Epitope retrieval was then performed at 97°C for

10 min at pH 9 (Dako Target Retrieval Solution, S236784-2) in a

Lab Vision PT Module (Thermo Fisher Scientific).

Slides were cooled to 65°C in the PT Module and then removed

for equilibration to room temperature. Tissue regions were marked
using a PAP pen (Vector Labs). Slides were rinsed 2 x 5min inMIBI

Wash Buffer (1X TBS-T, 0.1% BSA). The slides were then blocked in
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MIBI Blocking Buffer (1X TBS-T, 2% donkey serum, 0.1% Triton X-

100, 0.05% sodium azide) for 1 h. Finally, the antibody cocktail

(antibodies in 1X TBS-T, 3% donkey serum, 0.05% sodium azide)

was added and left at 4°C overnight.

The following day, slides were washed 3 x 5 min in MIBI Wash

Buffer, before crosslinking in Fixation Buffer (2% glutaraldehyde,
4% PFA in 1X PBS) for 15 min. Slides were then rinsed once in 1X

PBS. Quenching of crosslinkers was performed for 3 x 1 min in 100

mM Tris, pH 7.5. Slides were then dehydrated in increasing

concentrations of EtOH (3 x ddH2O, 1 x 70% EtOH, 1 x 80%

EtOH, 2 x 95% EtOH, 2 x 100% EtOH). Slides were kept in a

vacuum desiccator until imaging on the MIBI-TOF (Ionpath Inc).

MIBI-TOF Data Acquisition and Processing
Mass imaging was performed on a custom MIBI-TOF mass

spectrometer equipped with a duo plasmatron ion source

(Ionpath Inc, 5). All images in this study were acquired using

the following parameters: • Pixel dwell time: 12 ms • Image size:

400 µm x 400 µm at 512 x 512 pixels • Probe size: 400 nm •

Primary ion current: 3.5 nA as measured via a Faraday cup on

the sample holder • Number of depths: 3 MIBI images were

extracted and denoised using MIBIAnalysis tools (https://github.

com/lkeren/MIBIAnalysis) as previously described (4). All three

depths were aligned and summed for the purpose of this study.

Image Segmentation
Cell segmentation was performed using the DeepCell

convolutional neural network as previously described (4, 18).

The training dataset consists of denoised MIBI images for
Histone H3 and dsDNA that were cropped and randomly

chosen for manual segmentation using a Wacom Tablet

(Wacom Intuos Draw). A watershed algorithm was applied to

the nucleus possibility map to segment the image into individual

cells (4). The segmentation was performed with the parameters

segmentThres = 0.01 and probNucThre = 0.35.

Adjacency Compensation Methodology
and Implementation
In the segmentation map, pixels belonging to individual cells

were labeled with the same number as a unique cell identifier and

separated with a one-pixel wide continuous boundary labeled

with zeros. The first step of the REDSEA algorithm loops

through all the boundary pixels and searches in a 3x3 grid for

cell labels. The boundary between two adjacent cells is then

calculated as a percentage of the perimeter of each of the two
cells, respectively. A sparse matrix is then assembled with these

values as the coefficient of pairwise compensation. In the second

step, the algorithm loops through every pixel in each cell with a

user-defined pixel number and structuring element (either

sudoku or star, Figure S1C) in search of boundary pixels. We

found that a pixel number of 2 and a star structuring element
(which performs a search in the 12 surrounding pixels) worked

well with for REDSEA on our MIBI images. Once cell boundary

pixels were located and the counts collected along the cell

boundary, the Subtracted Signal for channel X counts of cell A

was determined using the following equation:

Subtracted Signal = o
n

K=1

Xb
K0
�

bAK
PK

� �

(1)

where Xb
AK denotes the boundary pixel counts for each cell K that

shares a common boundary with cell A for n number of cells; bAK
denotes the length of the shared boundary between cell A and cell
K; and PK is the perimeter of cell A.

REDSEA then reinforces the subtracted signal back to the

originating cell. In this case, the reinforced signal is the sum of all

the boundary signals for all n number of cells K around cell A:

Reinforced Signal = o
n

K=1

Xb
A0
�

bAK
PA

� �

(2)

Taking both the subtraction and reinforcement together, we

obtain the equation:

XAcomp
= XA0

+ o
n

K=1

Xb
A0
�

bAK
PA

� �

− o
n

K=1

Xb
K0
�

bAK
PK

� �

(3)

= XA0
+ o

n

K=1

bAK

� �

�

Xb
A0

PA
− o

n

K=1

Xb
K0
�

bAK
PK

� �

(4)

= XA0
+ Xb

A0
− o

n

K=1

Xb
K0
�

bAK
PK

� �

(5)

where XAcomp denotes the counts of channel X for cell A after

REDSEA compensation. For simplicity, we assume that Sn
K=1 

bAK = PA. If XAcomp is negative, the final count is returned as

zero. These equations are based on two underlying assumptions

for a typical cell surrounded by neighboring cells, with mutual
signal spillovers (Figure S1D, left): First, the spillover, generally

due to a cell-surface marker, is uniformly distributed around the

originating cell boundary. Second, in well-segmented cells, the

signal of the marker is higher inside the segmentation

than outside.

Comparison of Marker Intensity Before
and After REDSEA
To compare the signal intensity of each channel before and after

REDSEA compensation, cells with counts > 0 for the channel of

interest before REDSEA were selected. For visualization
purposes, marker signals per cell were normalized by cell size

(pixel number), arcsine transformed (cofactor = 1), and a final

square root transformation. The distribution of transformed

counts before and after REDSEA was plotted for each of the

cell types annotated.

Enrichment Calculation of Cell Types
Before and After REDSEA
To evaluate the effect of cell type enrichment before and after
REDSEA compensation, cells with counts > 0 for the channel of
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interest before REDSEA were selected, and the percentage of

each cell type based on cell-type annotation described above was

calculated; After compensation, cells with count > 0 were

retained, and the new cell-type composition was calculated

based on the remaining cells. The relative percentage

enrichment of cell types was defined as:

Percentage after − Percentage before

Percentage before
% (6)

Application of REDSEA to
Immunofluorescent Images
The CyCIF human FFPE tonsil dataset used in this study was

downloaded from Synapse (Tonsil-1 40x, https://www.synapse.

org/#!Synapse:syn17796423) (20). The channels selected for

REDSEA normalization were DAPI, CD3, CD4, CD8a, CD3,

and CD68. For more accurate segmentation of the results
compared to the provided segmentation map, a custom

DeepCell neural network was trained based on the DAPI

channel as described in the “Image Segmentation” section. A

watershed algorithm was applied for whole-cell segmentation.

The segmentation was performed with the parameters

segmentThres = 0.05 and probNucThre = 0.05. The size of the

structuring element was adjusted to 4 pixels to account for
differences in the image sizes between MIBI and CyCIF data,

and a star pattern (Figure S1C) was used to perform a search of

40 pixels around the border pixel to obtain consistent

REDSEA performance.

MIBI Image Analysis and Cell-Type
Annotation
Features from single cells in segmented MIBI images were

extracted under each compensation condition using the same

segmentation map. Markers for each cell were normalized by

their median dsDNA levels for each field of view and rescaled to

a 0 - 1 range. Unsupervised classification of cell types was

performed with FlowSOM (22) on the markers (CD3, CD4,
CD8a, CD20, CD21, Pax-5, CD68, CD163 and CD56) for 30

clusters, and cell types were identified from each cluster with

marker enrichment modeling (21).

Cell-Type Sensitivity and Accuracy
Calculations
Cell-type sensitivity and accuracy were determined as follows:

Sensitivity =
Number of cell ‐ type A correctly called by algorithm

Total Number of cell ‐ type A in ground truth
% (7)

Accuracy =
Number of cell ‐ type A correctly called by algorithm

Total Number of cell ‐ type A called by algorithm
% (8)

Visualize Illustration and Plotting of Data
All plots associated with this manuscript, with the exception of

biaxial plots, were generated using ggplot2 (25).

Biaxial Quantification of Single-Cell Data
All biaxial plots and quantification were generated using

CellEngine at https://immuneatlas.org/(Primity Bio).

Software
Executable MATLAB scripts of the adjacency compensation

method described here, as well as detailed instructions, are

available at https://github.com/nolanlab/REDSEA.
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