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ABSTRACT

Computational modeling is a pillar of modern aerospace science and is increasingly

becoming more important as computer technology and numerical methods grow more

powerful and sophisticated. However, computational modeling remains expensive for

many aerospace engineering problems, including high-fidelity solutions to highly-complex,

three-dimensional unsteady vehicle simulations, large-scale aeroservoelastic control prob-

lems, and multidisciplinary design optimization. Reduced-order models (ROMs) have

therefore garnered interest as an alternative means of preserving high fidelity at a much

lower computational cost. Among these methods is the class of projection-based ROMs,

which utilizes the original physics and equations of the high-fidelity system but resolves

the state projected onto a lower-order trial manifold with the system projected onto a low-

order test manifold. The low-order trial manifold is typically chosen to be a linear basis,

and this thesis focuses on ROMs that use proper orthogonal decomposition (POD) and the

method of snapshots in order to formulate the linear state basis. Hyper-reduction is also

necessary to reduce the complexity of nonlinear problems, and this thesis is focused on the

the discrete empirical interpolation method (DEIM), an interpolation method that uses a

sparse sampling of the nonlinear function values. The benefit of the method of snapshots is

that given a representative set of solution samples, a linear basis that projects the solution

space with very low error can be constructed. However, accuracy in state projection is only

one part requirement for a ROM to be useful for engineering applications.

Low errors in state projection do not necessarily mean that outputs of interest are accu-

rately predicted as the proportion of the domain that is used to calculate the output may be

very small relative to the entire domain. Quantification of the output error is thus impor-

tant to assess the quality of a ROM. Methods for estimating output error for POD-DEIM

xii



models exist; however, the application of these methods to fine-grain adaptation is limited.

Furthermore, the commonly used Galerkin formulation of ROMs, where the test and trial

spaces are the same, is known to be inaccurate for many problems. These inaccuracies

arise from the inability of a state basis to appropriately project the physical system. How-

ever, the construction of a tailored Petrov-Galerkin test basis that yields the appropriate

dynamics from system projection is not trivial. Finally, the implementation of ROMs for

engineering applications may be difficult due to their intrusive nature. Projection-based

models require the ability to call subroutines of the original high-fidelity model; however,

code modification may be complex and hindered by intellectual property and export control

protections.

The research presented investigates the use of adjoint-based methods to achieve those

goals. For error estimation, this thesis applies adjoint-weighted residuals in order to assess

output error, presents methods for localizing the contribution of output error to individual

ROM degrees of freedom, and derives adaptation schemes using those error localizations.

For constructing dynamically useful test bases, this thesis derives a novel test basis that

yields dynamics from system projection that minimize the state error of the ROM. This test

basis is composed of the reduced state adjoints and stability and convergence studies of

this test basis are presented. Additionally, to overcome issues of portability and intrusive

implementation, a novel hybridization of machine learning and hyper-reduced methods is

presented that supplants the intrusive portions of projection-based model reduction with

element-level neural networks. The implementation of the neural networks at a low level

allows for ROM time-marching to be used, which appropriately propagates the influence

of states on future times.
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CHAPTER 1

Introduction

This introductory chapter provides the motivation for the work contained in this disser-
tation as well as includes a literature review of several reduced-order modeling methods.
Although a more in-depth literature review is provided with each technical chapter, the
articles presented here provide the context and motivation for the research endeavors un-
dertaken here. Following these sections, an overview of the structure of this dissertation is
provided.

1.1 Motivation
A revolution in computational aviation has taken place over the last three decades. In the
early 1990s, the first generation of commercial aircraft to be “fully-developed” with the
aid of computational fluid dynamics (CFD) and computer-aided design (CAD) software
was entering the market, with the Airbus A330/340 in 1993 and the Boeing 777 in 1994
[2]. For the Boeing 777 aircraft, the fuselage and cabin were entirely designed with CFD.
However, for the more complicated components of the aircraft, like the wing-body fairing,
engine placement, control surfaces, and tail, wind tunnel tests were still instrumental, with
CFD serving to correct mounting and wall effects [3]. The design process cycled between
using CAD to orientate and verify realizability, using CFD-augmented wind tunnel tests to
obtain the aerodynamic characteristics of the design, then iterating on the design to remove
undesirable characteristics. Difficulties in meshing, complications with modeling flow sep-
aration, and limited memory prevented the use of CFD for the entire aircraft. However,
the modern age of high-performance computing was only beginning. The fastest machines
listed by the TOP500, at the time a newly created organization for listing the world’s most
powerful supercomputers, just broke the 100GFLOPS ceiling [4]. Since that time, the scale
of computing power has exponentially increased 10 million fold as shown by Figure 1.1.
Today, even the most affordable “commodity” processors would top the Top500 list. Fur-
thermore, in June 2022, Oak Ridge National Lab’s “Frontier” supercomputer became first
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Figure 1.1: History of the performance of the TOP500 supercomputers by year. This chart was
created by the TOP500 organization [1].

true exascale machine listed on the semi-annual TOP500 list [1].
The scale of computing power and advances in numerical methods available for en-

gineering applications today tower over what was available when the Boeing 777 and
A330/340 aircraft were developed. As a result, the number of wind tunnel tests needed
for the design of aircraft has decreased substantially [3]. Computational fluid dynamics
(CFD), computational structural mechanics (CSM), and fluid-structure interaction (FSI)
have become important pillars in the design process of modern aircraft. Yet, despite these
advances in computation and numerics, the demand for high-fidelity aerodynamic analy-
sis still outweighs the speed at which they can be developed. Among NASA’s 2030 Grand
Challenges is the use of high-fidelity multidisciplinary design analysis and optimization for
highly flexible aircraft configurations [5]. The solution to this Grand Challenge will need
to be able to generate time-accurate CFD solutions to coupled aero-servo-elastic prob-
lems for highly flexible aircrafts in an engineering time-frame to allow for the optimiza-
tion of complex aircraft configurations. The process of designing, analyzing the design,
and iterating on the design is exactly the same process that was undertaken to design the
Boeing 777 and the A330/340, but with a wider set of possible configurations and using
fully-automated/computerized methods. Many other types of problems exist in computa-
tional aerospace, including real-time model predictive control, aero-structural-combustion
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settings, and flight parameter sweep, all of which require fast-turnaround time of highly-
complex solutions. Model reduction techniques have therefore garnered a large amount of
interest for efficiently generating high-fidelity solutions. Model reduction leverages math-
ematical and computational methods in order to generate approximate solutions to high-
fidelity problems at a higher speed while maintaining accuracy. However, for a reduced-
order model (ROM) to be practically applicable, it must have several characteristics:

1. Accuracy

2. Stability

3. Speed

While these points seem obvious, achieving them is not trivial. In many settings, increasing
the accuracy of a reduced-order model by increasing training or degrees of freedom may
harm its stability, while at the same time increasing the stability of a ROM by reducing
its degrees of freedom may harm its accuracy. A key to achieving accurate ROMs is to
define what sort of accuracy is demanded. For engineering applications, output accuracy
and state accuracy are hand in hand. Currently, with regards to projection-based models,
methods for precise output error estimates and output-driven adaptation schemes are under-
investigated. Further, although projection-based models are able to span the state space
with the construction of a basis through decomposition of solution samples, obtaining the
correct dynamics to drive the ROMs towards accurate state solutions is difficult. This thesis
will demonstrate methods for achieving output and state accuracy for even coarse ROMs.
This is approached through adjoint-weighted residual error estimation, localization, and
adaptation, and with the use of adjoints-based ROM construction. Additionally, increas-
ing accuracy through increasing the size of the ROM or through the inclusion of modeling
physical constraints impacts the efficiency that a model can produce solutions. Further,
implementation of projection-based ROMs requires access to the original high-fidelity sys-
tem, which can be difficult or even impossible to access. However, machine learning can
accelerate projection-based ROMs without accessing the high-fidelity system and, when
combined with the adjoint-based methods introduced in this thesis, are able to efficiently
produce accurate solutions. The remainder of this introduction is meant to introduce basic
model reduction concepts and identify problems with current methods as well as establish
an outline for how this thesis will approach these problems.

1.2 Model Reduction
Model reduction is a class of mathematical techniques that reduces the complexity of gen-
erating high-fidelity solutions to expensive physical models. The term full-order model
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(FOM) is often used to referred to the high-fidelity model that is reduced. For this thesis,
the full-order model is the fully-discretized model with all of its degrees of freedom and
governed by partial differential equations (PDEs); however, model reduction can be per-
formed in continuous settings and also on real-world data. Most approaches are divided into
offline and online stages which serve to construct and deploy the ROM, respectively. Dur-
ing the offline stage, solutions of the FOM are computed at various configurations and then
used for constructing the ROM. During the online stage, trained ROM can be used to pre-
dict solutions for new configurations not encountered in training. Although not universal, a
common categorization of reduced-order models is into those that are interpolation-based
and those that are projection-based. Interpolation-based model reduction attempts to create
surrogate models that map system inputs to outputs of interest. These methods can be seen
as “black-box” models that do not invoke the original physical equations or develop any
intermediate physical state between the inputs and outputs. These methods include poly-
nomial fitting [6], radial basis functions [7, 8], Volterra series [9, 10], Kriging interpolation
[11, 12], and machine learning [13, 14]. Interpolation-based models offer highly efficient,
stable solutions. However, because surrogate models do not invoke the underlying physical
system, substantially more training data is require to construct these models. In addition,
the error of these models is difficult to quantify, and often statistical techniques are used to
infer the error of the model [15].

1.2.1 Projection-based Models
On the other hand, projection-based techniques attempt to satisfy the underlying physical
equations with a solution that is restricted to a lower-order trial manifold while using a
low-order test manifold for projecting the physical model. These manifolds are typically
linear, using bases obtained from solutions of the FOM. Effectively the degrees of free-
dom of the problem are reduced while retaining information of the entire physical state
vector that can be used to obtain outputs of interest. However, these models are usually
highly-intrusive, requiring access to FOM codes in order to invoke the same physical mod-
els. Projection-based methods include the proper orthogonal decomposition method (POD)
[16, 17], moment matching [18, 19], balanced truncation [20, 21], dynamic mode decom-
position [22], and spectral proper orthogonal decomposition [23]. For linear problems,
the projection of the state and the system onto the trial and test manifolds also effectively
reduces the complexity of the system of equations; however, this is not true for nonlin-
ear problems. For these applications, the nonlinear portions of the physical equations are
evaluated on the low-rank, full-sized reduced state; this also applies to the formation of lin-
earizations of the system that are needed for a nonlinear solver, such as Newton-Raphson.
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These calculations dominate the computational cost, and the savings from projection are
effectively lost. To remedy this issue, many hyper-reduced methods have been introduced
to reduce the cost of nonlinear function evaluations through sparse sampling and interpola-
tion. These include continuous and discrete interpolation methods (EIM/DEIM) [24, 25],
the missing point approximation [26, 27], the best points interpolation method [28], and
the Gauss-Newton with approximate tensors method [29]. This thesis uses the POD and
DEIM methods for model reduction and the method of snapshots [16] for constructing the
linear bases for the ROMs. In this approach, a singular value decomposition (SVD) of a
set of full-order model solution samples, called snapshots, is applied, as it satisfies the L2
minimization of the projection error of all possible bases of the snapshot set. The basis
vectors from SVD are ordered with their corresponding singular values, and the basis vec-
tors with very small associated singular values are neglected to keep the ROM small and
to remove potential numerical error. POD uses a linear basis to project the state and sys-
tem, and DEIM hyper-reduction approximates the nonlinear portions of the system with a
projected interpolation constructed from nonlinear function samples at degrees of freedom
that best estimate the system. The linear basis for DEIM hyper-reduction is a truncated set
of singular vectors from an SVD of the nonlinear function snapshots.

1.2.2 Error Estimation for Projection-based ROMs
Given that the solution of the ROM is constructed from a low-rank approximation, quan-
tification of the error of projection-based models has garnered significant attention. Sharp
a posteriori error bounds on the state errors have been studied extensively within the re-
duced basis method community [30, 31, 32, 33, 34]. In other procedures, error bounds
are formed based on the trajectory of the kernel of the trial basis [35, 20, 36]. Reduced-
order model analogs of adjoint-weighted residual error estimates have been used for POD
[37], h-refinement of a POD system through vector splitting [38], and adaptation of the
empirical quadrature procedure [39, 40] – a hyper-reduction method for the reduced basis
formulation.

Current approaches to DEIM error estimation rely on establishing a priori [41] or a

posteriori [42, 43, 44] error bounds. Accurate output predictions are important for engi-
neering applications; however, for DEIM-ROMs, adaptation that specifically targets output
prediction is under-investigated. Feng, Mangold, and Benner presented an approach to
output adaptation that uses an error bound that approximates the adjoint-weighted residual
equation [44]. The approximation of the adjoint solution is performed in order to avoid the
cost of resolving time-coupled adjoints. However, resolving the time-coupled adjoints is
important in order for error to appropriately propagate through time. Furthermore, while
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the error bounds for DEIM-ROMs are rigorously derived, error bounds are unable to finely
attribute sources of error. Rather, adaptation mechanisms update state and nonlinear func-
tion bases with priority on basis vectors with higher associated singular values. Thus, even
a posteriori error estimates use a priori information to update the model without incorpo-
rating information about online performance of the ROM beyond the formation of error
bounds. In addition, given that the singular values are known a priori and also used for
ROM construction, it is typical that ROMs are already constructed with a vast proportion
of the available singular values. Thus, adapting based on singular values may be inefficient,
as basis vectors that do not contribute significantly to either state or output prediction may
be added. Additionally, higher frequency or numerical error polluted basis vectors may be
added, making the ROM stiffer as it must dissipate the effects of these basis vectors. How-
ever, adjoint-based methods [45, 46, 47] can be used to identify specific degrees of freedom
that contribute to output error and thus can be used as an additional metric for adaptation.
Chapter 3 presents the time-coupled adjoint equations for DEIM-ROMs, develops ways
to finely assess output prediction error contribution from various DEIM-ROM characteris-
tics, and demonstrates adaptive methods using those estimates. By doing so, DEIM-ROMs
are constructed that accurately predict outputs, while maintaining coarseness and stabil-
ity. Some of the work presented here has already been published and presented, notably at
the American Institute of Aeronautics and Astronautics (AIAA) Aviation 2019 conference
[48], and at the 15th U.S. National Congress on Computational Mechanics.

1.2.3 Petrov-Galerkin Test Basis Formulation
For most applications of projection-based model reduction, stability properties of the FOM
do not necessarily carry over to the ROM; however, a wealth of literature exists on the
stabilization of projection-based ROMs [49, 36, 50, 51, 52, 53]. Chapter 4 of this the-
sis is interested in the formation of Petrov-Galerkin models for improving stability and
state accuracy. Galerkin formulations, where the trial and test manifolds are the same,
are especially prone to instability as the trial manifold may be a poor projection of the
system and enforcing the system to be only resolved in the trial manifold can allow for
unbounded residuals in the kernal of the manifold [20]. Thus Petrov-Galerkin construc-
tions, where separate trial and test manifolds do not equal, are considered more a viable
and stable approach for projection-based models for aerospace settings mainly due to the
test basis being better suited for projecting the system than the trial basis [54]. A common
approach is to use a test basis that makes the ROM solve the FOM residual minimization
where the state exists on the trial manifold [55, 56]. This formulation, referred to as the
minimum residual and least squares Petrov-Galerkin (LSPG) method, is the basis for the

6



Gauss-Newton with approximate tensors hyper-reduced method. LSPG has been shown
to be more accurate and stable than the Galerkin ROM approach for many problems and
guarantees stability for linear, unsteady problems as the temporal linearization of the ROM
is made symmetric, yielding only real eigenvalues [29, 57, 58]; however, LSPG-ROMs
are shown to be sensitive to time step size and become equivalent to Galerkin ROMs for
explicit time-marching schemes [57]. Recent work by Parish, Wentland, and Duraisamy
investigated the construction of a Petrov-Galerkin test basis for closure of a POD-ROM
model in order to improve stabilization and accuracy, named the Adjoint Petrov-Galerkin
method (APG) [59]. Closure in this sense comes from the turbulence-modeling inspired
formalization of projection-based ROMs into resolved and unresolved scales. The resolved
scales are the solution to the ROM, while the unresolved scales (orthogonal to the trial
basis) are modeled [60, 61, 62]. The chosen model arises from the Mori-Zwanzig formu-
lation, where an integrated memory term serves to close the model [63]. This memory
term is typically intractably expensive to evaluate, and the Petrov-Galerkin test basis arises
through its approximation.

Taking a step back, it is important to recognize that Galerkin ROMs fail due to the
inability of the test space to yield the appropriate dynamics to drive the state towards the
optimal solution. If a snapshot set is a good representation of the solution space and given a
basis that is able to span the snapshot set with very low error, then that basis should be able
to span the entire solution space with very low error. However, there is no guarantee that
such a basis is able to yield the correct dynamics of the system when used as a test space.
Recognizing that the test basis is the mapping of the entire system to a reduced space, the
test basis defines what the reduced system is ultimately trying to achieve. For APG, the
goal is to obtain dynamics from the unresolved state. For the case of LSPG, the goal is to
obtain dynamics that will solve the minimization of the residual. However, a test basis can
also be constructed such that the projection of the system yields dynamics that minimizes
the state error. Chapter 4 presents the novel Petrov-Galerkin test basis that is constructed
in order to optimally obtain state accuracy. This test basis is formulated through the use
of reduced state adjoints, and thus this approach is called the state adjoint Petrov-Galerkin
method (SAPG). This is inspired by work from Demkowicz and Gopalakrishnan [64] and
Kast and Fidkowski [65, 66] on the formulation of optimal discontinous Petrov-Galerkin
finite element models. The SAPG test basis incorporates new information from the entire
system by requiring a linear system to be solved. However, a restriction to the ROM is
that the linear system is of the full-order size. To keep the benefits of incorporating new
information into the test space while making the SAPG model usable for model reduction,
a reduced-order model of the SAPG test space is presented. This reduced-order model
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allows for the use of a test search basis, composed of any basis such as the truncated modes
or the adjoints, to be used to form the SAPG test basis. Work first presented at the AIAA
Scitech 2020 conference for POD-ROMs [67] is expanded in this thesis to hyper-reduced
models, with analysis of the stability and convergence effects of the model.

1.2.4 Hybridized Projection-based ROMs and Machine Learning
Machine learning is a field of computational and mathematical techniques that utilizes com-
puters to efficiently apply mathematical algorithms for constructing sophisticated surrogate
models, such as neural networks, from observed quantities. The use of machine learning
to enhance projection-based ROMs has garnered a lot of recent interest due to their ability
to identify nonlinear relationships between system features and outputs of interest and also
due to the availability of many open-source, fast machine learning libraries. These methods
include the use of neural networks for POD-ROM closure modeling [60, 68, 69, 61, 62].
However, the final section of this thesis is focused on the creation of hybridized ROMs that
avoid the need of accessing the high-fidelity system that is required for projection-based
ROMs. Additionally, implementation of hyper-reduced methods often requires additional
low-level code to be written in order to obtain sparsely sampled nonlinear function evalu-
ations. Direct access to CFD code is not guranteed as barriers, such as intellectual copy-
right protections and export controls, may prevent any amount of low-level access that is
needed for implementing projection-based model reduction. Additionally, the age (“legacy
codes”) and complexity of CFD codes can also hinder the implementation of projection-
based ROMs. Issues of portability are also a concern, as being intrusively implement also
means that projection-based ROM codes are difficult to reuse for different codes with-
out whole rewriting of many subroutines. However, many approaches have used neural
networks to create non-intrusive projection-based ROMs that avoid direct code access. A
common method is to map the system inputs to POD coefficients [70, 71, 72, 73, 74, 75, 76].
In this fashion, the neural networks are trained to learn the dynamics of the physical model
but act as black-boxes online. Other approaches attempt to use machine learning to improve
the underlying physical modeling of projection-based ROMs but not for directly computing
POD coefficients. This includes the use of unsupervised learning for POD-ROM operator
inference [77, 78, 79], convolutional autoencoders for nonlinear trial manifolds [80, 76],
and for residual/error modeling [81, 82, 71]. In the same vein, Chapter 5 pertains to the
application of machine learning methods to non-intrusive ROMs that do not only generate
POD coefficients. Time-marching the physical system is important in order for errors to be
appropriately dissipated and for the influence of a state to propagate appropriately through
time. When neural networks are used for POD coefficients in an unsteady setting, special
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care has to be taken to allow for information to be propagated correctly. Recurrent neural
networks (RNNs) use a feedback of an output hidden state in order to propagate informa-
tion through time. However, these systems are susceptible to the vanishing and exploding
gradient phenomena, where the influence of the inputs and hidden state of a time node
quickly diminishes or the hidden state of the system grows non-physically large. Certain
RNN formulations, such as the long short term memory unit, can alleviate some of these is-
sues but have many limitations such as a fixed time step size, sensitivity to memory length,
and the need of initial memory accumulation. Instead, this thesis presents a non-intrusive
ROM model that replaces the FOM residual and Jacobian computation, lowest-level in-
trusive subroutines of the DEIM method, with neural networks. These computations are
then used in the DEIM-ROM for time-marching a state. In this fashion, the mechanism
for the state propagation in time is unmodified. The neural networks are embedded at the
elemental level and only receive as inputs the local and neighboring states as well as sys-
tem parameters. Thus, the neural networks are trained to learn only the physical model
that maps states to spatial residuals for a particular element. These quantities are already
available for ROM construction, so no modification of the FOM is needed. The resulting
model is compared to the traditional DEIM and shows comparable accuracy and O(10)
improvement in speedup.

1.2.5 Recent Model Reduction Achievements
Several recent applications of model reduction have had noteworthy results:

• Washabaugh, Zahr, and Farhat applied projection-based techniques to developing
the steady solutions to the NASA Common Research Aircraft Model with shape
variations in viscous, transonic flow. They attained a reduction of the degrees of
freedom from 69 million to only 23, and a speedup from 2 hours on a 1024 core
system to 3 minutes on a Apple Macbook [83].

• Ripepi et al. formulated various intrusive and non-intrusive, interpolation-based and
projection-based models for predicting the aerodynamic response for a fully-coupled
CFD-CSM solver under the DLR Digital-X project. The parameterized aerodynamic
ROMs were able to predict the integrated and distributed loads with less than 1%

error for various flight conditions (Mach, angle of attack, slip angle, and altitude)
with accurate shape deflection for a wing-fuselage half-body model obtained from
FSI [84].

• Zhou et al. used linear genetic programming to design a controller to optimize the
mixing of a turbulent air jet. The controller was trained with real-time experimental
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data and provided real-time inputs to radial-placed actuators on the nozzle of the jet.
The controller sequentially learned various known mixing patterns in the order of
effectiveness before settling on a previously unknown but highly effective pattern.
This result is included as it is an example of machine learning that is not based on
a neural-network and that the training and testing data comes from observed experi-
mental data rather than a computer model. [85]

1.3 Outline
This thesis consists of four technical chapters. Chapter 2 details the projection-based mod-
els that are used for the development of the algorithms central to the thesis: the POD
method and the DEIM method. The remaining three technical chapters are focused on uses
of adjoint-based and machine learning methods for improving on the three characteristics
mentioned above, i.e.,

1. Accuracy → Output error estimates and adaptation for DEIM-ROM model (Chapter
3). Construction of state optimal Petrov-Galerkin models (Chapter 4).

2. Stability → Adaptive techniques that increase accuracy but retain coarseness (Chap-
ter 3 and 4).

3. Speed → Element-embedded neural networks (Chapter 5).

The applications of the methods developed in this thesis pertain primarily to unsteady loads
prediction for aeroelastic analysis and design with Euler and unsteady Reynolds average
Navier-Stokes physics. Applications to unsteady, resolved turbulent flows and combus-
tion problems are of interest but not addressed here. Chapter 3 focuses on the extension
of adjoint-weighted residual error estimates to DEIM-ROMs, developments of fine-grain
output error localization methods for DEIM-ROMs, and adaptive methods based on that
quantification. Chapter 4 presents a novel Petrov-Galerkin test basis that yields dynamics
from the projected system that drive the ROM to the optimal state solution. Formula-
tions for hyper-reduced problems and a reduced model of the test space are also provided.
Chapter 5 provides a new method for using machine learning for non-intrusive ROMs that
incorporates the time marching of the ROM, which allows for appropriate state propaga-
tion in time and drastically increases ROM speed up. Finally, Chapter 6 summarizes the
main observations from the earlier chapters, the key contributions of this dissertation, and
presents ideas for related future work.
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CHAPTER 2

Projection-based Reduced Order Models

Projection-based reduced-order modeling is a key concept for this thesis. Qualitatively,
reduced-order modeling is a class of systematic techniques for reducing the complex-
ity of generating high-fidelity solutions to computationally expensive problems. Further,
projection-based ROMs are mathematical approaches to reducing the complexity of sys-
tems of differential equations, and in a common setting, discrete formulations of PDEs. As
a consequence of the mathematical foundation of projection-based models, even though
this thesis focuses on a variety of computational fluid dynamic problems, ultimately the
ROMs studied in this thesis can be applied to problems arising from most scientific for-
mulations of the same form. Therefore, for this section, a general dynamical system of
equations will be defined and used for deriving the various projection-based ROMs of in-
terest. These are the proper orthogonal decomposition (POD) and the discrete empirical
interpolation method (DEIM).

2.1 Generic Dynamical System
A system of ordinary differential equations, generally arising from spatially-discretized
partial differential equations, can be written as

G :

M dx
dt

+R(x(t),µ(t), t) = 0,

y(t) = J(x(t),µ(t), t).
(2.1)

This definition serves as the full-order model (FOM) that is to be reduced, and generally,
most scientific problems can be written in this setting, with x ∈ Rnx a vector of state
variables that are dynamically changing in time driven by the function R ∈ Rnx , whose
inputs are the state itself, a set of inputs µ ∈ Rnµ , and time t. For many applications, the
trajectories of the outputs of the system (y ∈ Rny) are of concern and are defined here as a
vector function J of the state, any relevant inputs, and time. For fluid dynamic problems,
x can be the vector of conserved variables (density, specific momentum, specific energy,
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etc.) throughout the spatial discretization; R can be the balance of advective and diffusive
fluxes of the state throughout the discretized space; and µ can be the boundary conditions,
initial conditions, geometric constraints, etc. of the problem being reduced.

Combining the temporal and spatial terms into a single term leaves a single, temporal
residual,

R̄(x,µ, t) = 0, (2.2)

which can be discretized and minimized in time. Generally, the use of the word “residual”
can be applied to different terms in the above definitions in different contexts. Thus, for the
sake of clarity, in this thesis “residual” always refers to the dynamical function R in the
generic model from Equation (2.1) whereas “temporal residual” is used for the balance of
temporal and spatial dynamics, which is R̄ in Equation (2.2).

The usefulness of this generic dynamical model is that all of the model reduction deriva-
tions can be performed without formally defining the physics. Thus, once these ROMs are
defined in the proceeding sections, their application can be performed to many sets of prob-
lems.

2.2 Projection-based ROMs
The process of spatially and temporally discretizing the generic model creates a system
of equations that can be solved for the state and outputs. Practically, the use of comput-
ers makes these discretizations tractable for scientific and engineering analysis. Often the
sizes of the spatial and temporal discretizations have an effect of the dynamics in R. An
example from CFD is the effect of grid size on the presence and strength of turbulence.
Any turbulent phenomena occurring at scales smaller than what can be resolved in the grid
effectively disappear. Finer discretizations of the problem usually result in greater resolu-
tion in the physics being modeled; however, the immediate issue with the finer resolution
is the increase in degrees of freedom in the system. The increase in cost for is typically
super-linear for most problems, as the cost of inversion of the dynamical system increases
super-linearly.

A question relevant to model reduction is: are there certain degrees of freedom that
can be neglected while maintaining a high-fidelity solution? The answer for many practi-
cal engineering problems is typically yes and serves as the justification of projection-based
ROMs. There are many configurations of the state x that are not possible. For example,
most physical models do not allow for negative density or energy. Additionally, the vari-
ation of the solution in certain domains may be too small to have a substantial effect on
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Figure 2.1: Example of projecting data from 3 dimensions into 2 dimensions.

the overall solution. Therefore, we can seek the solution of x in only a subspace of the
full-order discretization. This is formally defined with the low-rank approximation,

x ≈ V x̂, (2.3)

where V ∈ Rnx×nV is a set of basis vectors (also called the state basis vectors), x̂ ∈ RnV

is a set of weights on those basis vectors (also called the reduced state), and the rank of
the state basis is substantially smaller than the original full degrees of freedom nV ≪ nx.
Essentially, the solutions of the model are now sought in a projection of the FOM space,
and if the projecting basis spans the FOM solution space well, the approximation will be
accurate. Figure 2.1 demonstrates this concept visually with the projection of 3D data onto
a 2D plane.

Making this substitution into the general model results in a system with significantly
fewer degrees of freedom but still utilizing the fundamental physics-based equations,

MV
dx̂

dt
+R(V x̂(t),µ(t), t) = 0, (2.4)

y(t) = J(V x̂(t),µ(t), t). (2.5)

The problem is now overdetermined, as we have nx equations for nV unknowns. Consider
the temporal residual with the state approximation defined by

R̄(V x̂(t),µ(t), t) ∈ Rnx . (2.6)

Since this temporal residual is driven to zero, the cost of the time-marching is effectively
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unchanged since the actual problem itself is still of FOM problem size. Reduction of the
problem size can be performed via projection of the entire system with another set of basis
vectors (W ∈ Rnx×nV ), resulting in

W T

[
MV

dx̂

dt
+R(V x̂(t),µ(t), t)

]
= W T0,

M̂
dx̂

dt
+W TR(V x̂(t),µ(t), t) = 0. (2.7)

where M̂ = W TMV is the reduced mass matrix.
The approach of seeking the solution in the span of a basis while restricting the sys-

tem to another basis is analogous to the Galerkin approach to PDEs where a solution to a
continuous problem is restricted to the span of a set of linear basis vectors (“trial space”)
and the system itself is subjected to constraint via projection with a basis (“test space”).
When the system is projected with the same basis used for representing the state (i.e.,
V = W ) it is referred to as the Bubnov-Galerkin (or simply Galerkin) formulation. When
these two bases are not equal (i.e., W ̸= V ) one has the Petrov-Galerkin formulation.
The same nomenclature is adopted when referring to the formulation of a projection-based
ROM, and this distinction will be important in Chapter 4, where the formulation of a novel
Petrov-Galerkin ROM is presented. However, for this thesis, unless otherwise stated, the
Galerkin formulation is used.

In summary, the formulation of a projection-based ROM requires a reduction of degrees
of freedom via the use of the low-rank approximation in Equation (2.3) and the projection
of the system itself in Equation (2.7). Earlier, a justification for the use of a low-rank ap-
proximation of the state was that given a state basis that spans the solution space fairly well,
the approximation will be accurate; however, the actual construction of the state basis is
left to the discussion in the next section, which details the proper orthogonal decomposition
method.

2.3 Proper Orthogonal Decomposition
The following section derives the discrete proper orthogonal decomposition (POD) ROM.
The derivation here follows the idea of the POD basis constructed to maximize the in-

formation it carries as presented in [86]. A projection-based ROM was constructed via
substitution of the state with a low-rank approximation and projection of the entire system
with an orthogonal basis in the preceding section. Although these bases can consist of any
set of orthogonal vectors (e.g., Fourier modes, Lagrange polynomials, etc.), the immediate
benefit of using a tailored basis is the reduction of the size of the state projection and the
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minimization of irrelevant information that needs to be dissipated in an untailored basis.
The proper orthogonal decomposition aims to construct a basis that maximizes the amount
of relevant information that the POD basis carries in the solution space of interest,

X ⊂ Rnx . (2.8)

The information contained in a projecting basis of a solution space refers to the amount
that basis can span that solution space. The larger amount of the solution space that can be
represented by a basis, the more information the basis carries. This can be quantified for
any instance of the state solution x ∈ Xi and some normal basis vector Vi with the square
magnitude of their inner product ⟨·, ·⟩,

Ii = |⟨V ,xi⟩|2 . (2.9)

POD attempts to maximize the amount of information carried by the projecting basis
across all possible x ∈ X . Fully solving for this basis is intractable and self-defeating as
all possible solutions of x is needed. However, this basis approximated efficiently with
the method of snapshots first introduced by Sirovich [16]. First, an ensemble of snapshots
from the full-order system is collected, defined by

S =
[
s0 s1 ... sk−1

]
, (2.10)

where si ∈ X for i ∈ [0, k − 1]). Then the POD basis is constructed to maximize the
information carried across the snapshot ensemble – i.e.,

V = argmax
Ṽ

k−1∑
i=0

∣∣∣⟨Ṽ , si⟩
∣∣∣2 . (2.11)

The solution to this maximization problem is the set of left singular vectors of the snapshot
set S, according to

S = V ΣZT , (2.12)

where Σ = diag(σi) is the diagonal matrix containing the singular values, σi, which are all
real, non-negative and listed in decreasing order. The columns of the matrix Z are the right
singular vectors.

Although for completeness the entire set of left singular vectors are needed to maximize
the total information in S carried by V , truncation of the resulting basis can be done for
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various reasons. Singular vectors with sufficiently small singular values carry very small
amounts of information from S; additionally, these basis vectors are more prone to larger
amounts of inauspicious numerical error, which affects convergence, accuracy, and stabil-
ity. A criterion for the truncation index (r) is the partial sum of singular value energy being
above some tolerance (e.g., 99.9%), defined by∑r

0 σi∑k−1
0 σi

≥ TOLσ. (2.13)

However, as discussed in Chapter 3, the energy criterion is not universally sufficient for
generating an accurate POD-ROM. Small-scale behavior, while indeed small, can be very
influential on outputs of interest for a problem. This is true for many physics-based models.
Consider for example the production of forces on an aerodynamic surface. These forces
are of primary interest to engineers and are dictated significantly by a thin boundary layer

of flow just outside the wetted-surface of a structure. Thus, even if the solution is well
resolved in the majority of the fluid-domain, inaccuracy in the boundary layer results in
poor load predictions. Thus for the sake of accurate output prediction, a large effort in
the aerospace industry is placed on producing accurate small-scale behavior [87, 66]. In
subsequent sections, the exploration of selecting basis vectors based on targeted output
error estimates is presented.

For many discretizations and problem settings, a singular value decomposition of the
snapshot matrix suffices for computing the state basis vector set. However, for finite-
element discretizations, such as the discontinuous Galerkin (DG) method used throughout
this thesis, the discrete singular value decomposition will depend on the finite-element ba-
sis functions used in the discretization. To eliminate this dependence, a continuous spatial
inner product is used, and the singular vectors and values are computed from an eigende-
composition of the corresponding normal matrix. This normal matrix takes the form

Knorm = STMS, (2.14)

where M is the mass matrix. For finite element models, the state is approximated by the
linear combination of basis functions, according to

xΩ(r⃗) ≈
np∑
j

XΩΦj(r⃗), (2.15)

where xΩ is the state in a domain Ω, r⃗ are physical coordinates inside the domain, and
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x̃ ∈ Rnp are coefficients for the np basis functions Φ. The mass matrix then is

Mi,j =

∫
Ω

ΦT
i ΦjdΩ. (2.16)

Rowely et al. [17], Barone et al. [53], and Kalashnikova and Barone [52] have demon-
strated that utilizing the mass matrix normalized inner product can improve stability of
compressible Navier-Stokes systems. The eigenvectors of this system represent the singu-
lar vectors of the snapshot set, and the corresponding eigenvalues are the squares of the
corresponding singular values (σi =

√
λi(Knorm)).

Generally, the POD-ROM models are constructed centered about some reference state
xr. This is similar to Reynolds averaging of the Navier-Stokes equations, where the state
is broken into static and fluctuating components and is defined by

x =xr + Vf x̂f , (2.17)

[S − xr] = VfΣfZ
T
f . (2.18)

For POD-ROMs, the ensemble average of the snapshot set is typically used to define the
static component,

xr =
1

k

k−1∑
i=0

si. (2.19)

In this thesis, both the average state and the steady-state solution are used as the reference
state. For simplicity, in the remainder of the thesis, we will drop the f subscript for the
fluctuating portion of the POD-ROM. The resulting centered POD-ROM has the form

M̂
dx̂

dt
+W TR(xr + V x̂(t),µ(t), t) = 0. (2.20)

There are many reasons to use the mean as the reference state to center the POD basis.
Jarvis demonstrated that the first eigenvector of uncentered snapshots equals the normaliza-
tion of the mean [88]. Given that the mean should be time/parameter invariant, inclusion
of the mean in the POD basis can create perturbations in the invariant component and
introduce significant error [89]. In addition, centered ROMs for problems with consistent
boundary conditions between snapshots inherently satisfy static boundary conditions, since
they are contained in the unchanging reference state [36]. This is typically not the case for
parameterized ROMs, as the variation in parameters is often implemented through bound-
ary conditions. For multiparameter problems, a single, global ROM that is constructed
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from all of the snapshots; however, for a solution space that is highly sensitive to the pa-
rameter space, global ROMs may be difficult to construct due to the need of a large number
of snapshots and inaccurate due to the inclusion of irrelevant dynamics in the state basis
[90, 91].

An alternative approach is to construct localized ROMs for partitions of the parameter
space. ROMs are then interpolated for configurations that are not already modeled locally.
Interpolation between basis vectors does not maintain orthogonality. Instead interpolation
between bases can be performed. A method by Amsallem and Farhat [92, 93], uses tangent
spaces of the Grassman manifold containing each of the bases. The Grassman manifold is
the space of subspaces of size r (the rank of the bases) of the space of size N .

Let Vk be the set of local ROM bases where k ∈ [1, K] corresponds to a sampled pa-
rameter set p⃗k for each local ROM. The interpolation is performed about a reference basis,
which for simplicity is V1. The location (Tk) of all other local bases on the interpolation
space is found with a logarithmic mapping with respect to the reference basis, defined by

UkΣkZ
T
k = (I − V1V

T
1 )Vk(V

T
1 Vk)

−1 −→ (thin SVD), (2.21)

Tk = Uk arctan(Σk)Z
T
k . (2.22)

For a matrix A ∈ Rm×n with rank r, the thin SVD refers to a singular value decomposition,
according to,

A = UAΣAV
T
A , (2.23)

U =
[
u1 ... ur

]
∈ Rm×r, (2.24)

V =
[
v1 ... vr

]
∈ Rn×r, (2.25)

and ΣA is an r × r diagonal matrix of the singular values.
For a set of parameters p⃗q, the mapping onto this space can be interpolated with

T (p⃗q) = ΣK
k=2L(p⃗k)Tk, (2.26)

where L(p⃗) is an interpolation weight dependent on the problem parameters. The mapping
from the interpolation space back to the space where the bases originated from is performed
with

T (p⃗q) = UqΣqZ
T
q −→ (thin SVD), (2.27)

Vq = V1Zq cosΣq +Uq sinΣq. (2.28)
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The basis Vq becomes the basis for the POD-ROM and is used online for prediction.
Returning to Equation (2.20), note that if the function R is linear with respect to x and

µ, the complexity of the POD-ROM model can be effectively reduced, resulting in

M̂
dx̂

dt
+W TAV x̂+W TC∆µ = 0,

M̂
dx̂

dt
+ Âx̂+ Ĉ∆µ = 0, (2.29)

where A is the linearization of R about the reference state, C is the linearization of R
about some reference input, ∆µ is the change in the input, and Â and Ĉ are the reduced
forms of the linearizations.

However, most problems of interest in the aerospace community are nonlinear. Due to
this nonlinearity, the sizes of the residual and its Jacobian often used in updating the state
to solve for x̂ are still computed at full-order complexity (i.e., the input to R is still the
same full-order size). The cost of computing these values often dominates the cost of CFD
simulations, and thus the POD-ROM model, although reducing the number of degrees of
freedom, has a small effect on the actual computational complexity of nonlinear problems
[90]. This motivated the development of hyperreduced ROMs, which aim to reduce the cost
of the residual and Jacobian calculations. The following section covers these techniques
with a particular focus on the discrete empirical interpolation method.

2.4 Hyper-reduction
Hypper-reduction refers to procedures that reduce the computational complexity of the sys-
tem itself, in addition to any reduction to the degrees of freedom through projection. These
include continuous and discrete interpolation methods (EIM/DEIM) [24, 25], the missing
point approximation [26, 27], the best points interpolation method [28], and the Gauss-
Newton with approximate tensors method [29]. The focus of this thesis is the discrete
empirical interpolation method, first introduced by Chaturantabut and Sorensen, which is
the discrete formulation the empirical interpolation method and uses techniques found in
sparse-sensing theory [25, 94]. Suppose that there is a limitation to the number of discrete
locations where the residual can be observed, and that those indices are contained in a sam-
pling matrix P =

[
e0 e1 . . . ei . . . enP−1

]
, where ei is an elementary vector with

a one at the ith observed residual and nP is the total number of observed discrete residuals.
Storing the elementary vectors in this manner allows the product of the sampling matrix
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and the residual to contain only the residual values at those locations, i.e.,

RP = P TR =


RP0

...
RPnP −1

 . (2.30)

Also suppose that there is a linear basis (U ∈ Rnx×nU ) that can be used as a low-rank
approximation of the residual, weighted by c ∈ RnU×1, given by

R ≈ Uc. (2.31)

Applying the sampling matrix to both sides yields

P TR ≈ P TUc (2.32)

If nP ≥ nU , then there is a solution for c such that the approximation is correct at the
sampling points, according to

P TR = P TUc,

c =
[
P TU

]†
P TR, (2.33)

where † indicates the inverse for nP = nµ and the left pseudo-inverse for nP > nµ. The
left pseudo-inverse is member of a class of generalized matrix inverses [95] and is defined
for a real matrix A ∈ Rm×n with m ≥ n by

A† =
[
ATA

]−1
AT , (2.34)

A†A = I. (2.35)

Multiplying both sides by U and substituting the low-rank approximation of Equation
(2.31) yields the DEIM approximation for the residual, i.e.,

RDEIM = U
[
P TU

]†
P TR, (2.36)

RDEIM ≈ R. (2.37)

Although in sparse sensor theory, any set of basis functions can serve as the residual basis,
the vectors in U are typically derived via the method of snapshots, similarly to how the
state basis vectors are derived. The benefit of using tailored basis vectors is that they
usually allow for fewer overall interpolation points in P [94]. Additionally, the residual
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snapshots can be obtain in tandem with the state snapshots S.
Combining the DEIM approximation from Equation (2.37) with the POD-ROM from

Equation (2.20), yields the DEIM-ROM model, defined with

M̂
dx̂

dt
+W TRDEIM(xr + V x̂(t),µ(t), t) = 0. (2.38)

The selection of sampling indices is important to keeping the reduced system accurate
and tractable. Generally, using more sampling indices results in better residual approxi-
mation but also at a higher cost. Thus, it is important to choose sampling points that best
approximate the residual. A greedy algorithm was originally used for selecting the DEIM-
ROM residual sampling indices where the sampling indices were chosen based on the error
of the sampling of the residual basis [25]:

Algorithm 1 Greedy Selection of Sampling Indices

Find sample index: p0 ← argmax |U0|
Update P : P ← P ∪ eP0

Update U : U ← U ∪U0

for i = 1 . . . nµ − 1 do
c← argminc̃P

TUc̃− P TUi

Compute Error: r = Ui −Uc
Find sample index: pi ← argmax |r|
Update P : P ← P ∪ ePi

Update U : U ← U ∪Ui

end for

This process can be carried out multiple times in order to create an oversampling of the
residual.

Although this process generates a sampling matrix that performs better than just ran-
domized sampling points [96], Drmac and Gugercin provide a more optimal method for
generating sampling indices by using a pivoted-QR decomposition (QDEIM) [97]. First,
the sampling indices of the greedy algorithm depends on the order of the residual basis. Re-
ordering the vectors in U may result in different sampling indices being chosen. Secondly,
Drmac and Gugercin demonstrate that the sampling error is minimized by their pivoted-QR
based method.

Column pivoting QR decomposition is a variant of the QR decomposition which de-
composes a matrix B into the product of an orthogonal matrix (Q) and an upper right
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triangular matrix (R), i.e.,

B = QR. (2.39)

Column pivoting QR performs this procedure on the matrix B, whose columns are per-
muted with the column permutation CQR, such that the diagonal components of R are
non-increasing, according to

BCQR = QR. (2.40)

This procedure is rank-revealing and numerically more stable than the standard QR decom-
position [98].

A product of the sampling error and the residual basis error is an upper bound of the L2
error of the DEIM residual, defined by

||R−RDEIM||2 ≤ ||(P TU)†||2︸ ︷︷ ︸
Sampling Error

||(I −UUT )R||2︸ ︷︷ ︸
Projection Error

. (2.41)

It is clear that the sampling indices only affect the first component of this upper bound. For
the case where nP = nµ and † is the inverse operator, the sampling error is the inverse
of the spectral radius of

(
P TU

)
. Thus choosing P to maximize the first eigenvalue of(

P TU
)

minimizes the error in the DEIM residual. The ingenuity of the QDEIM method
is the recognition that this condition is met if P are the column pivots arising from the
pivoted-QR decomposition of UT , according to

UTP = QR. (2.42)

An additional benefit to using pivoted-QR for obtaining the sampling indices is that
highly efficient and parallel pivoted-QR algorithms are standard in most scientific libraries
(SCLAPACK, MLK, etc.) [94, 97]. In most applications of DEIM, many more sampling
indices are needed for an accurate residual prediction than the rank of the residual basis,
and oversampling refers to the use of a DEIM-ROM where nP > nU . For oversampling,
the pivoted-QR decomposition of UUT yields the optimal sampling indices; however, it
should be noted that computational and memory costs of performing the pivoted-QR de-
composition of UUT is immense. The computational complexity of performing a column
pivoted QR decomposition of a matrix B is roughly O(rank(B)3). For UT , this cost is
small as long as the number of basis vectors in U is kept small. However, the rank of
UUT is equal to the high-fidelity degrees of freedom. Additionally UUT is a dense ma-
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trix, making its storage infeasible for most problems of interest. Thus for this thesis, two
separate methods are used for obtaining the sampling indices. Both begin with a pivoted-
QR of UT to obtain nµ sampling indices. The remaining indices are obtained with either
randomized sampling or with iteratively performing the pivoted-QR of UT with zeros in
the columns corresponding to the already chosen sampling.
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CHAPTER 3

Adjoint-weighted Residual Error Estimation for
POD and DEIM-ROMs

Reduced-order models inherently suffer losses in accuracy due to the low-rank approxima-
tions made for the state and projection of the system. In addition, while a priori snapshots
are used for designing ROMs, a priori information may not be suitable for assessing the
quality of ROM solutions online and adaptation thereof. Thus online error quantification is
an important feature for ROMs as it uses a posteriori information to assess the quality of
ROM solutions and drive any subsequent adaptation. This chapter introduces output-based
error estimates for DEIM-ROMs that are based on the adjoint-weighted residual error es-
timation method used for CFD analysis. In addition, fine-grain error analysis allows for
these error estimates to be used as an adaptation mechanism that prioritizes improving the
output prediction of a completed online solution efficiently. Several example applications
are demonstrated including unsteady and 3D simulations.

3.1 Current Approaches for ROM Error Quantification
Error quantification is an important factor in determining the usefulness of any ROM. For
projection-based ROMs, substantial effort has been placed in developing a posterori error
bounds [30, 32, 31, 33, 20, 43, 34]. These error bounds are constructed with many differ-
ent approaches: utilizing the error in the snapshot projection, the evolution of the truncated
portion of the basis in the FOM system, and/or the error of the output of the solution on the
original snapshot set. With a first-order Taylor expansion of the residual, LeGresley and
Alonso [35] estimated the error between a POD solution and a solution to the same prob-
lem solved with the union of the original POD basis and addition basis vectors. Applied to
a transonic flow problem, this technique was used to determine spatial regions for domain
decomposition. With a focus on control problems, Homescu, Petzold, and Serban [99] de-
veloped an error estimate based on a combination of adjoint solutions and the small sample
statistical condition estimation method. Using this estimate, they were able to determine
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regions of validity for perturbations about initial conditions where the use of POD ROMs
would be appropriate.

Error quantification for DEIM-ROMs has been restricted to the formulation of error
bounds. Chaturantabut and Sorensen first provided an a priori upper bound for the state
error in terms of the neglected singular values of the SVD decomposition of the state and
nonlinear function snapshots [41]. While their approach is useful for developing error
bounds for other sparsely interpolated methods and is theoretically insightful, it lacks ap-
plication for evaluating ROM solutions, as it is not able to distinguish between different
online solutions. The need for a posteriori error estimates for DEIM models has pro-
duced a few approaches. Wirtz, Sorensen, and Haasdonk developed rigorous a posteriroi

state and output error bounds for a general, unsteady, parameterized nonlinear system [42].
Their method relies on integrating the upper bound of the gradient of the error with the
ROM error approximated with the truncated components of the ROM. This creates sharp
error bounds for DEIM ROMs of general nonlinear PDEs; however, it lacks a mechanism
for adaptation. Feng, Mangold, and Benner applied output-based error bounds to adapting
the POD-DEIM model [44]. Based on an approach by Zhang et al. [43], the output er-
ror bound is constructed from an inequality involving an adjoint-weighted residual, where
projections of the snapshots are used to approximate a scaling of the error bound. The use
of the inequality is to avoid producing time-coupled adjoint solutions, and the need of the
projected snapshots arises from lacking access to the FOM solution for the scaling param-
eter for the inequality. The adaptation distinguishes error estimate contributions for the
POD and DEIM components of the model in order to adapt the model with additional basis
vectors. The methods developed in this thesis improve upon these ideas in several ways.
Resolving the time-coupled adjoint is important for accurately propagating error through
time. Instead of utilizing an approximation, This chapter presents the full adjoint equation
for the DEIM-ROM model and solves it to produced time-coupled adjoints and output error
estimates. Error bounds indicate the need for adaptation, but the manner of adaptation is
undetermined. The adaptation approach taken by Feng, Mangold, and Benner, as well as
many other approaches using error bounds, update the ROM system with neglected sin-
gular vectors in the order of their singular values. This can lead to inefficient adaptation.
Although the ordering of the singular values represents the added accuracy of each basis
vector for projecting the state snapshots, the ordering does not necessarily represent the
added accuracy for output prediction. By fully solving the adjoint equations, the error pro-
vided by each neglected basis vector can be localized, and the updating of the DEIM-ROM
can be performed to prioritize improving output prediction. Additionally, error contribu-
tions for the nonlinear function sampling can be provided to allow for adaptation of the
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sampling mesh.
Adjoint-weighted residual error estimation and adaptation methods quantify the error

of an output between two different model resolutions without needing to resolve the model
on the higher resolution, which can be too expensive to solve. Assuming that the model
approaches the “true” solution with increasing resolution, the error estimate between a
coarse and fine-resolution model is an approximation of the true error of the coarse model.
Errors can be localized in the high-resolution space in order to identify locations where
the resolution of the coarse-space model can be increased in order to efficiently adapt
the model. Adjoint-weighted residuals have been applied to a variety of fluid dynamics
problems [45, 46, 47, 100, 101, 102] and have found particular usefulness for adapting
mesh resolution, approximation order, and the basis used in the finite element method. For
projection-based models, the resolution of a model is dictated primarily by the rank of
the state basis V , residual basis U , and the sampling matrix P . Thus, the derivation of
adjoint-weighted residual error estimation and adaptation is made with these spaces. The
first application of adjoint-weighted residuals for POD models was performed by Meyers
and Matthies but by solving the full-order sized adjoint problem and without adaptation
[37]. Carlberg also apply adjoint-weighted error estimates for ROM adaptation through
vector splitting but without hyper-reduction [38]. Yano utilized adjoint-weighted residual
error estimates to formulate goal-oriented ROMs, composed of the reduced basis method
and the empirical quadrature procedure [39, 40]. This thesis extends those ideas to the
DEIM-ROM, formulates efficient error localization of the three DEIM-ROM metrics, and
demonstrates error estimation and adaptation of POD and DEIM ROMs for several prob-
lems.

3.2 Adjoint-weighted Error Estimation for Finite Ele-
ment Problems

Up to this point, a generic model defined with Equation (2.1) was used to derive the POD
and DEIM-ROMs. This is useful as it allows for these methods to be applicable to any
problems of the same structure but arising from different physics and discretizations. How-
ever, for this section, a basic finite element discretization will be defined in order to give
context to the discussion of adjoint-based error estimation and the problem setting of the
FOMs used in this thesis. Fluid dynamic problems are dictated by the conservation of mass,
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momentum, and energy, which all take the same form of

∂x

∂t
+

D∑
d

∂F (x,∇x)
∂rd

= 0, (3.1)

where x represents the conserved quantities (mass, momentum, energy, etc.), F is the flux
of the conserved variable, D is the number of spatial dimensions, and rd is the dth spatial
direction. Furthermore, the flux can be broken into convective and diffusive components,
resulting in

F (x,∇x) = F c(x)− F d(x,∇x). (3.2)

Qualitatively, these equations mean that the rate of change of a conserved quantity in a con-
trol volume is equal to the balance of the rate at which the conserved quantity enters and
exits that space due to the bulk movement of the quantity and the diffusion of the quantity
in the presence of a spatial gradient. Many CFD solvers utilize these equations to derive
solutions for these quantities to fluid dynamic problems in some space of interest – i.e.,
an area for 2D or a volume for 3D. The finite element method (FEM) breaks the space of
interest into a composition of finite elements that are each modeled with Equation (3.1)
along with equations of state and equations for non-conserved variables such as pressure
and temperature for closure. The state x in some element Ωi is approximated with the
linear combination of basis functions Φ(r⃗) (e.g., Legendre polynomials) spatially defined
for the coordinates r⃗. A globally continuous solution can be obtained if the continuity of
the observed quantities is enforced across neighboring elements with a globally continuous
set of basis functions, which then yields the continuous Galerkin (CG) method; however,
the continuous Galerkin method may not be the best choice for many problems in the field
of aerospace. For problems with strongly advective physics, continuous Galkerin formula-
tions may lose accuracy and stability without additional modifications.The discontinuous
Galerkin method (DG) does not enforce continuity across neighboring elements; instead,
“jumps” of the state across elements are permitted and dealt with special treatment of the
flux terms. For the DG formulation, the basis functions are defined within an element,
according to

xΩi
(r⃗) ≈

np∑
j

XΩ,jΦj(r⃗), (3.3)
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where np is the number of basis functions, XΩ,j are the coefficients on the j
th basis func-

tion of the domain Ω, and Φj is the j
th basis function. Equation (3.1) and Equation (3.2)

are transformed into their weak formulation by first substituting the basis representation of
the state, multiplying the system by test functions to obtain a square system which equal
the trial basis for the Galerkin formulation, and then integrating by parts over each ele-
ment. Since the state is discontinuous across element boundaries, the fluxes across element
boundaries are modeled as Riemann problems across each interface of neighboring ele-
ments. For this thesis, the convective portion of the flux is modeled with the Roe flux
formulation [103], and the diffusive portion of the flux is modeled with the second form of
the Bassi-Rebay formulation (BR2) [104]. The resulting system is

M
dXΩ

dt
+R(XΩ) = 0, (3.4)

where Mj,k =
∫
Ω
ΦT

j ΦkdΩ is the mass matrix and R is the spatial residual formed by the
balancing of the convective and diffusive fluxes.

Equation (3.4) is in a semi-discrete form, where the spatial terms have been discretized
(i.e., with the DG state representation) and the temporal term remains continuous. There
are various approaches to discretizing the time term; however, for this thesis, the temporal
derivative is approximated with finite differencing and the solution is marched forward in
time using the second-order backwards difference formulation (BDF2). BDF2 is part of a
class of multistep time-marching methods. A mutlistep method applied to Equation (3.4)
yields

M
1∑

k=1−K

[
αkXn+k

Ω

∆t

]
+

1∑
k=1−K

[
βkR(Xn+k

Ω , tn+k)
]
= 0, (3.5)

where k is the time node index, αk and βk are the corresponding , K is the number of steps
taken, Xn

Ω is the latest state information, and the Xn+1
Ω the next state to be solved. The

choices of αk and βk determine the nature of the time-marching scheme, but for generality
α1 = 1. For β1 = 0, the residual of the Xn+1

Ω state is not involved. These methods are
known as an explicit scheme, as a solution for Xn+1

Ω can be explicitly obtained. Although
explicit scheme can produce solutions efficiently, the time step required for stability is
constrained to spatial discretizations i.e., a finer mesh size will require finer time steps.
This is problematic for fluid dynamics problems as important fluid phenomena occur at
very large and very small spatial and time scales. Thus, to accurately predict CFD solutions,
a very fine mesh needs to be resolved at a very fine time step, which can be prohibitively
expensive. Implicit time marching schemes resolve Equation (3.5) with involvement of the
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residual at the next time step (i.e., βn ̸= 0). This makes the solution Xn+1
Ω arise from

solving a nonlinear problem involving the spatial residual and makes a spatial coupling
across elements. This can be defined as the spatial-temporal residual, defined by

R̄(Xn
Ω) = M

αnXn
Ω

∆t
+R(Xn

Ω) + b, (3.6)

where b is a constant vector that is a function of the states at previous time nodes. This
allows for larger time steps to be taken, even for finer meshes. The coefficients for the mul-
tistep scheme are determined by the finite differencing approximation used for the temporal
derivatives in (3.5). Table 3.1 contains the coefficients for various multi-step schemes that
are discuss in this thesis.

Method Order α−2 α−1 α0 α1 β−2 β−1 β0 β1

FE 1 0 0 −1 1 0 0 1 0

BDF1 1 0 0 −1 1 0 0 0 1

BDF2 2 0 1
2
−2 3

2
0 0 0 1

Table 3.1: Coefficients for multistep schemes discussed in this thesis.

For first-order schemes, an initial condition is given that defines the state at the start
of the simulation. Because all of the required previous time-node information is available,
these schemes are considered self-starting schemes. Higher-order schemes that use more
than one previous time node state for constructing the temporal finite difference are not
self-starting, but a self-starting scheme can be used to generate the requisite stencil needed
by the higher-order scheme to begin. For this thesis, the backwards Euler method is used
to generate the state stencil to start BDF2.

3.2.1 Discrete Adjoints for Steady Problems
The adjoint is the sensitivity of some scalar output y from Equation (2.1) to perturbations
of the residual. This is defined mathematically as

Ψ =
δy

δR̄
. (3.7)

where each entry of Ψ represents the sensitivity of the output y to perturbation of the same
entry in R. For steady problems, only the sensitivity of the output with respect to the spatial
residual is of concern, and the bar is dropped.

An equation for the adjoint can be derived by considering the cascading effect of small
perturbations. A change in the input to the system, µ, creates a change in the residual,
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which requires a change in the state to drive the residual to zero, and this change in the
state creates a change in the output,

µ0 = µ0 + δµ (3.8)y
δR = R(x0,µ0 + δµ)−R(x0,µ0) (3.9)y

x0 = x0 + δx (3.10)y
δy = y(x0 + δx,µ0 + δµ)− y(x0,µ0) (3.11)

Beginning with a steady system, perturbations to the input of the problem will create a
change of the residual away from zero. This perturbation of the residual can be approxi-
mated linearly with

R(x0,µ0) +
∂R

∂µ

∣∣∣∣
x,µ

δµ = δR, (3.12)

where x0 is the solution of the model with the initial input µ0 and δµ is the perturbation of
the input.

Driving the residual to zero yields the solution to the system at the perturb input,

R(x0,µ0) +
∂R

∂µ

∣∣∣∣
x,µ

δµ+
∂R

∂x

∣∣∣∣
x,µ

δx = 0. (3.13)

Subtracting Equation (3.13) from Equation (3.12) reveals that the change in the state caused
by perturbations to the input can be approximated by the inverse of the Jacobian of the
system, according to

−∂R

∂x

∣∣∣∣
x,µ

δx = δR,

δx = −

[
∂R

∂xh

∣∣∣∣
x,µ

]−1

δR. (3.14)

Combining this result with the linearization of the output yields the change in the output
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that the residual perturbation causes,

y(x0 + δx,µ0 + δµ) = y(x0,µ0) +
∂y

∂x

∣∣∣∣
x,µ

δx, (3.15)

y(x0 + δx,µ0 + δµ) = y(x0,µ0)−
∂y

∂x

∣∣∣∣
x,µ

[
∂R

∂x

∣∣∣∣
x,µ

]−1

δR, (3.16)

y(x0 + δx,µ0 + δµ)− y(x0,µ0) = −
∂y

∂x

∣∣∣∣
x,µ

[
∂R

∂x

∣∣∣∣
x,µ

]−1

︸ ︷︷ ︸
ΨT

δR. (3.17)

Recognizing that the change in residual is equal to only the residual of the original solution
with the perturbed input, since the baseline residual is zero, we have

δR = R(x0,µ0 + δµ)(((((((−R(x0,µ0), (3.18)

y(x0 + δx,µ0 + δµ)− y(x0,µ0) = ΨTR(x0,µ0 + δµ). (3.19)

The adjoint equation for steady systems can be obtained from Equation (3.17),[
∂R

∂x

]T
Ψ+

[
∂y

∂x

]T
= 0. (3.20)

Up to this point, the perturbed inputs are not defined. Parameters that influence the
resolution of the problem can take the place of these inputs and these derivations will still
hold. Given the adjoint in the finer resolution space, an estimate of the change of the output
caused by changing the problem resolution is given by an adjoint-weighted residual,

yh(xh)− yh(x
H
h ) = ΨT

hRh(x
H
h ), (3.21)[

∂Rh

∂xh

]T
Ψh +

[
∂y

∂xh

]T
= 0. (3.22)

where h and H refer to the fine and coarse-spaces, xH
h is the injection of the coarse-space

solution xH into the fine-space, and xh is the fine-space solution. The key benefit of
utilizing adjoint-weighted residual error estimates is that only the coarse-space solution and
fine-space adjoint are required to obtain an estimate of the output difference between the
fine and coarse-spaces. With the assumption that the “true” (infinite-dimensional) solution
is approached with finer resolution, the error estimate between a coarse and fine-space is
also an estimate of the error between the coarse-space solution and the “true” solution. The
following section derives adjoint-weighted residual error estimates for unsteady systems.
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3.2.2 Discrete Adjoints for Unsteady Problems
In a fully-discrete, multi-step time integration setting, Equation (3.1) becomes

M

∑m
n=0 a

nxn

∆t
+R(xm,µ) = 0, (3.23)

where ∆t is the time-step size, the superscripts n ≥ m refer to time-nodes in the temporal
discretiziation, and an refers to the weight used for the specific time-marching scheme
used. For example, the backwards Euler method uses, am−1 = −1, am = 1, and an = 0 for
all n < m − 1. The second-order backwards Euler method uses am−2 = 1

2
, am−1 = −2,

am = 3
2
, and an = 0 for all n < m − 2. These weights are derived from finite-difference

approximations. For a problem being solved between times t0 and tf , the size of the time
step is

∆t =
tf − t0
Nt − 1

, (3.24)

where Nt is the number of time-nodes. Equation (3.23) can be written as a temporal resid-
ual with

R̄m(xn,µ) = 0. (3.25)

Additionally, for this thesis, unsteady adjoint-weighted residuals error estimates are made
for time-integrated outputs. These can be defined by

ȳ =

∫ tf

t=t0

b(t)y(x,µ)dt, (3.26)

where the integral for fully-discrete problems is typically temporally-discretized with the
same discretization as the primal problem,

ȳ =
Nt∑
n=0

bnxn∆t, (3.27)

where b(t) is a time-dependent integration weight function, and bn are a weights at time
node n composed of the product of the time-dependent weight function and quadrature
weights. As in the steady case, the unsteady adjoint is the sensitivity of the unsteady output
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to perturbations of the unsteady residual,

Ψ̄ =
∂ȳ

∂R̄
. (3.28)

Similarly to Section 3.2, a perturbation analysis can be used to derive the discrete ad-
joint for unsteady problems. Perturbations to the input of the system create perturbations
to the spatial-temporal residual necessitating changes in states at all times after the pertur-
bation, creating a change in the output trajectory,

δµ −→ δR̄m −→ δxn −→ δȳ. (3.29)

The adjoint equation is similar to its steady equivalent Equation (3.20) but is substantially
larger as there are Nt adjoints of size nx, according to

Nt∑
m=1

[
∂R̄m

∂xn

]T
Ψ̄m +

[
∂ȳ

∂xn

]T
= 0. (3.30)

The intractability of this problem can be overcome by taking advantage of the structure
of the linear system, as is done with the initial primal solution. Although Equation (3.23)
forms Nt nx × nx linear systems, solutions are obtained for each time node sequentially,
beginning at the initial time node and going to Nt. This is done as solutions at any time
node only depend on solutions from previous time nodes, and thus the full linear system is
a lower-triangular matrix, as seen in Figure 3.1. In the adjoint system there is a transpose of
the linearization of the state. Thus, the linear operator in the time-dependent adjoint system
is an upper-triangular matrix and is most efficiently solved with backwards substitution
– i.e., marching backwards in time starting from Nt and going to the initial time node.
Backwards-in-time marching of the adjoint solution can be conveniently performed with a
forward-in-time marching framework by substituting a reverse time variable τ = tf − t,

M
∂Ψ̄h(τ)

∂τ
+

[
∂Rh

∂xh

]T
Ψ̄h(τ) +

[
∂ȳ(τ)

∂xh

]T
= 0, (3.31)

with the terminal condition,

Ψ̄h(t = tf ) = M−1 ∂ȳ

∂xh

T

. (3.32)
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(a) Primal Jacobian ∂R̄
∂x (b) Adjoint Jacobian

[
∂R̄
∂x

]T
Figure 3.1: Jacobian of primal and adjoint systems. Each ∗ is a nx × nx block matrix. Due to
the structure of these Jacobians, the primal system is most efficiently solved forward in time (i.e.,
forward substitution) and the adjoint system is most efficiently solved backwards in time (backwards
substitution).

Finally, the unsteady output error estimate is,

ȳHh − ȳh =
Nt∑
n=0

wn
[
Ψ̄TRh

]n
∆t, (3.33)

where wn are weights determined by the quadrature rule used (e.g., trapezoidal rule).

3.3 Adjoint-weighted Error Estimation for Projection-
based ROMs

The previous section presented the derivation of adjoints for a generic conservative system.
A similar approach can be taken with projection-based ROMs. This was first introduced
for POD by Meyers and Matthies [37]. This thesis extends these methods to DEIM hy-
perreduction. First, recognize that in the previous discussion, the error estimates pertain to
different mesh resolution or approximation order in the discretization. For projection-based
ROMs the analogous resolution of the problem can be taken as the rank of the state basis
(nV ), the rank of the residual basis (nU ), and the rank of the DEIM sampling matrix (nP ).
For the sake of simplicity, consider a general projection-based ROM residual defined by

RROM = CROMR(V x̂) :

CROM = V T (POD),

CROM = V UT
[
P TU

]†
P T (DEIM).

(3.34)

where CROM ∈ RnV ×nx is a linear operator that transforms the FOM residual into the ROM
residual. A coarse ROM solution (x̂HnV

) arises from driving the coarse ROM residual to
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zero, i.e.,

RROM,H(VHV
x̂HV

) = 0. (3.35)

The coarse solution can be injected into a finer POD approximation space. This is a lossless
injection, as the coarse POD basis is a subspace of the finer POD basis (VH ⊂ Vh),

x̂hV
HV

= V T
hV

VHV
x̂HV

,

x̂hV
HV

=

[
x̂HV

0hV −HV

]
. (3.36)

Additionally, for DEIM, the system itself can be injected to a finer system space by for-
mulating a ROM linear projector with a greater number of residual basis vectors and/or
sampling indices. This is also a lossless injection as the state representation is unchanged.

All three types of fine-space injections cause a perturbation of the residual through
modifying CROM while R remains unchanged. This can be approximated linearly resulting
in

RROM,h(VhV
x̂hV
HV

) +
∂RROM,h

∂hV

δhV +
∂RROM,h

∂hU

δhU +
∂RROM,h

∂hP

δhP = δRROM. (3.37)

The fine-space ROM residual can be made zero with the solution to the fine-space ROM
problem. The linearization of the fine-space ROM with respect to the fine-space state can
be used to approximate the change in the perturbed residual needed to drive the problem to
zero,

δx̂hV
= x̂hV

− x̂hV
hV

, (3.38)

RROM,h(VhV
x̂hV
HV

) +
∂RROM,h

∂hV

δhV +
∂RROM,h

∂hU

δhU

+
∂RROM,h

∂hP

δhP +
∂RROM,h

∂x̂h

δx̂hV
= 0. (3.39)

This state perturbation also causes a change in the output,

y(VhV
x̂hV
HV

) +
∂y

∂x̂hV

δx̂hV
= y(VhV

x̂hV
). (3.40)

Subtracting Equation (3.37) from Equation (3.39) and solving for the change in the state
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yields

δx̂hV
= −

[
∂RROM,h

∂x̂h

]−1

δRROM. (3.41)

Like with the FOM derivation, this equation can be used with the linear approximation of
the fine-space output to obtain an output error estimate. Recognizing that the change in the
residual is equal to the residual evaluated with the coarse ROM solution injected into the
fine-space yields the output error estimate for the ROM system, defined by,

y(VhV
x̂hV
HV

)− y(VhV
x̂hV

) = − ∂y

∂x̂hV

[
∂RROM,h

∂x̂h

]−1

︸ ︷︷ ︸
ΨT

ROM

δR,

y(VhV
x̂hV
HV

)− y(VhV
x̂hV

) = ΨT
ROMRROM,h(VhV

x̂hV
HV

), (3.42)

y(VhV
x̂hV
HV

)− y(VhV
x̂hV

) = ΨT
ROMCROMRh(VhV

x̂hV
HV

). (3.43)

Finally, the ROM adjoint equation is[
∂ [CROMRh]

∂x̂hV

]T
Ψh +

[
∂y

∂x̂hV

]T
= 0. (3.44)

Applying the product and chain rules to the terms in Equation (3.20) with ∂CROM
∂x̂h

= 0,
yielding

∂ [CROMRh]

∂x̂hV

= CROM
∂Rh

∂x
VhV

,

∂y

∂x̂hV

=
∂y

∂x
VhV

,

which further yields [
CROM

∂Rh

∂x
VhV

]T
ΨROM +

[
∂y

∂x
VhV

]T
= 0. (3.45)

Equation (3.45) is a useful expression as the first term is the Jacobian of the ROM system
and the second term is a product of the FOM output linearilzation and the ROM state basis.

Deriving unsteady adjoints for ROM systems can be approached similarly to how un-
steady adjoints were obtained for the FOM. Changes to the relative metrics for the ROMs
has influence on the residual, solution, and output trajectory at all times after the perturba-
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tion,

δ(nV , nU , nP ) −→ δRm −→ δxn −→ δy(t). (3.46)

This forms the analogous discrete adjoint system for unsteady ROMs, according to

Nt∑
m=1

[
∂
[
CROMR̄

m
h

]
∂x̂n

hnV

]T

Ψ̄m
ROM +

[
∂ȳ

∂x̂n
hnV

]T

= 0. (3.47)

Applying the chain and product rules to Equation (3.47) yields

Nt∑
m=1

[
CROM

∂R̄m
h

∂xn
VhnV

]T
Ψ̄m

ROM +

[
∂ȳ

∂xn
VhnV

]T
= 0. (3.48)

Backwards-in-time marching efficiently solves the above system due to having the same
upper triangular structure that characterizes the FOM unsteady discrete adjoint system.
Using the reverse time variable τ = tf − (t− t0) yields

M̂T dΨROM

dτ
+

[
CROM

∂Rh

∂x
VhnV

]T
ΨROM −

[
∂y

∂x
VhnV

]T
= 0, (3.49)

which is solved with the terminal condition,

Ψ̄h(t = tf ) = M̂−T

[
∂ȳ

∂x
VhnV

]T
. (3.50)

For the Galerkin formulation of a finite-element discretization, the mass matrix is symmet-
ric (i.e., MT = M . This is also true for the Galerkin formulation of POD and DEIM;
however, if a Petrov-Galerkin ROM is used, the reduced mass matrix is not symmetric, and
the adjoint system is solved with this distinction taken into account.

Finally, the unsteady output error estimate for the ROM is

ȳHh − ȳh =
Nt∑
n=0

wn
[
Ψ̄T

ROMCROMRh

]n
∆t, (3.51)

where wn are weights determined by the quadrature rule used (e.g., trapezoidal rule).

3.4 POD and DEIM Adaptation
Various POD and DEIM adaptation techniques have been employed to modify the state
basis, residual basis, and sampling indices. These techniques can be separated into those
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that utilize precomputed adaptation search spaces for additional basis vectors and/or sam-
pling indices, and those that compute new basis vectors and/or sampling indices to better
approximate the problem being solved. Feng, Mangold, and Benner [44] give an example
of the former by adapting the POD state and DEIM residual basis by shifting the truncating
index based on output error bounds defined by Zhang et al. [43]. Pehertorfer and Will-
cox showed that adaptation for DEIM models can be done efficiently for the interpolation
points by comparing the error of the residual approximation at randomly chosen indices
[105], as an example of the latter. For this thesis, candidate adaptation vectors and indices
are obtained from the finer space of basis vectors and sampling indices that are truncated
when constructing the POD/DEIM ROMs. However, unlike many adaptation methods,
this approach selects additional basis vectors and sampling indices based on their output
prediction quality instead of their singular value energy content.

Error estimates defined in Section 3.3 provide a mechanism for adaptation. For full-
order steady adjoints, the inner product between the adjoints and the vector of residuals in
Equation (3.19) can be separated into its additive parts, i.e.,

ei =
∣∣ΨT

h,iRh(x
H
h )i

∣∣ , (3.52)

where Ψh,i and Rh(x
H
h )i are the ith entry of the fine-space adjoint and fine-space residual

of the injected solution, respectively. Each weighted residual indicates the amount of error
that is contributed by the corresponding degree of freedom in the fine-space discretiziation.
For unsteady adjoint error estimation, the error contributions for the fine-space degrees of
freedom can be obtained from collecting the discrete error contributions in time,

ēi =
Nt∑
n=0

wn
∣∣[Ψn

h,i]
TRn

h(x
H
h )i

∣∣∆t. (3.53)

The degrees of freedom i contributing the largest error are targeted for adaptation to obtain
a new model. This is referred to as error localization in the literature and has been used for
various applications, such as for mesh refinement, p-adaptation in finite-element methods,
and temporal refinement [106, 107, 108, 109].

This thesis uses analogs to error localization for POD and DEIM models for adaptation.
For steady POD, the injection of the coarse-space ROM solution into the fine space is
lossless, and the resulting error localization produces error contributions on the truncated
POD basis vectors, defined by
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ei =
∣∣Ψi,ROM

[
vT
i R

]∣∣ , (3.54)

where vi is the ith POD basis vector. For unsteady POD, the state basis error contribution
takes the form

ēi =
Nt∑
n=0

∣∣Ψn
i,ROM

[
vT
i R

n
]∣∣∆t. (3.55)

To adapt POD-ROMs, first error localization is performed; then the weights ei are ordered
by magnitude and the basis vectors that contribute the most to the error estimate are added
to the online ROM basis.

Unlike POD error localization, DEIM error localization is produced on multiple differ-
ent metrics: the state basis size, the residual basis size, and the total number of sampling
indices. The error estimates and adjoints for DEIM are constructed with the injection of the
solution and system into the full fine-space (i.e., where all three metrics are finer). These
adjoints are then used for error localization; however to isolate the error produced by the
individual metrics, error localization only occurs in partial fine-spaces – i.e., where only
the metric being analyzed is fine and all other metrics are kept coarse. For steady-state, this
is defined as

ei,V =
∣∣∣Ψi,ROM

[
viUHU

[
PHP

UT
HU

]†
P T

HP
R
]∣∣∣ , (3.56)

ei,U =
∣∣∣[Ψi,ROMVHV

]i

[
uT

i

[
PHP

UT
hU

]†
P T

HP
R
]
i

∣∣∣ , (3.57)

ei,P =

∣∣∣∣[Ψi,ROMVHV
UHU

[
PhP

UT
HU

]†]
j

[
pT
i R

]∣∣∣∣ , (3.58)

and for unsteady cases as

ēi,V =
Nt∑
n=0

∣∣∣Ψn
i,ROM

[
viUHU

[
PHP

UT
HU

]†
P T

HP
Rn

]∣∣∣∆t, (3.59)

ēi,U =
Nt∑
n=0

∣∣∣[Ψn
i,ROMVHV

]
i

[
uT

i

[
PHP

UT
hU

]†
P T

HP
Rn

]
i

∣∣∣∆t, (3.60)

ēi,P =
Nt∑
n=0

∣∣∣∣[Ψn
i,ROMVHV

UHU

[
PhP

UT
HU

]†]
j

[
pT
i R

n
]∣∣∣∣∆t, (3.61)

where ui is the ith residual basis vector, pi is the ith column of P , and i and j on the outside
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of matrix products indicate the ith or j th column or row of that product. The full fine-
space adjoint has been used in adjoint-weighted residual error estimation for fluid systems
[110]. The overall error estimate can be used to assess the quality of the ROM solutions
and criteria for adaptation. Once the need for adaptation is determined, the relative sizes of
the error contributions of the metrics derived from error localization are more important for
adaptation than the absolute sizes, which would require adjoint solutions for each partial
fine space. The process for error estimation and adaptation of DEIM models is shown in
Algorithm 2.

Algorithm 2 Error Estimation and Adaptation for DEIM-ROM models

Beginning with coarse-space ROM: rank (V ) = HV , rank (U) = HU , and rank (P ) =
HP

Iteration← 0
while Iteration < Max Iteration do

Solve ROM and obtain coarse-solution, xH

Inject ROM into overall fine-space and obtain overall fine-space adjoints with Equa-
tion (3.45), Ψh,ROM

Use overall fine-space adjoint and state injection to find error estimate Ey with Equa-
tion (3.40)

if Ey > tolerance then
break

end if
Localize errors using Equation (3.56) –Equation (3.58) or Equation (3.59)–Equation

(3.61)
Individually sort localized errors ei,V , ei,U , and ei,P by magnitude: si,V , si,U , and

si,P .
Update ROM metrics:
V ←

[
V vs0,V ... vsk,V

]
U ←

[
U us0,U ... usl,U

]
P ←

[
P ps0,P ... psm,P

]
Update coarse-space sizes: HV ← HV + k, HU ← HU + l, HP ← HP +m
Iteration← Iteration +1

end while

3.5 Example Applications of Error Estimation
The following section demonstrates the techniques developed in this chapter on three prob-
lems: error estimation of a 2D scalar advection-diffusion problem, error estimation and
adaptation on a 3D wing undergoing forced rigid plunging, and error estimation and adap-
tation of a pitching and plunging airfoil undergoing flow with compressible Navier-Stokes
physics. The first of these exercises is meant to verify the theory and implementation of

40



these adjoint error estimates for a problem whose output and residual are linear with respect
to the state. The second exercise is meant to test the error estimates and adaptation mecha-
nism on a problem whose outputs and residual are nonlinear with respect to the state. The
final exercise is meant to demonstrate the benefits of refinement driven by output prediction
over singular value energy content.

3.5.1 Steady-state Scalar Model
The first test case to demonstrate our ROM error estimation technique is a scalar advection-
diffusion system in a square domain, on a uniform grid. The governing equation is

∇ · (v⃗x)− ν∇2x+ S = 0, (3.62)

where v⃗ is the velocity field of the scalar quantity x which has a diffusivity of ν and a source
S. The mesh consists of 272 quadrilateral elements, on which the state is approximated
with bi-linear Lagrangian polynomials. 2D bi-linear DG states have 4 degrees of freedom,
resulting in 2916 degrees of freedom for the entire problem. The length of the sides of
the domain is 3 units. State snapshots were obtained by varying the flow direction, α,
in the range [0◦, 90◦] with a velocity magnitude of 1. The boundary conditions are all
homogeneous Dirichlet (zero), and a constant unit source is added to the equation. The
diffusivity is ν = 0.01, for a domain-based Pèclèt number of 100. The target output is heat
flux through the right boundary.

(a) α = 0◦ (b) α = 45◦ (c) α = 90◦

Figure 3.2: Solutions to scalar test problem.

Solutions to this system were generated with xflow – an in-house, high-order DG
solver [111]. 91 snapshots were taken with even sampling of the internal flow angle. 99.9%
of the total singular value energy is contained in the first 15 singular values. Each half-
angle within the training domain is used for testing the POD and DEIM ROMs. Figure 3.3
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shows a plot of the singular values as well as the heat flux of the full-order system and its
prediction by a POD-ROM using various numbers of basis vectors.

(a) σ and cumulative sum (b) Output predictions

(c) Average ROM output error

Figure 3.3: Solution for the scalar advection diffusion problem. The heat flux of the right boundary
for each ROM model is displayed; additionally the average absolute heat flux error of each model
is shown.

The adjoint-weighted residual techniques shown earlier in this chapter are used to con-
struct heat flux errors for the solutions to different size POD with a fine-space of 91 basis
vectors. Since the residual and output are linear with respect to the state, the true errors and
the estimated errors should match exactly, as shown in Figure 3.4.
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(a) HnV
= 5 (b) HnV

= 15

(c) HnV
= 30 (d) HnV

= 75

Figure 3.4: Error estimates of the output between coarse-space reduced models with HnV
basis

vectors and a fine-space reduced model with 91 basis vectors.

A DEIM model was made with the state basis from POD, a residual basis arising from
the decomposition of residual snapshots, and sampling points obtained from the greedy
procedure in Algorithm 1. Error estimates for these models are then obtained with respect
to fine-space DEIM models, which increased each of the metrics individually and all three
together. The true error between the coarse-space DEIM outputs and the fine-space DEIM
solution was also computed, and as can be seen in Figure 3.5, the error estimates match the
true error exactly. Once again, the exactness of the error estimates on this problem verifies
both the implementation and theory underlying this chapter.
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(a) V (b) U

(c) P (d) V , U , and P

Figure 3.5: Error estimates of the output between coarse-space DEIM models. The caption of
the plot indicates which metric the error estimation was made. A DEIM model with those metrics
coarse was solve while the other metrics were their fine-space size. The coarse-space sizes were
HnV

= 20, HnU
= 40, and HnP

= 80. The fine-space sizes were hnV
= 40, hnU

= 80, and
hnP

= 160.
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3.5.2 3D Wing with Motion

3.5.2.1 Mesh Description

In the previous test case, the implementation of error estimates for POD and DEIM models
was verified on a relatively tractable problem with benign physics. The following example
explores the error estimation and adaptation methods on a more complex fluid model. This
problem uses a high aspect-ratio wing configuration of the XRF1 model (XRF1-HARW).
The XRF1 is an Airbus provided industrial standard multi-disciplinary research testcase
representing a typical configuration for a long range wide body aircraft. The XRF1 research
testcase is used by Airbus to engage with external partners on development and demon-
stration of relevant capabilities/technologies. The XRF1-HARW wing configuration was
initially obtained with geometry optimization targeting the fuel efficiency, selected stress
measurements, and buckling [112]. Several maneuvers and steady flight conditions were
used as the testing conditions for the optimization with solutions obtained with RANS aero-
dynamics. The wing from the optimized full-body configuration was then isolated, and a
mesh was generated for its use in this model problem. ADFlow [113], a multi-block, struc-
tured mesh, fluids-structure solver was used for the optimization. Images of the wing can be
seen in Figure 3.6. The mesh has 14670 hexahedral elements, with large off-wall elements
to facilitate efficient Euler solutions. The state inside each element is approximated with
a second-order Lagrangian polynomial basis. The number of terms for each of the state
polynomials is 10. With five states (density, three momenta, and energy) each element has
50 degrees of freedom or 733,500 total degrees of freedom in the entire mesh.

3.5.2.2 Model Description

Using xflow , unsteady inviscid solutions of the XRF1-HARW wing model were gener-
ated under transonic conditions and vertical plunging of various depths and frequencies.
The freestream conditions were Mach 0.7 and 0◦ angle of attack. Two reduced frequencies
were used for vertical plunging in order to compare the ROMs performance on more and
less excited flow: 0.025 (low frequency) and 0.1 (high frequency). The reduced frequen-
cies are based on the root semi-chord croot. The period of the oscillation T is related to the
reduced frequency by

T =
2πcroot

k
∣∣∣V⃗ ∣∣∣ =

1

f
, (3.63)

where
∣∣∣V⃗ ∣∣∣ is the freestream velocity, and f is the linear frequency.

Each frequency dataset had five different plunging depths (aplunge): 1.562%, 7.639%,
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(a) Top view of the mesh
(b) Mid-span cut of an Euler mesh

(c) Horizontal view of the wing

Figure 3.6: XRF1-HARW wing-only (distorted) mesh.

13.02%, 18.63%, and 25% of the root chord. The simulations started from a steady-state
solution of the wing without any motion or displacement. The motion was then exponen-
tially ramped up to the full motion, achieving 63.21% of the full motion by the end of the
first oscillation and then 99.97% of the full motion by the end of the second oscillation.
The full description of the motion is

∆y(t) = a(t)
[
1− exp−( t

T )
3]

, (3.64)

a(t) = aplunge sin (2πft+ ϕ) , (3.65)

where ϕ is the phase of the plunging. Figure 3.7 displays an example of the exponential
ramp function used for this demonstration. Each training configuration was solved for four
oscillations with 50 time steps per oscillation. The final oscillation was used for training,
and the first three transient cycles were discarded. With the 50 samples for each of the five
plunging depths, all ROMs were trained with 250 snapshots. The ROMs were tested on a
plunging depth of 21.82% of the root chord, which is not in the training set. This value
was chosen as it is the midpoint between the two largest sampled plunging depths. The
steady solution of the wing-only model contains regions of supersonic flow and, as shown
in Figure 3.8, a resulting shock near the tip of the wing.
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Figure 3.7: An example of the exponential function that was used to ramp the motion and its
derivative.

(a) Mach number (b) Pressure

Figure 3.8: Steady-state solution of XRF1 HARW wing only model with freestream flow conditions
of 0.7 Mach number and 0◦ angle of attack.
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(a) Lift

(b) Moment

Figure 3.9: Loads from the k = 0.025 and the k = 0.10 tests from training configurations. The set
of snapshots consisted of the final period of the four period simulation shown here. The root chord
is used as the reference chord for the plunging depth of the motion.

The instantaneous lift and moment coefficients of the plunge-excited motion oscillate
about these values for both the low and high frequency cases, as seen in Figure 3.9. The
immediately noticeable effect of increasing the reduced frequency of the plunging motion
is an overall increase in load peak-to-peak amplitudes. The phase difference between the
two datasets is caused by a phase difference in the induced motions.

3.5.2.3 ROM Results

Figure 3.10 shows plots of the singular values of the POD bases of the datasets. The
singular values of the low frequency basis fall off in magnitude much earlier than the high
frequency basis singular values. This is reflected in the size of the high frequency basis,
which needs to be larger than the size of the low frequency basis to achieve the same
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(a) Singular value (b) Energy content of basis vectors

Figure 3.10: Singular values and percent of total singular value energy associated with basis vectors
of the low frequency and high frequency datasets.

singular value energy level, ϵ. To capture ϵ = 95% of the singular value energy, the first
2 and 3 basis vectors are needed for the low and the high frequency bases, respectively.
This gap grows with energy level: for ϵ = 99% the low frequency basis needs 3 vectors
and the high frequency basis needs 7 vectors; for ϵ = 99.9% the bases need 7 and 26
vectors; for ϵ = 99.99% the bases need 15 and 51 vectors, respectively. This phenomenon
is not caused specifically by the increase in reduced frequency but rather by the indirect
increase in nonlinear physical behavior of the system. Apart from the small increase in
computational cost, an issue that arises with the use of more basis vectors is the stability of
the model may be reduced [20].

3.5.2.4 ROM Solutions

Due to the ROMs being constructed from only the oscillatory portion of the motion, an
initial guess that had little or no transient features is needed. However, this initial guess
cannot be obtained from the FOM as it would defeat the purpose of the ROM. Thus, in-
terpolation was used to obtain an initial guess. The initial time-steps of the snapshots (i.e.,
the first time-step of the 4th oscillation in Figure 3.9) were projected with the state bases,
and then the initial guesses for the tests were obtained with a 2nd order polynomial fit the
coefficients of these projections with respect to their plunging depths. ROM solutions were
generated for the high frequency and low frequency models with ϵ = 95%, 99%, 99.9%
and 99.99%.

Instantaneous lift and out-of-plane moment coefficients for the POD and DEIM solu-
tions of different state basis singular value energy content are shown in Figure 3.11 and
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(a) ϵ = 95% (b) ϵ = 99% (c) ϵ = 99.9% (d) ϵ = 99.99%

Figure 3.11: POD and DEIM solutions for the k = 0.0250 testing configurations presented as CM

versus CL plots.

Figure 3.12. The DEIM models were constructed from 50 residual basis vectors and 10000

interpolation points. The snapshots for the residual basis were obtained by computing the
residual on the projection of the FOM snapshots with the state bases. To obtain more
residual snapshots, interpolated states between the projected FOM solutions were used for
computing residuals (i.e., after each state was projected with the state basis, interpolations
of their POD coefficients were made). An additional state for computing residual snapshots
was obtained by perturbing to each coefficient of the state projection with a random weight,
according to

xi,new = xi,snapshot (1 + r) , (3.66)

r ∈ [−0.05, 0.05]. (3.67)

Generally speaking, the ROMs improve in accuracy as the energy in the state basis
increases. The final time lift and moment errors, as seen in Figure 3.13, in the DEIM
models were on par with those in the POD models for the same state basis configuration
despite the approximated residual. As mentioned before, increasing state basis size can
lead to instability in the ROM. These instabilities are exacerbated in DEIM models with the
reduced resolution of the residual. Consequentially, DEIM solutions could not be made for
the low frequency and high frequency models with ϵ = 99.99% and for the high frequency
model with ϵ = 99.9%.

3.5.2.5 Error Estimates

The error estimates of the final-time lift load can be seen in Figure 3.14, and the configura-
tions for these models and the fine-spaced size used for error estimation are summarized in
Table 3.2. Overall, the error estimation technique described earlier in this deliverable has
good agreement with the true error between the ROM solutions and the FOM; however,
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(a) ϵ = 95% (b) ϵ = 99% (c) ϵ = 99.9% (d) ϵ = 99.99%

Figure 3.12: POD and DEIM solutions for the k = 0.10 testing configurations presented as CM

versus CL plots.

(a) Final Lift Error (b) Final Moment Error

Figure 3.13: Normalized final load errors of ROM models compared to FOM.
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ROM POD Basis Size Residual Basis Size Number of
Interpolation Points

Low-frequency POD 2,3,7 (15) N/A N/A
High-frequency POD 3,7,26 (51) N/A N/A
Low-frequency DEIM 2,3,7 (15) 50(100) 10000(20000)
High-frequency DEIM 3,7 (51) 50(100) 10000(20000)

Table 3.2: ROM configurations for solving and error estimation. The values in parentheses repre-
sent the fine-space values of the parameters used in error estimation.

instability and inaccuracy occasionally made obtaining the error estimates more difficult.
Two key factors affecting the stability of the error estimation: the stability of the fine-

space ROM configuration when used for generating solutions and the size of the coarse-
space ROM. For example, for the high-frequency POD model, a fine-space of 51 state basis
vectors (ϵ = 99.99%) was sufficient to generate adjoints but blew up for the high-frequency
DEIM model; likewise, the high-frequency DEIM model blew up when using a state basis
of 26 vectors (ϵ = 99.9%) to compute adjoints. Both configurations were also unstable for
generating DEIM solutions, and in order to generate stable adjoints for the high-frequency
DEIM model the state basis size was reduced to 20 basis vectors.

The low-frequency DEIM model also was unable to use the largest state basis (ϵ =

99.99%) for its fine space when performing error estimation. Additionally, the size of the
coarse space affected the stability of the adjoint computation for the low-frequency DEIM
model. When the fine-space state basis was 15 vectors (ϵ = 99.99%), the 7 state basis vec-
tor DEIM model (ϵ = 99.9%) was able to generate stable adjoints whereas the adjoints for
the 3 and the 2 basis vector DEIM models (ϵ = 99/95%) blew up. However, one benefit
to reducing the fine-space state basis to 7 was the demonstration of the error estimation
for DEIM, where only the residual basis size and the number of interpolation points in-
crease in the fine space and the state basis remains fixed. As with the other configurations,
this error estimate is still fairly good, which shows potential benefits to residual basis and
interpolation point refinement for increased accuracy.

The low-frequency POD model had the poorest error estimates. This may be due to
some of the state basis vectors in the fine space adding instability to the basis. This may
also have caused the low-frequency DEIM model being unable to generate stable adjoints
when using a fine space of 15 state basis vectors.

3.5.2.6 Adaptation Results

The 95% POD and DEIM solutions were adapted using state basis and nonlinear basis er-
ror localization of their final lift error estimates. The highest error contributing state basis
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Figure 3.14: Error estimation results. The “true” value is the FOM final-time lift value. The true
error and the estimated error are normalized with the “true” final lift value (i.e.,

∣∣∣ Error
CL(tf )

∣∣∣).
vectors were added such that the adapted state bases ranks equalled the ranks of the 99%
state bases. For DEIM. the residual basis rank was increased from 50 to 75 and 5000 addi-
tional sampling indices were added with the same criterion. The problem was then resolved
with the adapted models. Overall the output trajectories of the adapted models were more
accurate than ROM models with 99% of the POD singular value energy. A comparison
of these models can be see in Figure 3.15. This demonstrates that singular value energy
may not be the only criterion for selecting basis vectors. This is especially prominent for
the output predictions of the POD and DEIM solutions on the low-frequency testing con-
figurations. The quality of the output prediction decreases when the singular value energy
increases from 95% to 99%; however, selecting basis vectors to take into account their ef-
fects on output predictions maintains quality output predictions for relatively coarse ROM
systems. This is important for configurations when increasing the size of the ROM creates
instability in the ROM solutions. For this problem, the ROMs are able to produce decent
output trajectories before the ROM size affects their stability. The next example appli-
cation demonstrates how adjoint-weighted residual error estimates can be useful when a
ROM becomes more unstable with larger sized state bases.
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(a) Low-Frequency POD (b) High-Frequency POD

(c) Low-Frequency DEIM (d) High-Frequency DEIM

Figure 3.15: Comparison of CM versus CL trajectories for the 99% singular value energy models
and models with the same rank but obtained from adaptation of the 95% singular value energy
models.

3.5.3 Pitching and Plunging Airfoil with Compressible Navier-Stokes
A pitching and plunging NACA 0012 airfoil is the last example demonstrating the use
of adjoint-weighted residual error estimates and adaptation of POD and DEIM-ROMs.
The mesh consists of 728 quadrilateral elements with linear states represented by a first-
order Lagrangian polynomial basis. The freestream flow has a Reynolds number of
Re = 500, 000 and zero angle of attack. The fluid system is modeled with compressible
URANS physics, using the Spalart-Allmaras turbulence model [114]. For this exercise,
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“seconds” refers to the nondimensional, simulation time. This is defined by

t̃ = t
c∣∣∣V⃗ ∣∣∣ (3.68)

where c is the chord length of the airfoil and
∣∣∣V⃗ ∣∣∣ is the freestream flow speed. Beginning

from a steady-state solution, forced pitching and plunging is imposed. The pitching and
plunging amplitude trajectory is defined by

α(t) = [3◦ sin(2kt)]
[
1− e−

t
T

3
]

(3.69)

h(t) =
[
0.25c sin(2kt+

π

2
)
]

︸ ︷︷ ︸
sinusoidal

[
1− e−

t
T

3
]

︸ ︷︷ ︸
smooth ramp

, (3.70)

where c is the chord of the airfoil, k is the reduced frequency of the motion, and T = 3sec
is the time constant of the exponential ramping. The freestream Mach number and the
coupled pitching and plunging reduced frequency are sampled to generate a snapshot set
for a ROM that can generate solutions to different Mach and reduced frequency configura-
tions. Four different Mach and reduced frequency configurations are used for the training
signals, and for each configuration, 10 seconds worth of simulation time data are gener-
ated with 1000 time intervals. Only the initial 6 seconds of each training signal data are
used, and a global ROM is generated from the resulting snapshot set of 2404 samples with
the mean of the snapshot set used as a reference state. In addition, the mean of the train-
ing configurations is used as the conditions for the testing set. Beginning with the initial
steady-state solution to the testing configuration, the ROMs are used to solve 10 seconds
of simulation time. Figure 3.16 displays Mach number distributions about the airfoil for
different moments in time for the testing solution. Table 3.3 summarizes all of the training
and testing configurations, and Figure 3.17 shows the coefficient of lift trajectory for each
of the training and testing configurations.

Case Mach k

Training 1 0.6000 1.3805
Training 2 0.6733 3.1416
Training 3 0.7394 0.5000
Training 4 0.8000 2.2611

Testing 0.7032 1.8208

Table 3.3: Training and testing configurations for a NACA 0012 airfoil undergoing forced mesh
motion with compressible Navier-Stokes physics.
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(a) t = 0s (b) t = 5.17s (c) t = 5.38s (d) t = 5.60s

(e) t = 5.81s (f) t = 6.03s (g) t = 6.25s (h) t = 6.46s

Figure 3.16: Solution trajectory for the testing case.

(a) Configurations (b) Lift

Figure 3.17: A plot of the training and testing configurations and a plot of the lift trajectories for
their solutions. Only the first 6 seconds are used for training, as indicated by the shading.
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(a) POD (b) DEIM

Figure 3.18: Solutions from global POD and DEIM models for the testing configuration.

3.5.3.1 ROM Solutions

The number of basis vectors needed to obtain a state basis that captures 99%, 99.5%, 99.9%
and 99.99% singular value energy is 9, 15, 21, and 27, respectively. Residual snapshots
were obtained for each state basis by computing the residual for the projected state snap-
shots and for perturbed state snapshots. The resulting DEIM models all contain 120 resid-
ual basis vectors and 200 sampling elements (27.5% of the total dofs). Figure 3.18 shows
the solutions for each of the POD and DEIM models. The performance of the ROMs is
poor. Coarse POD and DEIM solutions may be stable, but they are inaccurate. Conversely,
the fine POD and DEIM solutions begin with higher accuracy, but once the smooth ramp-
ing finishes, they quickly begin to have nonphysical errors, which result in the solution
becoming unstable. This demonstrates a robustness issue with ROMs for multi-parameter,
nonlinear systems. The solutions for this problem are nonlinear with respect to the inputs:
increasing the Mach number will inevitably result in the appearance of a discontinuity in the
flow, while the reduced frequency dictates which of the horizontal or vertical components
of the flow will dominate the solutions. As mentioned before, global ROMs will perform
poorly for this type of problem as the state basis introduces irrelevant flow characteristics
to problems that need to be dissipated effectively.

However, error estimation on the coarsest ROMs reveals the basis vectors that influence
the output error the most. An error estimate for the first peak lift value of each ROM is com-
puted. The relative error of those error estimates and error localization for POD and DEIM
for the coarsest ROMs are shown in Figure 3.19. The 4 largest error-contributing basis vec-
tors were added to the state basis of the coarsest POD-ROM and DEIM-ROM; additionally,
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(a) Error in error Estimate (b) Error Localization

Figure 3.19: Error of error estimate for increasing basis sizes and error localization for the state
basis of the POD and DEIM ROMs.

800 sampling indices were added to the sampling matrix of the coarsest DEIM-ROM.
The purpose of this problem is to demonstrate the ability of error estimation and adap-

tation to overcome robustness issues experienced by multi-parameter ROMs. A basis with
99% singular value energy is sufficient to span the snapshot space fairly well, and addi-
tional basis vectors do not contribute much to the projection error of the state basis. Thus,
a takeaway from this exercise is that a larger number of singular vectors can be chosen by
prioritizing output prediction over singular value energy. In doing so, the state basis and
ROM system can remain coarse, and hence stable, but accurate for the output of interest.

3.6 Conclusion
This chapter derives and demonstrates a novel approach to POD and DEIM error quantifi-
cation through adjoint-weighted residual error estimation. The error estimates are obtained
from solving the reduced-order versions of the full-order adjoint equations. In full-order
adjoint-based error estimation, the solutions from a coarse resolution model are injected
into a fine-resolution model. The injection inherently generates nonzero residuals that can
be used with adjoints to estimate the error between the coarse and fine space models without
needing to solve the fine-space models. Instead of mesh size or FEM state approximation
order, the reduced-order adjoint system considers the ranks of the POD state basis, the
DEIM residual basis, and the DEIM sampling matrix for enrichment and adaptation.

Three example applications are shown in this chapter. The first is a steady, scalar
advection-diffusion problem. The residual and output of this example are linear with re-
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Figure 3.20: Adapted ROM solutions.

spect to the state. Because the adjoint-weighted residual error estimates are built on linear
approximations, the expected and observed error estimates are exact. The second exam-
ple application is meant to demonstrate the application of adjoint-weighted residual error
estimates and adaptation on a large, 3D problem with nonlinear physics. After the output
adjoints for the reduced-order models are obtained, error localization can be used to deter-
mine the relative error contributions among fine-space degrees of freedom. Those degrees
of freedom with the largest error contributions are added to the coarse model.

This adaptation procedure prioritizes state and residual basis vectors based on the er-
ror in an output of interest and not purely singular value energy content. Since the POD
procedure minimizes projection error, a relatively well spanning basis may not be able
to produce good output predictions, as the reduced system might not be able to drive the
reduced solution to the desired solution. In addition, it is possible that the basis vectors
that are most crucial to the output predictions have mode numbers that are too large for the
ROM system to remain stable, while including all larger singular value energy basis vectors
before it. This was shown with the third example application, where the trade-off between
stability and accuracy prevented any stable ROM from being accurate and any potentially
accurate ROM from being stable. This was despite the coarse yet stable ROMs being able
to span the solution of the testing configuration. In order to keep the ROM system stable
and coarse but accurate for output predictions, adjoint-weighted error estimation with error
localization is able to select and add the basis vectors that are the most important to the
output predictions.
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As mentioned before, after a majority of the singular value energy has been included
in the state and residual basis, additional basis vectors do not significantly improve the
projection error of the model. This means that solutions to the ROM do not improve due
to the additional spanning quality of the ROM, but instead due to how the adapted basis
can push the state towards the desired solution. This adaptation technique improves how
the ROM projects the system itself (i.e., enrichment of the test space). In fact, the adjoint
weights themselves are weights on the test space and not the trial space. The next chapter
explores a method for modifying the test space in a Petrov-Galerkin ROM to drive the
coarse basis towards approximating the desired solution rather than refining all spaces to
retain a Galerkin formulation.
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CHAPTER 4

The State Adjoint Petrov-Galerkin ROM

The examples in Chapter 3 demonstrate a phenomenon that is common with projection-
based ROMs that use the same basis for the low-rank state approximation and the system
projection: although the basis is capable of high-fidelity state representation, the projec-
tion of the system alone is unable to yield the dynamics that obtain high-fidelity solutions
online. This was ameliorated with basis adaptation driven by a posteriori output-based
error weights. Although yielding improved output predictions, the method in Chapter 3
still makes the poor assumption that the state basis is able to accurately project the sys-
tem. Rather, using a Petrov-Galerkin approach, where the state and system projections are
allowed to differ, may yield more accurate and stable solutions. This chapter formulates
a novel approach for Petrov-Galerkin ROMs by using reduced-state adjoints to form the
system projection online. Following the derivation of the method, analysis of its stability,
computational complexity, and convergence properties is presented; applications to un-
steady problems are demonstrated; and comparisons to a commonly used Petrov-Galerkin
method is made.

4.1 Petrov-Galerkin Methods
Galerkin-ROMs (GROMs) are commonly used and have been shown to be successful in
several engineering applications [115, 116, 53]. They are also the formulation for several
other model reduction techniques, such as the continuous and the discrete empirical inter-
polation methods [117, 118] and the missing point estimation technique [27]. However,
GROMs can be susceptible to instability and inaccuracy. GROMs typically have no a pri-

ori stability guarantees [53, 52]. Additionally, numerical error in the construction of POD
bases can also be problematic for stability as the numerical error is typically non-physical
in nature [119]. Further, by enforcing that the residual only be resolved in the space of the
reduced state, GROMs can have arbitrarily large residual values in the orthogonal space of
the POD basis [55]. These unresolved residuals can create erroneous solutions, which may
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accumulate and cause instability. These are among the reasons Galerkin projection is not
seen as a viable approach to model reduction for many nonlinear systems. [54].

Because of the accuracy and stability issues present in pure Galerkin ROMs, great in-
terest is placed in studying Petrov-Galerkin ROMs. A common approach to constructing
Petrov-Galerkin ROMs, known as the least-squares Petrov-Galerkin method (LSPG), is to
formulate the test basis vectors such that the ROM residual minimization also minimizes
the L2 norm of the full-order residual [56, 55]. This method has been shown to be benefi-
cial over GPOD for a variety of problems [120, 121, 56] and is an underlying framework
for the Gauss-Newton with Approximated Tensors method [29]. However, the benefits of
LSPG are limited to implicit schemes and are sensitive to time step size. Another approach
to stabilization is through closure modeling. ROM closure attempts to model the effects
of the truncated state basis vectors on the modes that are used for the ROM, similar to
concepts in turbulence modeling where the solution is divided in to resolved (POD basis)
and modeled (kernal of POD basis) scales. Parish, Wentland, and Duraisamy developed a
closure Petrov-Galerkin, called the Adjoint Petrov-Galerkin method (APG), test basis that
arises from the Mori-Zwanzig formulation [59]. The Mori-Zwanzig formulation attempts
to model the influence of truncated modes through time with a integrated memory term
[63]; however, this memory term is typically intractably expensive to evaluate, and the
Petrov-Galerkin test basis arises through its approximation.

The underlying issue of GROMs is not that they are unable to represent the solution
space accurately. This is evident as the singular value energy criterion from Equation (2.13)
will generate a basis that well-spans the solution snapshots, and if the solution snapshots
are a well-representative sample of the solution space, then one should expect that the
POD state basis is sufficient at projecting any state in the solution space with high ac-
curacy. Rather, instances where GROMs fail to obtain an accurate or stable solution are
attributable to the failure of Galerkin projection to properly obtain the correct dynamics to
drive the state towards an optimal solution. Ultimately, the choice of the test space dictates
the dynamics that are retained from the system projection. Instead of targeting the L2 min-
imization of the residual or the closure of the ROM model, a test space can be derived that
yields dynamics of the system that solves for the minimization of the state error directly.

Drawing inspiration from the discontinuous Petrov-Galerkin (DPG) work of Demkow-
icz and Gopalakrishnan [64, 122] and the optimal test function DPG work of Kast and
Fidkowski [65, 66], this chapter introduces a novel method for formulating test basis vec-
tors for Petrov-Galerkin ROM systems, which are designed to optimally predict the state.
These optimal test basis vectors are formulated by solving an adjoint-like system and trans-
form the residual error minimization problem to be equivalent to a least-squares state error
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minimization problem. It is shown that this basis is the negative reduced state adjoints of
the FOM, and thus this method is referred to as the State-Adjoint Petrov-Galerkin (SAPG)
method for this thesis. Example applications on linear problems demonstrate that using the
SAPG test basis in a Petrov-Galerkin ROM results in ROM solutions that exactly equal
the full-order solutions projected with the state basis; however, the cost of constructing the
SAPG test basis is on the order of the FOM system. Thus, to decrease the cost of computing
the test basis vectors online, an approximate method of computing the optimal basis vector
is derived. In addition, the formulation of the SAPG method in a hyper-reduced setting is
presented where a Petrov-Galerkin DEIM model is constructed with the SAPG test basis.
Finally, the stability of the SAPG method and its effects on convergence are examined.

4.1.1 Least-squares Petrov-Galerkin Test Space
The LSPG test space arises from transforming the minimization of the L2 norm of the
reduced residual such that it is equivalent to the full-order residual minimization on the
state constrained to the reduced space.

The discrete general model defined in Section 2.1 is the starting point of this derivation,
defined by

M
dx

dt
+R(x(t),µ(t), t) = 0, (2.1)

R̄(x,µ, t) = 0. (2.2)

It is useful to consider the linearization of Equation (2.2). Nonlinear residuals are domi-
nated by linear dynamics near their minimum, and the direction of the linearization is often
used to update the state when a system is solved iteratively. This linearization arises from
a Taylor series of the system about some reference state x0, which minimizes the residual,

R̄(x,µ, t) = R̄(x0,µ, t) +
∂R̄

∂x
[x− x0] +�����O(∆x2)︸ ︷︷ ︸

for small ∆x

= 0,

R̄(x,µ, t) =
∂R̄

∂x
x−

∂R̄

∂x
x0 − R̄(x0,µ, t)︸ ︷︷ ︸

b

 ,

R̄(x,µ, t) = [cM +A]x− b = 0. (4.1)

where O(∆x2) are the higher order terms of the Taylor series that can be neglected for
small ∆x, c is some constant based on the temporal discretization and time step, b are the
constant constraints of the system that arise from the linearization, and A is the spatial
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Jacobian of the system. The reduced form of Equation (4.1) can be constructed by substi-
tuting the reduced representation of the state from Equation (2.3) and projecting the entire
system via a left-multiplication by the test basis, resulting in

ˆ̄R(x̂) = W T [cM +A]V x̂−W Tb = 0, (4.2)

where V is a set of orthonormal basis vectors.
The minimum full-order residual of the state constrained by the state basis can be de-

fined in an L2 sense according to

x̂ = argmin
ẑ
||R(V ẑ)||22 = argmin

ẑ
|| [cM +A]V ẑ − b||22, (4.3)

which is equivalent to

x̂ = argmin
ẑ

[[cM +A]V ẑ]T [cM +A]V ẑ − 2 [[cM +A]V ẑ]T b+ bTb. (4.4)

This minimum can be found by setting the gradient of the above statement with respect
to x̂ equal to zero, i.e.,

∇x

[
[[cM +A]V x̂]T [cM +A]V x̂− 2 [[cM +A]V ẑ]T b+ bTb

]
= 0. (4.5)

This gradient reduces to

[[cM +A]V ]T [cM +A]V x̂− [[cM +A]V x̂]T b = 0. (4.6)

The LSPG test basis is then chosen as

W = [cM +A]V , (4.7)

which makes Equation (4.6) equivalent to Equation (4.2). Thus, the minimum residual
problem is equivalent to a Petrov-Galerkin POD formulation with the LSPG test basis [55].

4.1.2 Test Basis Construction for Optimal State Prediction
Let xFOM ∈ Rnx×1 be the solution derived from Equation (2.7), and let x̂ROM ∈ Rnx×1 be
the solution derived from the reduced problem Equation (4.2). Ultimately, the minimiza-
tion of the error between xFOM and x̂ROM is desired. Thus, rather than seeking a residual
minimization, one can seek the state error minimization. If this minimization is defined in
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an L2 sense, then the error of the POD-ROM solution is

ex̂ROM = ||V x̂ROM − xFOM||2. (4.8)

which is equal to

ex̂ROM = x̂T
ROMV

TV x̂ROM − 2x̂T
ROMV

TxFOM + xT
FOMxFOM, (4.9)

V TV is the identity, as V is an orthonormal basis. The minimization of this error can
be found by setting the gradient of the error with respect to x̂ROM equal to zero, i.e.,

∂ex̂ROM

∂x̂ROM
=2x̂T

ROM − 2xT
FOMV = 0T , (4.10)

⇒
[
x̂ROM − V TxFOM

]
= 0. (4.11)

Thus, the closest that x̂ROM can be to xFOM is the projection of xFOM onto the space
spanned by the vectors in V . One can consider V TxFOM to be the ideal solution (x̂Ideal) of
a POD model. Here, ideal is understood in the sense that it is the most faithful replication
of the full-order model that is possible, constrained by the information contained in the
basis V . This is an unsurprising outcome, but it does allow one to consider formulating
the POD-ROM in a way such that minimizing the residual of the reduced system would be
equivalent to minimizing the error between x̂ROM and x̂Ideal.

If the goal of the model reduction is to satisfy Equation (4.11) and Equation (4.2) for
x̂ROM, then V TxFOM must also satisfy Equation (4.2). Thus the error in the residual defined
in Equation (4.2) when the input is x̂ROM and when the input is V TxFOM must also equal
zero.

e ˆ̄R
= W T R̄(V x̂ROM)−W T R̄(V V TxFOM),

=
[
W T [cM +A]V x̂ROM −W Tb

]
−
[
W T [cM +A]V V TxFOM −W Tb

]
,

= W T [cM +A]V
[
x̂ROM − V TxFOM

]
. (4.12)
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If the test basis is chosen such that W = [cM +A]−T V , then

e ˆ̄R
=

[
[cM +A]−T V

]T
[cM +A]V

(
x̂ROM − V TxFOM

)
,

= V T [cM +A]−1 [cM +A]V
(
x̂ROM − V TxFOM

)
,

= V T IN×NV
(
x̂ROM − V TxFOM

)
,

= V TV
(
x̂ROM − V TxFOM

)
,

= In×n

(
x̂ROM − V TxFOM

)
,

=
(
x̂ROM − V TxFOM

)
= 0. (4.13)

This choice for the test basis therefore makes the problem of finding x̂ROM where e ˆ̄R
=

ˆ̄R = 0 equivalent to Equation (4.11), and the SAPG test basis for a linear POD system is
found by solving

[cM +A]T W = V . (4.14)

This definition of SAPG test basis vectors is only exact for linear PDEs. For nonlinear
PDEs, the following approximation is made,

∂R̄

∂x

∣∣∣∣T
x̂η

W = V , (4.15)

where xη is the current value of x in an iterative solver of the POD-ROM.
The solutions to the above equation are the negative reduced state adjoints. Considering

the negative reduced state as the outputs of the system,

y = −x̂, (4.16)

and noting that x̂ = V Tx, the linearization of y with respect to the state is

∂y

∂x
= V T . (4.17)
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Substituting this into the adjoint Equation (3.20) yields[
∂R

∂x

]T
Ψ+

[
∂y

∂x

]T
= 0. (3.20)[

∂R

∂x

]T
Ψ−x̂ = V (4.18)

⇒W = Ψ−x̂. (4.19)

For this reason, this test space is referred to as the state adjoint Petrov-Galerkin (SAPG)
test space. Before proceeding with the hyper-reduced forms of the SAPG method, it should
be noted that the time-coupled adjoint solutions are not resolved here. Obtaining the re-
duced state adjoints for each unsteady solution would require an independent adjoint solu-
tion to be resolved backwards in time for each state basis vector. As these adjoint solutions
each require different terminal conditions, reusing of solutions between adjoint solves is not
possible. Thus, for a solution with Nt time nodes, nV Nt(Nt+1)

2
unsteady adjoint solutions

would be required. Rather, resolving the reduced state adjoints in the fashion described
above is equivalent to applying one block-Jacobi iteration to the unsteady residual block
system.

4.1.3 Hyper-reduction
A state adjoint Petrov-Galerkin test space can be derived for DEIM using the same process.
First, the residual error between the DEIM solution and the ideal solution is

eR̂DEIM
= W T

DEIM

[
MV

dx̂ROM

dt
+U

[
P TU

]†
P TR(V x̂ROM)

]
−W T

DEIM

[
MV

∂V TxFOM

∂t
+U

[
P TU

]†
P TR(V V TxFOM)

]
. (4.20)

Linearization of these terms yields

eR̂ = W T
DEIM

[
M +U

[
P TU

]†
P TA

]
V

(
x̂ROM − V TxFOM

)
. (4.21)

WDEIM can be chosen such that the error in the residual is equivalent to the error between
the ideal and DEIM solutions, according to

W T
DEIM =

[[
M +U

[
P TU

]†
P TA

]−T

V

]T
, (4.22)

⇒eR̂ = x̂ROM − V TxFOM. (4.23)
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WDEIM is constructed by solving[
M +U

[
P TU

]†
P TA

]T
WDEIM = V . (4.24)

For nonlinear DEIM systems, the state adjoint Petrov Galerkin test space solves[
M +U

[
P TU

]†
P T ∂R

∂x

∣∣∣∣
x̂η

]T
WDEIM = V , (4.25)

where x̂η is the current value of the state during the η iteration of the ROM iterative solver.
Like with conventional DEIM, the state adjoint Petrov-Galerkin DEIM model reduces the
complexity of residual computations through sparse sampling and interpolation of the Jaco-
bian. Additionally, the sparse Jacobian can be reused for the state update to further reduce
the impact of the added cost of state adjoint computations.

4.1.4 Effects of SAPG on Convergence
When used in an iterative solver for a residual minimization problem, the SAPG method
transforms the reduced state update into the FOM state update projected with the POD
state basis vectors. As an example, the Newton method attempts to solve the residual
minimization problem with state updates in a direction and magnitude (with no relaxation)
that would solve the system linearized about the unresolved state. A simple implementation
of the Newton method can be seen in Algorithm 3. A key takeaway from this algorithm is

Algorithm 3 The Newton Method

Given a guess xg to the problem R̄(x) = 0
while

∣∣R̄(xg)
∣∣ > TOL do

Solve ∂R̄
∂x

∣∣∣∣
xg

∆x+ R̄(xg) = 0 for ∆x

Update guess: xg ← xg +∆x
end while

that the state updates take the form

∆x = −

[
∂R̄

∂x

∣∣∣∣
xg

]−1

R̄(xg). (4.26)
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A similar algorithm can be defined for solving the residual minimization problem for
ROMs. The reduced state update for that algorithm is

∆x̂ROM = −

[
W T ∂R̄

∂x

∣∣∣∣
x̂g

V

]−1

W T R̄(x̂g). (4.27)

The specific state updates for each of the ROMs considered in this section can be ob-
tained by substituting the corresponding value of W . For a Galerkin system, the test basis
equals the trial basis, and the state updates are

∆x̂GROM = −

[
V T ∂R̄

∂x

∣∣∣∣
x̂g

V

]−1

V T R̄(x̂g). (4.28)

Obtaining the inverse of

[
V T ∂R̄

∂x

∣∣∣∣
x̂g

V

]
has to be done numerically, and the updates to the

reduced state are obtained from the minimization of the residual projected by V . Taking
W = ∂R̄

∂x
V , the LSPG state updates are

∆x̂LSPG = −

[
V T ∂R̄

∂x

∣∣∣∣T
x̂g

∂R̄

∂x

∣∣∣∣
x̂g

V

]−1

V T ∂R̄

∂x

∣∣∣∣T
x̂g

R̄(x̂g). (4.29)

By setting D = ∂R̄
∂x

∣∣∣∣
x̂g

V , Equation (4.29) becomes

∆x̂LSPG = −
[
DTD

]−1
DT R̄(x̂g). (4.30)

[
DTD

]−1
DT is the left inverse of the rectangular matrix D and represents the solution to

the least-squares minimization problem defined by

∥∥D∆x̂LSPG + R̄
∥∥2

2
= 0,∥∥∥∥∥

[
∂R̄

∂x

∣∣∣∣
x̂g

V

]
∆x̂LSPG + R̄

∥∥∥∥∥
2

2

= 0. (4.31)
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Finally, taking W = ∂R̄
∂x

−T
V , the state updates for the SAPG method are

∆x̂SAPG = −

[
V T ∂R̄

∂x

∣∣∣∣−1

x̂g

∂R̄

∂x

∣∣∣∣
x̂g

V

]−1

V T ∂R̄

∂x

∣∣∣∣−1

x̂g

R̄(x̂g),

∆x̂SAPG = −
[
V TV

]−1
V T ∂R̄

∂x

∣∣∣∣−1

x̂g

R̄(x̂g),

∆x̂SAPG = −V T ∂R̄

∂x

∣∣∣∣−1

x̂g

R̄(x̂g). (4.32)

Furthermore, substituting Equation (4.26) into Equation (4.32) shows that the right hand
side is essentially the FOM state updates but projected in the reduced space, i.e.,

∆x̂SAPG = −V T∆xFOM. (4.33)

We recognize that Equation (4.29) and Equation (4.32) are similar but arise from different
formulations. Equation (4.29) drives the reduced state in the direction dictated by the min-
imization of Equation (4.31), whereas Equation (4.32) arises purely from the FOM state
updates.

4.1.5 Reduced Form of SAPG Test Basis Vectors
The computational costs for generating the SAPG test space become problematic for model
reduction, as each of the basis vectors is constructed with a FOM size linear system. In
addition, the SAPG test basis has to be solved multiple times at each time node, as the
Jacobian of the problem may change as the state solution is updated. However, there are
two ways to reduce this cost. First, freezing the Jacobian and the SAPG test basis vectors
will reduce the cost of computing the test functions by the fraction of the inverse of the
length of the freezing. While the Jacobian may vary within a time step, the variations are
likely going to be small and may have little effect on the test basis.

Another way to reduce the cost of solving for the SAPG test basis vectors is to use
reduced models of Equation (4.15) and Equation (4.25). This is done by representing W

as the combination of another set of basis vectors, according to

W = ΦT , (4.34)

where Φ ∈ Rnx×nΦ is the test search space and T ∈ RnΦ×nV is a matrix of coefficients.
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For the POD formulation, making the above substitution into Equation (4.14) results in

[cM +A]T ΦT = V . (4.35)

The degrees of freedom have been reduced from nx to nΦ, which is significantly smaller.
However, like in formulating projection-based ROMs, the system is overdetermined as it
is still of full-order size and will need to be projected to reduce the cost of solving for T .
Using Λ ∈ Rnx×nΛ to project the SAPG adjoint system yields

ΛT [cM +A]T ΦT = ΛTV . (4.36)

The only restriction to the choice of the projecting basis Λ is that it has a rank equal to or
larger than the test search space. This is clear as Equation (4.36) is a set of nΛ equations
for nΦ unknowns. Furthermore, it is convenient to make the projecting basis equal to a
finer set of state POD basis vectors Vh for several reasons. Firstly, construction of Vh can
occur offline with the construction of V . Secondly, due to orthogonality the right-hand side
product of V T

h V has the straightforward form of

V T
h V = IhV ×nV

, (4.37)

IhV ×nV
=

[
InV

0(hV −nV )×nV

]
, (4.38)

where InV
is a nV ×nV identity matrix and 0(hV −nV )×nV

is a (hV −nV )×nV zero matrix.
Making the substitution of Equation (4.37) into Equation (4.36) yields

V T
h [cM +A]T ΦT = IhV ×nV

,

⇒
[
ΦT [cM +A]Vh

]T
T = IhV ×nV

. (4.39)

Equation (4.39) is the reduced form of Equation (4.14) and transforms the cost of comput-
ing the SAPG test basis vectors from solving nV linear problems of size nx to solving nV

linear problems of size hV . If Φ = Vh, then

[
V T

h [cM +A]Vh

]T
T = InΦ×nV

, (4.40)

and

W = VhT , (4.41)
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which is convenient as the right-hand side term is a finer space reduced Jacobian.
The reduced formulation, Equation (4.40), seeks to find SAPG test basis vectors for

each trial basis vector as a linear combination of a finer set of trial basis vectors. This
has some advantages. First, the cost of finding the SAPG test basis vectors is reduced.
Second, Vh is produced in tandem with V . However, a disadvantage will be that W will
be restricted to exist in the fine projection space. If this space is not chosen appropriately,
the benefits of the SAPG method are lost.

A similar process can be applied to obtain the reduced model of the SAPG-DEIM test
space equation (Equation (4.25)). The first step is the substitution of a low-rank represen-
tation of WDEIM, resulting in[

cM +U
[
P TU

]†
P TA

]T
ΦT = V . (4.42)

Second is the projection of the entire system to reduce its size, yielding

ΛT
[
cM +U

[
P TU

]†
P TA

]T
ΦT = ΛTV . (4.43)

Finally, taking Λ = Vh and Φ = Vh for convenience yields

V T
h

[
cM +U

[
P TU

]†
P TA

]T
ΦT = IhV ×nV

,[
V T

h

[
cM +U

[
P TU

]†
P TA

]
Vh

]T
T = IhV ×nV

. (4.44)

The nonlinear version of the reduced SAPG equations are[
V T

h

[
cM +

∂R

∂x

∣∣∣∣
x̂η

]
Vh

]T
T = IhV ×nV

, (4.45)[
V T

h

[
cM +U

[
P TU

]†
P T ∂R

∂x

∣∣∣∣
x̂η

]
Vh

]T
T = IhV ×nV

. (4.46)

4.1.6 Stability Analysis
The following section performs eigenvalue analysis of GPOD, LSPG-POD, and SAPG-
POD to study their effects on stability. This analysis is performed on a 1D advection-
diffusion problem with periodic boundary conditions. Eigenvalue analysis is typically done
to analyze the stability of spatial and temporal discretization schemes, and although the
setting for this problem is fairly simple, schemes that fail to remain stable for this problem
will likely not be stable for more complex problems. The 1D advection-diffusion problem
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takes the form

∂x(d)

∂t
+ a

∂x(d)

∂d
− ν

∂2x(d)

∂d2
= 0, (4.47)

where x(d) is the value of the scalar at position d, a is the advection speed, and ν is the
diffusivity of the scalar. The domain of the system can be discretized, and finite difference
approximations can be used to approximate the spatial derivatives. Backwards differencing
to approximate the advection term and central differencing to approximate the diffusive
term transforms Equation (4.47) into a semi-discrete system,

∂xn
i

∂t
+ a

xi − xi−1

∆d
− ν

xi+1 − 2xi + xi−1

(∆d)2
= 0, (4.48)

where xi is the value of the scalar at discretization node i and ∆d is the size of the spatial
discretization. For this exercise, the length of the domain (L) is discretized evenly to give
N spatial nodes, making the size of the spatial discretization equal to

∆d =
L

N − 1
. (4.49)

Once discretized, Equation (4.48) can be rewritten in vector form with

M
dx

dt
+Ax = 0, (4.50)

where M = I is the mass matrix and A is the Jacobian of the problem with 3-banded
structure.

The trajectory of the system to be analyzed is then

dx

dt
= −M−1A︸ ︷︷ ︸

C

U . (4.51)

Specifically, if any of the eigenvalues of C have a positive real component, then the sys-
tem will grow unbounded in the shape of the associated eigenvector, whereas if the real
component of an eigenvalue is negative, then the system scalar will decrease in magnitude
with the associated eigenvector. Substituting the low-rank approximation of x and then
projecting the entire system formulates the reduced equivalent to this equation,

dx̂

dt
= −

[
W TMV

]−1 [
W TAV

]︸ ︷︷ ︸
Ĉ

x̂. (4.52)
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(a) Fourier (b) Legendre

Figure 4.1: The first 3 basis vectors for a Fourier and a Legendre basis. The scale of these basis
vectors is not relevant, as they are superimposed with the appropriate weights when used online.

In this case, W = V if a Galerkin ROM is formed, W = [M +A]V if LSPG is used,
and W = [M +A]−T V if SAPG is used. Two separate bases are used for this exercise:
a Fourier basis and a Legendre basis. The Fourier basis is composed of harmonics of the
scalar value in the domain, and the ith Fourier basis vector is the ith harmonic, according to

vi = sin
diπ

L
. (4.53)

The Legendre basis is composed of Legendre polynomials, which are orthonormal polyno-
mials defined for d ∈ [−1, 1] and with an output range of vn ∈ [−1, 1]. For this exercise,
the domain was normalized to the input range of the Legendre polynomials, according to

d̃ = 2d− 1, (4.54)

and the Legendre polynomials were generated using Bonnet’s recursive formula [123],
defined by

v1 = 1, (4.55)

v2 = d̃, (4.56)

vn =
(2n− 1)d̃vn−1 − (n− 1)vn−2

n
. (4.57)

Figure 4.1 displays the first 3 basis vectors for the Fourier and Legendre bases. 20 basis
vectors are used for each basis in this exercise.

The Péclet number characterizes the ratio of the advection and the diffusion of the
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system and is defined by

Pe =
aL

ν
. (4.58)

The Péclet number is useful for determining the discretization schemes deployed through-
out a larger CFD system, as the stability of a scheme is often directly influenced by the
strength of local advection transport relative to the strength of local diffusion transport.
The eigenvalues of the Galerkin ROM, LSPG, and SAPG systems constructed with Leg-
endre and Fourier bases are shown in Figure 4.2 for different values of the Péclet number,
N = 100, and a = 1. Overall, the magnitude and distribution of the eigenvalues for
the LSPG and SAPG systems are similar. For highly advective systems, their values are
bounded by the eigenvalues of the FOM system. As the system becomes more diffusive,
the magnitude of the largest negative eigenvalue for both systems grows larger than the
largest negative FOM eigenvalue. This indicates a higher stiffness of the system due to a
higher dissipation.

(a) Pe = 100 (b) Pe = 10

(c) Pe = 1 (d) Pe = 0.1

Figure 4.2: Eigenvalues for the linear advection-diffusion problem at different Péclet numbers.
Fourier and Legendre bases are used in the left and right columns, respectively.

4.1.7 Computational Complexity
This section examines the computational complexity of formulating the SAPG and LSPG
test bases by computing the total number of floating point operations (FLOPs) needed for
their construction. According to Equation (4.7), LSPG requires a general matrix multipli-
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cation (GEMM) of the linearization of the system (an nx × nx matrix) and the state basis
(an nx×nV matrix). This incurs a cost of nx

2 multiplications and nx
2 additions for each of

the nV basis vectors. The sum of these operations yields the total additional computational
cost of forming the LSPG test basis, according to

Cost of LSPG = 2nV nx
2. (4.59)

The reduced construction of the SAPG test basis has three stages. The first formulates
the reduced SAPG equations, defined by Equation (4.36) and Equation (4.43). The right-
hand side of the reduced equations is invariant and can be precomputed; however, the
left-hand side is constructed with each SAPG test basis formulation. For this section, the
ranks of the test search space (Φ) and the system projector of the reduced SAPG equation
(Λ) are assumed to be the same and equal to nΦ. The left-hand side consists of two GEMM
products. The first is defined by

ΛT ∂R̄

∂x
= J, (4.60)

where J is the first product and is of size RnΦ×nx . This product is similar to the GEMM
used to form the LSPG test basis, incurring a cost of 2nx

2nΦ FLOPs. The second product
is defined by

JΦ = A, (4.61)

where A is the second product and is of size RnΦ×nΦ . This product requires 2nxnΦ
2

FLOPs. Thus, the total cost of formulating the SAPG equation is 2nx
2nΦ + 2nxnΦ

2.
The second stage produces the solution of the SAPG equation, defined by

AT = ΛTV . (4.62)

An efficient way to solve the nV linear systems is to construct the LU-factorization of
A followed by forward and backward substitution for each system. The LU-factorization
decomposes a matrix into a lower and an upper-triangular matrix (L and U , respectively),
according to

A = LU . (4.63)

LU-factorization is equivalent to Gaussian elimination and has a computational complexity
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of 2
3
nΦ

3 − nΦ
2 − nΦ

6
[124]. The resulting SAPG system is defined by

LUT = ΛTV . (4.64)

Taking advantage of the structure of the upper and lower triangular matrices, forward and
backward substitution is used to solve each linear system of Equation (4.64) efficiently. The
computational complexities of forward substitution to invert L and backward substitution
to invert U are equivalent and require nΦ divisions, nΦ

2−nΦ

2
multiplications, and nΦ

2−nΦ

2

additions each. Thus the total cost of solving Equation (4.62) is 2
3
nΦ

3 − nΦ
2 − 1

6
nΦ +

2nΦ
2nV .
Partial pivoting may be necessary for numerical stability when computing the LU-

factorization of A. The PLU-factorization is defined by

PA = LU , (4.65)

where P is a matrix of elementary vectors used for row pivoting. The algorithm used to
compute the partial pivots is applied intermittently during the Gaussian elimination steps
and chooses the row index containing the largest magnitude column value. For an nΦ×nΦ

matrix, this requires nΦ
2+nΦ

2
FLOPs. Thus the computational complexity to solve the SAPG

test basis weights using PLU-factorization is 2
3
nΦ

3 − 1
2
nΦ

2 + 1
3
nΦ + 2nΦ

2nV .
The final stage of the SAPG model is to construct the SAPG test basis vectors using

Equation (4.34) which is a GEMM of the test search space (an nx × nΦ matrix) and the
test basis weights (an nΦ × nV matrix). This incurs a cost of 2nΦnV nx FLOPs. Adding
the cost of formulating (4.62), the cost of PLU-factorization, and the cost of the GEMM to
form the test basis yields the total additional cost of the reduced SAPG test basis,

Cost of Reduced-SAPG = 2nΦnx
2

+ (2nΦ
2 + 2nV nΦ)nx +

[
2

3
nΦ

3 + (2nV −
1

2
)nΦ

2 +
1

3
nΦ

]
(4.66)

Once the SAPG and LSPG test bases are formed, the corresponding ROMs are con-
structed and a reduced state update arises from an iterative solver. For the Newton-
Raphson method described in Algorithm 3, the computational costs for the LSPG, SAPG
and Galerkin ROMs are equivalent. Neglecting the full-order sized residual and Jacobian
computation, each reduced state update consists of three stages. The first is the formulation
of the reduced residual, which is the product of the transpose of test basis (an nx×nV ma-
trix) and the full-order sized residual (an nx vector). This operation costs 2nxnV FLOPs.
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The second stage constructs the reduced Jacobian which is similar to the construction of the
SAPG test basis Jacobian and costs 2nx

2nV + 2nxnV
2 FLOPs. The final stage inverts the

reduced Jacobian to yield the reduced state update in Equation (4.28). PLU-factorization
with forward and backward substitution can be used at the cost of 2

3
nV

3 + 3
2
nV

2 + 1
3
nV .

Thus the per-iteration cost of the Newton-Raphson method for each reduced state update is

Cost of ROM Update = 2nV nx
2

+ (2nV
2 + 2nV )nx +

[
2

3
nV

3 +
3

2
nV

2 +
1

3
nV

]
. (4.67)

The leading terms of Equation (4.59), Equation (4.66), and Equation (4.67) are
O(2nV nx

2), O(2nΦnx
2), and O(2nV nx

2), respectively. For the reduced formulation of
the SAPG model to be well-conditioned, nΦ > nV ; however, the size of nΦ needs to not
be substantially greater than nV for practicality – e.g., nΦ = 2nV . Thus the ratio of ad-
ditional costs of the LSPG and reduced SAPG test bases is approximately proportional to
nV

nΦ
. Furthermore, when considering the cost of using the Newton-Raphson method to solve

the ROMs and neglecting the cost of residual and Jacobian calculation, the total costs of
forming and solving the LSPG and SAPG ROMs areO(4nV nx

2) andO((2nV +2nΦ)nx
2),

respectively. Thus the scaling to larger sized problems should be similar between LSPG,
SAPG, and Galerkin ROMs – i.e., quadratic with respect to nx; however, the cost of SAPG
will still be higher than LSPG and POD, which can be approximated by

Cost of SAPG
Cost of LSPG

≈ nV + nΦ

2nV

, (4.68)

Cost of SAPG
Cost of PROM

≈ nV + nΦ

nV

. (4.69)

4.2 Example Applications
The following section demonstrates the use of the SAPG method on various problems.
These examples include problems from Section 3.5, specifically the steady scalar advec-
tion diffusion, the pitching and plunging airfoil, and the XRF1-HARW plunging prob-
lem. In addition, this section includes a scalar advection-diffusion problem with a nonlin-
ear source component. These examples will verify the theory and implementation of the
SAPG method, demonstrate the exactness between the ideal and SAPG solutions, make
comparisons to the LSPG test space, demonstrate the effectiveness of the SAPG method in
a nonlinear and a hyper-reduced settings, and study the limitations of the reduced SAPG
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(a) α ∈ [0, 90]◦
(b) α ∈ [0, 15]◦

Figure 4.3: Comparisons between Ideal, GPOD, SAPG-POD, reduced SAPG-POD, and LSPG-
POD reconstructions.

model.

4.2.1 Scalar Advection-diffusion
The following example is described in Section 3.5.1. To summarize, steady-solutions to a
2D scalar advection-diffusion problem compose the snapshot set where the advection angle
at the domain boundaries is varied according to α ∈ [0◦, 90◦]. The governing equation for
the scalar advection-diffusion model is

∇ · (v⃗x)− ν∇2x+ S = 0, (3.62)

where S is a source term, and ν is the diffusivity. For this example, ν = 0.001 and S = 1.0.
The domain is a 3×3 mesh uniformly discretized into 27×27 elements and with a bilinear
state basis in each element.

As a small comparative study, the GPOD, LSPG-POD, and the full-order SAPG-POD
ROMs were solved with 5 basis vectors in the trial space – containing 99.7% of the to-
tal singular value energy – for the snapshot set configurations. The results in Figure 4.3
demonstrate that the SAPG-POD predictions and the ideal solutions align exactly, while
the GPOD and the LSPG-POD models do not align with the ideal solution.

Taking a more comprehensive view, the errors of several GPOD, LSPG-POD, SAPG-
POD, and ideal solutions at various numbers of POD basis sizes are shown in Figure 4.4.
With the exception of the POD basis sizes of 75 and 91, all of the SAPG-POD models
align with the ideal solutions exactly. Numerical error is suspected to have caused the rise
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(a) rank (V ) ∈ [1, 91] (b) rank (V ) ∈ [1, 30]

Figure 4.4: Errors of the Ideal, GPOD, SAPG-POD, reduced SAPG-POD, and LSPG-POD recon-
structions.

in error of the ideal solutions at the finest basis sizes. In addition, for the coarser ROMs, the
SAPG-POD solutions are an order of magnitude more accurate than the GPOD solutions.
However, the LSPG-POD model is fairly comparable with the SAPG-POD model.

The results from the reduced SAPG-POD model (reduced SAPG-POD) are also pre-
sented in Figures 4.3 and 4.4. The reduced SAPG-POD solutions were generated using
all 91 basis vectors as the fine-space basis with every update to the state. The reduced
SAPG-POD solutions match the full-order SAPG-POD solutions and the ideal solutions.

For at least reconstruction, the results of the full-order SAPG-POD formulation comport
with the earlier derived theory. In addition, the information in the fine-space POD basis
vectors is sufficient to produce SAPG test basis vectors for the reduced model. However,
we note that all of the characteristics of the desired reconstructed solutions are already
contained in the fine POD basis. To test the robustness of these approaches, predicting
solutions for convection angles not already contained in the snapshot set is considered.

Thirty randomly-generated, non-snapshot convection angles are chosen for ROM pre-
dictions. The same POD-ROMs employed for snapshot reconstruction are used for pre-
diction. The predictions from the POD-ROMs consisting of 5 basis vectors are shown
in Figure 4.5. As before, the SAPG-POD, reduced SAPG-POD, and the ideal solutions
align exactly, while the GPOD and LSPG-POD solutions do not. The greatest errors in the
GPOD solution occur near the boundaries; however, the LSPG-POD solution aligns better
with the output of the full-order model than the SAPG-POD model and the ideal solutions.

While the predicted solutions appear relatively similar to the reconstruction solutions,
the errors with respect to the number of basis vectors, shown in Figure 4.6, are more reveal-
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(a) α ∈ [0, 90]◦ (b) α ∈ [0, 30]◦

Figure 4.5: Ideal, GPOD, SAPG-POD, reduced SAPG-POD, and LSPG-POD predictions.

ing. For the coarser ROMs, the SAPG-POD and the reduced SAPG-POD predictions match
the ideal solution. However, divergence of the reduced SAPG-POD model is observed, be-
ginning at about n > 40 as the trial space becomes finer. The reduced SAPG-POD predic-
tions begin to follow the GPOD predictions, becoming exactly equal to the GPOD model
at n = 91.

This clearly shows the limitations of the reduced formulation using a fine set of state
basis vectors. The reduced SAPG-POD searches the fine projection space for the solution
to the SAPG test basis equation. Although the POD model increases in size, the test search
space remains constant. With increases in the size of the trial space, the unique content of
the test search space and the additional information that can be obtained by the test space
decreases. Once the trial space and the test search space are identical, there is no additional
information that the reduced SAPG-POD test space can obtain that is not already brought
out by Galkerin projection. The effects of an insufficient size of the test search space is
further investigated in Section 4.2.4.

Conversely, the full-order SAPG-POD model does not diverge and stays aligned with
the ideal solution throughout the entire domain. This is because the full-order SAPG-POD
model is able to search the entire state space for the SAPG test basis vectors. However, in
most cases, it is not necessary to have a trial space size that approaches the size of the snap-
shot set, so these results still bode well for the reduced SAPG method as the coarser ROMs
demonstrate the ability of the reduced SAPG method to produce good approximations of
the SAPG test space.

The performance of the GPOD model on this scalar example, while not matching the
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(a) rank(V ) ∈ [1, 91] (b) rank(V ) ∈ [1, 15]

Figure 4.6: Errors of the Ideal, GPOD, SAPG-POD, the reduced SAPG-POD, and LSPG-POD
predictions.

ideal solution, is still reasonable; additionally, the performance of the LSPG-POD model
is not only competitive but also beats the SAPG and ideal solutions for output prediction.
However, the flux on the right boundary is not fully-representative of the entire solution
domain. State space domain errors are displayed in 4.8 for the prediction case with n = 5;
additionally, the figure shows that the LSPG-POD model has the worst prediction of the
entire domain of the system. Furthermore, the full-order SAPG-POD, reduced SAPG-
POD, and ideal solution are all aligned and have the lowest error. It is observed that the
ideal solution has the lowest error and the full-order SAPG-POD aligns with the ideal

solution for all of the tested problems; and where the reduced SAPG-POD has sufficient
test search space information, its domain solution also matches the ideal solution.

Two additional sets of SAPG-POD solutions are constructed in order to assess the bal-
ance of added accuracy and added cost of SAPG-POD over LSPG-POD and Galerkin POD.
The first uses a fixed trial space of 15 POD state basis vectors while varying the size of the
test search space with nΦ ∈ [15, 45] state basis vectors in increments of five basis vectors.
The second fixes the size of the test search space to be twice the size of the trial space and
varies the size of the trial space from one POD basis vector to 45 POD basis vectors with
increments of one basis vector for nV ∈ [1, 5] and five basis vectors for nV ∈ [10, 45]. The
total costs of these additional SAPG-POD models and the original ROM solutions are esti-
mated with Equation (4.59), Equation (4.66), and Equation (4.67). The average root-mean
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(a) Reconstruction: Full Domain (b) Reconstruction: Partial Domain

(c) Prediction: Full Domain (d) Prediction: Partial Domain

Figure 4.7: Errors of the Ideal, GPOD, SAPG-POD, the reduced SAPG-POD, and LSPG-POD
reconstruction and prediction for linear problem with respect to 1 − Eσ. The ROM size decreases
moving left to right.
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Figure 4.8: Root mean square error inside the entire domain for solutions generated with 5 basis
vectors.

square (RMS) reduced state error is computed for each solution, according to

eRMS,x̂,i =

√
[x̂i − V TxFOM,i]

T [x̂i − V TxFOM,i]

nV

, (4.70)

ēRMS,x̂ =
N∑
i=1

eRMS,x̂,i

N
, (4.71)

where N is the number of solutions. Figure 4.9 shows that for this linear problem the cost
to obtain a given accuracy with SAPG models is less expensive than the cost to obtain the
same accuracy with LSPG. Furthermore, the reduced state accuracy and cost are strongly
dependent on the size of the test search space. With finer test search spaces, the accuracy
and cost of the SAPG models increase; furthermore, with the full set of POD state basis
vectors, the accuracy of the SAPG model is fairly constant. However, the errors of the
SAPG model are highest when the test search space provides very little or no additional
information. This occurs when the test search space is equal to the trial space for the SAPG
nΦ = 90 and the SAPG nV = 15 cases and when the trial basis and test search space are
both very coarse as in the coarser SAPG nΦ = 2nV case. These accuracy issues disappear
with refinement of the test search space. Although for this problem SAPG is more accurate
than the LSPG model for similar costs, solving a finer trial space Galerkin POD model
is more efficient than both SAPG and LSPG up to a certain level of accuracy. However,
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Figure 4.9: RMS state error of different ROM solutions versus the cost of formulating the ROM.
There are three SAPG models, each using the reduced formulations with the fine-space POD state
basis vectors as the test search space. SAPG nΦ = 91 varies the trial basis while keeping the test
space equal to 91 state basis vectors. SAPG nV = 15 holds the trial basis constant while varying
the size of the test search space. SAPG nΦ = 2nV varies the trial basis with the rank of the test
search space fixed at twice the size of the trial basis.
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SAPG is able to achieve more accurate solutions, and later examples in this chapter show
that SAPG models can be more stable and accurate for problems where Galerkin ROMs
and LSPG ROMs fail, justifying the cost. Additionally, the number of test search space
basis vectors may be reduced if they are tailored for representing solutions to the full-
order SAPG equation – i.e., arising from snapshots of the full-order SAPG model – as
tailored basis vectors should be able to span the reduced state adjoint space of interest
more accurately than a set of state basis vectors of the same size.

4.2.2 Nonlinear Model Example
Building on the linear example above, nonlinearity is introduced by replacing the constant
source term with one that is a nonlinear function of the state. The entire system can be
written as

∇ · (v⃗x)− ν∇2x+ S(x) = 0, (4.72)

S(x) = S0x
2, (4.73)

with S0 being a constant. For this example, the quadratic source coefficient is S0 = 1.0,
and the Péclet number is increased to 1000 by lowering the diffusion coefficient, ν, to
0.001. To maintain physical solutions, the mesh is refined such that 54 elements lie in
the horizontal and vertical directions of the domain. In both directions, the length of each
element decreases from the center, according to a cosine spacing. The element sizes are
determined by li = L1−cos(θi)

2
where li is the width/height of element i numbered from

the top/left to bottom/right, θi is the corresponding angle from a uniformly spaced array
[0, π] rad, and L is the entire domain’s width/height (in this case L = 3 for both width and
height). α is sampled from 0◦ to 80◦ at 81 evenly distributed points. The GPOD, LSPG-
POD, and reduced SAPG-POD models are tested on both reconstruction of the original set
of parameters and prediction of the midpoints between the sampled convection angles.

From Figure 4.10, we can tell that the additional nonlinear source term drastically
changes the solution; additionally, as seen in Figure 4.10, the output changes drastically.
Most importantly, changes of α above approximately 50◦ have an insignificant effect on the
flux of x.

Unsurprisingly, the GPOD model performs the worst of the three methods and is unable
to fully resolve the right boundary, as seen in Figure 4.12, where the solution from the
GPOD model with 5 basis vectors oscillates about the FOM model solution. Like before,
the LSPG-POD model performs better, with a less pronounced oscillation, and the reduced
SAPG-POD model solution follows the ideal solution quite well.
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(a) α = 0◦ (b) α = 40◦ (c) α = 80◦

Figure 4.10: Solutions to the nonlinear test problem.

(a) Output of FOM and GPOD (b) POD Singular Values

Figure 4.11: GPOD results and singular values.

(a) Reconstructed Solutions (b) Predicted Solutions

Figure 4.12: Reconstruction and predicted results for n = 5 models.
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The error of the ROMs here are slightly different than in the linear case, in a compara-
tive sense. From Figure 4.13, there is a slight discrepancy between the ideal solution and
the reduced SAPG solution. This is even true for smaller ROMs, where a large amount
of information can be introduced from the test search space. Overall, in this nonlinear
case, the reduced SAPG-POD model performs better in comparison to the GPOD model
and the LSPG-POD models than in the linear example in Section 4.2.1. All of the reduced
SAPG-POD models performed better than the LSPG-POD and the GPOD models within
a range of singular value energies often used in an industrial setting (99.9% − 99.99%) in
both prediction and reconstruction. These improvements are typically an order of magni-
tude greater than the GPOD model and 1-4 times greater than the LSPG-POD model. This
is similar to the results seen in the previous section. Likewise, for prediction, the reduced
SAPG-POD model loses fidelity with the ideal solution as the trial space size approaches
the test search space size, becoming equivalent to the GPOD model once the test search
space equals the trial space.

The answer to why the SAPG-POD model performs better than the LSPG-POD model
for the nonlinear problem than for the linear problem lies in the construction of the test
space. One may think that the LSPG-POD model and the SAPG-POD model would have
a similar outcome but from different mechanisms, the logic being that by minimizing the
state reconstruction error, one should expect that the full-order residual would also be min-
imized. Likewise, minimizing the full-order residual would also minimize the state recon-
struction error. However, for nonlinear problems, neither is necessarily true, and as a result,
the state solutions will differ. The proceeding section demonstrates the application of the
SAPG-POD and SAPG-DEIM models in an unsteady setting and makes comparisons with
the LSPG and Grassmann manifold generated POD models.

4.2.3 Unsteady Pitching and Plunging Airfoil
The pitching and plunging airfoil from Section 3.5.3 is a multiparameter problem that is
used in this section to demonstrate the SAPG method, to make comparisons between the
LSPG test space and solutions using the Grassmann manifold interpolated local ROMs, and
to demonstrate the use of the hyper-reduced version of the SAPG method. This example
utilizes the same unsteady pitching and plunging airfoil from Section 3.5. The pitching and
plunging of a NACA 0012 airfoil is sampled at different reduced frequencies and Mach
numbers. The choice of parameters creates a problem whose output varies nonlinearly with
respect to its sampled parameters. As discussed before, global ROMs are poor candidates
for multiparameter, nonlinear systems due to the inclusion of flow characteristics in the
state basis that may not be relevant for the testing configuration being solved. Additionally,
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(a) Reconstruction: Full Domain (b) Reconstruction: Partial Domain

(c) Prediction: Full Domain (d) Prediction: Partial Domain

Figure 4.13: Errors of the Ideal, GPOD, SAPG-POD, the reduced SAPG-POD, and LSPG-POD
reconstruction and prediction for nonlinear problem with respect to 1−Eσ. The ROM size decreases
moving left to right.
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(a) POD (b) DEIM

Figure 4.14: Solutions from global POD and DEIM models for the testing configuration.

projection-based ROMs tend to grow in stiffness when their size increases, leading to a
trade-off between accuracy and stability. This is apparent in the solutions in Figure 4.14
from Section 3.5.3, where only the coarsest, most inaccurate global projection-based ROMs
are able to remain stable throughout the simulation.

A typical remedy for this robustness issue is to locally construct state bases at the
training configurations with only relevant snapshots and interpolating state bases on the
Grassmann manifold at the testing configurations [125]. However, choosing the weights
for the Grassmann manifold interpolation is not straightforward. For multiparameter prob-
lems, one needs to address the relative strength those individual parameters have on the
interpolation and the size of the sphere of influence that local ROMs have in the space of
parameters that are used for interpolation.

For comparison, local ROM interpolation produced a Galerkin ROM for use on the
testing configuration. The distribution of the singular values of the local state bases had
a greater dependency on the reduced frequency than the Mach number, as shown in Fig-
ure 4.15a. Due to this dependency, the local ROMs differed greatly on the number of basis
vectors required to satisfy the singular value energy criterion shown in Equation (2.13).
For 99.9% of the cumulative singular value energy, the highest frequency configuration has
a local basis composed of 18 basis vectors while the lowest frequency configuration has a
local basis that contains only 7 basis vectors. Given that the testing configuration lies at the
mean of the training configurations, a naı̈ve approach is taken, where all of the local ROMs
were weighted equally and normalized such that the weights had a unit L2 norm. Four dif-
ferent sized interpolated local ROMs were constructed from these configurations. The size
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(a) Singular value energy distribution for the lo-
cally constructed state bases.

(b) Solutions from locally interpolated ROMs.

Figure 4.15: The first plot contains singular value energy content of the local POD bases which
displays a dependency on motion frequency. The second plot displays Galerkin ROM solutions
using Grassmann manifold interpolation of the local bases to construct the online state basis. The
weights for interpolation were based on normalized distance of in the parameter space.

for each corresponded to the state basis rank requirement for the highest frequency local
ROM basis to have 99%, 99.5%, 99.9%, and 99.99% of the singular value energy, which
corresponds to 7, 9, 18, and 35 basis vectors, respectively. Unfortunately, each of these
configurations was unable to generate a full solution for the testing problem, as can be seen
in Figure 4.15b where the trajectory of the coefficient of lift for each of these interpolated
bases is shown. It should be noted that although the naı̈ve approach to weighting the local
ROMs is unable to generate a test basis, there may be a better approach to weighting the
system that may produce a more robust test basis.

LSPG-POD solutions were generated with various sized state bases. As can be seen in
Figure 4.16, none of these configurations was able to produce a test space that yielded a sys-
tem that remained stable throughout the simulation duration. Additionally large amplitude
and frequency errors pollute the solutions.

The SAPG-POD and SAPG-DEIM methods were applied to the system with 99% of the
singular value energy contained in the state basis. The solutions in Figure 4.17 demonstrate
that unlike the Grassmann manifold interpolation and LSPG test space methods, the SAPG
method is able to produce a stable and accurate solution to this problem. As noted in
the preceding chapter, given the high singular value energy content retained in the POD
process, the state basis should be sufficient to approximate the solution space fairly well.
However, a Galerkin projection lacks the dynamics to drive the reduced solution towards
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Figure 4.16: LSPG test space solutions.

the ideal solution. The SAPG method extracts those dynamics through the formulation of
the test space such that the state error and residual error converges in tandem. This creates
a form of adaptation that takes place online, in contrast to the adjoint-weight residual error
estimation driven adaptation that adapts the system only a posteriori.

4.2.4 XRF1 with Unsteady Deformations
Although the examples contained above demonstrate unique and novel capabilities of the
SAPG method for generating solutions that resemble the ideal solution for a particular
state basis, it is important to discuss the current limitations of this method, and when the
SAPG method is applied to the XRF1 with the unsteady plunging example from Section
3.5.2 these issues are apparent. The reduced formulations presented in Equation (4.45)
and Equation (4.46) are necessary to keep the cost of the SAPG method feasible for model
reduction, but the reduced formulations may not accurately produce the SAPG test space
if the test search space does not adequately span the reduced state adjoint space. In these
situations, the SAPG solution may become very erroneous.

For this demonstration, the SAPG test space for the 99% singular value energy POD-
ROM was constructed using the reduced formulation with the 99.99% singular value energy
POD basis as the test search space. The test space was updated with each iteration of the
linear solver for the reduced solution at each time step. Figure 4.18a shows that the lift of
this reduced SAPG solution diverges from the FOM lift trajectory significantly; addition-
ally, Figure 4.18b shows the average error of the SAPG test space at the final sub-iteration
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Figure 4.17: SAPG test space solutions.

at each time step. This error is computed with

ei,j =
||∂R̄

∂x

∣∣T
x̂ηwi,j − vi||1

nx

, (4.74)

where ei,j is the average L1-norm of the error of the test space basis vector corresponding
to the state basis vector vi at the j th time step of the solution, wi,j is corresponding the test
basis vector, and nx is the number of FOM degrees of freedom. For comparison, a SAPG
solution is developed with test spaces obtained with the full-order formulation and only at
the initial sub-iteration of each time step. This model performs significantly better than
the reduced SAPG model using a finer set of basis vectors and stays fairly faithful to the
ideal solution, which was obtained by projecting the true solution with the 99% singular
value energy state basis. This illustrates that the quality of the test space constructed in the
reduced SAPG formulation can have a significant effect on the quality of the ROM solution.
The quality of the reduced test space is primarily influenced by the test search space, and
the finer set of POD state basis vectors may not be the best choice for the test search space.

An improved reduced SAPG solution can be obtained if the test search space is better
suited for representing state adjoints. Snapshots of the reduced state adjoints were used for
constructing a basis for the SAPG test search space. The reduced state adjoint snapshots
arise from projecting the snapshots of the full-order model and solving Equation (4.15).
These snapshots are then decomposed into the test search space basis that contains 99.99%
of the singular value energy of decomposition of the adjoint snapshot set. As shown in Fig-
ure 4.19a, the reduced SAPG solution improves dramatically; additionally, Figure 4.19b
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(a) SAPG Solutions (b) Average Error

Figure 4.18: ROM solutions using the SAPG test space with the reduced and full-order formulation
for the low-frequency configuration. The high test space errors for the reduced formulation and
corresponding high solution error are indicative of the effects of a poor test search space.

shows that the errors for each test space basis vector decrease by an order of magnitude
for most of the time steps. The time steps when the error of the SAPG test basis vectors
increased correspond to time steps in the solution where the SAPG model diverges momen-
tarily from the FOM trajectory. The cost of generating the snapshots of the reduced state
adjoints increases the cost of the offline stage significantly, as each reduced state adjoint
requires solving a linear system of the same size as the FOM; however, the improvement
to the solution may justify using an adjoint basis for generating the SAPG test space if the
error of SAPG test space constructed from a fine set of basis vectors is too high.

4.3 Conclusion
This chapter demonstrated a novel approach to generating Petrov-Galerkin reduced order
models by using reduced state adjoints of the ROM system. The resulting ROMs drive the
reduced solutions towards their ideal values, which are the solutions from the FOM pro-
jected with the state basis used in the projection-based ROM. These test bases are devel-
oped for both POD and hyper-reduced DEIM models, and examples shown in this chapter
demonstrate advantages in accuracy yielded by these test bases over the more commonly
used least-squares Petrov-Galerkin methods and Grassmann manifold interpolation of local
ROMs. However, the increases in accuracy come at the cost of increases in computation,
as each of the reduced state adjoints requires a full-order sized linear system to be solved at
each iteration of the ROM. To remedy this additional computational cost, reduced models
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(a) SAPG Solutions (b) Average Error

Figure 4.19: ROM solutions using the SAPG test space with the reduced and full-order formulation
for the low-frequency configuration. The reduced SAPG test space is constructed with a state adjoint
basis.

of the state adjoint Petrov-Galerkin test bases were developed that seek the solution of the
test bases as a linear combination of another basis called the test search space. For many
problems, the finer set of state basis vectors that were truncated is sufficient to serve as a
test search space; however, if the test bases is not well-represented by the finer set of state
basis vectors, the ROM solution will be inaccurate and a different test search space should
be used. For example, snapshots of the reduced state adjoints can be decomposed to form
a more accurate test search space, which results in a more accurate ROM, as demonstrated
with the XRF1 example. Finally, an examination of the stability, convergence, and cost
of the SAPG test space was presented and yielded interesting contrasts between Galerkin
ROMs and the LSPG method. The eigenvalues arising from the use of Fourier and Legen-
dre bases on an advective-diffusive problem for the LSPG and SAPG methods had similar
magnitudes, but differed in distribution; implying similar stability behavior but differing
dynamics. When applied to the Newton-Rapshon method for obtaining a solution to a time
step in a nonlinear, unsteady model, LSPG produces the solution of the L2 minimization
of the problem, while SAPG produces the projection of the equivalent full-order model
solution to the problem. Estimations of the computational complexity of projection-based
ROMs, LSPG, and SAPG reveal that the cost of LSPG will be approximately twice that
of GROMs, and the cost of SAPG will be even greater than the cost of LSPG. The addi-
tional cost of SAPG is dependent on the number of basis vectors used for the test search
space as shown by Equation (4.68) and Equation (4.69), which can be minimized by using
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a basis spanning the reduced state adjoints but at the cost of solving additional full-order
sized snapshots offline. However, when considering the trade-off between state accuracy
and ROM cost, SAPG yields more accurate solutions than LSPG solutions at the same cost.

Applications of SAPG to larger scale problems are of interest, but many factors need
to be considered, including the scaling of the cost of SAPG with increasing problem size
and the stability and accuracy of SAPG for singular value energy deficient problems. Ne-
glecting the cost of residual and Jacobian computation, the computational costs in terms
of FLOPs of constructing the SAPG model using the reduced formulation are inherently
larger than the costs of constructing the Galerkin ROM and LSPG models; however, given
that the leading order of the cost of forming and solving Galerkin ROMs, LSPG, and SAPG
are all quadratic with respect to the dimension of the FOM, their scaling to larger problems
should be similar and the added costs may be worth the additional accuracy. The state ba-
sis for larger-sized problems may not necessarily have a high singular value energy content
due to the larger number of snapshots and the richness of the solution space. Favorably
though, no assumptions of the state trial basis is made with the derivation of the SAPG
test basis; further, the linear and nonlinear scalar transport problems in this chapter demon-
strate that the SAPG test basis is able to arrive at the ideal solution even with rank one state
bases. Thus its application to singular value energy deficient problems should be possible;
however, an investigation into such applications is needed.
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CHAPTER 5

Element-Embedded Neural Networks for DEIM
Hyper-reduction

In the introduction of this dissertation, two categories for characterizing model reduction
techniques are discussed: interpolation-based, where a “black box” model is used to map
relevant inputs to relevant outputs, and projection-based, where the FOM model is pro-
jected onto a tailored subspace to efficiently reduce the degrees of freedom required for re-
solving the system. Making this distinction is useful as the models in these broad categories
often share approaches, arise from common scientific fields, and have similar benefits and
trade-offs. However, the hybridization of interpolation-based and projection-based models
is a growing branch of model reduction. This chapter introduces a hybridization of ma-
chine learning surrogates and projection-based techniques that enable for a non-intrusive
approach to projection-based model reduction. This method, the element-embedded neural
network for DEIM hyper-reduction (EENN-DEIM), uses neural-network models to replace
the intrusive portions of the DEIM method – i.e., the formulation of the CFD residual.
Following the derivation of the EENN-DEIM model, a discussion of approaches for Jaco-
bian construction is presented and comparisons of the traditional DEIM and EENN-DEIM
methods on example applications are made.

5.1 Approaches of Non-intrusive Projection-based ROMs
The intrusive implementation of many projection-based techniques is a major drawback to
their use. Often, projection-based models are designed for specific systems and solvers,
limiting their portability. Even so, many of the generic libraries for model reduction still
require FOM code modification to access the specific physics model that is being reduced.
Further, barriers to modifying the FOM model may make implementing projection-based
ROMs difficult or even impossible, such as intellectual property laws, export control re-
strictions, and commonly the difficulty of working on legacy codes and on codes initially
designed without the intention of being used with ROM techniques. To circumvent the
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modification of the FOM code, non-intrusive ROMs have been develop that use machine
learning to replaces the need for FOM subroutines.

A common approach for non-intrusive ROMs is to map system inputs (such as time,
geometric configurations, and physical conditions) to outputs or POD coefficients in dis-
tribution and field approximations, which then can be expanded to obtain high-fidelity so-
lutions. In this fashion, the POD portion is more similar to unsupervised learning than it
is to a projection-based ROM as the POD basis is used to compress features of the sys-
tem while the underlying physical equations are not invoked. For example, Renganathan,
Maulik, and Rao used deep feed-forward neural networks to predict POD solutions for a
steady, shape-parameterized airfoil problem [70]. Two approaches for parameterized un-
steady flows by San, Maulik, and Ahmed apply recurrent neural-network models to map
instantaneous POD coefficients and system parameters to the POD coefficients at the next
time node and also the change in the POD coefficients from the input to the next time
node [71]. This technique was demonstrated with a single-hidden layer recurrent neural
network for predicting solutions for a 2D viscous Burgers equation model. Many other
exercises exist with the common approach of developing a linear trial space of the state
solutions, training artificial/recurrent neural networks to map system parameters to the re-
duced state solution, and then deploying the neural networks for prediction [72, 73, 74, 75].
Instead of mapping system inputs to coefficients for a linear POD basis, Fresca, Dede, and
Manzoni used a two step process, where a convolutional autoencoder mapped the outputs
of a deep, feed-forward neural network to the full-order state [76]. The use of autoen-
coders as a nonlinear trial manifold is based on work by Lee and Carlberg, although their
formulation still requires access to the FOM model [80]. Peherstorfer and Willcox used
unsupervised learning for operator inference in order to construct the linear and quadratic
operators for a POD-ROM model [77]. In their method, snapshots of the FOM are used to
construct the state basis, the POD-ROM is assumed to be quadratic, and the minimization
of the quadratic POD-ROM residual over all of the reduced states is used to construct the
POD-ROM operators. Khodabakhshi and Willcox are able to apply operator inference to
nonlinear, non-quadratic problems by reformulating the FOM partial differential equations
into partial differential algebraic equations with the addition of non-conserved variables,
like pressure, in the ROM state – a technique called polynomial lifting [79].

In the same vein, this chapter introduces a non-intrusive ROM method, the element-
embedded neural network for DEIM hyper-reduction (EENN-DEIM), that uses machine
learning but not for predicting POD coefficients. Time marching of a physical system is
important in order to allow for the dissipation of errors and the appropriate propagation of
the state. The application of neural networks for directly predicting solutions for unsteady
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systems requires careful construction of the model in order for proper information prop-
agation. Recurrent neural networks (RNNs) use a feedback of an outputted hidden state
in order to propagate information through time; however, these systems are susceptible to
the vanishing and exploding gradient phenomena, where the influence of the inputs and
hidden state of a time node quickly diminishes or the hidden state of the system grows
non-physically large [126]. Certain RNN formulations, such as the long term short term
memory unit [126], can alleviate some of these issues but have many limitations such as
a fixed time step size, sensitivity to memory length, and the need of initial memory accu-
mulation. Rather, the EENN-DEIM model only uses neural networks to map the relevant
full-state information to residuals at the DEIM sampling indices, and the gradients of the
networks are used to construct the Jacobian of the system. These values are then used
in the DEIM-ROM which supplants the need for FOM subroutines. In this fashion, the
time marching of the state is performed appropriately through the same time discretization
and mass matrix, and errors in the system are allow to dissipate through the minimization
of the neural-network predicted residuals. The only requisite data needed from the FOM
model are the state and residual vectors, which are already supplied to construct the POD
and DEIM model. In addition to the non-intrusive and portable nature of this method, the
EENN-DEIM model has a substantial speedup over the traditional DEIM model. The pro-
ceeding sections discuss supervised machine learning and the EENN-DEIM method and
provide example applications.

5.2 Supervised Machine Learning
Machine learning concerns the application of computational methods to accelerate the use
of mathematical techniques that discover structure and features of an underlying system.
There are three major classes of machine learning problems: unsupervised learning, super-
vised learning, and reinforcement learning. Of these three, this chapter is concerned with
developing supervised learning models for use in projection-based models. Supervised
learning attempts to construct a sophisticated mapping of the inputs to outputs of interest
of a system. Classic applications include computer vision, handwriting analysis, and fa-
cial recognition. The learning is “supervised” in that the user provides known input-output
pairs to train a surrogate model while monitoring a loss function based on the accuracy
of the model. Once trained, the model can be deployed on untrained inputs to generate
predicted outputs. The model can take many forms; however a common choice for many
static problems is a feed-forward neural network, which is a layered mathematical struc-
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ture, according to

gnet(xNN → yNN) = Lo ◦ Lo−1 ◦ ...Lj... ◦ L1(xNN), (5.1)

where xNN are the inputs to the network, yNN are the outputs of the network, Lj is the
j th layer of the neural network, and · ◦ · indicates the composition of the layers where the
output of one layer is the input of another. Each layer is a gated linear system, defined by

Lj(xNNj → xNNj+1) : xNNj+1 = σj

(
zNNj

)
, (5.2)

zNNj = WjxNNj + bj, (5.3)

where σj is the j th nonlinear function gate – called an activation function – zNNj is the
output of the linear stage of the network, and Wj and bj are the weights and biases of the
linear portion of the network. The weights and biases are defined by

Wj =


w1, 1 . . . w1,kj

. . .

wkj+1, 1 . . . wkj+1,kj

 ∈ Rkj+1×kj , (5.4)

bj =


b1
...

bkj+1

 ∈ Rkj+1 . (5.5)

The size of the inputs of a layer (kj) is used to characterize the size of the layer – also
referred to as the number of neurons. Activation functions map scalar inputs to scalar out-
put values, usually bounded by [0, 1] or [−1, 1] for numerical accuracy. Common activa-
tion functions include the sigmoid activation function, hyperbolic tangent function (TanH),
rectified linear unit (ReLu), and a Gaussian distribution activation function, which are dis-
played in Figure 5.1. With the exception of the output layer, activation functions are typi-
cally used as gates on layers and add nonlinearity to the neural network. Figure 5.2 displays
a single hidden layer feed-forward neural network. For clarity, the output layer is the “high-
est” layer, the input layer is the “lowest layer”, and the closer a layer is to the input layer
the “deeper” that layer is.

Training is required for the neural network to be accurate. Although many different
training algorithms exist, they all require the minimization of some loss function which
measures the error of the output predictions of a network on a given set of training input-
output pairs. As an example, the squared L2-norm of the error of a network is defined
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(a) ReLu (b) TanH

(c) Sigmoid (d) Gaussian

Figure 5.1: Examples of activation functions.
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Figure 5.2: Single hidden layer neural network. Each unit contains a scalar, and every arrow is a
composition of a linear operation and nonlinear activation function.

by

J(g(xNNt),yNNt) = ||yNNt − g(xNNt)||22,

J(g(xNNt),yNNt) =
Nt∑
i=1

(yNNt,i − g(xNNt,i))
T (yNNt,i − g(xNNt,i)), (5.6)

where (xNNt,yNNt) are a set of Nt known input-output pairs. Minimization of the loss
function can be done iteratively by updating the weights and biases of the network with a
gradient descent based update, defined by

Wi,new = Wi,old − ϵl∇Wi,oldJ(g(xNNt),yNNt), (5.7)

bi,new = bi,old − ϵl∇bi,oldJ(g(xNNt),yNNt), (5.8)

where ϵl is the learning rate (i.e., the step size) of the update. The gradient of the loss
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function with respect to the network parameters is formulated with the chain-rule, i.e.,

∇Wi,oldJ(g(xNNt),yNNt) =
∂J(g(xNNt),yNNt)

∂g

∂g(xNN)

∂Wi,old
, (5.9)

∇bi,oldJ(g(xNNt),yNNt) =
∂J(g(xNNt),yNNt)

∂g

∂g(xNN)

∂bi,old
. (5.10)

Likewise, the gradients of the network with respect to the weights and biases are formed
using the chain-rule; furthermore, the application of the chain-rule results in the recursive
formation of the gradients of the weights and biases, as portions of the chain-rule used
to form the gradient for a higher layer are required for the chain-rule used to form the
gradients for deeper layers. For a given layer j of an o deep network, the gradients of the
network with respect to its weights and biases are

∂g

∂Wj

=

[
i=j+1∏
i=o

[
diag

(
dxNNi+1

dzNNi

)
Wi

]
diag

(
dxNNj+1

dzNNj

)]
dzNNj

dWj

, (5.11)

∂g

∂bj
=

[
i=j+1∏
i=o

[
diag

(
dxNNi+1

dzNNi

)
Wi

]
diag

(
dxNNj+1

dzNNj

)]
1kj+1

, (5.12)

where (
diag

(
dxNNi+1

dzNNi

))
k,l

= δk,l
d(xNNi+1)k
d(zNNi)l

, (5.13)(
dzNNj

dWj

)
k,l

=
(
xNNj

)
l
, (5.14)

δk,l is the Kronecker delta, and 1kj+1
is a kj+1 length ones vector. The gradient for the

weights and biases of the j − 1 layer is the same as Equation (5.11) and Equation (5.12)
but with an extra term in the product. Programmers can take advantage of this observation
by writing automatic differentiation algorithms that recursively compute the gradients of
the system layer by layer, which is computationally more efficient than the naı̈ve imple-
mentation. Further carrying out this product to the deepest layer yields the derivative of the
network with respect to its inputs, defined by

∂g

∂xNN
=

i=1∏
i=o

[
diag

(
dxNNi+1

dzNNi

)
Wi

]
. (5.15)

The next section details the use of automatic differentiation for computing system Jaco-
bians. These system Jacobians are then used in the DEIM algorithm for constructing Jaco-

103



Figure 5.3: EENN-DEIM model applied to a mesh. The key idea of the EENN-DEIM model is
to use the states of the embedded element and the neighboring elements to formulate the residuals
instead of invoking the FOM code.

bian approximations. There is a wealth of literature dedicated to artificial neural-network
design, training, and applications; however, the amount covered in this section is suffi-
cient for the proceeding introduction of the element-embedded neural networks for DEIM
hyper-reduction.

5.3 Element-Embedded Neural Networks
As mentioned earlier, sparse sensing based hyper-reduction ROMs have two major practical
implementation issues: they are highly intrusive and their coding frameworks are typically
solver exclusive. For projection-based models in general, access to state, the FOM func-
tions for computing the residual and Jacobian, and additional subroutines for constructing
the deploying the ROMs are necessary. DEIM sparsely samples the residual at specific
degrees of freedom in order to interpolate the residual everywhere. The subroutines that
compute the residual for a dispersed set of degrees of freedom often need to be written for
FOM codes that were originally not designed for model reduction. These unique codes
make projection-based techniques tied to the FOM solver that is being reduced, and chang-
ing the FOM solvers may require re-writing of codes. Additionally, there are many barriers
to accessing FOM codes to begin with: governmental classifications, intellectual property
protections, export controls, and even legacy or very complex code structure obscuring the
implementation.

However, the implementation of DEIM can be non-intrusive and portable with the use
of neural networks for residual and Jacobian computation. The element-embedded neural
network for DEIM hyper-reduction uses individual neural networks at each DEIM sam-
pling element and maps internal and neighboring state data to internal spatial residuals, as
demonstrated in Figure 5.3. Recalling from Section 3.2, the spatial residual is computed by
balancing the convective and diffusive fluxes. These fluxes for an element are often only
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functions of the neighboring states, internal state, and boundary conditions. Thus a surro-
gate model with the same inputs can be used to replace the FOM residual computations.
For the EENN-DEIM method, the approximation of the sparsely sampled residual is

REENN =


gDEIM,1(Q1x̂,µ(t)1, t)

...
gDEIM,nP

(QnP
x̂,µ(t)nP

, t)

 ≈ P TR(x,µ, t), (5.16)

where gDEIM,i is the i
th neural network, µ(t)i are element specific inputs such as boundary

conditions, and

Qi = GT
i V . (5.17)

Gi is similar to P – i.e., the sampling matrix from DEIM – in that it contains elementary
vectors indicating the states to keep for the i

th neural network. Making the substitution of
the neural networks into Equation (2.38) yields

M̂
dx̂

dt
+W TU

[
P TU

]†


gDEIM,1(Q1x̂,µ(t)1, t)
...

gDEIM,nP
(QnP

x̂,µ(t)nP
, t)

 = 0, (5.18)

which is the EENN-DEIM model.
There are two approaches to constructing an approximation to the DEIM Jacobian that

are demonstrated in this thesis: finite differencing and analytical automatic differentia-
tion. The straightforward application of finite differencing is to perturb each input of each
network to formulate the sensitivity of the EENN residual to each degree of freedom. How-
ever, this is inefficient as the number of inputs for a neural network can be high, given that
each residual value is constructed from the states of a collection of neighboring elements.
For example, for triangular elements with a conforming tessellation, the total number of
state inputs is

d.o.f. = 4
(p+ 1)(p+ 2)

2
rstatenP , (5.19)

where p is the spatial approximation order, rState is the state rank of the system, and nP is the
total number of residuals being computed. For 2D inviscid simulations, the state rank is 4,
and Table 5.1 shows the total degrees of freedom that the finite differencing is applied to for
each residual degree of freedom sampled in DEIM. Additionally, for central differencing,
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two neural-network evaluations are needed, and in order to assess the quality of the gradient
approximation, additional finite differences of smaller step sizes may be needed. A more

Spatial Order, p 0 1 2 3
d.o.f./nP 16 48 96 160

Table 5.1: The total number of degrees of freedom for an interior element per neural network for
the EENN-DEIM applied to a system with inviscid physics, triangular mesh conforming elements,
and increasing spatial approximation order.

straightforward approach would be to perturb the reduced state coefficients, then apply the
chain-rule. For the l

th network, this finite difference is defined by

∂gDEIM,l(x,µ(t)k, t)

∂x
=

[
gDEIM,i(Qk(x̂+enV ,iϵ),µ(t)k,t)−gDEIM,l(Qk(x̂−enV ,iϵ),µ(t)k,t)

2ϵ

]
QTGT

k ,

(5.20)

where the finite difference term is a 1×nV matrix of the finite differences for each reduced
state coefficient, enV ,i is an elementary vector of length nV with a 1 at the i

th index and
zeros elsewhere, and ϵ is the step size of the finite difference. The total number of finite
differences is now nV nP which may be less than the number of finite differences needed
when perturbing the states individually; however, the number of network evaluations is still
very high, which impacts the performance of the EENN-DEIM model.

An alternative approach is to use analytical gradients of the network. Equation (5.15)
can be used to compute the gradient of the networks with respect to the state inputs. Rec-
ognizing that an individual network has zero gradients for any state value that is not used
as an input, the gradient of the k

th network with respect to the full state is defined by

∂gDEIM,l(Qkx̂,µ(t)k, t)

∂x
=

[
i=1∏
i=o

[
diag

(
dxNNi+1

dzNNi

)
Wi

]]
GT

k . (5.21)

The product needed for the gradients of the network can be computed while computing
the residual of the EENN-DEIM model. Therefore, the gradient formed from automatic
differentiation only needs a single network evaluation. This has a substantial effect on the
performance of the EENN-DEIM model, which is demonstrated in the example applica-
tions.

Collecting the spatial gradients of the entire network system from either finite differ-
encing or an analytical, automatic differentiation yields the spatial Jacobian, which can be
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used to approximate the DEIM Jacobian,

∂REENN

∂x
=


∂gDEIM,1(Q1x̂,µ(t)1,t)

∂x
...

∂gDEIM,nP
(QnP

x̂,µ(t)nP
,t)

∂x

 ≈ P T ∂R

∂x
. (5.22)

5.4 Example Applications
Two applications of the EENN-DEIM method are demonstrated in this section: the nonlin-
ear steady example from Section 4.2.2 and the unsteady pitching and plunging airfoil from
Section 3.5.3. These solutions give insight to the use and benefits of EENN-DEIM and as
well as its limitations.

5.4.1 Scalar Advection-Diffusion with Nonlinear Source
The first application of the EENN-DEIM hyper-reduction is to the scalar advection-
diffusion with a nonlinear source example defined in Section 4.2.2. To summarize the prob-
lem settings, on a square domain with rectangular elements, the following scalar advection-
diffusion equations are solved:

∇ · (v⃗x)− ν∇2x+ S(x) = 0, (4.72)

S(x) = S0x
2, (4.73)

where the speed of the advection is |v⃗| = 1.0, the diffusivity is ν = 0.001, and the source
constant is S0 = 1.0. In total there are 2916 elements with bilinear basis for the state.
The total degrees of freedom of the problem is 11664. 81 FOM steady solutions with the
advection angle sampled evenly within α ∈ [0, 80]◦ are taken to form the snapshots for the
POD state basis. To formulate the DEIM model, spatial residual snapshots are computed
by perturbing the state via projection of the state snapshots with the POD basis vectors
and then calculating the difference between the resulting advective and diffusive fluxes.
POD state bases with 5, 10, and 15 basis vectors are used to perturb each of the snapshots.
To obtain additional snapshots, for each of the state projections, three sets of randomly
generated values between ±5% are used to perturb the weights of the projections, and the
residual of the perturbed projection is computed. In total 972 residual snapshots are used to
obtain a residual basis where only 45 basis vectors are kept for the DEIM approximation.
90 elements from the FOM are sampled to form the DEIM residual. The locations of these
elements are shown in Figure 5.4. The half angles of attack between the training samples
used to develop the ROMs are used to test the models. The DEIM-ROM solutions for
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Figure 5.4: Sampling elements for DEIM approximation. A zoom-in on the right wall for y ∈
[2.1, 2.6] shows that boundary elements are sampled as well.

various state basis sizes are shown in Figure 5.5 for both reconstruction of the training
configurations and prediction on the testing configurations, and clearly the model improves
with increasing POD state basis size.

The EENN-DEIM model is written in MATLAB for this example problem as a demon-
stration of the portability of the EENN-DEIM ROM. All networks are designed with a
single hidden layer containing 12 neurons and a sigmoid activation function. Networks
for interior elements have 21 inputs: the Discontinuous Galerkin state basis has 4 weights
per element, each interior element has the states of their 4 element neighbors and itself as
inputs, and the convection angle. The Jacobian is approximated with the finite differencing
formulation defined by Equation (5.20). The solutions for the reconstruction and testing
configurations are shown in Figure 5.6.

The performance of the EENN-DEIM model is worse than the traditional DEIM im-
plementation for the coarser DEIM-ROM solutions. However, with POD state basis refine-
ment, the EENN-DEIM solution performs comparably to the traditional DEIM implemen-
tation. The number of residual snapshots used is much larger than what would be typically
needed for hyper-reduction for a problem of this simplicity. However, the high number of
snapshots arises from the need to train the element-embedded neural networks. As men-
tioned before, with 21 inputs and one hidden layer containing 12 neurons, the networks
for the interior elements are composed of 277 weights and biases that need to be trained.
Thus, a larger number of training snapshots is needed for constructing EENN-DEIM mod-
els. Additionally, the configurations on which the EENN-DEIM models are most erroneous
correspond to the configurations on which the finite differencing of the networks did not
produce a high quality Jacobian. When constructing the Jacobian with finite differencing,
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(a) DEIM reconstruction. (b) DEIM testing configurations.

Figure 5.5: DEIM reconstruction and testing solutions for the scalar advection-diffusion problem
with a nonlinear source. The ROM sizes are: nV = [15, 20, 25, 30], nU = 45, and nP = 90.

(a) EENN-DEIM reconstruction (b) EENN-DEIM testing configurations

Figure 5.6: EENN-DEIM reconstruction and testing solutions for the scalar advection-diffusion
problem with a nonlinear source. The ROM sizes are: nV = [15, 20, 25, 30], nU = 45, and
nP = 90. The element-embedded neural networks contain one hidden layer with 12 neurons and
sigmoid activation functions.
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the step size is incrementally decreased and consecutive finite differences are compared.
These finite differences are defined with,

ji =
REENN(Q (x̂) + enV ,iϵi,µ, t)−REENN(Q (x̂)− enV ,iϵi,µ, t)

2ϵi
, (5.23)

where ϵi is the step size from the i
th finite difference, with ei > ei+1. If the error between

the two is below a set tolerance, then the Jacobian approximation is saved and the next finite
difference is computed. The error used to compare finite differences for this demonstration
is the L2 norm of the residual error, defined by

eFD = || (j2 − j1)⊘ j1||2, (5.24)

where ⊘ is an element-wise division operation. For these configurations, the error of the fi-
nite differencing was on the order of 10%, whereas the allowed tolerance was set to 0.01%.
This clearly affected the performance of the EENN-DEIM ROM at those configurations
in comparison to the traditional DEIM model. In terms of speedup, the performance of
this implementation of the EENN-DEIM model is lacking in comparison to the traditional
DEIM model. The average run time for a traditional DEIM-ROM solution was 2.125 sec-
onds, whereas the average run time for a EENN-DEIM solution was 22.154 seconds. The
key factors that impacted the performance of the EENN-DEIM model were the chosen
coding framework and the cost of the finite differencing. The tradition DEIM model is
implemented with the C programming language, which is a compiled language. For C pro-
grams, the plain-text code goes through pre-processing and compiling stages that optimize
the code before becoming an executable computer program. MATLAB, on the other hand,
is an interpreted language, which does not benefit from the optimizations that compiled
languages receive; instead, MATLAB code is translated to machine code at run time, line-
by-line, which is almost always less efficient than a compiled language. The other factor
impacting the performance of the EENN-DEIM model is the cost of producing the Jacobian
through finite differences. The computation of the finite differences dominated the simula-
tion cost of the EENN-DEIM model as 84% of the run time was spent on formulating the
Jacobian approximations. If automatic differentiation were used instead, the entirety of the
gradient formulation and residual evaluation would be encompassed into a single execution
of all the networks, substantially reducing the computational cost. Despite these issues, the
good performance of the EENN-DEIM model for finer state bases and the implementa-
tion of the EENN-DEIM model in MATLAB demonstrates the practicality and portability
of this technique. The proceeding example will demonstrate the immense speedup and
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improvements to accuracy that is obtained from the implementation of EENN-DEIM in a
compiled language and the use of automatic differentiation for Jacobian construction.

5.4.2 Unsteady Pitching and Plunging Airfoil
The previous example is meant to demonstrate the portability and accuracy of the EENN-
DEIM method. The model was prototyped entirely in MATLAB, only needing the FOM
model for state and residual snapshots. Finite differencing was used for approximating the
Jacobian; however, the inaccuracies of this approach to Jacobian formulation impacted the
fidelity of the EENN-DEIM model. Additionally, the lack of optimization due to MAT-
LAB being an interpreted language and the cost of finite differencing severely impacted
the speedup of the EENN-DEIM model. For this example, the EENN-DEIM model is im-
plemented in C, and automatic differentiation of the network with respect to its inputs is
used for Jacobian calculations. These changes result in an immense improvement to the
speedup of the EENN-DEIM model over the FOM and DEIM-ROM. The pitching and
plunging airfoil, first defined in Section 3.5.3, is the subject of this demonstration.

To summarize, the forced pitching and plunging of a NACA 0012 airfoil is imple-
mented with ALE mesh motion for different reduced frequencies and freestream Mach
numbers. The fluid system is modeled with compressible URANS physics, using the
Spalart-Allmaras turbulence model. The freestream conditions are Re = 500K and zero
angle of attack. EENN-DEIM models are built for the 99% singular value energy state
basis. The DEIM residual basis contains 120 basis vectors, and 200 elements are sampled
for generating the sparse residual. The locations of these elements are shown in Figure 5.8.
Given that the FOM uses DG and a linear spatial basis, the number of degrees of freedom
of the DEIM residual is 3000, and an element-embedded neural network is created for each
element. These neural networks consist of a single hidden layer with 15 neurons and hyper-
bolic tangent activation functions. The number of inputs varied between the three different
kinds of elements: 79 for interior elements, 69 for freestream boundary elements, and 64
for airfoil boundary elements. Four mesh motion variables are provided to the networks as
inputs: the instantaneous pitch and plunge, and the temporal derivatives of the pitch and
plunge. The DG state basis coefficients are also provided to the networks from the four
neighboring elements and the embedded element. This totals to 75 state inputs for interior
elements and 60 state inputs for the two different boundary elements. The boundary ele-
ments have additional inputs based on the boundary conditions of the adjacent boundary.
For the freestream boundaries, these are the full-state vector for the boundary conditions:
density, specific momentum in both Cartesian directions, specific energy, and the resolved
viscous variable in the Spalart–Allmaras turbulence model (ν̃). The airfoil boundary is
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Figure 5.7: Mock-up of the trajectory of the i
th

state basis weight and the spatial/temporal perturba-
tions used to generate residual snapshots. The coarseness of the time discretization is for illustrative
purposes, while the true discretization used is 12 times finer.

treated as a no-slip, impenetrable wall with the heat-flux and Spalart-Allmaras variable
specified to be 0. Thus no additional input is given to the embedded neural networks for
the airfoil elements, as these boundary conditions are invariant.

Overall, the largest networks have 1216 weights and biases. There are only 2404 state
snapshots; thus merely using the residuals that arise from projecting the FOM solutions
with the 99% singular value energy basis may not be sufficient for training. Therefore,
additional snapshots were generated to train the network model. These residuals arise from
both temporal and spatial perturbations of the projected FOM snapshot coefficients. Similar
to the previous examples, the coefficients of the projected snapshots are perturbed ±2.5%
twice to generate two new residual snapshots for each residual, and linear interpolation of
the projection is used to construct coefficients at the mid-points between projected FOM
solutions to generate additional residual snapshots. An mock-up of these perturbations is
shown in Figure 5.7. Overall, the 6006 residuals snapshots are used to train the element-
embedded networks in MATLAB.

A custom neural-network library is used in xflow to generate the EENN-DEIM solu-
tions; additionally, automatic differentiation is used to generate the Jacobian for the EENN-
DEIM ROM in tandem with the EENN-DEIM residuals. Using Galerkin projection, the
EENN-DEIM model is unable to capture the load trajectory of the airfoil; however, the
use of a state adjoint Petrov-Galerkin test basis yields far more accurate predictions. The
SAPG test basis arises from the reduced formulation and uses the 99.9% singular value
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(a) Full-domain (b) Near airfoil

Figure 5.8: Sampling elements for DEIM approximation. For each element, all of the DG state
basis weights are used in the DEIM approximation.

Figure 5.9: EENN-DEIM solutions for the unsteady airfoil problem. SAPG test basis vectors are
used for improving the predictions of the EENN-DEIM model.
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energy basis as the test search space. The solutions for the models in comparison to the
DEIM-ROM solutions are shown in Figure 5.9. The poor EENN-DEIM solution for the
Galerkin projection and the improved solution obtained with a SAPG test basis is similar
to the behavior of the DEIM-ROM and SAPG-DEIM models and indicates that neural net-
works can be used at lower levels to develop accurate residuals for non-intrusive model
reduction. The speedups of the DEIM and EENN-DEIM models are an order of magnitude
higher than the speedups for the POD and DEIM-ROM models. The higher speedups are
likely due to the reduced complexity of the element-embedded neural network compared to
the DEIM implementation and the advantages of automatic differentiation. Additionally,
the speedups for the SAPG formulations are less than the Galerkin formulations due to the
construction of the SAPG test basis vectors and the additional amounts of residual that are
reduced – the norm of the projection of the residual with the SAPG test basis is typically
O(1-2) times larger than the norm of the Galerkin projection of the residual. Overall, this
example demonstrates the potential of the EENN-DEIM model to generate accurate resid-
uals for use in non-intrusive model reduction and can substantially improve performance
when implemented with automatic differentiation.

However, this problem demonstrates three major issues that need to be addressed for
the application of EENN-DEIM to larger, more complex problems. First, the need for
many more residual snapshots is a major obstacle due to the significantly higher cost of
their production for larger scale problems. This can be address with more sophisticated,
general networks and is discussed in the conclusion of this chapter and the conclusion
of this thesis. Second, the EENN-DEIM solutions are highly sensitive to the design of
the neural networks. For this problem, the number of neurons and hidden layers have a
dramatic effect on the stability and accuracy of the EENN-DEIM model, which facilitated
multiple attempts at constructing and training the neural network models. This process
is costly and will only be more expensive and prohibitive for larger problems. The use
of more sophisticated neural-networks structures such as a convolutional neural-network
may improve the consistency of trained surrogate models. The spatial residual is calculated
from the balance of diffusive and convective fluxes integrated along cell boundaries. For
FEM-DG, each flux is only dependent on the embedded cell and neighboring cell of the
integrated boundary. Thus a convolutional network is more appropriate for identifying this
relationship offline and may result in more consistent training. A convolutional structure
may also scale better to 3D cases as the relationship between spatial residuals, advective
and diffusive fluxes, and adjacent state information still holds. Finally, the training cost for
3000 individual networks was immensely expensive and was performed using distributed
computing. For larger-scale problems this approach may not possible as the number of
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interpolating elements for DEIM modeling scales with the problem degrees of freedom.
Once again, using fewer more general networks is necessary for EENN-DEIM application
on larger problems.

Method Speedup

FOM 1.0

POD 2.7993

SAPG-POD 1.1012

DEIM 8.1421

SAPG-DEIM 4.4376

EENN-DEIM 66.8178

EENN-SAPG 31.8576

Table 5.2: Speed ups for all of the ROMs using the 99% singular value energy state basis.

5.5 Conclusion
This chapter introduced element-embedded neural networks for DEIM hyper-reduction,
which is a non-intrusive model reduction technique that supplants intrusive portions of the
DEIM algorithm with neural networks. DEIM-ROMs often require access to the FOM
code for computing sparsely sampled residuals and Jacobians that are used to approximate
the full-order residuals and Jacobians through sparse sensing interpolation. However, sev-
eral hindrances can make the development of DEIM subroutines impractically complex
or even impossible; additionally, the resulting DEIM subroutines are often not portable,
leading to the need to rewrite them when applied to new FOM frameworks. The EENN-
DEIM method uses element-level neural networks in place of these subroutines by mapping
relevant states to residuals with neural networks. These neural networks are “element-
embedded” in that each network is associated with an individual discretization element as
opposed to other methods that use the neural networks on the projected residuals and states.
Further, the use of automatic differentiation can substantially increase the speedup over
traditional projection-based models, as shown in Section 5.4.2. EENN-ROMs can also be
used with state adjoint Petrov-Galerkin test spaces, developed in Chapter 4, to yield more
accurate solutions. Finally, EENN-DEIM models are non-intrusive to the FOM model as
long as state and residual snapshots are able to be collected and decomposed.

There are some drawbacks to using EENN-DEIM that should be noted. First, to account
for the high number of weights and biases that are trained for each element-embedded net-
work, the number of residual snapshots needed for developing the EENN-DEIM models is
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significantly higher than the number of snapshots needed for constructing the DEIM resid-
ual basis and the DEIM sampling matrix. This is more impactful for higher spatial order
schemes where the number of state degrees of freedom grows quickly. A possible solution
is to use a single network for each element type (interior, boundary, etc.) as opposed to
each element individually. To do so, information about the embedded and neighboring el-
ement geometry needs to be provided. Thus, under this framework, the number of inputs
increases; however, all of the sampling elements will share training data, significantly in-
creasing the number of sampling points. Another open issue with the EENN-DEIM method
is how to design deeper element-embedded neural networks to obtain possibly higher accu-
racy with maintaining smoothness of the gradients for stability when deployed online. All
of the EENN-DEIM models demonstrated in this thesis are kept shallow to keep gradients
of the network smooth for stability. Deeper networks can provide more accurate solutions,
but the added nonlinearity can create oscillatory and large gradients which are undesirable
for minimization. This issue may be ameliorated by more complex training frameworks
and by training the network on both residuals and Jacobians. This is detailed more in the
concluding chapter of this thesis.
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CHAPTER 6

Concluding Remarks

This concluding chapter summarizes the preceding chapters, highlights the key-
contributions of this research, and presents potential future work that expands on the ideas
presented.

6.1 Summary
This thesis focused on three main subjects: 1) the use of adjoint-weighted residual error es-
timates for projection-based reduced-order models and hyper-reduced order models, 2) the
construction of state adjoint Petrov-Galerkin reduced-order models for optimal state predic-
tion, and 3) the application of element-level embedded neural networks for non-intrusive
DEIM hyper-reduction. This chapter serves to highlight the major accomplishments in
these subjects and propose additional work to be done.

Adjoint-weighted residual error estimation techniques were adapted for the discrete-
empirical interpolation method (DEIM) to quantify the error of the output prediction of
a DEIM-ROM, which can then be used for adaptation. These error estimates arise from
a sensitivity analysis of the output with respect to the residual and a perturbation of the
residual realized upon injection of the DEIM solution into a finer-space DEIM setting. The
error estimation was verified on a steady scalar transport problem before being applied
onto an inviscid, 3D wing undergoing forced rigid-body motions with ALE mesh deforma-
tions and onto a viscous, 2D, multiparameter airfoil problem with dynamic pitching and
plunging. Overall, the quantification of the output error was accurate and improved with
increased fidelity of the ROM. Chapter 3 also develops a method for localizing the error
of the DEIM-ROM to specific degrees of freedom of the fine-space DEIM, which can then
be targeted for adaptation. These degrees of freedom are the metrics that determine the
“size” of the DEIM-ROM: the rank of the state basis, the rank of the residual basis, and
the number of sampling indices for residual and Jacobian approximations. With this mech-
anism for driving adaptation, coarse DEIM-ROMs for the 3D wing and 2D airfoil were
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adapted to generate models with more accurate output predictions while maintaining rela-
tively coarse sizes. Key insights from these exercises are that adaptation is more beneficial
in enriching the test basis rather than improving the state space representation and that the
singular value energy criterion used to construct a basis is more beneficial for selecting the
leading basis components and is less important for the higher basis vectors. As a general
observation, for a basis at or above 99% of the singular value energy of the decomposition
of a well-constructed snapshot set, an additional state basis vector adds relatively little to
its overall ability to span the state space. However, the ordering of the singular values does
not correlate with how much the associated basis vectors span the residual. Thus, adjoint-
weighted residual error estimates and adaptation are beneficial because they are able to
identify unused degrees of freedom that can drive the system towards a more accurate out-
put prediction.

However, in many cases the test basis that can obtain the appropriate dynamics to drive
the solution towards the correct solution is not well represented by the state basis. To ad-
dress this, Chapter 4 introduces a novel method for constructing a Petrov-Galerkin ROM
test basis that optimally drives the solution towards the ideal solution – i.e., the full-order
model solution projected with the state basis. This test basis transforms the residual er-
ror minimization problem to be equivalent to the minimization of the error of the reduced
state with respect to the ideal solution. It was shown that this test basis consists of the
reduced state adjoints of the system. Thus, this method is referred to as the state adjoint
Petrov-Galerkin method (SAPG). Formations for the SAPG test basis are given for linear,
nonlinear, and hyper-reduction settings. Additionally, to ameliorate the cost of the con-
struction of the SAPG test basis, reduced-order formulations are also developed. Insights
into the stability and convergence of the SAPG test basis are provided and compared to the
popular least-squares Petrov-Galerkin test basis (LSPG). Overall, the SAPG test basis has
eigenvalues similar to those of the LSPG test basis. The Newton-Raphson updates for the
reduced state for the two test bases differ in that the LSPG test basis forms a least squares
solution whereas the SAPG test basis forms the projection of the full-order model update.
Comparisons between Galerkin ROMs, the LSPG-POD ROM, and the SAPG ROMs are
made on several different models. Each demonstrates the ability of the SAPG method and
its reduced formulation to push the solution towards the ideal solution and to produce more
accurate output predictions for most of the tested problems; however, limitations of the
reduced formulation are shown and alternative means of constructing the SAPG test basis
are shown.

Chapter 5 moves away from the use of adjoint-based techniques and focuses on the con-
struction of non-intrusive DEIM-ROMs via the use of element-embedded neural networks
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(EENN-DEIM). The intrusiveness of DEIM is a major drawback of its use, especially in sit-
uations where access to the FOM code is not available. Instead, the EENN-DEIM method
replaces the intrusive portions of the DEIM method with neural networks – i.e., the sparse
calculation of residuals and Jacobians for the DEIM interpolation. These neural networks
are each associated with an individual degree of freedom of an individual element. Train-
ing of the neural networks only requires access to state and residual snapshots, which are
necessary for DEIM-ROM construction. However, the number of residual and state snap-
shots is significantly larger than what is needed to form a traditional DEIM model in order
to facilitate network training. The inputs to the EENN networks are the same inputs that
are used to construct the FOM residual: the internal and neighboring states, boundary con-
ditions for boundary elements, and any system parameters. The output of the EENN DEIM
model is the residual of the corresponding degree of freedom. Chapter 5 also provides two
separate methods for computing the system Jacobian: finite differencing and automatic
differentiation. Of the two, automatic differentiation is significantly more accurate and ef-
ficient, as it is analytical and is constructed in tandem with the residual computation rather
than needing to form multiple residuals for finite differencing. The EENN-DEIM ROM is
compared to the traditional DEIM model for a steady, nonlinear, scalar transport problem
and a viscous airfoil problem with forced deformations. The results of the EENN-DEIM
model are promising, especially when combined with the SAPG test basis; however, in-
vestigation into the training and construction of EENN-DEIM may provide solutions to the
issues noted above.

6.2 Key Contributions
The key contributions of this thesis can be summarized as:

• Developed time-coupled adjoint equations for DEIM hyper-reduced models in order
to produce adjoint-weighted residual output error estimates (Chapter 3).

• Formulated an approach for localization of the error to specific degrees of freedom
(Chapter 3).

• Demonstrated fine-grained DEIM-ROM adaptation methods based on output error
estimates (Chapter 3).

• Derived a novel Petrov-Galerkin test basis for minimizing state errors of POD-ROMs
and DEIM hyper-reduced ROMs (Chapter 4).

• Derived reduced-order models for the SAPG test basis (Chapter 4).
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• Compared SAPG and LSPG test bases convergence, stability, and prediction quality
for several example applications (Chapter 4).

• Developed a novel hybridized DEIM-neural network model for non-intrusive
projection-based model reduction (Chapter 5).

• Demonstrated O(10) speedup of the hybridized model on an aerodynamic problem
of interest (Chapter 5).

6.3 Future Work
There are several open areas of research that are left for future work:

• Application of adjoint-weighted residual error estimates and adaptation to
SAPG-ROMs: The SAPG test space drives the solution towards the ideal solution
only in a linear sense. This is demonstrated in Section 4.2 where for linear problems,
the SAPG test space does drive the reduced solution to be equal to the ideal solu-
tion, but for the nonlinear examples the reduced solutions did not exactly equal the
ideal solution; therefore, quantifying the error in the solution is still necessary. For
application of adjoint-weighted residual error estimation techniques on the reduced
formulation of the SAPG-ROMs, the rank of the test search space would need to be
increased for constructing the fine-space ROM, in addition to the rank of state basis,
the rank of the residual basis, and the number of sampling indices. Additionally, the
solutions for the final SAPG test space for each time step would need to be saved
during the primal solve so that the backwards in time marching could be properly
constructed. The state basis error localizations (Equation (3.54), Equation (3.55),
Equation (3.56), and Equation (3.61)) will change as the errors are localized to the
test basis, which is no longer the state basis in the Petrov-Galerkin formation. How-
ever, those formulas now represent the localization for the test search space, thus
other means of error estimates would need to be used to formulate the error of the
state basis.

• Application of adjoint-weighted residual error estimation and adaptation to
EENN-DEIM ROMs: Quantification of the error of EENN-DEIM ROMs is ar-
guably more important than for the SAPG-ROMs as the EENN-DEIM ROM removes
the physical model underlying the FOM system. Doing so requires an additional
pool of unused, trained element-embedded neural networks that act as a fine-space
for the EENN-DEIM residual. Errors can be localized to specific fine-space neural
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networks that can be targeted for adaptation using Equation (3.58) for steady prob-
lems or Equation (3.61) for unsteady problems. In addition, adaptive techniques for
the DEIM sampling matrix developed by Peherstorfer and Willcox [105] can be in-
corporated with the pool of fine-space element-embedded neural networks.

• Generation of stabilized ROMs with the SAPG method: Chapter 4 performs sta-
bility analysis on the SAPG test basis, but it does not incorporates methods for gen-
erating quantified stable ROMs for unsteady simulations. However, clearly from
Example 4.2.4, the choice of the test space reduced-order model has an impact on
the stability of the ROM; an investigation into constructing SAPG test search spaces
and more broadly SAPG test space reduced-order models to guarantee stability is of
interest.

• Utilization of deep element-embedded neural networks for DEIM: The networks
used in Chapter 5 are shallow, single-hidden layer networks. This was done to keep
the gradients of the EENN-DEIM model smooth for minimization. Improvements to
the accuracy of the EENN-DEIM model are possible through the use of deeper net-
works, but the added nonlinearity of deep neural networks can lead to less smooth, ir-
regular gradients that can harm the residual minimization process. However, changes
to the training model may allow for deeper element-embedded neural networks with
smooth gradients. Two possible changes are the regularization of the gradient and
training the neural networks on the residuals and gradients. In the first, the loss func-
tion can take into account errors from the network prediction as well as the magnitude
of the gradient, according to

J̃(g(xNNt),yNNt) = αJyNN(g(xNNt),yNNt) + βJ∇(g(xNNt),yNNt), (6.1)

J∇(g(xNNt),yNNt) =

√∑Nt

i=1 ||
dg(xNNt,i)

dxNNt,i
||22

Nt

, (6.2)

where JyNN is the traditional loss function based on the error of the network on the
training data, J∇ is the loss function based on the norm of the gradients – taken for
this example to be the root mean square but can be any loss function – and α and
β are weights for the loss functions. In the second, the snapshots of the Jacobian
can also be used to train both the output and gradients of the networks. The loss
function is similar to Equation (6.1) but with a different definition for the gradient
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loss function, according to

J̃(g(xNNt),yNNt) = αJyNN(g(xNNt),yNNt) + βJ∇(g(xNNt),yNNt), (6.3)

J∇(g(xNNt),yNNt) =

√∑Nt

i=1 ||
dg(xNNt,i)

dxNNt,i
− pT

j
∂R(xNNt)

∂x
||22

Nt

, (6.4)

where pj is the sparse sensing vector that is used for the network being trained.
Training the gradients of the system may lead to higher accuracy in the gradients;
however, the computational and memory cost of collecting snapshots of the Jaco-
bian may make Equation (6.1) a more attractive option, unless the Jacobian can be
sampled in a sparse fashion, defeating the initial motivation of this method.

• Generalized element-embedded neural networks for DEIM: A crucial drawback
to the use of element-embedded neural networks is the significantly larger number
of state and residual snapshots that are needed to accurately train the networks. The
inputs for each network include the entire state representation of the embedded ele-
ment and its neighbors, possible boundary conditions, and system parameters. The
large input layer means that, even for a single hidden layer network, the total num-
ber of weights and biases is very large. Thus, a sufficient training set will need to
be even larger. When each network is only associated with a single element, ev-
ery state-residual snapshot pair will only account for a single training observation.
However, a generalized element-embedded neural network that can operate on a sub-
set of elements is able to collect training observations from each element for each
state-residual snapshot pair, substantially increasing the amount of training data for
each network. An example of the categorization of elements is one based on its
neighboring cells: interior elements and distinct boundary elements. Additional in-
puts regarding the size and orientation of the embedded and neighboring elements
would need to be provided to allow the network to differentiate between different
elements. Quantification of the geometric configurations of the elements can take
the form of a various metric tensors [127, 128], elemental bounding and minimum
bounding boxes, normal vectors at element edges, etc.
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