
AIAA 2002-3286

Adjoint-Based, Three-Dimensional

Error Prediction and Grid Adaptation

Michael A. Park

NASA Langley Research Center, Hampton, VA 23681

32nd Fluid Dynamics Conference

24-27 June 2002

St. Louis, MO

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics

1801 Alexander Bell Drive, Suite 500, Reston, VA 20191-4344



Adjoint-Based, Three-Dimensional Error

Prediction and Grid Adaptation

Michael A. Park *

NASA Langley Research Center, Hampton, VA 23681

Abstract

Engineering computational fluid dynamics (CFD)

analysis and design applications focus on output func-

tions (e.g., lift, drag). Errors in these output functions

are generally unknown and conservatively accurate so-

lutions may be computed. Computable error estimates

can offer the possibility to minimize computational

work for a prescribed error tolerance. Such an esti-

mate can be computed by solving the flow equations

and the linear adjoint problem for the functional of

interest. The computational mesh can be modified

to minimize the uncertainty of a computed error es-

timate. This robust mesh-adaptation procedure au-

tomatically terminates when the simulation is within

a user specified error tolerance. This procedure for

estimating and adapting to error in a functional is

demonstrated for three-dimensional Euler problems.

An adaptive mesh procedure that links to a Computer

Aided Design (CAD) surface representation is demon-

strated for wing, wing-body, and extruded high lift

airfoil configurations. The error estimation and adap-

tation procedure yielded corrected functions that are

as accurate as functions calculated on uniformly re-

fined grids with ten times as many grid points.

Introduction

Engineering problems commonly require computa-

tional fluid dynamics (CFD) solutions with functional

outputs of specified accuracy. The computational re-

sources available for these solutions are often limited

and errors in solutions and outputs are often unknown.

CFD solutions may be computed with an unnecessarily

large number of grid points (and associated high cost)

to ensure that the outputs are computed to within a

required accuracy. A method to estimate the error

present in a computed functional offers the possibility

to avoid the use of overly refined grids to guarantee

accuracy.

Unstructured grid technology promises easier initial

grid generation for novel complex three-dimensional

*Research Scientist, Computational Modeling and Simula-

tion Branch, m. a. park@larc, nasa. gov

Copyright @ 2002 by the American Institute of Aeronautics and

Astronautics, Inc. No copyright is asserted in the United States

under Title 17, U.S. Code. The U.S. Government has a royalty-

free license to exercise all rights under the copyright claimed herein

for Governmental Purposes. All other rights are reserved by the

copyright owner.

(3D) configurations compared with structured grid

techniques. The use of unstructured grid technology

for CFD simulations allows more freedom in adapt-

ing the discretization of the meshes to improve the

fidelity of the simulation. Many previous efforts have

attempted to tailor the discretizations of unstructured

meshes to increase solution accuracy while reducing

computational cost. 1 8

Most of these adaptive methods focus on modifying

discretizations to reduce local equation errors. These

local errors are not guaranteed to directly impact er-

ror in global output functions. These methods, often

referred to as feature-based adaptation, focus on re-

solving discontinuities or strong gradients in the flow

field. Flow features (e.g., shocks) can be in the in-

correct location due to errors elsewhere in the flow

field. Also, resolving the flow in a location may have a

minimal effect upon the output function (e.g., a down-

stream shock).

If the flow equations are linearized about the flow so-

lution, the solution of a linear dual problem can yield a

direct measure of the impact of local primal (flow equa-

tion) residual on a selected functional output. The

combination of the primal and dual problems can also

be applied to yield a correction to a specified func-

tional on a given mesh. If a specified error tolerance

in an output function is required, the cost of comput-

ing a CFD solution can be minimized by adapting the

discretization of the problem to directly minimize un-

certainties in the corrected output function of interest.

Also, the entire adaptive simulation can be terminated

when the predicted error is equal to a specified toler-

ance, preventing the waste of computational work on

an overly large mesh.

There are many examples of these techniques in the

finite element communities. °' 10 Pierce and Giles 11 ap-

plied these methods to finite-volume discretizations.

Venditti and Darmofa112'13 have demonstrated these

methods for compressible two-dimensional (2D) invis-

cid and viscous flow solutions. The present study is

essentially a 3D extension of the methods of Venditti

and Darmofa113 that adapts the mesh to reduce uncer-

tainty in an error correction. Miiller and Giles 14 have

also presented results for a similar approach utilizing

a different adaptation parameter that directly targets

the error correction.

The use of adjoint variables (solution of the dual
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problem) is an efficient method for computing deriva-

tives of a functional of interest for gradient-based

design methods. Some examples of discrete adjoint de-

sign methods are given in Nielsen and Anderson. 15'16

The discrete dual problem for adjoint variables can be

expensive. However, the adjoint solution is already

available for use during the aerodynamic design pro-

cess, so it could be employed for simultaneous design,

error prediction, and grid adaptation.

The combination of adjoint-based grid adaptation

and design techniques can yield an attractive tool

for the aerodynamic design of new configurations.

Adjoint-based error prediction and adaptation can

yield smaller meshes than traditional feature-based

schemes with computable error estimates on out-

put functions. Design processes require analysis and

derivative evaluation tools that operate with mini-

real human interaction. Robust, automatic adaptation

techniques enable the increased use of nonlinear flow

calculations in larger multidisciplinary design frame-

works. These new techniques will enable efficient

analysis for existing configurations and expanded ex-

ploration of design spaces for new configurations.

Flow Equations

The FUN3D lr 19t (Fully Unstructured Navier-

Stokes Three-Dimensional) suite of codes is employed

in this study. The compressible flow solver employs

an unstructured finite-volume tetrahedral method for

conserved variables, Q, i.e.,

Q [p pu pv pw E] T (1)

where p is density, u, v, and w are velocity, and E is

total energy per unit volume. The incompressible flow

solver employs the following state variables:

where p is pressure. The node-based variables Q are

computed by driving the flow equation residual R to

steady-state with an implicit point-iterative method.

The code is able to solve incompressible, Euler, and

Reynolds-Averaged Navier-Stokes (RANS) flow equa-

tions loosely coupled to the Spalart-Allmaras 2° one-

equation turbulence model. The present study em-

ploys only the Euler and incompressible equations.

The solution of Q allows the calculation of integral

quantities f (e.g., lift, drag). To speed execution, the

problem domain is decomposed and the flow and the

adjoint problems are solved with a parallel execution

scheme utilizing the Message Passing Interface (MPI)

standard. The FUN3D suite of codes is being extended

to the HEFSS (High Energy Flow Solver Synthesis) 2s

modular framework of FORTRAN 90 shared libraries.

thttp://fun3d, larc.nasa.gov

Adjoint Equations

After the flow solution is known, the discrete ad-

joint equations 15' is, 19 are solved to complete the dual

problem. The first step is to linearize the flow equation

residual R and output function f with respect to the

flow solution Q. After this linearization, an adjoint

variable A is solved for each of the flow equations.

An abbreviated derivation, adapted from Taylor et

al., 22 is below. The chain rule for the linearized output

function is

(0 ' TOR

The adjoint variable A is defined as the effect of the

flow residual on the output function:

Of A (4)
OR

A set of linear equations is solved to find A:

oq/ (5)

After the flow solution is known, this set of linear equa-

tions is solved with GMRES. 23 See Refs. 15,16, and 19

for details. A implicit point-iterative time-marching

method is employed to compute the adjoint solution

for the high lift configuration. 24 26

Error Correction

The error prediction and correction scheme is taken

from Ref. 13. With a solution on a mesh of reasonable

size Q0, it is desirable to predict the value of an out-

put function evaluated with a solution on a much finer

mesh f(Q*). This prediction can be computed with-

out the solution on this finer mesh when the adjoint

solution on this reasonable mesh A° is utilized. The

full derivation of the error correction term is available

in Refs. 11, 13, 14. An abbreviated derivation is pre-

sented by expanding the Taylor series about f(Q0),

i.e.,

/(q.) /(qO)+ _ 0 "'"

(6)
Employing eq. (4) and assuming that the residual

on the much finer mesh is zero yields an improved es-

timate for the functional of interest f_t:

Of o A° (7)OR

R(Q*) 0 (8)

f(q*) v f_t f(q0)_ (),0)rR(q0) (9)

To improve the prediction of the functional f_t, Q0

and A° can be interpolated to an embedded mesh. In-

terpolation is performed in two ways for this study:
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a linear interpolation (QL,,_L) and a higher order in-

terpolation (QH,AH). Details of this interpolation and

the construction of this embedded mesh are in the "In-

terpolation Techniques" and "Embedded Mesh" sec-

tions. Substituting these interpolated quantities into

eq. (9) yields the linear and higher order functional

estimates fL and f_t:

f c /(QC)_ (AL)TR(QC) (10)

fHt f(QH) _ (AH)TR(QH) (11)

Adaptation Parameter

The adaptation parameter, also from Ref. 13, is in-

tended to specify a grid spacing modification to reduce

the uncertainty in the computed error prediction. The

grid is not modified to directly reduce the computed

error prediction (as in Ref. 14) because an estimate for

the functional including this error term can be com-

puted with eq. (9). Instead, targeting the uncertainty

in this computed quantity is more effective and im-

proves the robustness of the adaptive process. The

error correction (eq. (9)) including the uncertainty in

the dual solution is

f(Q0) _ f(Q,) v (A0)TR(Q0) + (A* -- A°)TR(Q °)

(12)
The uncertainty in the computed error correction is

f_t - f(Q*) v (A* - A°)TR(Q °) (13)

The relation of the primal and dual problems 11,13

yields another expression for the error correction un-

certainty

(a* - a°)rR(q °) R_(a0)(q, _ q0)r (14)

Where Rx(A) is the residual of the dual problem:

(0R T_ (15)
\OQ] \OQ]

A computable term is found by using the interpolation

error of A to replace (A* - A°) and the interpolation

error of Q to replace (Q* - Q0). The higher order

interpolate for Q0 and A ° is employed to improve pre-

diction in place of the linear interpolate in Ref. 13.

The interpolation error is expressed as the difference

in the high-order and linear interpolated values:

(a* - _,o) _ (_,H _ _,L) (16)

(q. _ q0) _ (QH _ QL) (17)

The average of the absolute values of the two uncer-

tainty terms in eq. (14) yields the adaptation intensity

I, which is computed for each equation on each em-

bedded node:

I I(AH -- AL)TR(QH)I + IRx(AH)(QH - QL)TI

(18)

The intensity I is therefore the average of a primal

residual weighted with a dual solution interpolation

error and a dual problem residual weighted with a

primal solution interpolation error. This form of the

adaptation intensity tends to focus on the nonlinear

contributions to the function error, which increases ro-

bustness of the adaptation method.

Error Correction and Adaptation

Process

The error correction and adaptation process begins

with an initial tetrahedral mesh, which can come from

any mesh generation system. The state variables are

computed as the nonlinear solution to the flow equa-

tions on the initial mesh. The adjoint variables are

then computed with the linearized flow equations at

the flow solution. These flow and adjoint solution pro-

cedures employ a parallel execution scheme. Then the

global problem domain is reconstructed to facilitate

the creation of a finer, embedded grid with interpo-

lated primal and dual solutions.

Embedded Mesh

To compute the error prediction and the adapta-

tion parameter a globally embedded or h-refined mesh

is created. To construct the embedded mesh, a new

node (open circle) is inserted at the midpoint of each

existing edge that connects existing nodes (closed cir-

cles); see Fig. l(a) and l(b). Each existing tetrahedron

is subdivided to reconnect these new nodes with eight

interior tetrahedra. (Each of the existing boundary

faces is also divided into four triangles.)

a) Original tetrahedron. b) Embedded tetrahe-

dron.

Fig. 1 Tetrahedron embedding process.

The four new tetrahedra constructed at the corners

of the existing tetrahedron have the same shape as

the original tetrahedron but are smaller in size. The

construction of the four corner tetrahedra leaves an

interior volume with eight faces, which is subdivided

into four tetrahedra. The four interior tetrahedra have

three unique configurations. The configuration with

the lowest maximum dihedral angle is selected.

The new nodes are placed at the midpoints of edges

during the mesh embedding process. The embedded

nodes on the boundaries of the mesh may no longer

remain on the original surface definition of the model.
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When the grid is adapted to improve the discretiza-

tion, the surface fidelity of the mesh is maintained with

boundary node projection.

Interpolation Techniques

The primal and dual solution variables y, which are

all elements of Q and A, are now interpolated to this

embedded mesh. The value of the solution at each

of the existing nodes is directly copied into the corre-

sponding nodes of the embedded mesh. Each of the

solution variables is interpolated in two ways to form

the linear and the higher order reconstruction for the

new nodes. The higher order reconstruction of the so-

lution for the new nodes requires the computation of

least-squares gradients 17 at the existing nodes using

the existing mesh and solution. To simplify the 3D

interpolation, the interpolation is performed by inde-

pendently examining each existing edge in the original

mesh; thus the interpolation problem becomes one-

dimensional along each existing edge. Each existing

edge has an existing node at each edge endpoint and

a new node at the edge midpoint (see Fig. 2).

_____-0

_x2, 5'2, _)2

Y3/2

xz, Yz, Yz

Fig. 2 New node and existing edge.

An edge has two 3D endpoints: xl and x2. The

vector that represents the length and direction of the

edge is Ax x2-xl. The 3D least-squares gradient of

the solution Ay can be projected to a total derivative

along the edge to facilitate interpolation by

_I VY TAX (19)

The new node interpolation Y3/2 can be expressed

as a combination of the solution values and the deriva-

tives at each endpoint (Yl, _)1, Y2, and _)2). The linear

interpolation LY3/2 is the average of the two end nodes

L Yz + Y2 (20)
Y3/2 2

The higher order interpolation Y_2 is found with a

cubic fit of the endpoint data that is evaluated at the

midpoint

H Yz + Y2 _)1 - _)2 (21)
Y3/2 2 _ 8

Equation (21) is equivalent to a least-squares quadratic

fit of the endpoint data that is evaluated at the edge

midpoint.

At the completion of the grid embedding and inter-

polation step, the linear and higher order interpolated

solutions to the primal and dual problems QL, AL,

QH, and A H are available to compute the error cor-

rection and adaptation parameter.

Error Correction and Adaptation Parameter

Once the new embedded grid is constructed with

QL, AL, QH, and AH, it is partitioned to allow paral-

lel calculation of the functional and flow and adjoint

equation residuals. The flow and the adjoint equations

are not iterated or solved on this embedded grid; the

flow state and adjoint variables are interpolated from

the original mesh. Therefore, the only computational

costs on this larger embedded grid are function evalu-

ations, flow and adjoint residual evaluations, and dot

products of vectors. The linear and higher order er-

ror correction term, eq. (10) and (11), is computed at

each node on the embedded mesh and summed over

the entire mesh for all flow equations.

The adaptation intensity, eq. (18), is also computed

at each embedded mesh node. At each node that is

also present in the original mesh, the computed inten-

sity is zero due to the chosen interpolation technique.

The values of the lower and higher order interpolation

schemes are the same at these existing nodes; thus

(QH _ QL) and (,_H _ ,_L) are exactly zero.

To specify the grid adaptation on the original mesh,

the adaptation intensities must be reduced from the

embedded mesh to the original mesh (I0). The new

nodes on the embedded mesh all lie on existing edges

of the original mesh (see Fig. l(b)). Therefore, to con-

struct I0 the original mesh is examined one edge at

a time (see Fig. 2). One half of the intensity com-

puted at each new node (which is at the midpoint of

these original edges) is added to each existing node at

the endpoints of these edges. The intensities are also

summed over the equations at this point, resulting in

one intensity value for each original node.

The adaptation parameter, which has been reduced

to the original mesh, is summed to find the global

intensity Iy _ I0. The number of nodes in the orig-

inal mesh n and the user-specified error tolerance t are

combined to scale the adaptation intensity; that is

Ig _ (22)
I_ TTI0

To perform the grid adaptation, the mesh is locally

enriched in the location of nodes where the scaled

intensity I_ is greater than a value, e.i., unity. Ref-

erence 13 demonstrates a way to specify a new el-

ement spacing function. The adaptation procedure

self-terminates as all elements of I_ become less than

unity (i.e. no nodes are flagged for adaptation).

Adaptation Mechanics

The adaptation mechanics utilize three independent

modules. The first module inserts new nodes into the

existing mesh and locally reconnects tetrahedra and

boundary faces to maintain a valid tessellation. The

second module employs face and edge swapping to im-

prove the mesh quality. The final module performs
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grid smoothing and boundalT/node projection opera-

tions.

Node Insertion

The node insertion method is currently one level

of selective h-refinement. To start the refinement, all

the edges surrounding nodes on the original mesh that

have a scaled intensity I_ greater than unity are flagged

for h-refinement. The set of flagged edges is exam-

ined tetrahedron by tetrahedron and additional edges

are flagged in an attempt to maintain grid quality

(i.e., low maximum dihedral angles, few high-degree

nodes). The final set of flagged edges results in tetra-

hedra with one edge, three edges on one face, or all six

edges flagged. A tetrahedron with all six edges flagged

is illustrated in Fig. l(b). The mesh is then h-refined

by inserting new nodes on the midpoint of the flagged

edges and reconnecting these nodes into new tetrahe-

dra and boundary faces.

Face and Edge Swapping

The current post-adaptation grid-improvement

scheme employs face and edge swapping. 27 The swap-

ping algorithm minimizes a shape (cost) function (e.g.,

aspect ratio or dihedral angle). This study sought to

reduce only the cell aspect ratio AR

i tetrahedral eireumsphere radius
AR (23)

3 tetrahedral in-sphere radius

Reconnections of tetrahedra with undesirable shape

measures are investigated and new local tetrahedra

configurations with more desirable shape measures

are selected. Edges on boundary faces can also be

swapped. To simplify and speed up the edge swapping

routine, the boundary face information is discarded

and reconstructed at the end of the swapping process.

Smart-Laplacian smoothing 2s is used on the interior

nodes. The actual locations of the boundary nodes is

not modified in this module; that modification is per-

formed by the grid smoothing and projection module.

Grid Smoothing and Projection

The inserted boundary nodes may not be located

on the surface geometry of the model to be simulated

since they were inserted at the midpoints of existing

edges. A CAD model is employed to describe the

actual model surface. To regain the surface fidelity

of the mesh, the newly inserted boundary nodes are

projected to the model surface with a CAD interface

package CAPRI (Computational Analysis PRogram-

ing Interface).29'3° The projection of these new nodes

to their location on the CAD surface can result in in-

verted, invalid tetrahedral elements.

A grid node-smoothing algorithm is employed to

facilitate boundary projection without generating in-

valid elements and to improve the overall quality

(shape measure) of the mesh. This post-adaptation

smoothing is similar to F_'eitag 2s and was initially ira-

plemented by Brasher and Park. 31 This initial imple-

mentation has been extended and coupled to CAPRI,

which utilizes native CAD point projection routines.

Nodes on the boundary are smoothed by moving the

nodes in CAD (u, v) parametric space to improve the

shape measure of adjacent tetrahedra.

As the nodes are projected, the neighboring tetra-

hedra are tested for validity. If invalid tetrahedra

resulted from the projection, the projection distance

of the boundary nodes is reduced until the neighboring

tetrahedra are valid. Then the nodes in the neighbor-

hood of the projected node are smoothed to improve

a quality measure of the adjacent tetrahedra. The

boundary points are then moved into the fully pro-

jected position in a number of iterative cycles.

It is anticipated that grid smoothing in the neigh-

borhood of projected nodes may not adequately re-

gain surface fidelity of anisotropic meshes. A grid-

movement scheme may be required as in Ref. 16. An-

other possibility is a 3D version of mesh restructuring

as in Ref. 32.

Adaptation Module Interaction

The current selective h-refinement technique often

creates high-degree nodes on the border of the adapted

regions. The smoothing algorithm is currently unable

to improve elements that are adjacent to high-degree

nodes. The edge and face swapping techniques effec-

tively improve shape measures and reduce the number

of high-degree nodes, facilitating projection and node

smoothing.

These three adaptation modules where developed

independently to facilitate a quick initial implementa-

tion and to investigate the strengths and weaknesses

of each technique. Merging the abilities of these three

separate modules will allow for more flexible modifica-

tions of grids (e.g., point insertion, point removal, and

anisotropic elements).4, 6

Results

Adaptation results are shown for a wing, wing-body,

and high lift configurations. The wing is simulated

with incompressible and transonic flow conditions.

The wing-body and high lift configurations are sim-

ulated with subsonic flow.

Initial Mesh Generator

The initial meshes for these error prediction and

adaptation studies are generated with the FELISA

mesher 4 connected to CAD geometxT/ by CAPRI

through the GridEx 33 framework. FELISA is a Delau-

nay mesh generator with an advancing-front method

for inserting nodes. The GridEx framework is cur-

rently being developed at NASA Langley Research

Center to link various grid generation and adaptation

strategies to geometry through CAPRI. This frame-

work is also utilized in a batch mode to perform uni-

form grid refinement studies.
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adapted to incompressible drag.
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Fig. 3 Initial and adapted ONERA M6 meshes.

Drag Adaptation - Incompressible ONERA M6

The initial mesh for an ONERA (Office National

d'Etudes et de Recherches A6rospatiales) 5/[6 wing

with 5227 nodes is shown in Fig. 3(a). The mesh

has extremely coarse spacing, especially at the trailing

edge and is intended to resolve the surface curvature of

the leading edge and the wingtip and not any particu-

lar flow features. The spacing function for this mesh is

specified manually and is intended to be representative

of an automated curvature or maximum chord-height

specification. The CAD geometry is represented with

the CAPRI native kernel FELISA with a part gener-
ated fl'om a surface IGES definition.

The initial ONERA 5/[6 mesh was used in the grid

adaptation process with incompressible flow at an an-

gle of attack of 0 deg. Directly computed drag and

estimates of drag for an ONERA M6 wing as a func-

tion of number of nodes is shown in the Fig. 4 log-log

plot. The adaptation and error correction results are

shown for a drag error tolerance of 0.001. The directly

computed drag on the adapted meshes is represented

by the solid lines with circular symbols. The error-

corrected drag calculated with the linear interpolated

solution f_t is represented by a dashed line and square

symbols. The estimated functional calculated with the

higher order interpolated solution f_t is represented

by a dashed line and diamond symbols. The correct

drag is zero because of non-lifting, subcritical, invis-

cid flow. Therefore, the y-axis denoted "Coefficient of

Drag" is also the error in drag.

The triangle labeled "Second-Order Slope" in Fig. 4

illustrates second-order spatial convergence. The

adaptive-grid method results in drag calculations

that converge at a much higher rate than the

asymptotic convergence rate of uniform refinement

(second-order). The adaptive procedure correctly self-

terminated when the drag error of the adapted flow

solution reached the user specified error tolerance (dot-

dash line).

The final grid (454 thousand nodes) after five cycles

of grid adaptation to incompressible drag is shown in

Fig. 3(b). The adaptation process clustered grid points

at the leading and trailing edges of the wing. Points

are also clustered in the neighborhood of the stagna-

tion stream line.

The tetrahedra shape measure AR (eq. 23) is min-

imized by the mesh improvement algorithm. The

boundary node smoothing algorithm is intended to op-

timize the shape measures of the tetrahedral elements.

Therefore, the shape measures of the boundary faces

depicted in this surface plot may not be optimal.
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Drag Adaptation - Transonic ONERA M6

A uniform refinement of the ONERA M6 wing mesh

is computed at 0.84 Mach and an angle of attack of 3

deg. The drag directly computed by the flow solver

is shown with linear and higher order interpolated er-

ror corrections as a function of the number of nodes

in Fig. 5(a). The extrapolated (grid-converged) drag

value for Fig. 5(a) was estimated with Richardson ex-

trapolation from Fig. 5(b). These meshes have the

same spacing function as Fig. 3(a) globally modified

with a scalar to uniformly reduce the element spac-

ing. These grids were generated with the batch version

of GridEx using the FELISA mesher and CAPRI for

CAD geometry access.

Figure 5(b) shows drag and estimates of drag as

a function of element size for the uniform grid re-

finement of the ONERA M6 wing. A representative

element length h was estimated by computing the cube

root of the number of nodes. This length was nor-

realized by the estimated length of the 624 thousand

node mesh h0. The symbols are drag computed by

the flow solver and error corrected values. A linear

fit of the data at (ho/h) 2 1.0 and (ho/h) 2 1.7

is used to estimate the grid-converged answer for all
three schemes. All three schemes indicate a similar

grid-resolved value. An additional flow solution (1.2

million nodes, (ho/h) 2 0.6) is shown to verify the

accuracy of the linear fit; it was not used to construct

the linear fit of the computed drag. An improved in-

terpolation scheme for the error correction would yield

a superconvergent functional estimate as in Ref. 11.

The initial coarse mesh shown in Fig. 3(a) is era-
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a) Upper wing surface mesh. a) Upper wing surface mesh.

b) Upper wing surface Mach contours.

Fig. 7 Initial ONERA M6 upper wing surface.

ployed in the error prediction and grid adaptation

procedure with two different adaptation methods. The

coefficient of drag is plotted as a function of mesh size

in Fig. 6. The user specified error tolerance in drag

is 0.0019. The unifornfly refined flow solution from

Fig. 5(a) is shown with the adapted grid flow solu-

tion and higher order error prediction of the adapted

grid in Fig. 6. Figure 6(a) demonstrates a single level

of h-refinement for all nodes with a scaled adaptation

intensity I_ greater than one. Figure 6(b) shows h-

refinement for I_ greater than one and a recursive call

to the adaptation mechanics for I_ greater than 75,

yielding two levels of h-refinement at each adaptation

cycle. The initial convergence of the function is better

in Fig. 6(b) than Fig. 6(a). This improvement in func-

b) Upper wing surface Mach contours.

Fig. 8 Final ONERA M6 upper wing surface,

adapted with one level of h-refinement.

tion convergence is illustrating the limitations of using

a single level of selective h-refinement as the adap-

tive node-insertion procedure. The use of two levels of

h-refinement better approximates a continuous vari-

ation in element size. The two adaptation methods

converged to similar meshes and drag values.

The upper wing surface grid and Mach contours

of the initial flow field computed on the mesh from

Fig. 3(a) is shown in Fig. 7. The shocks in this

initial grid are poorly resolved. The mesh (357 thou-

sand nodes) and Mach contours of the ONERA M6

adapted to drag with one level of selective h-refinement

is shown in Fig. 8. The mesh (374 thousand nodes)

and Mach contours of the ONERA M6 adapted to
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a) Upper wing surface mesh. Fig. 10 Initial EET grid.
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b) Upper wing surface Mach contours.

Fig. 9 Final ONERA M6 upper wing surface,

adapted with two levels of h-refinement.

drag with two levels of selective h-refinement is shown

in Fig. 8. The final meshes and solutions are simi-

lar for both of the adaptation methods. The adaptive

procedure strongly clustered nodes at the leading and

trailing edges of the wing and lightly clustered nodes

at the shock location on the upper surface. Feature-

based adaptations of this configuration in Ref. 7 and 8

focused on the leading edge and shock locations, but

not the trailing edge.

Lift Adaptation - EET

The EET (Energy Efficient Transport) 34 initial

coarse mesh is shown in Fig. 10. The initial grid spac-

ing distribution is specified manually to resolve the

Fig. 11 Coefficient of lift for the lift-adapted EET

at 0.40 Mach.

surface details of the fuselage, wing leading edge, blunt

trailing edge, and the wingtip. The geometry is repre-

sented with a Parasolid CAD kernel accessed though

the CAPRI application program interface (API).

The initial coarse mesh shown in Fig. 10 is employed

in the lift error prediction and grid adaptation proce-

dure at 0.40 Mach an angle of attack of 2 deg. The

lift coefficient is plotted as a function of mesh size

in Fig. 11. The adaptive procedure has a user speci-

fied error tolerance of 0.1 for the lift coefficient error.

The unifornfly refined lift calculation is shown with the

adapted grid lift calculation and error predictions on

the adapted grid in Fig. 11. The Richardson extrapo-

lation value is not shown because a reasonable linear

fit of the last three points was not possible. The lift

coefficient is calculated on an adapted mesh one-tenth
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Fig. 12 Initial 30P-30N grid.

Fig. 14 Coefficient of lift for the lift-adapted 30P-

30N at 0.20 Mach.

cycles of adaptation is shown in Fig. 13.

Table 1 shows the aspect ratio AR (eq. 23) for the

initial and the adapted grids. The AR is the cost

a) Initial 30P-30N grid. b) Lift-adapted 30P-30N

grid.

Fig. 13 Original and adapted 30P-30N symmetry

plane grids.

the size of the uniformly refined grid. The adapted lift

error is well within the user specified tolerance.

Lift Adaptation - 30P-30N Airfoil

The McDonnell Douglas 30P-30N airfoil initial

coarse mesh is shown in Fig. 12. The 30P-30N airfoil

is extruded between two symmetx:y planes. The near-

plane has been removed to improve visualization. The

geometry is represented with a Parasolid CAD kernel

accessed though the CAPRI API. This configuration

is the subject of a recent 3D CFD study, a5

The geometry and initial coarse mesh (113 thousand

nodes) shown in Fig. 12 is empl%ved in the error pre-

diction and grid adaptation procedure at 0.20 Mach

and an angle of attack of 16.3 deg. The lift adaptive

procedure has a user specified error in lift of 0.25. The

uniformly refined grid flow solution, adapted grid flow

solution, linear error prediction, and higher order er-

ror prediction are shown in Fig. 14. The extrapolated

coefficient of lift value was computed with a Richard-

son extrapolation of the finest two uniformly refined

solutions. The original symmetry plane grid and the

symmeti:y plane grid (832 thousand nodes) after two

Table 1

tion

Cycle

Shape measure for the 30P-30N adapta-

Aspect ratio AR Face angle

nl ax nl ax

8.1 154.3

5.0 158.1

7.5 167.8

function for the grid-improvement optimizer. The face

(dihedral) angle is not directly controlled but could be

added as a constraint.

Conclusion

The initial implementation of an adjoint-based error

correction and adaptation method has been demon-

strated in three dimensions. With a given flow and

adjoint solution, the error correction for a functional

and adaptation intensity term have been described.

The adaptation intensity was formulated to reduce the

uncertainty in the error correction of a global func-

tional and not a local error estimate as in a feature-

based adaptation scheme. The adaptive procedure

automatically terminates the simulation when an user

specified tolerance is satisfied. The error remaining in

the simulation at termination was always within the

user specified tolerance, although sometimes the sim-

ulation was overly accurate.

A wing configuration was adapted to reduce drag

error in incompressible and transonic flow. The drag

computed by this adaptation and error correction

method was shown to be as accurate as direct flow

calculations using larger uniformly refined grids. The

initial convergence of adaptation procedure improved
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with two levels of h-refinement at each adaptation

cycle. Lift adaptations of Parasolid CAD models of

wing-body and high lift configurations demonstrate

the utility of this adaptive methodology on complex

geometries. The lift of the wing-body configuration

was computed on an adapted grid that is one-tenth

the size of an uniformly refined grid.
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