
ADJOINT CALCULATION USING TIME-

MINIMAL PROGRAM REVERSALS FOR

MULTI-PROCESSOR MACHINES

Andrea Walther

Institute of Scientific Computing

Technical University Dresden

awa lther@ math. tu-dresden .de

Uwe Lehmann

Center for High Performance Computing

Technical University Dresden

lehmann@zhr.tu-dresden.de

Abstract For computational purposes such as debugging, derivative computations

using the reverse mode of automatic differentiation, or optimal control

by Newton's method, one may need to reverse the execution of a pro-

gram . The simplest option is to record a complete execution log and

then to read it backwards. As a result, massive amounts of storage are

normally required . This paper proposes a new approach to reversing

program executions. The presented technique runs the forward simu-

lation and the reversal process at the same speed. For that purpose,

one only employs a fixed and usually small amount of memory pads

called checkpoints to store intermediate states and a certain nurober

of processors. The execution log is generated piecewise by restarting

the evaluation repeatedly and concurrently from suitably placed check-

points. The paper illustrates the principle structure of time-minimal

parallel reversal schedules and quotes the required resources. Further-

more, some specific aspects of adjoint calculations are discussed. Initial

results for the steering of a Formula 1 car are shown.

Keywords: Adjoint calculation, Checkpointing, Parallel computing

1. Introduction and Notation

For many industrial applications, rather complex interactions between

various components have been successfully simulated with computer

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2003

E. W. Sachs et al. (eds.), System Modeling and Optimization XX

10.1007/978-0-387-35699-0_19

http://dx.doi.org/10.1007/978-0-387-35699-0_19

318

models. This is true for several production processes, e.g. steel ma­

nufacturing with regards to various product properties, for example

stress distribution. However, the simulation stage can frequently not

be followed by an optimization stage, which would be very desirable.

This situation is very often caused by the lack or inaccuracy of deriva­

tives, which are needed in optimization algorithms. Hence, enabling

the transition from simulation to optimization represents a challenging

research task.

The technique of algorithmic or automatic differentiation (AD), which

is not yet well enough known, offers an opportunity to provide the

required derivative information [5]. Therefore, AD can contribute to
overcoming the step from pure simulation and hence "trial and error"­

improvements to an exact analysis and systematic derivative-based op­

timization.

The key idea of algorithmic differentiation is the systematic applica­

tion of the chain rule. The mathematical specification of many applica­

tions involves nonlinear vector functions

x 1--7 F(x),

that are typically defined and evaluated by computer programs. This

computation can be decomposed into a (normally large) number of very

simple operations, e.g. additions, multiplications, and trigonometric or

exponential function evaluations. The derivatives of these elementary

operations can be easily calculated with respect to their arguments. A

systematic application of the chain rule yields the derivatives of a hier­

archy of intermediate values. Depending on the starting point of this

methodology, either at the beginning or at the end of the sequence of
operations considered, one distinguishes between the forward mode and

the reverse mode of AD. The reverse mode of algorithmic differentiation

is a discrete analog of the adjoint method known from the calculus of

variations.

The gradient of a scalar-valued function is yielded by the reverse mode

in its basic form for no more than five times the operations count of

evaluating the function itself. This bound is completely independent

of the number of independent variables. More generally, this mode al­

lows the computation of Jacobians for at most five times the number

of dependents times the effort of evaluating the underlying vector func­

tion. However, the spatial complexity of the basic reverse mode, i.e. its

memory requirement, is proportional to the temporal complexity of the

evaluation of the function itself. This behaviour is caused by the fact
that one has to record a complete execution log onto a data structure
called tape and subsequently read this tape backward. For each arith-

Adjoint Calculation using Time-minimal Program Reversals 319

metic operation, the execution log contains a code and the addresses of

the arguments as well as the computed value. It follows that the practi­

cal exploitation of the advantageous temporal complexity bound for the

reverse mode is severely limited by the amount of memory required.

The reversal of a given function F is already being extensively used

to calculate hand-coded adjoints. In particular, there are several con­

tributions on weather data assimilation (e.g. [11]). Here, the desired

gradients can be obtained with a low temporal complexity by integrat­

ing the linear co-state equation backwards along the trajectory of the

original simulation. This well-known technique is closely related to the

reverse mode of AD [3]. Moreover, debugging and interactive control

may require the reconstruction of previous states by some form of run­

ning the program backwards that evaluates F. The need for some kind

of logging arises whenever the process described by F is not invertible

or ill conditioned. In these cases one cannot simply apply an inverse

process to evaluate the inverse mapping F-1 . Consequently, the rever­

sal of a program execution within a reasonable memory requirement has

received some (but only perfunctory) attention in the computer science

literature (see e.g. [12]).

This paper presents a new approach to reversing the calculation of F.

For that reason, in the remainder of this section, the structure of the

function F is described in detail. The reversal technique proposed in

this article only employs a fixed and usually small amount of memory

pads to store intermediate states and a certain number of processors for

reversing F in minimal time. The corresponding time-minimal parallel

reversal schedules are introduced in Section 2. The simulation of a For­

mula 1 car is considered in Section 3. The underlying ODE system is

introduced. Then two different ways to calculate adjoints are discussed.

Subsequently, the initial numerical results are presented. Finally, some

conclusions are drawn in Section 4.

Throughout it is assumed that the evaluation of F comprises the

evaluation of subfunctions Fi, 1 i l, called physical steps that

act on state xi-l to calculate the subsequent intermediate state xi for

1 i l depending on a control ui-1. Hence, one has

xi = Fi(xi-I,ui-1).

Therefore, F can be thought of as a discrete evolution. The intermediate

states of the evolution F represented by the counter i should be thought

of as vectors of large dimensions. The physical steps Fi describe mathe­

matical mappings that in general cannot be reversed at a reasonable cost

even for given ui-1 . Hence, it is impossible to simply apply the inverses

Fi-1 in order to run the program backwards from state l to state 0. It

320

will also be assumed that due to their size, only a limited number of

intermediate states can be kept in memory.

Furthermore, it is supposed that for each i E {1, ... , l}, there exist

functions Fi that cause the recording of intermediate values generated

during the evaluation of Fi onto the tape and corresponding functions Pi
that perform the reversal of the ith physical step using this tape. More

precisely, one has the reverse steps

where Ff denotes the Jacobian of Fi with respect to xi-1 and ui-1 .

The calculation of adjoints using the basic approach is depicted in Fig­

ure 1. Applying a checkpointing technique, the execution log is gen-

Figure 1. Nai've approach to calculate Adjoints

erated piecewise by restarting the evaluation repeatedly from suitably

placed checkpoints, according to requests by the reversal process. Here,

the checkpoints can be thought of as pointers to nodes representing in­

termediate states i. Using a checkpointing strategy on a uni-processor

machine, the calculation ofF can be reversed, even in such cases where

the basic reverse mode fails due to excessive memory requirement (see

e.g. [7, 6]). However, the runtime for the reversal process increases com­

pared to the na'ive approach. For multi-processor machines, this paper

presents a checkpointing technique with concurrent recalculations that

reverses the program execution in minimal wall-clock time.

2. Time-minimal Parallel Reversal Schedules

To derive an optimal reversal of the evaluation procedure F, one has

to take into account four kinds of parameters, namely:

Adjoint Calculation using Time-minimal Program Reversals

1.) the number l of physical steps to be reversed;

2.) the number p of processors that are available;

3.) the number c of checkpoints that can be accommodated; and

321

4.) the step costs: T = TIME(Fi), f = TIME(Fi), f = TIME(F'i).

Well known reversal schedules for serial machines, i.e. p = 1, and con­

stant step costs T allow an enormous reduction of the memory required

to reverse a given evolution F in comparison with the basic approach

(see e.g. [7, 6]). Even if the step costs Ti =TIM E(Fi) are not constant

it is possible to compute optimal serial reversal schedules [13]. However,

one has to pay for the improvements in the form of a greater temporal

complexity because of repeated forward integrations.

If no increase in the time needed to reverse F is acceptable, the use

of a sufficiently large number of additional processors provides the pos­

sibility to reverse the evolutionary system F with drastically reduced

spatial complexity and still minimal temporal complexity. Correspond­

ing parallel reversal schedules that are optimal for given numbers l of

physical steps, p > 1 processors, c checkpoints, and constant step costs

were presented for the first time in [13]. For that purpose, it is sup­

posed that T = 1, f 1, and f > 1, with f, f E N. Furthermore, it is

always assumed that the memory requirement for storing the interme­

diate states is the same for all i. Otherwise, it is not clear whether and

how parallel reversal schedules can be constructed and optimized. The

techniques developed in [13] can certainly not be applied. In practical

applications, nonuniform state sizes might arise, for example as result of

adaptive grid refinements, or function evaluations that do not conform

naturally to our notion of an evolutionary system on a state space of

fixed dimension.

Finding a time-minimal parallel reversal schedule can be interpreted

as a very special kind of scheduling problem. The general problem class

is known to be NP-hard (e.g. [4]). Nevertheless, it is possible to specify

suitable time-minimal parallel reversal schedules for a arbitrary number

l of physical steps because the reversal of a program execution has a

very special structure. For the development of these time-minimal and

resource-optimal parallel reversal schedules, first an exhaustive search

algorithm was written. The input parameters were the number p of

available processors and the number c of available checkpoints with both

f and f set to 1. The program then computed a schedule that reverses

the maximal number of physical steps l{p, c) in minimal time using no

more than the available resources p and c for p + c :S 10. Here, minimal

time means the wall clock equivalent to the basic approach of recording

322

all needed intermediate results. Examining the corresponding parallel

reversal schedules, one obtained that for p > c, only the resource number

g = p + c has an influence on l(p, c) = le· Therefore, the development of

time-minimal parallel reversal schedules, that are also resource-optimal,

is focused on a given resource number g under the tacit assumption

p > c. The results obtained for g 10 provided sufficient insight to

deduce the general structure of time-minimal parallel reversal schedules

for arbitrary combinations off 1, f 1, and g > 10. Neglecting

communication cost, the following recurrence is established in [13]:

Theorem: Given the number of available resources {} = p + c with p > c

and the temporal complexities f E N and f E N of the recording steps Fi
and the reverse steps Pi, then the maximal length of an evolution that

can be reverted in parallel without interruption is given by

l {! = { {} - A if {} < 2 + f If (1)
le-1 + T le-2 - T + 1 else.

In order to prove this result, first an upper bound on the number of

physical steps that can be reversed with a given number g of processors

and checkpoints was established. Subsequently, corresponding rever­

sal schedules that attain this upper bound were constructed recursively.

For this purpose, the resource profiles of the constructed parallel reversal

schedules were analyzed in detail. In addition to the recursive construc­

tion of the desired time-minimal reversal schedules, the resource profiles

yield an upper bound for the number p of processors needed during the

reversal process. To be more precise, for reversing le physical steps, one

needs no more than

f

Pu =
else

processors [13]. Hence, roughly half of the resources have to be proces­

sors. This fact offers the opportunity to assign one checkpoint to each

processor.

A time-minimal reversal schedule for l = 55 is depicted in Figure 2.

Here, vertical bars represent checkpoints and slanted bars represent run­

ning processes. The shading indicates the physical steps Fi, the record­

ing steps Fi and the reverse steps Pi to be performed.

Based on the recurrence (1), it is possible to describe the behaviour

of le more precisely. For f = f = 1, one finds that the formula for le is

equal to the Fibonacci-number fe-1· Moreover, for other combinations

off, f EN, the recurrence (1) produces generalized Fibonacci-numbers

Adjoint Calculation using Time-minimal Program Reversals

0

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

110

Figure 2.

0 5 10 15 20 25 30 35 40 45 50 55

computational time

Time-minimal Parallel Reversal Schedule for l = 21 and f = 7' = 1.

323

324

(see e.g. [9]). More specifically, one finds that

in the sense that the ratio between the two sides tends to 1 as {] tends

to infinity. In the important case f = 1 even their absolute difference

tends to zero. Thus, l = l 12 grows exponentially as a function 2p

and conversely p c grows logarithmically as a function of l. In order to

illustrate the growth of l 12 , assume 16 processors and 16 checkpoints are

available. These resources suffice to reverse an evolution of l = 2 178 309

physical steps when f = f = 1 and even more steps iff = 1 and f > 1.

For f = 1, i.e., if the forward simulation and the reversal of the time

steps can be performed at the same speed, the implementation of this

theory was done using the distributed memory programming model [10].

It is therefore possible to run the parallel reversal schedules framework

on most parallel computers independent of their actual memory struc­

ture. To achieve a flexible implementation, the MPI routines for the

communication are used. The parallel reversal schedules are worked off

in a process-oriented manner instead of a checkpoint-oriented manner

(see [10] for details). This yield the optimal resource requirements of

Theorem 1.

In order to apply the parallel reversal schedules framework, one has

to provide interfaces and define the main data structures for computing

the adjoint. The data structures required are the checkpoints, the traces

or tapes, as a result of the recording step Fi, and the adjoint values. The

structure and complexity of this data is independent of the framework

since the framework only calls routines such as

• forward(..) for the evaluation of one physical step Fi,

• recording(..) for the evaluation of one recording step Fi,

• reverse(..) for the evaluation of one reverse step Pi,

provided by the user. These functions are equivalent to the functions

used for a sequential calculation of the adjoint. The index i is an ar­

gument of each of the modules. The function recording(..) generates

the trace or tape. The function reverse(..) obtains the trace of the last

recording step and the adjoint computed so far as arguments. Further­

more, if i = l, the function reverse(..) may initialize the adjoints.

Additionally, the user must code communication modules, for example

send Checkpoint(..) and receiveCheckpoint(..). All user-defined routines

have to be implemented applying MPI routines. The required process

Adjoint Calculation using Time-minimal Program Reversals 325

identifications and message tags are arguments of routines provided by

the parallel reversal schedules framework.

3. Model Problem: Steering a Formula 1 Car

In order to test the implementation of parallel reversal schedules, the

simulation of an automobile is considered. The aim is to minimize the

time needed to travel along a specific road. A simplified model of a

Formula 1 racing car [1 J is employed. It is given by the ODE system:

X2

(F1J1 (x, u2) + F1J2 (x, u2))l f - (F1J3 (x, u2) + F1J4 (x, u2))lr

I

F1J1 (x, u2) + F1J2 (x, u2) + F1J3 (x, u2) + F1J4 (x, u2))
M - X2X4

Ft,(x, u2)- Fa(x)
M +x2x3

X4 sin(x1) + X3 cos(x1)

X4 cos(x1)- X3 sin(xl)

Ul.

Hence, a go-kart model with rigid suspension and a body rolling about a

fixed axis is considered. There are seven state variables representing the

yaw angle and rate (x1, x2), the lateral and longitudinal velocity (x3,

x4), global position (x5, x5), and the vehicle steer angle (x7) as shown in
Figure 3. The control variables are u1 denoting the front steer rate and

u2 denoting the longitudinal force as input. The lateral and longitudinal

vehicle forces FTJ and Ft, are computed using the state and the control

variables as well as the tire forces given by a tire model described in [2].
The force Fa represents the aerodynamic drag depending on the longi­

tudinal velocity. All other values are fixed car parameters such as mass

M and length of the car given by l f and lr.

In order to judge the quality of the driven line, the cost functional

J(sz) = h81
Scj(x,s)(1 + g(x,s))ds (2)

is used. The scaling factor Scj(x, s) changes the original time integration

within the cost function to distance integration. Therefore, an integra­

tion over the arc length is performed. This variable change has to be

done because the end time tz of the time integration is the value one
actually wants to minimise. Hence, tz is unknown. The computation of

the scaling factor Scj(x, s) is described in [1]. The function g(x, s) mea­
sures whether or not the car is still on the road. The road is defined by

326

FT/1

x7--

Figure 3. Model of Formula 1 Car.

the road centre line and road width. In the example presented here, the
road width is constant a 2.5 m along the whole integration path. The

function g(x, s) returns zero as long as the car drives within the road

boundaries. If the car leaves the road then g(x, s) returns the distance

from the car to the road boundary squared.

3.1. The Forward Integration

For the numerical results presented here, a discretization has to be
applied. Therefore, an appropriate initial vector x 0 and the starting

position s0 = 0 were chosen. The route is divided equidistantly with a

step size of h = 10 em. The well known four-stage Runge-Kutta scheme

k1 = f(xi-1, u(si-1))

k2 = f(xi- 1 + hkl/2, u(si-1 + h/2))

k3 = f(xi- 1 + hk2/2, u(si-1 + h/2)) (3)

k4 = f(xi-1 + hk3, u(si-1 +h))

xi= xi-1 + h(k1 + 2k2 + 2k3 + k4)/6

serves as physical step Fi fori = 1, ... , 1000.

The calculations of a physical step Fi form the forward(..)-routine
needed by the time-minimal parallel reversal schedules. As mentioned
above, in addition to this, one has to provide two further routines,

Adjoint Calculation using Time-minimal Program Reversals 327

namely recording(..) and reverse(..). The content of these two modules

is described in the next subsection.

3.2. Calculating Adjoints

There are two basic alternatives for calculating the adjoints of a given

model. Firstly, one may form the adjoint of the continuous model equa­

tion and discretize the continuous adjoint equation. Secondly, one may

use automatic differentiation (AD), or hand-coding, to adjoin the dis­

crete evaluation procedure of the model. Both ways do not commute

in general (see e.g. [8]). Therefore, one has to be careful when decid­

ing how to calculate the desired adjoints. For the computations shown

below, the second option was applied, namely the adjoining of the dis­

cretized equation {3). Application of AD in reverse mode amounts to

the following adjoint calculation Pi (see e.g. [5]):

- a A a
kj = ox kj kj = au kj 1 < J < 4

a4 = hj} /6 b4 = a4k4

a3 = hxi/3 + hb4 b3 a3k3

a2 = hxi /3 + hb3j2 b2 = a2k2 {4)

a1 = hxi /3 + hb2/2 b1 a1k1

ui = ui + a4k4 ui-1 a1k1

. 1 {)J .
= -0 . 1 + + b1 + b2 + b3 + b4,

for i = l, ... , 1, where the functions kj, 1 :S j :S 4, are defined as

in {3). Here, ui denotes the adjoint of the control u at si. Note that the

integration of the adjoint scheme {4) has to be performed in reverse order

starting at i = l. One uses = 8Jj8x1, 1 :S i :S 7 and = 0, i = 1,2

as initial values because of the influence on the cost functional (2). After

the complete adjoint calculation, each value ui denotes the sensitivity of

the cost functional J with respect to the value Ui·

Now the return value of the routine reverse(..) is clear. It has to

contain the computations needed to perform an adjoint step Pi according

to (4). However, there are two ways to implement the interface between

the modules recording(..) and reverse(..). One can either store the stages

kj, 1 :S j :S 4, during the evaluation of the recording step Fi. Then the

corresponding reverse step Pi comprises all calculations shown in {4), i.e.

also the computation of the Jacobians kj, 1 :S j :S 4. As an alternative,

one can compute the Jacobians kj, 1 :S j :S 4 in the recording step Fi
and store this information on the tape. Then the appropriate reverse

328

step Pi only has to evaluate the last three statements of Equation (4).

The runtimes represented here are based on the second approach in order

to achieve f = 1. As a result, f equals 5. This implementation has the

advantage that the value of f and hence the wall clock time are reduced

at the expense of f. This can be seen for example in Figure 2, where an

increase of f would result in an bigger slope of the bar describing the

adjoint or reverse computations.

As mentioned above, one has to be careful about the adjoint calcu­

lation because of the lack of commutativity between adjoining and dis­

cretizing in general. Therefore, it is important to note that the Runge­

Kutta scheme (3) belongs to a class of discretizations, for which both

possibilities of adjoint calculation coincide, giving the same result [8].

3.3. Numerical Results

To test the parallel reversal schedule framework, one forward inte­

gration of the car model shown in Figure 4 and one adjoint calculation

were performed. As previously mentioned, the integration distance was

100 m and the step size 10 em. Hence, there are 1000 forward steps

Fi. The Figure 5(a) shows the growth of the cost functional for which

12 ==
10 L'-----''""oa,_d r,.l .,_ht ""line._-=-_,

-2

20 40 60 80 100 120

longitudinal position

Figure 4. Position of Formula 1 Car.

we computed the sensitivities of the control variables u1 (Figure 5(b))

and u1 (Figure 5(c)). However, the resource requirements are of primary

interest. One integration step in the example is relatively small in terms

of computing time. In order to achieve reasonable timings 18 integration

steps form one physical step of the parallel reversal schedule. The re­

maining 10 integration steps were spread uniformly. Hence, one obtains

55 physical steps. Therefore, five processors were needed for the corre­

sponding time-minimal parallel reversal schedule for f = f = 1. This

reversal schedule is with small modifications also nearly optimal for the

Adjoint Calculation using Time-minimal Program Reversals 329

40 60 80 100

(a) Cost Functional J(s).

(b) Adjoint of steering rate u1.

(c) Adjoint of longitudinal force u2.

Figure 5. Cost Functional and Adjoint of Control Variables.

considered combination f = 5 and 7 = 1. A sixth processor (master)

was used to organise the program run.

II naive approach II parallel checkpointing

double variables needed 266010 5092

memory I in kByte 2128.1 40.7

required I in% 100.0 1.9

Table 1. Memory Requirement

The main advantage of the parallel reversal schedules is the enormous

reduction in memory requirement as illustrate in Table 1. It shows that

for this example, less than a fiftieth of the original memory requirement

330

is needed, i.e., less than 2%. On the other hand, only six times the

original computing power, i.e., processors, is used.

The theoretical runtime is also confirmed by the example as can be

seen in Table 2. Due to the slower memory interface on a Cray T3E, the

usage of less memory in parallel causes an enormous decrease in runtime.

On the other hand the problem is too small and the SGI Origin 3800 too

fast to show this effect. Nevertheless, one obtains that the assumption of

negligible communication cost is reasonable. This is caused by the fact

that the processors have the duration of one full physical step to send

and receive a checkpoint because the checkpoint is not needed earlier.

Only if the send and receive of one checkpoint needs more time than one

physical step the communication cost becomes critical.

II nai've approach II parallel checkpointing

T3E I sec.
m%

II 20.27 II 18.91
100.0 93.3

Origin 3800 I in sec.
in%

6.04

90.0

Table 2. Runtime results

4. Conclusions

The potentially enormous memory requirement of program reversal

by complete logging often causes problems despite the ever increasing

size of memory systems. This paper proposes an alternative method,

where the memory requirement can be drastically reduced by keeping at

most c intermediate states as checkpoints. In order to avoid an increase

in runtime, p processors are used to reverse evolutions with minimal wall

clock time. For the presented time-minimal parallel reversal schedules,

the number l of physical steps that can be reversed grows exponentially

as a function of the resource number {! = c + p. A corresponding soft­

ware tool has been coded using MPI. Initial numerical tests are reported.

They confirm the enormous reduction in memory requirement. Further­

more, the runtime behaviour is studied. It is verified that the wall clock

time of the computation can be reduced compared to the logging-all ap­

proach if the memory access is comparatively costly. This fact is caused

by the reduced storage in use. If the memory access is comparatively

cheap, the theoretical runtime of time-minimal parallel reversal sched­

ules is also confirmed.

The following overall conclusion can be drawn. For adjoining sim­

ulations loga(·T) (# physical steps) processors and checkpoints are wall

Adjoint Calculation using Time-minimal Program Reversals 331

clock equivalent to 1 processor and (# physical steps) checkpoints with

a(f) = !(1 + v'1 + 4T) and f the temporal complexity of a reverse step.

Acknowledgments

The authors are indebted to Daniele Casanova for his support during

the numerical experiments and to Andreas Griewank for many fruitful

discussions.

References

[1) J. Allen. Computer optimisation of cornering line. Master's thesis, School of

Mechanical Engineering, Cranfield University, 1997.

[2) E. Bakker, H. Pacejka, and L. Lidner. A new tire model with an application in

vehicle dynamics studies. SAE-Paper, 890087, 1989.

[3) Y. Evtushenko. Automatic differentiation viewed from optimal control. In G. F.

Corliss and A. Griewank, editors, Computational Differentiation: Techniques,

Implementations, and Application, Philadelphia, 1991. SIAM.

[4) M. Garey and D. Johnson. Computers and intractability: Aguide to the theory

of NP-completeness. Freeman and Company, New York, 1980.

[5) A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic

Differentiation. Frontiers in Applied Mathematics. SIAM, Philadelphia, 1999.

[6) A. Griewank and A. Walther. Revolve: An implementation of checkpoint­

ing for the reverse or adjoint mode of computational differentiation. A CM

Trans. Math. Software, 26, 2000.

[7) J. Grimm, L. Pottier, and N. Rostaing-Schmidt. Optimal time and minimum

space-time product for reversing a certain class of programs. In M. Berz,

C. Bischof, G. Corliss, and A. Griewank, editors, Computational Differentia­

tion: Techniques, Applications, and Tools, Philadelphia, 1996. SIAM.

[8) W. Hager. Runge-kutta methods in optimal control and the transformed adjoint

system. Numer. Math., 87:247-282, 2000.

[9) P. Hilton and J. Petersen. A fresh look at old favourites: The fibonacci and

lucas sequences revisited. Australian Mathematical Society Gazette, 25:146-160,

1998.

[10) U. Lehmann and A. Walther. The implementation and testing of time-minimal

and resource-optimal parallel reversal schedules. Technical Report ZHR-IR-

0109, Tech. Univ. Dresden, Center for High Perf. Comp., 2001.

[11) 0. Talagrand. The use of adjoint equations in numerical modeling of the at­

mospheric circulation. In G. F. Corliss and A. Griewank, editors, Computa­

tional Differentiation: Techniques, Implementations, and Application, Philadel­

phia, 1991. SIAM.

[12) J. van de Snepscheut. What computing is all about. Texts and Monographs in

Computer Science. Springer, Berlin, 1993.

[13] A. Walther. Program Reversal Schedules for Single- and Multi-processor Ma­

chines. PhD thesis, Tech. Univ. Dresden, Inst. for Sci. Comp., 1999.

	ADJOINT CALCULATION USING TIME MINIMAL PROGRAM REVERSALS FOR MULTI-PROCESSOR MACHINES

	1. Introduction and Notation
	2. Time-minimal Parallel Reversal Schedules
	3. Model Problem: Steering a Formula 1 Car
	3.1. The Forward Integration
	3.2. Calculating Adjoints
	3.3. Numerical Results

	4. Conclusions
	Acknowledgments
	References

