
European Conference on Computational Fluid Dynamics
ECCOMAS CFD 2006
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Abstract. This document reports on recent advances in the development of the adjoint
code generator OpenAD/F. We give an overview of the software design, and we discuss
case studies that illustrate the feasibility of adjoint code generation. Our main target
application is the MIT General Circulation Model — a numerical model designed for
study of the atmosphere, ocean, and climate.

1 INTRODUCTION

The “Adjoint Compiler Technology and Standards” (ACTS) project is a collaborative
research and development effort in automatic differentiation (AD) [5, 10, 11, 16] focusing
on its application and next-generation tool development. The main result of our work is
a modular, open source AD infrastructure (OpenAD) that has been used to implement
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Figure 1: The Open64 front-end performs a lexical, syntactic, and semantic analysis and produces an
intermediate representation of F in the whirl format. OpenAnalysis is used to build call and control flow
graphs, used by whirl2xaif to construct a representation of the numerical core of F in the xaif format. A
differentiated version of Fxaif is derived by an algorithm that is built with xaifBooster. F

′

xaif and Fwhirl

are combined by xaif2whirl to construct a whirl representation of the differentiated code. The unparser
of Open64 transforms the latter into Fortran.

tangent-linear and adjoint code generators. Both algorithms were applied successfully
to a number of practical problems. The specific objectives of the ACTS project are as
follows:

1. Definition and implementation of a programming language independent intermedi-
ate representation

2. Provision of a platform for the development of AD algorithms for programs given
in this intermediate format

3. Adaptation of an existing Fortran front- and back-end to parse into this intermediate
representation as well as unparse from it into Fortran derivative code

4. Automatic generation of tangent-linear and adjoint versions of the MIT general
circulation model.

All objectives were met. Detailed information on the OpenAD framework and the Fortran
tool OpenAD/F can be found on the web.

http://www.mcs.anl.gov/openad .

The basic architecture of this software package is illustrated in Figure 1 together with a
brief description of the steps performed during the semantic transformation of a program
F into a differentiated program F ′. More details are presented in the following sections.
The dotted line encloses the language-specific front-end that can potentially be replaced
by front-ends for languages other than Fortran. For example, an effort running parallel to
the ACTS project at Argonne National Laboratory is developing a new version of ADIC
[22] by coupling a C/C++ front-end based on an EDG parser (www.edg.com) and uses
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ROSE in combination with SAGE 3 (www.llnl.gov/CASC) as internal representation with
OpenAD.

The structure of this paper is as follows. In Section 2 we discuss the adjoint code that
is generated automatically. Section 3 contains brief descriptions of the main components
of OpenAD/F. Several case studies are discussed in Section 4. Conclusions and comments
on ongoing and future work are presented in Section 5.

2 ADJOINT CODE BY OPENAD/F

In this section we discuss the mathematical and algorithmic basis for the code trans-
formation algorithms within OpenAD/F that produce adjoint code automatically.

We consider computer programs that evaluate vector functions y = F (x) with

F : IRn → IRm .

We assume that F is once continuously differentiable. Hence, the Jacobian matrix F ′ ≡

F ′(x) of F exists and can be computed by AD.
AD expects the evaluation of F to decompose into a sequence of elemental computa-

tional operations
vj = ϕj(vi)i≺j for j = 1, . . . , q . (1)

We adopt Griewank’s notation [16]. Hence, i ≺ j if vi is an argument of ϕj and q = p+m.

We set vj = xj+n for j = 1 − n, . . . , 0 and yj = vp+j for j = 1, . . . , m. Refer to [16] for
a comprehensive discussion of AD. A large number of successful applications of AD to
real-world problems in science and engineering are described in [11, 5, 10, 7].

Under the usual assumptions about differentiability of the elemental functions we can
compute local partial derivatives

cji ≡
∂ϕj

∂vi

(vk)k≺j for j = 1, . . . , q . (2)

Forward-mode AD computes ẏ = F ′ · ẋ as

v̇j =
∑

i≺j

cji · v̇i for j = 1, . . . , q . (3)

Alternatively, the transposed product x̄ = (F ′)T · ȳ can be computed in reverse-mode AD
after initializing v̄i = 0 for i = 1− n, . . . , p as

v̄i+ = cji · v̄j for j = p, . . . , 1− n, i ≺ j . (4)

Such adjoints are of particular interest in large-scale optimization because they allow for
gradients to be computed with a computational complexity that is independent of n.
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2.1 Preaccumulation and Reversal of Data Flow

In OpenAD/F we view all basic blocks (sequences of assignments that have a single
control-flow entry and exit, respectively) as functions φj : IRnj → IRmj . Such local
functions compute y(j) = φj(x

(j)). The local Jacobians φ′
j ∈ IRmj×nj are preaccumulated

during a correspondingly augmented execution of the original code — the augmented
forward section of the adjoint code — as described in [33]. Their entries are stored.
The reverse section of the adjoint code restores the local Jacobians in reverse order (see
Section 2.2) to compute x̄(j)+ = φT

j · ȳ
(j) (compare with Equation (4)). The adjoints

ȳ ∈ IRm of the dependent output variables of F become inputs of the adjoint code to
obtain x̄ = (F ′)T · ȳ.

We use association by address in order to attach adjoints to the original values of
program variables. Therefore we define a new derived type type(active) that provides
memory for both the value of the original variable (accessed via x%v for an active x) and
its adjoint (x%d). All active [18] program variables that could potentially carry nonzero
adjoint values are redeclared to be of this new type.

In general, the input vectors x(j) may contain variables v also occurring in the output
vectors y(j) either by simply using the same variable or by aliasing; that is, some x

(j)
k and

some y
(j)
l have different names but share the same address in memory. In practice this situ-

ation happens through the use of pointers, different dummy parameters bound to the same
actual parameter or, for example, array dereferencing with syntactically different index
expressions yielding the same value. Consider a simple example with a pointer variable y2,
pointing to x1, that is, in Fortran y2=>x1. For two statements y1=sin(x1); y2=x1*x2;

the naive application of Equation (4) yields the adjoints x2=x2+c2,0*y2; x1=x1+c2,−1*y2;

x1=x1+c1,−1*y1;. In order to obtain correct adjoint values, however, x1 needs to be reset
to 0 prior to the third adjoint statement to reflect the implicit overwrite of x1 via the
assignment to y2.

In more general terms consider z = F (x) ∈ IRm such that x ∈ IRn, y = φ1(x) ∈ IRny ,
and z = φ2(y). By the chain rule we get F ′ = φ′

2(y) · φ′
1(x). Hence, x̄ = F ′(x)T · z̄, where

ȳ = φ′
2(y)T · z̄ and x̄ = φ′

1(x)T · ȳ.

Let 1 ≤ i, i′ ≤ n and 0 ≤ j ≤ ny such that yj = xi share the same address. With

φ′
1(x) = A ≡ (ak,l)

k=1,...,ny

l=1,...,n Equation (4) gives the incorrect

x̄i = x̄i + aj,iȳj

x̄i′ = x̄i′ + aj,i′ ȳj

. (5)

Unless we can prove that there is no aliasing (no sharing of addresses) between inputs
and outputs of basic blocks, we need to accumulate the local adjoints in a compiler-
generated temporary variable t followed by setting the adjoints of the outputs to zero
and incrementing the adjoints of the inputs with the corresponding values in t. A correct
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adjoint recurrence is the following.

t = AT · ȳ

ȳ = 0

x̄ = x̄ + t

(6)

Alternatively, aliasing can be resolved by the following adjoint recurrence.

t = ȳ

ȳ = 0

x̄ = x̄ + AT · t

(7)

The computational complexity of alias resolution is determined by the size of the vector t
and the corresponding copy operation. In Equation (6) we have t ∈ IRn, whereas t ∈ IRny

in Equation (7).
Let 1 ≤ i ≤ n and 0 ≤ j ≤ m such that zj = xi share the same address. With

A ≡ φ′
1(x) defined as above and φ′

2(y) = B ≡ (bk,l)
k=1,...,m
l=1,...,ny

, naively Equation (4) yields

ȳk = ȳk + bj,kz̄j

...

x̄i = x̄i + bk,iȳk

(8)

for k = 1, . . . , ny. With zj and xi being mutual aliases, the increment of x̄i implies the
increment of z̄j. This value is obviously not what we want, since prior to the first increment
we expect the adjoint of xi to be zero. Hence the value of z̄j needs to be set to zero after
its use for the increment of the adjoints of all yk, k = 1, . . . , ny. The correct adjoint
recurrence is the following.

ȳ = ȳ + BT · z̄

t = ȳ

z̄ = 0

x̄ = x̄ + AT · ȳ

ȳ = 0

(9)

The last statement results from the recursive application of the above argument when
considering the given code fragment in a larger context.

In Equation (9) we assume that aliasing exists neither between y and z nor between x
and y. The most general conservative adjoint recurrence is the following combination of
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Equation (6) and Equation (9).

t1 = BT · z̄

z̄ = 0

ȳ = ȳ + t1

t2 = AT · ȳ

ȳ = 0

x̄ = x̄ + t2

(10)

2.2 Reversal of the Control Flow

The flow of control within subroutines is reversed by memorizing branches and counting
loop iterations while executing the augmented forward section of the adjoint code as
described in [33]. All values are pushed onto a stack. The reverse section restores them
(using pop) and, hence, executes the products of the transposed local Jacobians with
the adjoints of the outputs of the respective basic block in reverse order. This method
is illustrated in Figure 2. It also shows how the same local Jacobians are used in the
tangent-linear model.
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Figure 2: Control flow graphs: original code (a), tangent linear model (b), adjoint model (c)

2.3 Reversal of the Call Tree

The interprocedural flow of control can be viewed as a call tree where each node
represents a particular call made at run time; see Figure 3(b) for the example code shown
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subroutine 1

call 2; call 4; call 2

end subroutine 1

subroutine 2

call 3

end subroutine 2

subroutine 4

call 5

end subroutine 4
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Figure 3: Call tree reversal: code (a), call tree (b), adjoint call tree in split (c) and joint (d) reversal

in Figure 3(a). The call tree can be reversed by a combination of split and joint reversal
modes [16]. For each subroutine in the original program, OpenAD/F generates distinct
versions of the subroutine body that can be used to accomplish the following.

• Evaluate the original subroutine (→ on top of �);

• Store all inputs (argument checkpoint, ↓ on the left of �);

• Restore all inputs (argument checkpoint, ↑ on the left of �);

• Execute the forward section of the adjoint code (→ on top and bottom of �);

• Execute the reverse section of the adjoint code (← on top of �).

The two fundamental reversal modes are illustrated in Figure 3. In split mode a single run
of the augmented forward section is performed followed by executing the reverse section.
All local Jacobians of the entire forward execution need to be stored. As a result, memory
requirements may quickly become prohibitive for large-scale problems such as the MIT
General Circulation Model used in high-resolution setups. Joint reversal mode represents
a tradeoff between memory consumption and the number of arithmetic operations per-
formed. It computes the adjoints of a callee only when they are required by the adjoint of
the caller. Joint reversal requires a recomputation from stored checkpoints. Subroutine-
level granularity used here together with side-effect analysis (see Section 3.4) allows for an
easy, automatic checkpoint code generation. Split and joint reversal modes can be com-
bined to achieve a feasible balance between memory requirement and operations count.
Refer to [16] for further details on these reversal modes.
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3 OPENAD/F

In this section we briefly describe the main components of OpenAD/F. References are
provided for further details.

3.1 xaif

An XML-based (www.w3c.org/XML) hierarchy of directed graphs, referred to as xaif
[21], is used for the internal representation of the numerical core of the implementation
of a given vector function. This format is well suited to represent the results of semantic
transformations including preaccumulation [6, 9, 17] and program reversal [15, 35] at
various levels (call graph, control flow graphs, basic blocks, expressions). The main idea
behind xaif is to provide a language-independent exchange format that separates language-
specific from transformation-related algorithmic issues. Potentially, front-ends for various
programming languages can utilize xaif, for example, Open64 and EDG/SAGE 3, as
pointed out before.

3.2 xaifBooster

Transformation
Algorithm

xaif parser

xaif unparser

transformed xaif

IR

xaifbooster

xaif

Figure 4: xaifBooster parses xaif code into an internal representation (IR). It provides an API for trans-
formation algorithms to modify the IR. An unparser returns the transformed xaif code.

The C++ software xaifBooster is a collection of utilities and routines for the (semantic)
transformation of programs given in xaif. Its architecture is illustrated in Figure 4. One
of the major concerns during the development of xaifBooster has been the clean separa-
tion of the internal representation (an enhanced object image of xaif) from algorithms
that operate on this data structure. This goal has been achieved by applying the design
patterns [12] factory, visitor, and decorator as described in [34]. The result is an API
that gives AD developers the opportunity to implement new algorithms in a source trans-
formation environment without having to implement full compiler front- and back-ends.
Building on this API, we have implemented tangent-linear and adjoint algorithms that
use statement- and basic-block-level preaccumulation of local gradients or Jacobians as
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described in Section 2. Near-optimal face elimination [27] sequences are computed by the
software tool ANGEL [3, 28] (angellib.sourceforge.net) and transformed into Jaco-
bian code by an xaifBooster algorithm. A simple adjoint version of the code is obtained
by taping the local Jacobians and by computing the corresponding “transposed Jacobian-
vector” products during an interpretive reverse sweep through the tape. This approach
is essentially equivalent to split program reversal [16] and allows for an easy coupling of
tangent-linear and adjoint versions of small to medium-sized codes as described in [29].
Our main adjoint code generation strategy uses combinations of split and joint reversal
in a hierarchical fashion as described in Section 2.

3.3 OpenADFortTk

The main target application of the ACTS project is the MIT General Circulation Model
(MITgcm) [24, 25]. It is implemented mostly in Fortran 77 to permit maintenance of an
efficient and correct adjoint as the code evolves [19]. Future development will increasingly
add Fortran features. We use the Fortran front-end that is part of the Open64 compiler
suite maintained by the Center for High Performance Software Research at Rice Univer-
sity (hipersoft.cs.rice.edu/Open64/). It parses Fortran codes into an intermediate
representation called whirl and provides an unparser from whirl back to Fortran. The
focus of the ACTS project is on the transformation of whirl into xaif (OpenADFortTk’s
component whirl2xaif) and, conversely, on the back-translation of differentiated xaif code
into whirl (xaif2whirl). OpenADFortTk uses the call graph and control flow graph builders
provided by OpenAnalysis.

3.4 OpenAnalysis

The OpenAnalysis toolkit1 separates program analysis from language-specific or front-
end-specific intermediate representations. This separation enables a single implementa-
tion of domain-specific analyses such as activity analysis, to-be-recorded analysis, and
linearity analysis in OpenAD. Also available via OpenADFortTk are standard analyses
implemented within OpenAnalysis, such as CFG construction, call graph construction,
alias analysis, reaching definitions, ud- and du-chains, and side-effect analysis.

OpenADFortTk interfaces with OpenAnalysis as a producer and a consumer. A de-
scription of alias analysis illustrates this interaction. Xaif requires an alias map data
structure, in which each variable reference is mapped to a set of virtual locations that
it may or must reference. For example, if a global variable g is passed into subroutine
foo through the dummy parameter p, variables g and p will reference the same mem-
ory address within foo and therefore be aliased to each other. OpenAnalysis determines
the aliasing relationships by calling methods of an abstract alias IR interface. This is
a language-independent interface between OpenAnalysis and any intermediate represen-
tation for an imperative programming language. OpenADFortTk implements the alias

1see http://www.mcs.anl.gov/OpenAnalysisWiki/moin.cgi
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IR interface for the Fortran intermediate representation given in whirl. The interface
includes iterators over all the procedures, statements in those procedures, memory refer-
ences in each statement, and memory reference expression and location abstractions that
provide further information about memory references and symbols. The results of the
alias analysis are returned to OpenADFortTk through a special alias results interface.

OpenAnalysis also performs activity analysis. For activity analysis the independent
and dependent variables of interest are communicated to the front-end through the use
of pragmas. The results of the analysis are then encoded by the Fortran front-end into
xaif. The analysis indicates which variables are active(i.e., have nonzero derivatives) at
any time, which memory references are active, and which statements are active (activity
determined by the variable on the left-hand side).

The activity analysis itself is based on the formulation in [18]. The main difference
is that the data-flow framework in OpenAnalysis does not yet take advantage of the
structured data-flow equations. Activity analysis is implemented in a context-insensitive,
flow-sensitive interprocedural fashion.

4 CASE STUDIES

Below we discuss briefly four applications for which OpenAD/F has successfully gener-
ated adjoint code. Details including the generated codes and driver routines can be found
on the OpenAD website.

First we illustrate the transformation procedure and the resulting code with a simple
toy problem. Consider the following Fortran code that implements a univariate scalar
function y = f(x).

1 subroutine head(x,y)

2 double precision,intent(in) :: x

3 double precision,intent(out) :: y

4 c$openad INDEPENDENT(x)

5 y=sin(x*x)

6 c$openad DEPENDENT(y)

7 end subroutine

Two pragmas are used to indicate to the system what the independent (x) and the de-
pendent (y) variables are. Our aim is to generate an adjoint subroutine to compute
x̄ = (f ′)T · ȳ. Obviously, (f ′)T = f ′ as f ′ ∈ IR for this simple example.

Augmented Forward Section All active program variables are redeclared to be of
type active as introduced in Section 2.1. The augmented forward section of the adjoint
code evaluates the function (lines 1 and 2 in the listing below) and the local partial deriva-
tives labeling the edges in the linearized computational graph as shown in Figure 5 (a)
(lines 3–5). The local Jacobian (a scalar partial derivative in this case) is accumulated
by transformation of the linearized computational graph into bipartite form as shown in
Figure 5 (b) (line 6). The preaccumulated local Jacobian is then stored for later use by
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Figure 5: Preaccumulation for toy problem

the reverse section of the adjoint code.

1 OpenAD_Symbol_0 = (X%v*X%v)

2 Y%v = SIN(OpenAD_Symbol_0)

3 OpenAD_Symbol_2 = X%v

4 OpenAD_Symbol_3 = X%v

5 OpenAD_Symbol_1 = COS(OpenAD_Symbol_0)

6 OpenAD_Symbol_5 = ((OpenAD_Symbol_3 + OpenAD_Symbol_2) * OpenAD_Symbol_1)

7 double_tape(double_tape_pointer) = OpenAD_Symbol_5

8 double_tape_pointer = double_tape_pointer+1

Reverse Section The reverse section of the adjoint code simply restores the previously
preaccumulated local Jacobian (lines 1 and 2) followed by the computation of the product
of the transposed local Jacobian with the vector of adjoints of the outputs of the current
basic block (line 3). In our simple case the above is reduced to the scalar product ∂y

∂x
·ȳ = x̄.

The adjoints of the outputs are set to zero for potential further use in the incremental
adjoint code, as outlined in Section 2 (line 4).

1 double_tape_pointer = double_tape_pointer-1

2 OpenAD_Symbol_7 = double_tape(double_tape_pointer)

3 X%d = X%d+Y%d*OpenAD_Symbol_7

4 Y%d = 0.0d0

Through interprocedural alias analysis one can determine if X and Y are aliased. Here
this is not the case and therefore OpenAD/F uses no temporary variable in the adjoint
accumulation (refer to Section 2.1).

Driver OpenAD/F inserts the automatically generated derivative code into a source
code template as described in detail in [30]. For example, in split reversal the following
template is used.
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1 subroutine template()

2 use OpenAD_tape

3 use OpenAD_rev

4 !$TEMPLATE_PRAGMA_DECLARATIONS

5 if (rev_mode%tape) then

6 !$PLACEHOLDER_PRAGMA$ id=2

7 end if

8 if (rev_mode%adjoint) then

9 !$PLACEHOLDER_PRAGMA$ id=3

10 end if

11 end subroutine template

The augmented forward and reverse sections of the adjoint code replace the pragmas in
lines 6 and 9, respectively. Additional declarations replace the pragma in line 4. De-
pending on the values of the Boolean flags rev mode%tape and rev mode%adjoint the
augmented forward and reverse sections are executed, respectively. The template for
joint reversal is slightly more complicated. It can be found on the OpenAD website. The
various reversal modes are represented by the derived type our rev mode that is defined
in the module OpenAD rev. The runtime support module OpenAD active contains the
definition of the active data type active.

The following driver program calls the adjoint version of head to compute the derivative
of its output y with respect to its input x.

1 program driver

2 use OpenAD_active

3 use OpenAD_rev

4 external head

5 type(active):: x, y

6 read *, x%v

7 y%d=1.0

8 our_rev_mode%tape=.TRUE.

9 our_rev_mode%adjoint=.TRUE.

10 call head(x,y)

11 write (*,*) "J(1,1)=",x%d

12 end program driver

Both x and y are declared as active, and the value of x, that is, x%v, is read in. The
adjoint of the output y is set to one. In lines 8 and 9 we indicate that the adjoint version
of head is supposed to execute the augmented forward section followed by the reverse
section. The desired partial derivative is stored in x%d.

4.1 Flow in a Driven Cavity

The driven cavity problem was taken from the MINPACK-2 test problem collection [4].
The 2D (x-y-plane) flow in a driven cavity is formulated as a boundary value problem,
which is discretized by standard finite difference approximations to obtain a system of
nonlinear equations. We choose equal numbers of steps in both the x- and y-directions.
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The number of independent variables is equal to the number of mesh points that are not
part of the boundary.

The whole Jacobian matrix was accumulated in both tangent-linear and adjoint mode.
The results were verified against each other as well as finite difference approximation and
the hand-written Jacobian supplied as part of the MINPACK-2 test problem collection.

4.2 Box Model for Thermohaline Circulation

In physical oceanography, researchers are expending substantial effort in understand-
ing the ocean circulation’s role in the variability of the climate system, on time scales of
decades to millennia and beyond. Of especial interest is the so-called thermohaline circu-
lation — the contribution to the ocean circulation that is driven by density gradients and
thus controlled by temperature and salinity properties and its associated fluxes. It plays
a crucial role in connecting the surface to the deep ocean through deep-water formation,
which occurs at some isolated convection sites at high latitudes mainly in the subpolar
Atlantic ocean, such as the Labrador Sea and the Greenland-Irminger-Norwegian Seas.
The box model is used to solve the (generalized) eigenvalue problem arising in the study
of thermohaline circulation. Further details on the problem itself and ideas on how to
couple tangent-linear and adjoint evaluations in one and the same computation can be
found in [29].

4.3 Shallow Water Model

The third test case is a shallow water model used in an earlier study by Losch and
Wunsch [23] on bottom topography as a control variable in ocean models. This code was
originally written in Fortran 77 and is differentiable with the commercial adjoint model
compiler for Fortran codes TAF [14]. There have been a few Fortran extensions to the
source and it contains some of the basic language features also used in the MITgcm (see
Section 4.4).

In Figure 6 we show as an example output of a map of sensitivities of zonal volume
transport through the Drake Passage to changes in bottom topography everywhere in
a barotropic ocean model computed by P. Heimbach. An adjoint model generated by
OpenAD/F was used for the gradient calculation. Both the split and joint modes exhibit
rather large storage requirements. Improvements result from two-level nested checkpoint-
ing as described in [30]. Moreover, a special reversal technique was used for explicit loops
as outlined in [33].

4.4 MITgcm

Adjoint modeling (i.e., the reverse mode of AD) plays an ever increasing role in ocean
and climate modeling, and with it the use of AD tools to generate efficient, exact, and
up-to-date adjoint code of the underlying parent models. One of the most prominent ex-
amples in which AD plays a crucial role comes from the ECCO (Estimating the Circulation
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Figure 6: Sensitivities of zonal volume transport through the Drake Passage to changes in bottom topog-
raphy computed by an adjoint model that was generated with OpenAD/F
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and Climate of the Ocean) Consortium.2 It treats ocean state estimation as an optimal
control problem (see, e.g., [36]). Variously called the method of Lagrange multipliers, the
adjoint method, 4D-Var, and the Pontryagin principle, it ultimately reduces to a form of
least squares in which a fully fledged ocean general circulation model, here the MITgcm
[25, 24], is fitted, through the adjustment of initial conditions and time-dependent air-sea
momentum and buoyancy fluxes, to a variety of observations ranging from global satel-
lite altimetry available continuously since 1992 (TOPEX/Poseidon, ERS-1/2, Jason-1,
ENVISAT), to in-site measurements from the World Ocean Circulation Experiment, and
recently the ARGO programme (see [37] for an overview and references). The feasibility
of this approach was demonstrated by [31, 32] with their landmark publication of the
first multiyear, quasi-global, dynamically consistent model vs. data synthesis. Dynamic
consistency is crucial when attempting to compute and interpret property budgets and
trends such as decadal changes in heat and mass transports transport or global sea-level
rise (e.g., [38]). The adjoint of the MITgcm was first generated (semi-)automatically by
using the software tool TAF [13, 20]. With a 108-dimensional control space, the ECCO
problem constitutes, to our knowledge, the biggest gradient-based optimization problem
undertaken so far.

The MITgcm, when run using height as the vertical coordinate, solves the Boussinesq
form of the Navier-Stokes equations for an incompressible fluid, hydrostatic or fully non-
hydrostatic, in a curvilinear framework (the model can also be run in pressure vertical
coordinates, in which case it is fully mass-conserving and the Boussinesq-approximation
can be relaxed). The horizontal assembly of the finite volume grid cells is based on a do-
main decomposition to enable efficient parallelization across a variety of high-performance
computer architectures. The model is endowed with state-of-the art physical parameteri-
zation schemes for subgrid-scale horizontal and vertical mixing of momentum and tracer
properties, as well as a sophisticated dynamic/thermodynamic sea-ice model, plus an at-
mospheric boundary layer scheme over the open ocean. A suite of higher-order advection
schemes and time-stepping algorithms enables flexible configuration for a large variety of
applications under the tight constraint to meet the criteria for numerical stability. It is
currently being used for high-resolution global-scale ocean simulations [26].

The model is continuously undergoing vigorous development to incorporate novel phys-
ical and numerical schemes and approaches for treating the horizontal and vertical grid
(e.g., [1, 2, 8]). In this environment the ability to (re-)generate derivative code such as
the adjoint by means of AD becomes a crucial element to ensure that novel aspects and
features of the parent model can be carried over to the adjoint model. Altogether, the
model consists of roughly 40k lines of mostly Fortran77 code.

In a first OpenAD/F milestone, the model is configured in a single-layer setup to closely
mimic the shallow water setup of the previous section over the exact same quasi-global
2◦ × 2◦ domain. The full momentum and tracer advection code is thus subject to differ-

2http://www.ecco-group.org
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entiation. The semi-implicit treatment of the surface involves solving an elliptic problem
using a two-dimensional preconditioned conjugate gradient (CG) algorithm. Taking ad-
vantage of the self-adjointness of the elliptic operator enables us to exclude this iterative
solver from the differentiation procedure and instead rely on the original code. The only
code not currently differentiated pertains to baroclinic elements of the simulation, such
as the equation of state and the parameterization schemes for subgrid-scale mixing. Nev-
ertheless, these codes do not contain any aspects that would differ structurally from the
code now handled by OpenAD/F, and no obstacles are expected when expanding to a
fully baroclinic configuration.

5 CONCLUSIONS

We have successfully generated and tested adjoint code of a quasi-global configura-
tion of the MIT general circulation model by means of OpenAD/F for a roughly 105-
dimensional control problem. This work clearly demonstrates the ability of the tool to
treat complex codes such as those used in earth and climate sciences. The main work now
will consist in improving the flow dependency analysis (OpenAnalysis) to achieve adjoint
code that is efficient enough to be applied in an operational setting.

ACKNOWLEDGMENTS

Funding for the ACTS project was initially provided by NSF under ITR contract
OCE-0205590 for a three-year period that ended in August 2005. The project is currently
supported in part by NASA, NOAA, and NSF through the National Ocean Partnership
Program (NOPP), with additional support through NSF’s CMG program. Thanks are
due to our many MITgcm, ECCO, and ECCO-GODAE partners.

While working at Argonne National Laboratory, Strout and Naumann were supported
in part by the Mathematical, Information, and Computational Sciences Division subpro-
gram of the Office of Advanced Scientific Computing Research, Office of Science, U.S.
Department of Energy, under Contract W-31-109-ENG-38.

REFERENCES

[1] A. Adcroft, J.-M. Campin, C. Hill, and J. Marshall. Implementation of an
atmosphere-ocean general circulation model on the expanded spherical cube.
Mon. Wea. Rev., 132(12):2845–2863, 2004.

[2] A. Adcroft and J.M. Campin. Rescaled height coordinates for accurate representation
of free-surface flows in ocean circulation models. Ocean Modelling, 7(3-4):269–284,
2004.

[3] A. Albrecht, P. Gottschling, and U. Naumann. Markowitz-type heuristics for com-
puting Jacobian matrices efficiently. In Computational Science – ICCS 2003, volume
2658 of LNCS, pages 575–584. Springer, 2003.

16



Naumann et al.
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