
ADJOINT SENSITIVITY ANALYSIS FOR
DIFFERENTIAL-ALGEBRAIC EQUATIONS: THE ADJOINT

DAE SYSTEM AND ITS NUMERICAL SOLUTION∗

YANG CAO† , SHENGTAI LI‡ , LINDA PETZOLD† , AND RADU SERBAN§

SIAM J. SCI. COMPUT. c© 2003 Society for Industrial and Applied Mathematics
Vol. 24, No. 3, pp. 1076–1089

Abstract. An adjoint sensitivity method is presented for parameter-dependent differential-
algebraic equation systems (DAEs). The adjoint system is derived, along with conditions for its
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1. Introduction. With the rapid development of faster computers, increasingly
realistic mathematical models are being used to investigate physical phenomena. New
model features often call for parameters whose values may not be accurately known.
Thus there is a need for parametric sensitivity analysis of differential-algebraic mod-
els. Areas of application include optimization, parameter estimation, model simpli-
fication, data assimilation, optimal control, process sensitivity, uncertainty analysis,
and experimental design for a wide range of scientific and engineering problems.

Recent work on methods and software for sensitivity analysis of DAE systems
[15, 22, 20, 21, 23] has demonstrated that forward sensitivities can be computed
reliably and efficiently via automatic differentiation [8] in combination with DAE
solution techniques designed to exploit the structure of the sensitivity system. The
DASPK3.0 [20, 21] software package was developed for forward sensitivity analysis
of DAE systems of index up to two and has been used in sensitivity analysis and
design optimization of several large-scale engineering problems [19, 25]. DASPK3.0
is an extension of the DASPK software [9, 10] developed by Brown, Hindmarsh, and
Petzold for the solution of large-scale DAE systems. For a parameter-dependent DAE
system

{
F (x, ẋ, t, p) = 0,

x(0) = x0(p),
(1)

where x ∈ Rnx and p ∈ Rnp , these problems take the following form: find dx/dpj
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at time T , for j = 1, . . . , np. Their solution requires the simultaneous solution of
the original DAE system with the np sensitivity systems obtained by differentiating
the original DAE with respect to each parameter in turn. For large systems this
may look like a lot of work but it can be done efficiently, if np is relatively small,
by exploiting the fact that the sensitivity systems are linear and all share the same
Jacobian matrices with the original system.

Some problems require the sensitivities with respect to a large number of param-
eters. For these problems, particularly if the number of state variables is also large,
the forward sensitivity approach is intractable. These problems can often be handled
more efficiently by the adjoint method [14]. In this approach, we are interested in
calculating the sensitivity dG

dp of an objective function

G(x, p) =

∫ T

0

g(x, t, p)dt,(2)

or alternatively the sensitivity dg
dp of a function g(x, T, p) defined only at time T .

The function g must be smooth enough that gp and gx exist and are bounded. The

primary cost in computing dG
dp or dg

dp via the adjoint method is the calculation of the
intermediate quantity λ, called the adjoint variable, as the solution of the adjoint
system. The adjoint system is a linear DAE system associated with the governing
DAEs (1). While forward sensitivity analysis is best suited to the situation of finding
the sensitivities of a potentially large number of solution variables with respect to a
small number of parameters, reverse (adjoint) sensitivity analysis is best suited to the
complementary situation of finding the sensitivity of a scalar (or small-dimensional)
function of the solution with respect to a large number of parameters.

The specification of the adjoint system for DAEs in the absence of sensitivity
considerations is straightforward. For a linear DAE of the form

Aẋ+Bx = 0,(3)

where A and B are sufficiently smooth matrix functions, the adjoint or dual DAE is
given by

(A∗λ)′ −B∗λ = 0,(4)

where ∗ denotes the conjugate transpose and ′ denotes the time derivative. In re-
lated works [3, 4, 5, 7, 6], Balla and März have derived the adjoint system for index-1
DAEs and showed its solvability and index-1 structure under minimal conditions of
smoothness. When the adjoint method is used for computation of the sensitivities, the
adjoint system (4) may become inhomogeneous and have different initial conditions,
depending on the form of the objective functions. Our contributions in the present
paper are first to give a simple derivation using variational methods of the adjoint
system for general nonlinear DAEs and to show how to use it in sensitivity analy-
sis. Then we present conditions for the consistent initialization of the adjoint DAE
system for DAEs of index up to two (Hessenberg). Finally, we show for linear DAEs
that if the original DAE is stable, then the adjoint DAE (for semi-explicit DAEs) or
an augmented adjoint DAE (for fully implicit DAEs) is stable, and that numerical
stability is maintained for the adjoint DAE or the augmented adjoint DAE.

We note that März [24] has shown that for “well-formulated” DAE systems (these
DAE systems must be written in a specific form), the operations of adjoint and dis-
cretization commute. For such systems, stability of the adjoint and its discretization
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is maintained, hence there is no need for an augmented adjoint DAE. There are many
computational advantages for such DAE systems, hence we advocate rewriting the
system into this form whenever possible. However, for large nonlinear problems from
scientific computing this may not always be possible or convenient. Thus we believe
it is important also to consider numerical methods for DAEs of the more general form
(1).

The outline of this paper is as follows. In section 2 we derive the adjoint system by
a variational method, along with conditions for its consistent initialization for index-0
and index-1 DAEs. In section 3 we give some examples and derive the conditions for
the consistent initialization of the adjoint system for Hessenberg index-2 DAEs. In
section 4 we investigate the stability of the adjoint system and show how to formulate
an augmented adjoint system for which stability is maintained even for fully implicit
DAE systems. In section 5 we address the numerical stability of the adjoint and
augmented adjoint DAE systems.

2. Derivation of the adjoint system for sensitivity.

2.1. Sensitivity of G(x, p). We focus first on solving the sensitivity problem
for G(x, p) defined by (2). Introducing a Lagrange multiplier λ, we form the aug-
mented objective function

I(x, p) = G(x, p)−
∫ T

0

λ∗F (x, ẋ, t, p)dt.

Since F (x, ẋ, t, p) = 0, the sensitivity of G with respect to p is

dG

dp
=

dI

dp
=

∫ T

0

(gp + gxxp)dt−
∫ T

0

λ∗(Fp + Fxxp + Fẋẋp)dt,(5)

where subscripts on functions such as F or g are used to denote partial derivatives.
By integration by parts, we have

∫ T

0

λ∗Fẋẋpdt = (λ∗Fẋxp)|T0 −
∫ T

0

(λ∗Fẋ)
′xpdt.

Thus (5) becomes

dG

dp
=

∫ T

0

(gp − λ∗Fp) dt−
∫ T

0

[−gx + λ∗Fx − (λ∗Fẋ)
′]xpdt− (λ∗Fẋxp)|T0 .(6)

Now letting

(λ∗Fẋ)
′ − λ∗Fx = −gx,(7)

we obtain

dG

dp
=

∫ T

0

(gp − λ∗Fp) dt− (λ∗Fẋxp)|T0 .(8)

Note that xp at t = 0 is the sensitivity of the initial conditions with respect to p,
which is easily obtained. To find the initial conditions (at t = T ) for the adjoint
system, we must take into consideration the structure of the DAE system.

For index-0 and index-1 DAE systems, we can simply take

λ∗Fẋ|t=T = 0,(9)
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yielding the sensitivity equation for dG
dp

dG

dp
=

∫ T

0

(gp − λ∗Fp) dt+ (λ∗Fẋxp)|t=0.(10)

This choice will not suffice for a Hessenberg index-2 DAE system. Consider the system

{
ẋd = f1(xd, xa, p),
0 = f2(xd, p),

(11)

where xd and xa denote the differential and algebraic solution components, respec-

tively, A = ∂f1

∂xd , B = ∂f1

∂xa , C = ∂f2

∂xd , and CB invertible. Here the adjoint system is
given by

{
˙λd∗ + λd∗A+ λa∗C = −gxd ,

λd∗B = −gxa ,
(12)

where λd and λa denote the differential and algebraic adjoint variables, respectively.
If the initial conditions are set as in (9), then λd(T ) = 0, which may be in conflict
with the constraint equations of (12) if g(x, p) depends explicitly on xa. To resolve
this potential conflict, we require

λd∗(T ) = ξ∗C|t=T ,(13)

where ξ∗ is yet to be determined. Because f2(xd, p) = 0, we have Cxdp = −f2
p . Thus

if λd satisfies (13), we have

λd∗xdp|t=T = −ξ∗f2
p |t=T .(14)

Inserting (13) into the constraint equation (12), we have

ξ∗CB|t=T = −gxa |t=T .

Since CB is invertible, ξ∗ = −gxa(CB)−1|t=T , and the boundary condition for λd is

λd∗|t=T = −gxa(CB)−1C|t=T .(15)

The sensitivity equation (8) then becomes

dG

dp
=

∫ T

0

(
gp + λd∗f1

p + λa∗f2
p

)
dt+ (λd∗xdp)|t=0 + gxa(CB)−1f2

p .(16)

Thus we have derived the sensitivity equation for dG
dp along with the adjoint DAE

system for λ and its boundary condition at t = T for index-0, index-1, and index-2
Hessenberg DAE systems.

2.2. Sensitivity of g(x, T, p). Now let us consider the computation of dg
dp .

From dg
dp = d

dT
dG
dp and (8), we have

dg

dp
= (gp − λ∗Fp)(T )−

∫ T

0

λ∗
TFpdt+ (λ∗

TFẋxp)|t=0 − d(λ∗Fẋxp)

dT
,(17)
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where λT denotes ∂λ
∂T . For index-0 and index-1 DAEs,

d(λ∗Fẋxp)|t=T

dT = 0. For a
Hessenberg index-2 DAE system of the form (11),

d(λ∗Fẋxp)|t=T

dT
= −d(gxa(CB)−1f2

p )

dt

∣∣∣∣
t=T

.

The corresponding adjoint equations are

(λ∗
TFẋ)

′ − λ∗
TFx = 0.(18)

For index-0 and index-1 DAEs (as shown above, the index-2 case is different), to find
the boundary condition for this equation we write λ as λ(t, T ) because it depends on
both t and T . Then

λ∗(T, T )Fẋ|t=T = 0.

Taking the total derivative, we obtain

(λt + λT )
∗(T, T )Fẋ|t=T + λ∗(T, T )

dFẋ

dt
= 0.

Since λt is just λ̇, we have the boundary condition

(λ∗
TFẋ)|t=T = −

[
λ∗(T, T )

dFẋ

dt
+ λ̇∗Fẋ

] ∣∣∣∣
t=T

.(19)

For the index-one DAE case, (7) and (19) yield

(λ∗
TFẋ)|t=T = [gx − λ∗Fx] |t=T .(20)

For the regular implicit ODE case, Fẋ is invertible; thus we have λ(T, T ) = 0, which
leads to λT (T ) = −λ̇(T ).

We will discuss the appropriate boundary condition for index-2 Hessenberg DAEs
in the next section.

3. Examples. For simplicity of presentation, throughout this section we assume
that the only dependency of the differential equations on the parameters p is through
the initial conditions and that the objective function g does not depend explicitly on
p. This is often the case in applications. We also assume that the initial conditions
are consistent with the algebraic constraints (including any hidden constraints) in a
neighborhood of the nominal values of the parameters.

3.1. Standard form ODE. Given the ODE initial value problem

{
ẋ = f(x, t),

x(0) = x0(p)

and the function g(x) at t = T , the corresponding adjoint system is

{
λ̇T = −f∗

xλT ,
λT (T ) = g∗x

and the sensitivity is given by dg
dp = λ∗

T (0)x0p, where x0p =
dx0

dp . This equation agrees
with the adjoint system as commonly defined for ODEs.
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3.2. Implicit ODE. Given{
F (ẋ, x, t) = 0,

x(0) = x0(p),

with A = ∂F
∂ẋ nonsingular, B = ∂F

∂x , and the function g(x) at t = T , the corresponding
adjoint system is

{
(A∗λT )

′ −B∗λT = 0,
A∗λT (T ) = g∗x

and the sensitivity is given by dg
dp = λ∗

T (0)A(0)x0p.

3.3. Semi-explicit index-1 DAE. Given


ẋ = f1(xd, xa, t),
0 = f2(xd, xa),

xd(0) = xd0(p),

with A = ∂f1

∂xd , B = ∂f1

∂xa , C = ∂f2

∂xd , D = ∂f2

∂xa nonsingular, and the function g(xd) at
t = T , the corresponding adjoint system is


λ̇d
T = −A∗λd

T − C∗λa
T ,

0 = B∗λd
T +D∗λa

T ,
λd
T (T ) = g∗xd

and the sensitivity is given by dg
dp = λd∗

T (0)
dxd

0

dp .

If the function g depends on both xd and xa, g = g(xd(T ), xa(T )), the adjoint
equations are the same as above, but the boundary condition is now given by

λd
T (T ) = g∗xd − C∗(D∗)−1g∗xa .

3.4. Hessenberg index-2 DAE. Given


ẋd = f1(xd, xa, t),
0 = f2(xd),

xd(0) = xd0(p),

with A = ∂f1

∂xd , B = ∂f1

∂xa , C = ∂f2

∂xd , and CB invertible, and given that the function

g(x, T, p) depends only on the differential components xd of x, the corresponding
adjoint system is 


λ̇d
T = −A∗λd

T − C∗λa
T ,

0 = B∗λd
T ,

λd
T (T ) = (I − C∗(B∗C∗)−1B∗)g∗xd

and the sensitivity is given by dg
dp = λd∗

T (0)
dxd

0

dp .

If g(x, T, p) depends on both xd and xa, we must solve for the boundary condition
first, from 


λ̇d +A∗λd + C∗λa = −g∗xd ,

0 = B∗λd + g∗xa ,
λd(T ) = −C∗(B∗C∗)−1g∗xa .

(21)
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The adjoint system is {
λ̇d
T = −A∗λd

T − C∗λa
T ,

0 = B∗λd
T .

As in (15), we have λd∗|t=T = −gxa |t=T (CB)
−1C. If B and C are constant, we

can take the total derivative to obtain

(λd
t + λd

T )
∗(T, T ) = −dgxa

dt

∣∣∣∣
t=T

(CB)−1C,

so that

λd∗
T (T, T ) = −λ̇d∗|t=T − dgxa

dt

∣∣∣∣
t=T

(CB)−1C.

Substituting for λ̇d from (21), we obtain

λd
T (T, T ) = (I − C∗(B∗C∗)−1B∗)

[
g∗xd |t=T +A∗λd(T, T )

]
,

where λd(T, T ) = −C∗(B∗C∗)−1g∗xa |t=T . Denoting P = I − B(CB)−1C, λd
T (T, T )

can be expressed as

λd
T (T, T ) = P ∗(g∗xd +A∗λd(T, T )).

If B and C are not constant, we take the derivative of

λd∗|t=T = −gxa(CB)−1C|t=T

to obtain

(λd
t + λd

T )
∗(T, T ) = −dgxa

dt

∣∣∣∣
t=T

(CB)−1C − gxa |t=T
d((CB)−1C)

dt

or

λd
T |t=T = −λ̇d − C∗(B∗C∗)−1 dg

∗
xa

dt

∣∣∣∣
t=T

− d(C∗(B∗C∗)−1)

dt
g∗xa

∣∣∣∣
t=T

.

From

d(C∗(B∗C∗)−1)

dt
=

dC∗

dt
(B∗C∗)−1 − C∗(B∗C∗)−1

[
dB∗

dt
C∗ +B∗ dC

∗

dt

]
(B∗C∗)−1,

we obtain

λd
T |t=T = −λ̇d −C∗(B∗C∗)−1

[
dg∗xa

dt
− dB∗

dt
C∗(B∗C∗)−1g∗xa

]
−P ∗ dC

∗

dt
(B∗C∗)−1g∗xa .

But we know that at t = T , λd = −C∗(B∗C∗)−1g∗xa . Thus

λd
T |t=T = −λ̇d − C∗(B∗C∗)−1

[
dg∗xa

dt
+
dB∗

dt
λd

]
− P ∗ dC

∗

dt
(B∗C∗)−1gxa .

Taking the derivative of B∗λd + g∗xa = 0, we have

B∗λ̇d = −
[
dg∗xa

dt
+
dB∗

dt
λd

]
.

Substituting for λ̇d, finally we obtain the boundary condition for λd
T :

λd
T (T, T ) = P ∗

[
g∗xd +A∗λd(T, T )− dC∗

dt
(B∗C∗)−1g∗xa

]
.
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4. Stability. In this section we investigate the stability of the adjoint system.
That is, if the original system is stable, will the adjoint system also be stable? If we
just consider the adjoint equation (7), it may not be stable. Consider the following
example:

etẋ+
1

2
etx = 0.(22)

This system is equivalent to

ẋ+
1

2
x = 0,

so it is stable. But the adjoint system (7) for (22) is

etλ̇− 1

2
etλ+ etλ = 0,(23)

which is equivalent to

λ̇+
1

2
λ = 0.(24)

Note that we solve the adjoint system in the backward direction. Thus the adjoint
system (24) is unstable.

Denoting λ̄ = F ∗
ẋλ, we can form the augmented adjoint system for (7):

{
˙̄λ− F ∗

xλ = −g∗x,
λ̄− F ∗

ẋλ = 0.
(25)

If we solve the augmented adjoint system (25) instead of (24), λ̄ satisfies

˙̄λ− 1

2
λ̄ = 0,(26)

which is stable in the backward direction. We will show that in general the aug-
mented adjoint system (25) for λ̄ is stable if the original system is stable. Thus in the
implementation [12] we solve (25) instead of (7).

We show first that the adjoint system (7) for explicit ODE, semi-explicit index-1
DAE, and Hessenberg index-2 DAE systems preserves the stability. In these cases,
there is no difference between λ and λ̄. Then by bounded transformation, we show
that the stability of the augmented adjoint system (25) for λ̄ is also preserved for
implicit ODE and general index-1 DAEs.

4.1. Explicit ODE. For a linear ODE ẋ = A(t)x, the corresponding homoge-
neous adjoint system is

λ̇ = −A∗λ.

Since the adjoint system is solved backward, we can do a change of variable τ = T − t.
The adjoint system, now to be solved forward, is transformed to

λ̇ = A∗λ.

Then we have the following well-known result.
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Theorem 4.1. If the ODE system ẋ = A(t)x is stable, the adjoint ODE system
is also stable.

Proof. If A is constant, the result follows from the fact that A and A∗ have the
same eigenvalues. If A is not constant, we look at the Green’s function. Let X and Λ
be the fundamental solutions of the original ODE and the adjoint system, respectively.
The original system is stable if and only if ‖X(s)X−1(t)‖ is bounded for s > t. The
adjoint system is stable if and only if ‖Λ(s)Λ−1(t)‖ is bounded for s > t.

Let Z(t) = X∗(T − t)Λ(t). Then

Ż = −Ẋ∗(T − t)Λ(t) +X∗(T − t)Λ̇(t) = −X∗A∗Λ +X∗A∗Λ = 0.

Thus Z(t) is constant, so that

X∗(T − t)Λ(t) = X∗(T − s)Λ(s).

Then

Λ(s)Λ−1(t) =
[
X(T − t)X−1(T − s)

]∗
.

Finally, note that s > t leads to T − t > T − s.

4.2. Semi-explicit index-1 DAE. Consider the linear semi-explicit index-1
DAE system

{
ẋd = A(t)xd +B(t)xa,
0 = C(t)xd +D(t)xa,

where D(t) is invertible. The corresponding adjoint system is

{
λ̇d = −A∗λd − C∗λa,
0 = B∗λd +D∗λa.

The original system is stable if and only if the essential underlying ODE (EUODE)
ẋd = Axd − B(D)−1Cxd is stable [1]. The corresponding EUODE for the adjoint
system is given by λ̇d = −A∗λd + C∗(D∗)−1B∗λd, or λ̇d = −(A − B(D)−1C)∗λd.
Thus the EUODE of the adjoint system is the adjoint of the EUODE of the original
system. We know from Theorem 4.1 that the EUODE of the adjoint system is stable.
Thus the adjoint system is also stable.

4.3. Hessenberg index-2 DAE. Consider the linear Hessenberg index-2 DAE
system

{
ẋd = A(t)xd +B(t)xa + q(t),
0 = C(t)xd + r(t),

where C(t)B(t) is nonsingular. The corresponding EUODE is derived in [1] as fol-
lows. If B is sufficiently smooth, there exists a smooth bounded matrix function
R(t) ∈ R(nd−na)×nd whose linearly independent, normalized rows form a basis for the
nullspace of B∗. Here nd is the dimension of the differential variables xd and na is
the dimension of the algebraic variables xa. Thus R(t)B(t) = 0 and

(
R
C

)
is invertible.
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Defining new variables

u = Rxd, 0 ≤ t ≤ T,(27)

xd is given by

xd =

(
R
C

)−1 (
u
−r

)
= Su− Fr,(28)

where S(t) ∈ Rnd×(nd−na) satisfies

RS = I, CS = 0.(29)

The corresponding EUODE is

u̇ = (RAS + ṘS)u− (RAF − ṘF )r(t) +Rq(t).(30)

The original system is stable for the differential variables if the EUODE (30) is stable.
Now consider the adjoint system

{
λ̇d = −A∗(t)λd − C∗(t)λa + q̂(t),
0 = B∗(t)λd + r̂(t).

Since CS = 0, we have S∗C∗ = 0. Multiplying the adjoint system by S∗(t), we obtain

S∗λ = −S∗A∗(t)λ+ S∗q̂(t).(31)

Letting v = S∗λ, we have

λd =

(
S∗

B∗

)(
v
−r̂

)
=

(
R∗ C∗(B∗C∗)−1

)( v
−r̂

)
.(32)

Thus the EUODE of the adjoint DAE is

v̇ = Ṡ∗R∗v − Ṡ∗C∗(B∗C∗)−1r − S∗A∗R∗v + S∗A∗C∗(B∗C∗)−1r.(33)

RS = I leads to Ṡ∗R∗ = −S∗Ṙ∗, so the homogeneous part of the EUODE is given by

v̇ = −(S∗Ṙ∗ + S∗A∗R∗)v = −(ṘS +RAS)∗v.(34)

We can see that the EUODE of the adjoint system is the same as the adjoint of
the EUODE of the original system. Thus from Theorem 4.1 we know that the ad-
joint system for a stable linear Hessenberg index-2 DAE is stable for the differential
variables.

4.4. Fully implicit DAE. For implicit ODE and index-1 DAEs, we have al-
ready seen from the example (24) that the adjoint DAE (7) for λ may be unstable.
But we will show that the augmented adjoint system (25) for λ̄ preserves the stability.
To prove that, we first refer to a lemma from Campbell, Bichols, and Terrel [11] that
adjoint commutes with any nonsingular linear transformation.

Lemma 4.2. Given the time-dependent linear DAE system

A(t)ẋ+B(t)x = f(t)(35)
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and nonsingular time-dependent differentiable matrices P (t) multiplying the equations
of the DAE and Q(t) transforming the variables, the adjoint system of the transformed
DAE is the transformed system of the adjoint DAE.

Lemma 4.2 is valid for any P and Q. When we consider stability, we require
that the transformation matrix be bounded for all t. First, the matrix Q should
be bounded to ensure that the variable change x = Q(t)x̃ will not alter the stability.
Second, the matrix P should be bounded so that the variable change λ = P ∗λ̃ will not
change the stability. But from the example (22), we can see that in the case that A(t)
is unbounded but the solution is still bounded, P and Q cannot both be bounded.
Thus we require that Q be bounded. Instead of requiring that P be bounded, we
require that PA be bounded. Then the variable change λ̄ = A∗P ∗λ̃ will not alter the
stability. Thus, the augmented adjoint system (25) preserves the stability.

To illustrate this point, consider again the example (22). The transformation
matrix P is e−t, which is unbounded in the backward direction. If we set λ = P ∗λ̃ as
in Theorem 4.3, λ will not be bounded. But A = et, so PA is the identity. If we let
λ̄ = A∗λ = A∗P ∗λ̃, λ̄ will have the same stability as λ̃. In general, the transformation
in the adjoint (7) may not be bounded but the transformation in the augmented
adjoint system (25) for λ̄ will be. Thus we have the following theorem.

Theorem 4.3. For general index-0 and index-1 DAE systems, if the original
DAE system is stable, the augmented adjoint DAE system (25) for λ̄ is stable.

Proof. Using the smooth SVD [13] of A(t), we can construct orthogonal matrices
Q and P̃ so that

P̃ (t)A(t)Q(t) =

[
Σ 0
0 0

]
,(36)

where Σ = diag{λ1, . . . , λk}, λi 	= 0. Defining P (t) =

[
Σ−1 0
0 I

]
P̃ (t), we have

P (t)A(t)Q(t) =

[
I 0
0 0

]
.(37)

Let x = Qx̃. Since Q is orthogonal, if the original system is stable, the transformed
DAE system is also stable. From the conclusion for the explicit cases, we know that
the adjoint of the transformed DAE system is also stable. Now, instead of letting
λ = P ∗λ̃, we let λ̄ = A∗λ = (PA)∗λ̃. Since

PA =

[
I 0
0 0

]
Q∗,

it follows that PA is bounded. Thus the augmented adjoint system (25) for λ̄ is
stable.

Remark. From the above proof, we can see that if P is bounded, λ is bounded.
P will be bounded if the pseudoinverse of A is bounded.

5. Numerical stability. In this section we consider numerical stability for the
adjoint system. For systems of index-0 or index-1, we consider the general linear DAE

A(t)ẋ(t) +B(t)x(t) = 0.(38)

The corresponding adjoint system, which is solved in the reverse direction, is

(A∗λ)′ −B∗λ = 0.(39)
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Zero-stability, the stability as the stepsize h → 0 and the number of steps n → ∞
on a fixed time interval, has been thoroughly investigated for ODEs, index-1, and
Hessenberg index-2 DAEs. See [18, 1, 16, 17], where it is shown that numerical ODE
methods such as the backward Euler method when applied to well-posed DAEs of
those classes are zero-stable and convergent. Zero-stability for the adjoint system
follows immediately for ODEs. For index-1 DAEs, zero-stability is a consequence
of the index-1 structure of the adjoint system [7]. It is simple to verify that the
adjoint system for an index-2 Hessenberg DAE is index-2 Hessenberg, from which
zero-stability follows immediately.

Asymptotic numerical stability, the stability for a fixed stepsize h and n → ∞,
has been thoroughly studied for ODE and DAE systems [18, 2, 1, 16, 17]. Here we
are concerned with the question, If a numerical method with a given stepsize is stable
for the original system (38), will it also be stable for the adjoint system (39)? We
consider asymptotic numerical stability for the backward Euler method.

Discretizing the original system (38), we obtain

An+1

(
xn+1 − xn

h

)
+Bn+1xn+1 = 0,(40)

which leads to

xn+1 = [An+1 + hBn+1]
−1

An+1xn.(41)

For the adjoint system (39), we have (solving backward)

(
A∗

n+1λn+1 −A∗
nλn

h

)
−B∗

nλn = 0,(42)

which leads to

λn = [A∗
n + hB∗

n]
−1

A∗
n+1λn+1.(43)

Thus we have

λ0 =
[
(A∗

0 + hB∗
0)

−1
A∗

1

]
· · ·

[
(A∗

n + hB∗
n)

−1
A∗

n+1

]
· · ·

[(
A∗

N−1 + hB∗
N−1

)−1
A∗

N

]
λN

= (A∗
0 + hB∗

0)
−1 · · ·

[
A∗

n (A
∗
n + hB∗

n)
−1

]
· · ·

[
A∗

N−1

(
A∗

N−1 + hB∗
N−1

)−1
]
A∗

NλN .

Taking the transpose, we obtain

λ∗
0 = λ∗

NAN (AN−1 + hBN−1)
−1AN−1 · · · (A1 + hB1)

−1A1(A0 + hB0)
−1.(44)

Let

CN = (AN−1 + hBN−1)
−1AN−1 · · · (A1 + hB1)

−1A1.

The numerical stability of the original system implies that CN is bounded. From (44)
we have for the adjoint system

λ∗
0 = λ∗

NANCN (A0 + hB0)
−1.(45)

Thus it follows for all linear ODEs and DAEs that asymptotic numerical stability
of the backward Euler method for the original system implies asymptotic numerical
stability for the adjoint system.
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Note that the backward Euler discretization (42) which has been assumed in the
stability analysis is not the same as the discretization which would normally be used
in software like DASPK3.0 for solving the adjoint system (39). The difference occurs
for systems that are fully implicit. In order to solve (39) using DASPK3.0, we would
need to first rewrite (39) to isolate the time derivative λ̇:

A∗λ̇+A∗′λ−B∗λ = 0.(46)

Discretization by the backward Euler method would then yield (solving backward)

A∗
n

(
λn+1 − λn

h

)
+A∗

n
′λn −B∗

nλn = 0,(47)

which differs from the discretization (42) and in general does not preserve the asymp-
totic numerical stability of the forward system.

Consider example (22), whose backward Euler discretization leads to

xn+1 =

(
1 +

1

2
h

)−1

xn,(48)

which is stable for any h > 0. The adjoint system is

etλ̇− 1

2
etλ+ etλ = 0.(49)

The corresponding backward Euler discretization is given by

etn
(
λn+1 − λn

h

)
+ etnλn − 1

2
etnλn = 0,(50)

which is equivalent to

λn =

(
1− 1

2
h

)−1

λn+1,(51)

which is unstable for any 0 < h < 4. Thus this discretization is not stable using
stepsizes for which the discretization of the forward problem is stable.

The discretization (42), which as we have seen preserves the numerical stability,
can be achieved in DAE software by solving the augmented adjoint system (25).
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