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Abstract: We present an adjoint-based optimization for electromagnetic 

design. It embeds commercial Maxwell solvers within a steepest-descent 

inverse-design optimization algorithm. The adjoint approach calculates 

shape derivatives at all points in space, but requires only two “forward” 

simulations. Geometrical shape parameterization is by the level set method. 

Our adjoint design optimization is applied to a Silicon photonics Y-junction 

splitter that had previously been investigated by stochastic methods. Owing 

to the speed of calculating shape derivatives within the adjoint method, 

convergence is much faster, within a larger design space. This is an 

extremely efficient method for the design of complex electromagnetic 

components. 
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OCIS codes: (130.3120) Integrated optics devices; (230.7370) Waveguides; (230.1360) Beam 

splitters. 
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1. Introduction and motivations 

Silicon photonics offer the unique ability of managing light through sub-wavelength Silicon 

waveguides patterned on chip, enabling extremely tight integration of photonic components 

and conventional CMOS electronics. Consequently, functions that previously required many 

separate components may now all be performed on single chips, reducing their cost, energy 

consumption and size [1]. 

Nevertheless a number of challenges remain, one of them being the efficient management 

of light at these scales. Indeed, while straight Silicon waveguides can have extremely low loss 

and enable excellent transport of light throughout the chip, other functions (such as splitters, 

waveguide crossings, multimode interferometers) suffer from the presence of evanescent 

fields outside the waveguide and imperfect reflections at the Silicon/oxide interface. These 

induce scattering loss, which can be highly detrimental to the total system performance. For 

this reason, a significant effort in photonic device topology optimization has taken place 

recently. This has drastically reduced the losses in Y-splitters [2,3], crosstalk and insertion 

losses in waveguide crossings [3,4], along with other more exotic components [4] and is 

effectively enabling better photonic circuits. 

Most of these optimizations are based on heuristic optimization methods such as genetic 

optimization [4], particle swarm optimization [3,5], or other hybrid methods tailored for 

specific problems [6]. Heuristic optimization relies on a somewhat limited parameterization 

of the solution space and subsequent random testing of a large number of different parameter 

sets. Because of the high computational cost of solving Maxwell’s equations, these 

optimization methods may only be applied to relatively simple geometries, as they require the 

testing a very large number of different solutions in order to find a satisfactory one. 

While this is perfectly suitable for the simple problems mentioned above, these methods 

will fail to perform in a reasonable amount of time for more complex geometries and 

functions. It is therefore necessary to have a more efficient way of performing topology 

optimization for general purposes. In our shape optimization approach, shape derivatives play 

an important role. In this paper we present an adjoint method to calculate shape derivatives by 

wrapping an inverse algorithm around commercial Maxwell solvers. Such efficient gradient 

descent methods unlock the possibility to optimize particularly complex structures, which has 

not previously been possible. 

2. Presentation of the adjoint method for electromagnetic problems 

The adjoint method enables the computation of shape derivatives at all points in space, with 

only two electromagnetic simulations per iteration. It has been extensively used for shape 

optimization in mechanical engineering [7–9] but has seen more limited use for photonic 

components [10–14], and more recently quantum electronics [15]. Mathematical derivations 

of the adjoint method are available in optimization textbooks [8,16], but we will limit 

ourselves to a very simple example that intuitively illustrates the mathematical procedure 

when it is used in the context of electromagnetism. 
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Fig. 1. Adjoint method schematic: two simulations are needed for every iteration; the direct 

and the adjoint simulation. Sources for each simulation are drawn in red. 

In our example, we want to maximize the absolute value of the electric field at a given 

point 0x , given a geometrical region Ω  in which we can change the electric permittivity ε  at 

every point. That Figure-of-Merit is 

 
2

0( )FoM x= E  (1) 

(vectors are written in bold). The change in figure of merit for a small change of dielectric 

permittivity rεΔ  of volume VΔ  at x  in Ω  is 

 
0 0Re ( ) ( )oldFoM x x Δ = ⋅ Δ E E  (2) 

where 0( )old xE is the value of the electric field at a given point before any change and 

0( )xΔE  represents the change in electric field when the small dielectric modification is 

performed. 

Some algebraic manipulations are needed to arrive at the derivative. The change in field at 

0x  can be written for a small enough volume perturbation VΔ : 

 0 0 0 0( ) ( , ) ( , ) ( )EP ind EP new

rx x x V x x xε εΔ = = Δ ΔE G p G E  (3) 

where 0( , )EP x xG is the Maxwell Green’s function relating the electric field at 0x  to the 

induced polarization density ind
p at x  in the infinitesimal volume VΔ . new

E  is the electric 

field given the new dielectric distribution. If the change rεΔ  is small enough, we may 

approximate ( ) ( )new oldx x≈E E . Note that for binary structures rεΔ  is not small, but VΔ can 

be the small parameter for the derivative. A similar line of reasoning results in almost the 
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same final equation, albeit taking care to distinguish which components of E and D are 

continuous across the boundary [14,17,18]. 

We can then rewrite (2) as 

 
0 0 0

Re ( ) ( , ) ( )old EP old

r

FoM
V x x x xε

ε

Δ   
= Δ ⋅  Δ   

E G E  (4) 

Using the reciprocity of the Green’s function 0 0( , ) ( , )EP EP Tx x x x=G G  we have 

 
0 0 0

Re ( , ) ( ) ( ) Re ( ) ( )EP old old adj old

r

FoM
V x x x x x xε

ε

Δ     = Δ ⋅ ≡ ⋅    Δ   
G E E E E  (5) 

The mathematical method can be understood from the new adjoint electric field: 

 0 0 0( ) ( , ) ( )adj EP oldx V x x xε= ΔE G E   (6) 

which is the electrical field induced at x  from an electric dipole at 0x driven with amplitude 

0 0( )oldV xεΔ E , as illustrated in Fig. 1. Thus, the gradient of the Figure-of-Merit can be 

obtained with only a single simulation, even though it provides the derivative with respect to 

permittivity at every point in the computational region Ω . The term 0( )old xE  is readily 

available from the original forward simulation. 

Therefore with just one forward simulation (which is needed to calculate the FoM in all 

optimization schemes) plus one adjoint simulation, the shape derivative can be obtained over 

the entire design region, for arbitrarily many degrees of freedom. With the gradient of the 

Figure-of-Merit calculated, changes in the geometry can be introduced proportional to the 

gradient, known as the gradient descent method. Applied iteratively, this can then lead to an 

optimum. For a more detailed and general study of the adjoint method and more complex 

Figures-of-Merit we refer to [17]. 

The adjoint method is also extremely attractive since the overall iterative scheme can be 

wrapped around a commercial forward solver, such as the one used in [19]. 

3. Y-Splitter optimization example using the level set method for shape representation 

A Y-splitter for λ = 1550nm vacuum wavelength light was optimized by the adjoint method 

to compare with state of the art Silicon photonic components optimized up to date [3]. The 

material system (Silicon waveguide, Silicon dioxide cladding) and the constraints of small 

overall dimensions and minimum feature size were kept the same as in [3]. For the minimum 

feature size a minimum radius of curvature of 200nm was imposed. The waveguide is 220nm 

thick, the most common choice for Silicon photonics. The two waveguide branches and their 

junction at the end of the splitter were left to be the same as in [3], although they also could 

have easily been optimized. The design region was the central 2µm × 2µm domain. 

The method used in [3] is particle swarm optimization, which consists of calculating the 

Figure-of-Merit for a large population of randomly generated solutions and having the 

population evolve at every iteration using the information collected in the previous tests, until 

a satisfying solution is reached. 
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Fig. 2. Top view of the optimized silicon splitter geometry obtained after 51 iterations of the 

Steepest Descent algorithm. Only the designable region geometry was allowed to change. The 

Silicon waveguide is 220nm thick, and the cladding is Silicon dioxide. 

By contrast, the adjoint method provides shape derivatives over the entire design region. 

The level set method, developed by Sethian and Osher [20], was chosen to represent the 

geometry. This enables a more flexible representation of a larger design space than, for 

example, spline interpolations used in [3–5]. Level sets are particularly usable within an 

adjoint approach, since a very large number of shape derivatives are inside the Level Set, 

compared to the feasible number of variables in stochastic optimization. Note also that level 

set methods impose two-phase, binary materials throughout the optimization, compatible with 

practical engineering, but in contrast with [10], which optimizes a continuously variable 

permittivity. 

The figure-of-merit that we employed was transmission into the fundamental mode of the 

bent output waveguides, which can be obtained from Poynting vectors: 

 
( )

2

1

8

m m

m m

d d
FoM

Re d

× ⋅ + × ⋅
=

× ⋅

 

H S E S

H S

E H

E
 (7) 

where mE and mH  are the field profiles of the fundamental mode at the surface S , while E  

and H  are the actual fields from the direct simulation at that surface. Thus Eq. (7) is the 

power transmission, corrected for the mode overlap. 

Adapting the adjoint Eq. (6) to the new figure of merit (7) (and employing an additional 

magnetic Green’s function, EM
G , and magnetic symmetries [17]), we arrive at the adjoint 

field: 

 
0

( ')
( ) ( , ') ( ') ( , ')adj EP EM m

m

n x
x A x x x x x dS

µ

 ×
= × −  

 
 n

E
E G H G  (8) 

with 
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( )

( )
0

1

4

old old

m m

m m

d d
A V

Re d
ε

× ⋅ + × ⋅
= Δ

× ⋅

 

H S E S

H S

E H

E
  (9) 

where ( , ')EM x xG  is the electromagnetic Green’s function expressing the electric field at x  

due to a magnetic dipole at 'x . 

The adjoint simulation described Eq. (8) consists of sending the desired mode backwards 

into the splitter. This is analogous to Eq. (6), where the adjoint source was located at the 

measurement point of the Figure-of-Merit. This source problem can be solved with a standard 

Maxwell solver. FDTD is perfectly suited for this propagating wave problem. Also analogous 

to Eq (6) the phase of the adjoint source is set using old
E and old

H , from the forward 

simulation, as described in Eq (9). Once the adjoint simulation is performed, the derivative of 

the Figure-of-Merit with respect to dielectric permittivity at every point in the design region is 

calculated by combining the forward and adjoint simulations results into Eq. (5). FDTD is 

perfectly suited to solve the direct and adjoint problem, which consists of propagating waves 

in a dielectric. 

 

Fig. 3. Coupling efficiency evolution during the optimization. The switch from 2d to 3d FDTD 

is visible at iteration 41. For comparison, the previous record of ref [3]. was −0.13dB and 

required 1500 simulations. 

This derivative is then used to modify the geometry of the splitter. Since we employed a 

level set description of geometry, the derivative is used as a velocity field to modify the level 

set shape. This has the effect of pushing out the geometry boundary when the derivative is 

positive and pushing it in when it is negative. Since the refractive index if Silicon is higher 

than that of Silicon dioxide this implements the imperative of the derivative at every point: 

The Figure-of-Merit benefits from an increase in the dielectric permittivity where the 

derivative is positive and vice-versa. The step-size criterion for each iteration is a fixed area 

of changing type in 2d, and a fixed volume in 3d. 

The device was first optimized using 2d finite difference time domain (FDTD) 

simulations of a structure extruded infinitely in the 3rd dimension. In 2d, the effective index 

method is used and the Silicon is assigned the fictitious refractive index = 2.8, which mimics 

the proper in-plane wavevector of the correct 3d mode. Once iterative progress stopped in 2d 

(41 iterations), the problem was transferred to 3d for more iterations. Naturally the first 3d 

iteration is not as good as the optimized 2d device, since the effective index method is only an 

approximation. The optimal structure was computed within 51 iterations (102 simulations), 

achieving a record low insertion loss −0.07dB. By comparison, ref [3]. achieved a minimal 
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insertion loss −0.13dB, after 1500 simulations using particle swarm optimization. (Note that 

for such small attenuation, the simulation results are very sensitive to the simulation 

parameters, which may not have been perfectly identical to ref [3].). 

Thus adjoint steepest descent, with much lower computational cost, can yield as good or 

better results than particle swarm optimizations, which take no advantage of the underlying 

Maxwell equation physics. 

 

Fig. 4. Geometry evolution during the optimization process and total coupling efficiency to the 

output waveguides. Iter indicates the iteration number, and the insertion loss is given in dB. 

The optimization is first carried out using a 2d approximation with an effective waveguide 

index = 2.8, which mimics the 3d in-plane propagation constant. The final iterative steps are 

carried out in full 3d FDTD. 

The figure of merit evolution, as well as intermediate optimization steps, is presented in 

Figs. 3. and 4 respectively. There is a visible change between the 2d solution and the 3d 

solution, with a non-negligible efficiency improvement. This 3d improvement was only 

possible with the adjoint method, as the 3d computational cost limits the multiple simulations 

in particle swarm methods. The electric field intensity distribution of the final iteration is 

shown in Fig. 5. The large operating bandwidth of the optimized structure is shown in Fig. 6. 

and is good indication of the robustness of the design generated by the optimization. 
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Fig. 5. Simulated field intensity |E|2 for the optimized structure at λ = 1550nm for a slice in the 

middle of the device. 

 

Fig. 6. Simulated insertion loss of the optimized device for wavelengths between 1.5 and 1.6 

µm. The broad operating spectrum of the device is a good indicator of the robustness of the 

design. 

4. Conclusion 

As photonic and wireless components become an increasingly important part of electronics, it 

is evident that many problems will require electromagnetic optimization. The computational 

cost of solving Maxwell’s equations is significant, and inefficient design optimization 

algorithms will become unacceptable. We have shown that the adjoint gradient decent method 

for shape optimization of sub-wavelength photonic devices can be readily implemented by 

embedding commercial Maxwell solvers within an inverse optimization algorithm. 
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For exploration of larger solution spaces where local optima may exist, this method may 

be augmented with a clever choice of Figure-of-Merit, as well as global optimization routines 

such as simulated annealing to provide efficient and powerful automated design of photonic 

components. 

Adjoint-gradient-steepest-descent has already beaten the previous record for a 

manufacturable splitter within current Silicon photonics technology, at much less 

computational cost than previous methods. This opens the pathway to a more systematic, 

efficient, photonic component design optimization. The code used for this optimization is 

available at [21]. 

Acknowledgments 

This work is supported by the Defense Advanced Research Projects Agency (DARPA) E-PHI 

program under Grant No. HR0011-11-2-0021, the NSF E3S Center under NSF award 

0939514, and the U.S. Department of Energy “Light–Material Interactions in Energy 

Conversion” Energy Frontier Research Center under Grant DE-SC0001293 

#194605 - $15.00 USD Received 26 Jul 2013; revised 19 Aug 2013; accepted 20 Aug 2013; published 6 Sep 2013

(C) 2013 OSA 9 September 2013 | Vol. 21,  No. 18 | DOI:10.1364/OE.21.021693 | OPTICS EXPRESS  21701


