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Abstract One of the approaches in diffusion tensor imag-

ing is to consider a Riemannian metric given by the inverse

diffusion tensor. Such a metric is used for geodesic tractog-

raphy and connectivity analysis in white matter. We propose

a metric tensor given by the adjugate rather than the previ-

ously proposed inverse diffusion tensor. The adjugate metric

can also be employed in the sharpening framework. Trac-

tography experiments on synthetic and real brain diffusion

data show improvement for high-curvature tracts and in the

vicinity of isotropic diffusion regions relative to most results

for inverse (sharpened) diffusion tensors, and especially on

real data. In addition, adjugate tensors are shown to be more

robust to noise.

Keywords Riemannian geometry ·
Geodesic tractography · Diffusion tensor imaging ·
Brownian motion · Diffusion generator ·
Sharpened diffusion tensor

1 Introduction

Geodesic tractography is one of the many existing approaches

to perform tractography from diffusion images. The current

state of the art tracking methods are based on high angular

resolution diffusion imaging (HARDI), which can for exam-

ple be described by multi-compartment [32] or higher order
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diffusion tensor models [37]. HARDI tractography algo-

rithms generally perform better than those arising from DTI,

particularly in regions of complex fibre architecture such as

crossings. Nevertheless, DTI is still widely used in a clinical

research context since HARDI scanning protocols are by no

means always available, and scanning and data processing

times are considerably larger. It is therefore clinically useful

to further improve existing methods and algorithms for DTI

processing.

In the Riemannian framework for diffusion tensor imaging

(DTI) [5], white matter is represented as a Riemannian mani-

fold and neural fibres are conjectured to coincide with certain

geodesic curves1 (locally shortest paths in a non-Euclidean

sense). In this way, the problem of tractography becomes one

of finding geodesics. This is attractive from a practical point

of view, as it obviates the need for ad hoc stopping and bend-

ing criteria necessary in traditional fibre-tracking algorithms.

Another advantage with respect to other types of tracking

algorithms is that geodesic tractography tends to be more

robust to noise. Finally, it has the conceptual advantage that

Riemannian geometry is a well understood and powerful the-

oretical machinery, facilitating mathematical modelling and

algorithmics [2–4,6,12,15–17,24–26,30,31,33,35].

However, there are problematic aspects to the existing for-

mulation of the Riemannian paradigm, in which the metric

is postulated to coincide with the inverse diffusion ten-

sor [24,31]. This idea is based on the transformation of

anisotropic diffusion in Euclidean space to isotropic Brown-

ian diffusion in a curved Riemannian space. As we show

in this work this is however not achieved with such metric

definition, despite claims in the diffusion MRI literature.

1 Classification of geodesics as fibres requires additional connectivity

measures [3,35].
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Another drawback of geodesic tractography based on the

inverse diffusion tensor is the fact that geodesic curves tend to

take shortcuts in the case of high-curvature tracts. A related

problem is that the standard metric does not favour tracts

through anisotropic diffusion regions over tracts through

isotropic ones, making masking a necessary preprocessing

step.

In this paper, we reconsider the relation between the

DTI tensor and the Riemannian metric tensor, extending our

preliminary work [17]. We stipulate a novel Riemannian

metric, given by the adjugate diffusion tensor (with and

without sharpening), that does yield Brownian motion in

the corresponding curved space. We investigate the practical

implications of the proposed metric on geodesic tractogra-

phy by performing experiments on clean and noisy synthetic

data, and on real brain diffusion data. We compare our

results with geodesic curves obtained from the inverse

(sharpened) diffusion tensor, and with constrained spherical

deconvolution tractography results. We evaluate our metric

in relation to the problematic issues mentioned above, and

show that these shortcomings are largely removed in our

approach.

In recent work, both the inverse diffusion tensor and our

metric have been extensively evaluated (using 40 subjects

from the Human Connectome Project database) in combina-

tion with probabilistic shortest path tractography [36]. It has

been shown that our metric produces paths which agree most

often with experts.

2 Related Work

The question of how to choose an appropriate metric in

the context of DTI has already been posed in [20,25]. Two

types of modifications of the standard metric, given by the

inverse diffusion tensor, have been proposed in the liter-

ature so far. In the first approach, “sharpening”, diffusion

tensors are raised to a certain power in order to increase their

anisotropy

D sharp = Dn, (1)

where D and D sharp are the diffusion and sharpened ten-

sor, and n > 1 is a constant integer. It has been shown

that geodesics related to sharpened versions of the diffu-

sion tensor follow the principal eigenvector directions more

closely [19,38]. A different sharpening strategy has been

introduced by Descoteaux et al. [11], which relies on the

transformation of diffusion tensors into so-called “fiber” ten-

sors. They showed that geodesic tractography results improve

by employing such deconvolution sharpening.

Sharpening approaches seem to result in better tractogra-

phy results. However, they decrease the robustness to noise.

Another downside of sharpening is that it makes use of para-

meters which have to be chosen in an ad hoc way: the power n

in Eq. (1), and a factor controlling the fibre tensor sharpening

in the case of deconvolution sharpening.

A second type of modification has been presented by Hao

et al. [18,19]. It is based on a conformal rescaling of the

standard Riemannian metric given by the inverse diffusion

tensor:

g Hao = eα D−1 (2)

Here the function α ≡ α(x) is chosen by requiring geodesic

curves to follow more closely the diffusion tensor principal

eigenvectors. White matter segmentation based on geodesic

tractography with sharpened diffusion tensors and the mod-

ified metric (2) show similar improvement with respect to

segmentation based on the standard metric. The metric mod-

ification that we propose in this work is somewhat similar to

that by Hao et al., since both approaches rely on a conformal

tensor rescaling. We address the relation between the two

distinct metrics explicitly in Sect. 3.4.

3 Theory

3.1 Preliminaries

First of all, our conventions and notation are summarized in

Table 1.

A (nondegenerate) diffusion generatorL is a second order

elliptic differential operator which in local coordinates {x i }
on a manifold M has the form

L = ai j (x)∂i∂ j + bi (x)∂i , (3)

where ai j (x) and bi (x) are smooth functions and ai j (x) is a

symmetric positive definite tensor. This is the general form of

Table 1 Conventions and notation used through the paper. Tensor index

notation is employed, with latin indices running from 1 to 3

Di j Diffusion tensor components

Di j Inverse diffusion tensor components

d = det Di j Determinant of diffusion tensor

D
i j
sharp Sharpened diffusion tensor components

gi j Metric tensor components

gi j Inverse metric tensor components

g = det gi j Determinant of metric tensor

∂i Shorthand for ∂/∂x i

ai b
i def=

3
∑

i=1

ai b
i Einstein’s summation convention
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a diffusion generator, and it captures many possible diffusion-

related processes. Several partial differential equations can be

associated with L , for example, L u = 0 or ∂t u −L u = 0,

where u is the concentration of diffusing particles (or the

distribution of heat in a given region over time). For example,

∂t u−L u = 0 amounts to the diffusion–convection equation

∂t u = ai j (x)∂i∂ j + bi (x)∂i , (4)

where ai j (x) represents a local diffusion tensor and bi (x)

is the velocity of the medium. Note that the first term on

the right-hand side corresponds to pure diffusion, while the

second term relates to a convection process.

We introduce the following Riemannian metric on M

based on Eq. (3)

gi j (x) = ai j (x), (5)

where ai j denotes the inverse matrix of ai j . Then we can

rewrite L as

L = △g + B, (6)

where B = B(ai j (x), bi (x)) is a smooth vector field and △g

is the Laplace–Beltrami operator w.r.t. the metric (5). This

operator is given by

△g = 1
√

g
∂ j

(√
ggi j∂i

)

, (7)

where g = det gi j . It may be split as follows:

△g = gi j∂i∂ j + 1
√

g
∂ j

(√
ggi j

)

∂i . (8)

The operator L is said to be an intrinsic Laplacian if B =
0. By definition, an intrinsic Laplacian generates Brownian

motion on (M, g). For technical details, we refer to Liao [27]

and Cohen de Lara [10].

3.2 Discrepancy

The standard anisotropic diffusion generator is given by

L1 = ∂i (Di j∂ j ) = Di j∂i∂ j + (∂ j Di j )∂i , (9)

where Di j is the diffusion tensor. Note that this is a special

case of Eq. (3) with ai j = Di j and bi = ∂ j Di j . Therefore,

a Riemannian metric gi j = Di j can be introduced, where

Di j is the inverse diffusion tensor. The Laplace–Beltrami

operator in this case reads

△g = Di j∂i∂ j + (∂ j Di j )∂i − 1

2d

(

∂ j d
)

Di j∂i (10)

with d = det Di j . Eq. (9) can thus be rewritten as:

L1 = △g + 1

2d

(

∂ j d
)

Di j∂i (11)

Comparing with Eq. (6) it is clear that

B = 1

2d

(

∂ j d
)

Di j∂i (12)

The only scenario in which B = 0 is when the diffusion

tensor determinant d is constant, which generally is not the

case. We conclude that L1 is not an intrinsic Laplacian and

therefore the associated diffusion process is not a Brownian

motion on (M, g).

3.3 Riemannian Framework Revisited

We propose to modify the Riemannian framework for DTI

in such a way that the diffusion process associated with the

diffusion generator is a Brownian motion on (M, g̃) for a

certain Riemannian metric g̃, i.e.

∂t u = △g̃u (13)

The motivation behind this choice is to fully encode the

anisotropic diffusion properties of the medium into the met-

ric tensor. This is analogous to general relativity, where the

properties of spacetime are completely described by the asso-

ciated pseudo-Riemannian metric. Note that the standard

metric given by the inverse diffusion tensor leads to a con-

vection term in Eq. (11); the anisotropy information provided

by this term will not be taken into account by this choice of

metric.

Let us consider metrics which are conformally equivalent

to g = D−1, i.e.

g̃i j = f Di j , (14)

where f ≡ f (x) is a positive scalar function. The corre-

sponding Laplace–Beltrami operator, Eq. (7), is

△g̃ = 1

f
Di j∂i∂ j + 1

f
(∂ j Di j )∂i

+ 1

2 f

(

1

f
∂ j f − 1

d
∂ j d

)

Di j∂i (15)

Here we have used the relation g̃ = det g̃i j = f 3d−1. This

expression is similar to the anisotropic generator given by

Eq. (9), except for an overall scaling factor of 1/ f and the

last term. The last term vanishes uniquely if f ∝ d, and so

without loss of generality we set f =d so that g̃i j = d Di j ,

and

L2
def= △g̃ = d−1 Di j∂i∂ j + d−1(∂ j Di j )∂i . (16)
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By construction the generator L2 is an intrinsic Laplacian.

The diffusion process associated with L2 is thus a Brown-

ian motion on (M, g̃). Therefore, we postulate the following

Riemannian metric in the context of DTI:

g̃i j = d Di j . (17)

Recall that, for a regular square matrix A,

A−1 = 1

det(A)
adj(A) (18)

with adj(A) the adjugate matrix. Thus the proposed met-

ric is the adjugate of the diffusion tensor, rather than the

inverse (with det(A) = d, Ai j = Di j in our case). Since

the diffusion tensor is symmetric its adjugate equals the

cofactor matrix.

Remark Diffusion generators in Eqs. (9), (16) are related by

L1 = d L2. (19)

The following proposition concerning diffusion generators

has been proven [27]. Given a generator L which is an intrin-

sic Laplacian, and another generator L ′ such that L ′ = b L

for some function b > 0, then L ′ is an intrinsic Laplacian

if and only if b is constant (in dimensions n �= 2). We have

shown that the generator L2 is an intrinsic Laplacian by def-

inition. From relation (19) and the above proposition it is

clear that generator L1 is an intrinsic Laplacian if and only

if d is constant, a nongeneric case.

3.4 Relation to Previous Work

Note that the metric proposed in Hao et al. [18,19] is also of

the form given by2 Eq. (14). In their case, the function f (x)

is determined by the equation

1

f
(gradg f ) = 2∇V V, (20)

where (gradg f )i = ∂ j f Di j , V is the principal eigenvec-

tor field of the diffusion tensor and ∇V V is the covariant

derivative of V along itself:

(∇V V )i = V j∂ j V i + V k V lΓ i
kl (21)

Here Γ i
kl are the so-called Christoffel symbols:

Γ i
kl = 1

2
gim(∂l gmk + ∂k gml − ∂m gkl) (22)

2 Namely, (g Hao)i j = f Di j = eα Di j .

In our case we have, by construction:

1

f
(gradg f ) = 1

d
(gradgd) (23)

Comparing Eqs. (20) and (23) it is clear that the confor-

mal factors in Hao’s and our metric satisfy rather different

equations and the two metrics are therefore distinct. This is

not surprising since, although both metrics are local rescal-

ings of the inverse diffusion tensor, they arise from different

considerations. In Hao et al. the local factor is chosen so

that geodesic curves more closely follow the diffusion ten-

sor principal eigenvectors. Our metric, on the other hand,

relates anisotropic diffusion in Euclidean space to isotropic

diffusion in the corresponding Riemannian space.

It is also important to note that our metric can be obtained

from diffusion data in a straightforward way, since the

(inverse) fitted diffusion tensor field needs just to be locally

rescaled with the determinant. Hao’s metric, however, is more

difficult to deal with because its defining equation (20) is

considerably more cumbersome. In addition, our metric has

a simple and elegant interpretation as the adjugate diffusion

tensor.

3.5 Geodesic Curves

Let us show how geodesic curves corresponding to the usual

metric definition and our proposed metric relate to each other.

Geodesic curves x(t) satisfy the geodesic equations

ẍ i + Γ i
kl ẋ

k ẋ l = 0, (24)

where ẋ i = dx i/dt and we consider unit speed parametriza-

tion gi j ẋ i ẋ j = 1. It is straightforward to derive the relation

between the Christoffel symbols corresponding to the stan-

dard metric gi j = Di j , and the adjugate metric g̃i j = d Di j :

Γ̃ i
kl = Γ i

kl + 1

2d
(∂ld δi

k + ∂kd δi
l − ∂md gim gkl). (25)

After some calculations the modified geodesic equations

read:

ẍ i + Γ i
kl ẋ

k ẋ l = 1

2d
gim∂md − 1

d
ḋ ẋ i . (26)

The term on the right-hand side represents the contribution

of the conformal factor. Its second term merely affects the

speed parametrization of g-geodesics and it can be parame-

terized away. The first term induces an effective force field

which causes g̃-curves to bend in a different way compared

to g-geodesics. It is clear that the modified geodesic equa-

tions reduce to the ones related to the standard metric gi j if

the determinant d of the diffusion tensor is constant. This is

consistent with the fact that a constant conformal factor does
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not modify geodesics. Equation (26) shows that modifying

the metric in the way we propose does, in general, leads to

geodesic curves which are intrinsically different than those

obtained for the usual metric identification.

4 Experiments

4.1 Method

We obtain geodesic curves from the inverse, inverse sharp-

ened, and our newly proposed adjugate diffusion tensor. We

also perform experiments for the adjugate sharpened tensor

(see Appendix for the derivation). In particular, we use the

normalized sharpened diffusion tensor in [13]

(D sharp)
i j = d

1−n
3 (Dn)i j , (27)

where n > 1 is a constant. By using this normalization, the

determinant of the sharpened tensor is still given by the deter-

minant of the original diffusion tensor, i.e. tensor volume

is preserved. We consider n = 2, 4, representative values

employed in the literature [23,41]. In order to find the short-

est geodesic connecting a given target point to the seeding

region, we use the optimization strategy proposed in [28],

based on the fast sweeping algorithm introduced by Kao et

al. [22]. Our source code3 implements the multi-threaded

fast sweeping suggested by Zhao [43] and it is programmed

in C++/ITK. Fast sweeping is based on dynamic program-

ming, and it guarantees the convergence of iterative local

computations to the globally shortest geodesic.

Each iteration of the algorithm comprises an outer loop

that considers all possible “sweeping directions”, and an

inner loop that traverses all voxels according to the given

sweeping direction. The algorithm assigns to each visited

voxel the minimum cost of reaching it from a set of neigh-

bours following predefined spatial orientations, assuming

that seeding points have zero cost. As local cost, we use

the infinitesimal curve length function

L(x, ẋ) = (gi j (x)ẋ i ẋ j )1/2, (28)

where again ẋ i = dx i/dt , and gi j is the inverse, the inverse

sharpened or the adjugate of the diffusion tensor. The mini-

mum cost and the spatial direction chosen are stored at each

voxel. The set of preferred orientations contains a vector field

which is “back-traced” (integrated) from the targets to the

seeding points, using an order two Runge-Kutta method, to

retrieve the desired geodesics.

The number of iterations fast sweeping takes to converge

depends on several factors, such as the number of neighbours

3 Our code is available at http://www.nitrc.org/projects/riemantract

Table 2 Mean and axial diffusivity values in CSF and white matter

(WM) in the corticospinal tract, expressed in units of 10−3 mm2/s.

Literature references are indicated in the table. WM–CST diffusivity

value in [29] corresponds to the posterior limb of the internal capsule

(PLIC), which contains a.o. corticospinal fibres

Regions MD λ‖

CSF 3.2 [1,7] –

WM–CST – 1.0 [29]

1.1 [8]

1.2 [21]

considered in the inner loop, the total number of voxels to

process and the curvature of the resulting geodesics, typically

ranging from several tens to few hundred iterations. Recall

that only a subset of geodesic curves corresponds to actual

fibres; therefore we refer to geodesics either as “candidate

fibres”, or simply as tracts.

4.2 Results on Synthetic Data

We first demonstrate the method on a noiseless synthetic DTI

data set. The fibres consist of rotated tensors with eigenval-

ues (λ1, λ2, λ3) = (1.5, 0.5, 0.5) × 10−3, where rotation

matrices are used to orient the tensor such that the principal

eigenvector is parallel to the closest part of the centerline.

Each voxel from which the distance to the centerline is

smaller than 1.5 voxels is considered to be part of the fibre.

The centerline is constructed by joining a half circle of radius

5 voxels, a horizontal straight line of length 5, a quarter cir-

cle of radius 8 and finally a straight vertical line of length

5. The surrounding tissue is comprised of isotropic tensors

with eigenvalues (λ, λ, λ), where λ is taken to be 3λ1.

We regard realistic values for λ and λ1, based on a collec-

tion of experimental DTI measures in the literature. This case

is representative of the interface between white matter in the

corticospinal tract (CST) and the cerebrospinal fluid (CSF) in

the ventricles. We consider axial diffusivity4 values λ‖ within

the CST as principal eigenvalue λ1 of the anisotropic fibre

glyphs. On the other hand, we take the mean diffusivity in

CSF as λ, since MD = (Tr D)/3 and in an isotropic region

D = diag(λ, λ, λ). From Table 2 it can be seen that the rela-

tion λ = 3λ1 is a good estimate in this scenario. Noiseless

experiments are shown in Fig. 1.

Next we perform experiments on noisy synthetic data,

obtained by adding Rician noise. We consider two different

noise levels, σ = 0.15 and σ = 0.3, with σ the standard devi-

ation of the underlying Gaussian distribution. We compare

geodesic curves from the inverse and adjugate diffusion ten-

sor, in three different cases: no sharpening, sharpening factor

4 By definition λ‖ = λ1.
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Fig. 1 Results on synthetic noiseless data, for metrics given by the

inverse diffusion tensor (black) and the adjugate diffusion tensor

(magenta) in the cases a unsharpened diffusion tensor, b sharpening

factor n = 2 and c sharpening factor n = 4. Background and fibres are

RGB colour coded based on the direction of the diffusion tensor main

eigenvector. Inverse tensor geodesics fail to describe fibres except for

n = 4. Adjugate tensor geodesics follow the fibres well, and (higher)

sharpening improves results further (Color figure online)

n = 2 and sharpening factor n = 4 (denoted by (a), (b) and

(c), respectively in Figs. 1, 2, 3). We consider separately the

U-fibre and the longer, less curved upward tract. In the first

case, we seed from the lower middle voxel to the upper mid-

dle one; in the second case we use the latter as seed point.

We visualize the obtained tracts using vIST/e [42]. Hereby,

we depict geodesics from inverse diffusion tensors in black,

while we use magenta for those from adjugate diffusion ten-

sors. Noisy data experiments are shown in Figs. 2 and 3.

For both the U- and the longer fibres, we see that geodesics

from the inverse (unsharpened) diffusion tensor take a short-

cut through the isotropic background, completely failing to

describe the fibres in all situations (Figs. 1a, 3a). When a

sharpening factor n = 2 is used this is still the case for

the inverse sharpened tensor, except for the longer fibre and

σ = 0.15 (Fig. 2b). The latter geodesic, however, degrades

for σ = 0.3, taking again a shortcut through the isotropic

background (Fig. 3b). When the higher sharpening factor

n = 4 is used geodesics from the inverse sharpened tensor

nicely follow the synthetic tracts, although a slight degra-

dation is observed for σ = 0.3 (Fig. 3c). This effect for

sharpened metrics had been shown in [38], for a sharpening

power n = 2 (and a slightly different normalization factor

in Eq. (27)), and in [19] for n = 3. In the latter, however,

the isotropic background has been masked out. Note that we

obtain good sharpening results in the case n = 4 but not for

n = 2, in contrast to [38].

On the other hand, geodesics from adjugate tensors, with

or without sharpening, follow the synthetic fibres rather well

in all scenarios and without taking shortcuts through the

isotropic background. As in the n = 4 inverse tensor case,

a slight degradation is observed for the n = 4 adjugate

sharpened tensor σ = 0.3 (Fig. 3c). Comparing geodesics

from the adjugate unsharpened tensor (Figs. 1a, 3a) and the

n = 4 inverse or adjugate sharpened tensor (Figs. 1c, 3c), we

observe that the sharpened ones follow the fibres more closely

in the noiseless case. However, in the σ = 0.3 case these

degrade by taking a shortcut of about one voxel, while the

adjugate unsharpened ones remain almost unchanged. Sharp-

ening thus appears to decrease the robustness to noise. This

shortcoming of sharpened tensors had already been pointed

out in [19].

4.3 Results on Real Data

We consider a diffusion MRI data set with 64 gradient direc-

tions and a b-value of 3000 s/mm2; the dimensions are

128 × 128 × 60 and the voxel size is 1.75 × 1.75 × 2 mm3,

corresponding to a patient with a tumour located next to the

ventricles. We have segmented the cerebrospinal fluid inside

the ventricles, together with the tumour. We seed from the
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Fig. 2 Results on synthetic data with Rician noise of σ = 0.15 (stan-

dard deviation of the underlying Gaussian distribution), for metrics

given by the inverse diffusion tensor (black) and the adjugate diffu-

sion tensor (magenta) in the cases a unsharpened diffusion tensor,

b sharpening factor n = 2 and c sharpening factor n = 4. Colour

coding as in Fig. 1. Again, inverse tensor geodesics fail to describe

fibres except for n = 4, although the longer fibre n = 2 tracking does

improve w.r.t. the noiseless case. Adjugate tensor geodesics follow the

fibres well, and (higher) sharpening improves results further. The U-

fibre adjugate n = 4 tracking degrades slightly w.r.t. the noiseless case

(Color figure online)

Fig. 3 Results on synthetic data with Rician noise of σ = 0.3 (standard

deviation of the underlying Gaussian distribution), for metrics given by

the inverse diffusion tensor (black) and the adjugate diffusion tensor

(magenta) in the cases a unsharpened diffusion tensor, b sharpening

factor n = 2, and c sharpening factor n = 4. Colour coding as in Fig. 1.

Inverse tensor geodesics fail to describe fibres except for n = 4. Adju-

gate tensor geodesics follow the fibres well, and sharpening improves

only U-fibre n = 2 results. The U-fibre n = 4 tracking degrades w.r.t.

the case σ = 0.15, especially for the inverse sharpened tensor; unsharp-

ened and n = 2 adjugate results do not change. For n = 2, the longer

fibre outcome degrades w.r.t. the case σ = 0.15, especially for the

inverse sharpened tensor; for n = 4 it does so slightly for both the

adjugate and the inverse sharpened tensor (Color figure online)
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Table 3 Parameter values used for deterministic and probabilistic CSD-

based fibre tracking as implemented in the MRtrix package

Parameters Deterministic CSD Probabilistic CSD

Step size 0.5 mm 0.2 mm

Minimum radius

of curvature

0.5 mm 2 mm

FOD amplitude

cutoff

0.1 0.15

FOD amplitude

cutoff for initiation

0 0

cerebral peduncles to a number of target points in the motor

cortex, and in the cingulum region. We visualize the obtained

tracts using 3D Slicer [34].

We also present higher order model tractography experi-

ments on this data set. In particular, we use the MRtrix pack-

age [40] to perform constrained spherical deconvolution-

based [39] deterministic and probabilistic fibre tracking. The

algorithm either follows the peaks of the FOD, the fibre

orientation distribution (deterministic) or uses orientations

sampled from the FOD at each step (probabilistic). Optimal

parameter values are selected by visual inspection and are

given in Table 3. The cerebral peduncles are again used as

a seed region and only fibres reaching the motor cortex are

selected. Obtained results are visualized with vIST/e [42].

In Figs. 4, 5 and 6, we show candidate fibres reaching the

trunk and foot motor area of the cortex (upward bundle) and

the lip area (bundle bending to the left), which ought to cor-

respond to the corticospinal and corticobulbar tracts. Results

above the ventricles are clearly consistent with the left and

right cingulum. In Fig. 4, we show tractography results for

metrics given by the inverse and adjugate diffusion tensor,

and the outcome for inverse sharpened diffusion tensors is

given in Fig. 5. Results obtained with our approach, Fig. 4b,

seem to better resemble the anatomy of the stipulated white

matter bundles. Additionally, the curvature of the candidate

fibres is smoother and the bundles are more coherent. A par-

ticularly interesting result is the fact that our candidate fibres

circumvent the ventricles, known to be void of fibres, while

most of the ones obtained with other approaches go through

them. Note that for inverse sharpened tensors, Fig. 5, less

bundles cross the CSF than in the original diffusion tensor

case, Fig. 4a. Still, the problem is not completely overcome,

as is the case in our approach, Fig. 4b. These results are

consistent with our synthetic data experiments in the case

of sharpening power 2, Fig. 5a, but worst than expected for

sharpening power 4, Fig. 5b. This is likely to be explained by

the presence of noise in real data, since sharpening decreases

the robustness to noise as we have seen in the synthetic exper-

iments.

In Fig. 4, we also see that our tracts do not go through

the tumour. This is consistent with our findings concerning

Fig. 4 Candidate fibres possibly corresponding to corticobulbar and

corticospinal tracts (brown and blue, respectively), and cingulum (red),

in an anterior view. No candidate fibres shown in-between since we do

not consider target points in that part of the cortex. A tumour is located

next to the ventricles on the left-hand side. Results for metric given

by a inverse diffusion tensor and b adjugate diffusion tensor. Candidate

fibres going through the ventricles or the tumour are indicated by yellow

and white arrows, respectively. Bundles obtained with our approach, in

b, avoid both the CSF in the ventricles and the tumour (Color figure

online)

the CSF since diffusion in tumours is usually also isotropic.

Our results may reflect real fibres being pushed aside by a

tumour, or white matter integrity inside the tumour having

been destroyed. In contrast to the ventricles case, however,

fibres might be found within a tumour and therefore we can-

not draw any decisive conclusions about the validity of our

results in this sense.
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Fig. 5 As in Fig. 4, but now showing results for metric given by

a inverse sharpened diffusion tensor d1/3 D−2 and b inverse sharp-

ened diffusion tensor d D−4. Note that results from sharpened tensors

improve compared to those without sharpening in Fig. 4a (i.e. less tracts

cross isotropic diffusion regions), but the problem is not completely

overcome as in our approach (Color figure online)

In Fig. 6, we show results for a metric given by the adjugate

sharpened tensor. Note that the outcome improves drastically

compared to that from inverse sharpening in Fig. 5, to the

extent that none of the tracts cross isotropic diffusion regions

in this case. Results appear to be very similar to those from

the adjugate diffusion tensor in Fig. 4b.

In Fig. 7, we show CSD-based deterministic and prob-

abilistic tractography results for the corticospinal tract,

together with those obtained from geodesic tractography

based on the adjugate diffusion tensor. In all cases, fibres

circumvent the ventricles. However, a noticeable difference

is that CSD fibres do not reach the anterior part of the (right)

Fig. 6 As in Fig. 5, but now showing results for metric given by a

adjugate sharpened diffusion tensor d4/3 D−2 and b adjugate sharpened

diffusion tensor d2 D−4. Note that results from adjugate sharpened ten-

sors improve drastically compared to those from inverse sharpening in

Fig. 5 (i.e. none of the tracts cross isotropic diffusion regions). The out-

come is very similar to that from the adjugate diffusion tensor, Fig. 4b

(Color figure online)

motor cortex. This could be achieved by tuning the parame-

ters (step size 0.5 mm, minimum radius of curvature ≥5 mm,

FOD amplitude cutoff ≤0.01 mm), but results in unrealisti-

cally straight fibres crossing the ventricles and jumping from

one hemisphere to the other.

4.4 Intuition Behind Results

The rather different behaviour of the metrics given by the

inverse and adjugate diffusion tensor can be intuitively
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Fig. 7 CSD-based tractography results for the corticospinal tract (yel-

low), together with those obtained by geodesic tractography from the

adjugate diffusion tensor (blue). a Deterministic CSD and b Probabilis-

tic CSD. In all cases, fibres circumvent the ventricles. CSD fibres do not

reach the anterior part of the (right) motor cortex (Color figure online)

explained by the following argument, where for simplicity we

regard the case with no sharpening. Consider two neighbour-

ing voxels with a typical diffusion tensor D = diag(λ, λ, λ)

in an isotropic region and D = diag(λ1, λ2, λ3), with λ1 >

λ2 = λ3, in a vertically oriented fibre bundle (see Fig. 8).

To fix ideas, we take as example the case λ = λ1. Using the

classical metric, the Riemannian cost (Eq. 28) of (travelling

along) an infinitesimal vertical line element scales with 1/λ1.

In this case, the classical metric clearly assigns the same cost

to the isotropic and anisotropic line elements, since direc-

tional diffusivities (lengths of the vertical lines) are equal

in both cases. Using the newly proposed metric, however,

Fig. 8 Graphical sketch of the quadratic forms corresponding to a typ-

ical diffusion tensor D in an isotropic region (left) and in a vertically

oriented fibre bundle (right); the vertical axis corresponds to λ = λ1

(Color figure online)

the Riemannian cost of the same line elements scales with

λ2λ3, the area of the orthogonal cross section indicated by

the shaded equatorial planes. This is clearly smaller in the

anisotropic case, leading to a smaller cost. Therefore, the

adjugate tensor metric favours the anisotropic tract over the

isotropic one.

This argument clearly holds as well when isotropic diffu-

sivities are larger than the anisotropic ones (λ > λ1) as in

the presented synthetic experiments and (often) in real diffu-

sion data, since the isotropic cost becomes even larger. In this

case, the isotropic region is preferred by the classical metric

since its Riemannian cost, related to 1/λ, is smaller than the

anisotropic one, 1/λ1. In fact, the classical metric is only able

to avoid isotropic regions when λ < λ1. Our metric favours

anisotropic regions up to the limit λ ≤ λ2, λ3. In this sce-

nario, the area of the orthogonal cross section in the isotropic

case becomes equal to or smaller than the anisotropic one,

and so does the Riemannian cost. However, such scenarios

seemingly take place in real data only in the case of com-

plex architecture, where DTI fails to describe the underlying

diffusion profiles in any case.

5 Conclusion

We have proposed a new Riemannian metric in the context of

diffusion tensor imaging, namely, the adjugate of the diffu-

sion tensor. In the sharpening framework, this translates into

a metric given by the adjugate of the (normalized) sharp-

ened tensor. This is derived in a rigorous way from the

relation between anisotropic diffusion in Euclidean space

and isotropic diffusion in the corresponding curved space.

Our metric represents solely diffusion, the process which is

encoded in the diffusion MRI signal, in contrast to the stan-

dard DTI metric which leads to additional convection in the

curved space.
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We show results of geodesic tracking on synthetic and

real brain diffusion data, based on our new metric and other

established ways to extract the metric from the diffusion ten-

sor, and also compare our results to constrained spherical

deconvolution (CSD). Note that isotropic diffusion regions

are not masked out in a preprocessing step. Moreover, we

regard a realistic synthetic scenario based on experimental

DTI measures in the literature.

Results on synthetic data show that geodesics from the

inverse diffusion tensor fail to describe the fibres for both

clean and noisy data when either a low sharpening factor

(n = 2) or no sharpening is used. They do succeed for a

higher sharpening factor (n = 4), although a slight degra-

dation is observed in the presence of noise. Geodesics from

adjugate tensors, with and without sharpening, follow the

synthetic fibres rather well in all scenarios and without taking

shortcuts through the isotropic background. Again, a slight

degradation with noise is observed for a high sharpening

factor (n = 4). Comparing geodesics from the adjugate

unsharpened tensor and the n = 4 (inverse or adjugate)

sharpened tensor, we observe that the sharpened ones fol-

low the synthetic fibres more closely in the noiseless case.

However, we see that sharpening decreases the robustness to

noise, as has been pointed out in the literature. We observe

that adjugate tensors are less sensitive to noise than inverse

tensors, in particular for no sharpening or low sharpening

factor.

In real brain data, tracts obtained with our adjugate

metric, with and without sharpening, avoid isotropic dif-

fusion regions such as ventricles. Experiments show that

this is definitely not the case for the standard DTI met-

ric, and only sometimes for metrics given by the inverse

sharpened diffusion tensor. These results are consistent with

the synthetic experiments outcome. The presence of noise

in real data seemingly negatively affects inverse sharp-

ened tensors, while this does not appear to be the case

for adjugate tensors. We therefore conclude that the adju-

gate framework leads to better results, also in the case

of sharpening. The positive performance of our adjugate

approach on real diffusion data agrees with the recent lit-

erature [36].

Finally, we obtain comparable results for the corticospinal

tract from the adjugate tensor method and (determinis-

tic and probabilistic) CSD tractography. The only notice-

able difference being that CSD tracts do not reach the

anterior part of the motor cortex but one cannot draw

strong conclusions from this since ground truth is not

available.

In terms of practicalities, in our approach, there are no free

parameters such as the sharpening power or those related to

the fibre orientation distribution in CSD. These parameters

have to be chosen in an ad hoc way and a globally satisfactory

setting might not exist, which can be a disadvantage. On the

other hand, such free parameters do offer some flexibility to

model the diffusion data.

In future work, we will evaluate our adjugate method for

geodesic tractography of subcortical U-fibres. Based on the

performed experiments, we would expect to recover such

fibres relatively well, which is not the case for classical dif-

fusion tensor tractography methods [9]. In addition, it has

been shown that DTI geodesic tractography results improve

by using a multivalued geodesic algorithm [38]. This aspect

could also be evaluated in our case by employing such an

algorithm instead of fast sweeping. It would also be interest-

ing to compare our method to the deconvolution sharpening

in Descoteaux et al. [11], and to the different Riemannian

approach in Hao et al. [19].

The method we propose is based on DTI, which is well

known to suffer shortcomings in regions of complex fibre

architecture. However, higher order diffusion models may

benefit from our approach as well, provided one can define

a proper metrical distance. For example, the framework

proposed in [14] stipulates a Finsler metric for geodesic trac-

tography in HARDI, which can in principle be adapted in a

similar way to our modification of the Riemannian metric in

DTI.
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Appendix

We recall the definition of the sharpened diffusion tensor

proposed in [13]

(D sharp)
i j = d

1−n
3 (Dn)i j (29)

where n > 1 is the sharpening power and d = det Di j . Due

to the normalization factor we have that

det (D sharp)
i j = d

(

1−n
3

)3

dn = d (30)

We consider a metric given by the adjugate of the sharpened

diffusion tensor:

ĝi j = d(D sharp)i j = d
n+2

3 (Dn)i j (31)
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Here (D sharp)i j denotes the inverse sharpened tensor. Note

that ĝ = det ĝi j = d2. The corresponding Laplace–Beltrami

operator, Eq. (7), is given by

△ĝ = 1
√

ĝ
∂ j

(

√

ĝgi j∂i

)

= 1

d
∂ j

(

d
1−n

3 (Dn)i j∂i

)

(32)

which may be split as

△ĝ = 1

d
d

1−n
3 (Dn)i j∂i∂ j + 1

d
∂ j

(

d
1−n

3 (Dn)i j
)

∂i (33)

The diffusion generator

L3
def= △ĝ (34)

is, by construction, an intrinsic Laplacian. The diffusion

process associated with L3 is thus a Brownian motion on

(M, ĝ).

Remark The adjugate sharpened diffusion tensor relates

properly to Brownian motion if and only if the sharpened

tensor is normalized such that its determinant coincides with

that of the original diffusion tensor, as in Eq. (29). Adju-

gate versions of sharpened tensors such as those proposed in

[23,38,41] will not lead to Brownian motion.
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