
Adjustable Autonomy for the Real World

Milind Tambe, Paul Scerri, David V. Pynadath
Information Sciences Institute and Computer Science Department

University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292

�tambe,scerri,pynadath�@isi.edu

Abstract

Adjustable autonomy refers to agents’ dynamically varying
their own autonomy, transferring decision making control to
other entities (typically human users) in key situations. De-
termining whether and when such transfers of control must
occur is arguably the fundamental research question in ad-
justable autonomy. Previous work, often focused on individ-
ual agent-human interactions, has provided several different
techniques to address this question. Unfortunately, domains
requiring collaboration between teams of agents and humans
reveals two key shortcomings of these previous techniques.
First, these techniques use rigid one-shot transfers of control
that can result in unacceptable coordination failures in mul-
tiagent settings. Second, they ignore costs (e.g., in terms of
time delays or effects of actions) to an agent’s team due to
such transfers of control.
To remedy these problems, this paper presents a novel ap-
proach to adjustable autonomy, based on the notion of trans-
fer of control strategy. A transfer of control strategy consists
of a sequence of two types of actions: (i) actions to transfer
decision-making control (e.g., from the agent to the user or
vice versa) (ii) actions to change an agent’s pre-specified co-
ordination constraints with others, aimed at minimizing mis-
coordination costs. The goal is for high quality individual
decisions to be made with minimal disruption to the coordi-
nation of the team. These strategies are operationalized us-
ing Markov Decision Processes to select the optimal strategy
given an uncertain environment and costs to individuals and
teams. We present a detailed evaluation of the approach in
the context of a real-world, deployed multi-agent system that
assists a research group in daily activities.

Introduction
Exciting, emerging applications ranging from intelligent
homes (Lesser et al. 1999), to “routine” organizational
coordination (Pynadath et al. 2000), to electronic com-
merce (Collins et al. 2000), to long-term space mis-
sions (Dorais et al. 1998) utilize the decision making skills
of both agents and humans. Such applications have fostered
an interest in adjustable autonomy (AA), which allows an
agent to dynamically change its own autonomy, transferring
control for some of its key decisions to humans or other
agents(for Papers 1999). With AA, an agent need not make

Copyright c� 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

all the decisions autonomously; rather, it can choose to re-
duce its own autonomy and let users or other agents make
some decisions.

A central problem in AA is to determine whether and
when transfers of decision-making control should occur.
The key challenge here is to balance two potentially conflict-
ing goals. First, to ensure that the highest quality decisions
are made, the agent must transfer control to the human user
(or other agents) whenever they provide superior decision
making expertise. On the other hand, interrupting a human
user has very high costs and may fail for a variety of rea-
sons, and thus such transfers of control must be minimized.
Previous work provides several different techniques that at-
tempt to balance these two conflicting goals and thus address
the transfer of control problem. For example, one technique
suggests that decision-making control should be transferred
if the expected utility of doing so is higher than the expected
utility of keeping control over the decision(Horvitz, Jacobs,
& Hovel 1999). A second technique uses uncertainty as
the rationale for deciding who should have control, forc-
ing the agent to relinquish control to the human whenever
uncertainty is high(Gunderson & Martin 1999). Other tech-
niques transfer control if any incorrectness in an agent’s au-
tonomous decision can cause significant harm(Dorais et al.
1998) or if the agent lacks the capability to make the deci-
sion(Ferguson, Allen, & Miller 1996).

Unfortunately, these transfer-of-control techniques and
indeed most previous work in AA, have been focused on
single-agent and single-human interactions. When applied
to interacting teams of agents and humans, or multiagent set-
tings in general, these techniques lead to dramatic failures.
In particular, they fail to address a key requirement in mul-
tiagent settings, that of ensuring joint or coordinated actions
(in addition to balancing the two goals already mentioned
above). They fail because they ignore team related factors,
such as costs the to the team due to delays in decisions, dur-
ing such transfers of control. More importantly, these tech-
niques use one-shot transfers of control, rigidly committing
to one of two choices: (i) transfer control to a human and
wait for human input (choice �) or (ii) do not transfer con-
trol and take autonomous action (choice�). However, given
interacting teams of agents and humans, either choice can
lead to significant coordination failures if the entity in con-
trol cannot provide the relevant decision in time for the co-

From: AAAI Technical Report SS-02-07. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

ordinated action. On the other hand, if the agent commits
to one of choices simply to avoid miscoordination, that can
result in costly errors. As an example, consider an agent that
manages an individual user’s calendar and can request the
rescheduling of a team meeting if it thinks the user will be
unable to attend on time. Rescheduling is costly, because
it disrupts the calendars of the other team members, so the
agent can ask its user for confirmation to avoid making an
unnecessary rescheduling request. However, while it waits
for a response, there is miscoordination with other users.
These other users will begin arriving at the meeting room
and if the user does not arrive, then the others will waste their
time waiting as the agent sits idly by. On the other hand,
if, despite the uncertainty, the agent acts autonomously and
informs the others that the user cannot attend, then its de-
cision may still turn out to be a costly mistake. Indeed, as
seen in Section 2, when we applied a rigid transfer of control
decision-making to a domain involving teams of agents and
users, it failed dramatically.

Yet, many emerging applications do involve multiple
agents and multiple humans acting cooperatively towards
joint goals. To address the shortcomings of previous AA
work in such domains, this article introduces the notion of
transfer of control strategies. A transfer of control strategy
consists of a planned sequence of two types of actions: (i)
actions to transfer decision-making control (e.g., from the
agent to the user or vice versa) (ii) actions to change an
agent’s pre-specified coordination constraints with others,
postponing or reordering activities as needed (typically to
buy time for the required decision). The agent executes such
a strategy by performing the actions in sequence, transfer-
ring control to the specified entity and changing coordina-
tion as required, until some point in time when the entity
currently in control exercises that control and makes the de-
cision. Thus, the previous choice of � or � are just two
of many different and possibly more complex transfer-of-
control strategies. For instance, an ��� strategy implies
that an agent �, initially attempts autonomous actions given
a problem. If the agent � makes the decision, the strategy
execution ends there. However, there is a chance that it is un-
able to take that action in a timely manner, perhaps because
a web server it relies on is down. In this case, it executes
�, to delay the coordinated action it has planned with oth-
ers, and thus eliminate or reduce any miscoordination costs.
� has the effect of ”buying time” to provide the human �
more time to make the decision, and thus reduce decision un-
certainty. The agent then transfers control to a human user
(�). In general, if there are multiple decision-making enti-
ties, say one agent and two separate human users H� and H�,
a strategy may involve all of them, e.g., H�AH�. While such
strategies may be useful in single-agent single-human inter-
actions, they are particularly critical in general multiagent
settings, as discussed below.

Such strategies provide a flexible approach to transfer-of-
control in complex systems with many actors. By enabling
multiple transfers of control between two (or more) entities,
rather than rigidly committing to one entity (i.e., � or �),
a strategy attempts to provide the highest quality decision,
while avoiding coordination failures. In particular, there is

uncertainty about which entity will make that decision and
when it will do so, e.g., a user may fail to respond, an agent
may not be able to make a decision as expected or other
circumstances may change. A strategy addresses such un-
certainty by planning multiple transfers of control to cover
for such contingencies. For instance, with the ��� strat-
egy, an agent ultimately transfers control to a human to en-
sure that some response will be provided in case the agent
fails to act. Furthermore explicit coordination change ac-
tions, such as �, reduce miscoordination costs while better
decisions are being made. These strategies must be planned:
often, a sequence of coordination changes may be needed,
and since each coordination change is costly, agents need to
look ahead at possible sequences of coordination changes,
selecting one that maximizes team benefits.

The key question in transfer of control is then to select
the right strategy, i.e., one that optimizes all of the different
costs and benefits: provide the benefit of high-quality de-
cisions without risking significant costs in interrupting the
user and miscoordinating with the team. Furthermore, an
agent must select the right strategy despite significant uncer-
tainty. Markov decision processes (MDPs)(Puterman 1994)
are a natural choice for implementing such reasoning be-
cause they explictly represent costs, benefits and uncertainty
as well as doing lookahead to examine sequences of actions.

Our research has been conducted in the context of a
real-world multi-agent system, called Electric Elves (E-
Elves) (Pynadath et al. 2000), that we have used for several
months at USC/ISI. E-Elves assists a group of researchers
and a project assistant in their daily activities, providing
a unique, exciting opportunity to test ideas in a real envi-
ronment. Individual user proxy agents called Friday (from
Robinson Crusoe’s servant Friday) assist with rescheduling
meetings, ordering meals, finding presenters and other day
to day activities. Over the course of several months MDP
based AA reasoning was used around the clock in the E-
Elves making many thousands of autonomy decisions. De-
spite the unpredictability of the users and limited sensing
abilities, the autonomy reasoning consistently produced rea-
sonable results. Many times the agent performed several
transfers of control to cope with contingencies such as a user
not responding. Detailed experiments verify that the MDP
balanced the costs of asking for input, the potential for costly
delays and the uncertainty in a domain when doing the au-
tonomy reasoning.

Adjustable Autonomy – The Problem
We consider the general problem of AA in a team context
as follows. The team, which may consist entirely of agents
or include humans, has some joint activity, �. The agent
has a role, �, in the team. Coordination constraints exist be-
tween � and the roles of other members of the team. For
example, various roles might need to be executed simulta-
neously or in a certain order or with some combined quality.
Maintainance of the constraints is necessary for the success
of the joint activity. The primary goal of the agent is to en-
sure the successful completion of the joint activity, �, via
fulfillment of the role, �. Performing the role requires that
one or more non-trivial decisions be made. The agent can

I2

transfer decision-making control for a decision to another
agent or user (outside of the team), thereby reducing its au-
tonomy. Different agents and users will have differing abil-
ities to make the decisions due, for example, to available
computational resources or access to relevant information.
The agent may fulfill � either through decisions it makes it-
self or by transferring control to another human or agent to
make the decision. It should do so whenever it reasons that
doing so will be in the best interests of the joint activity.

Given the multi-agent context, a critical facet of the suc-
cessful completion of the joint task is to ensure that co-
ordination between team members is maintained. Mis-
coordination between team members may occur for a vari-
ety of reasons, though here we are primarily concerned with
mis-coordination due to delays in a decision being made.
From the perspective of the AA, the agent must ensure that
transfers of control do not lead to delays that in turn lead to
miscoordination. For example, delays might occur because
the user or agent to which control is transferred is otherwise
occupied or can not be contacted or it may occur because
making the decision takes longer than expected. When the
agent transfers control it does not have any guarantee on the
timeliness or quality of the decision made by the entity to
which control is transferred. In fact, in some cases it will
not know whether the entity will be able to make a decision
at all or even whether the entity will know it has decision
making control.

To avoid mis-coordination an agent can request that co-
ordination constraints be changed to allow more time for a
decision to be made. A coordination change might simply
involve reordering or delaying tasks or it may be a more dra-
matic change where the team uses a completely different ap-
proach to reach its goal. While changing coordination con-
straints is not a desirable action per se, it is better than mis-
coordination. Hence, changes in coordination should only
be made if the potential value of the extra time made avail-
able for the decision outweighs the cost of that change. It is
possible that when an agent requests a coordination change,
the team can decide to deny the request. For example, the
agent may request a change that from its local perspective
is of low cost but another team member might have infor-
mation that the change will actually cause a complete fail-
ure, hence the request for a coordination change might be
rejected. Despite the ability for the team to deny the request
the agent should act responsibly and not burden the team
with unnecessary requests.

The Electric Elves
The operation of a human organization requires dozens of
everyday tasks to ensure coherence in organizational activ-
ities, to monitor the status of such activities, to gather in-
formation relevant to the organization, to keep everyone in
the organization informed, etc. Teams of software agents
can aid humans in accomplishing these tasks, facilitating
the organization’s coherent functioning and rapid response
to crises, while reducing the burden on humans. USC/ISI is
taking the first step to realizing this vision with the Electric
Elves (E-Elves). The E-Elves provide a unique opportunity
to do research on AA. General ideas and techniques can be

Figure 1: Overall proxy-based architecture

implemented and tested in a real world system, allowing the
strengths and weaknesses of those approaches to be exam-
ined objectively. Moreover, having a concrete application
allows for a more accessible discussion of abstract problems
and solutions.

Tied to individual user workstations, fax machines, voice
and mobile devices such as cell phones and palm pilots,
E-Elves assist in routine tasks, such as rescheduling meet-
ings, selecting presenters for research meetings, monitoring
flight departure times, tracking people’s locations, organiz-
ing lunch meetings, etc.(Chalupsky et al. 2001) A number of
underlying AI technologies that support the E-Elves, includ-
ing technologies devoted to agent-human interactions, agent
coordination, accessing multiple heterogeneous information
sources, dynamic assignment of organizational tasks, and
deriving information about organization members(Pynadath
et al. 2000). While all these technologies are interesting,
here we focus on the AA technology.

(a) (b)
Figure 2: (a) Friday asking the user for input regarding or-
dering a meal. (b) Palm VII and GPS

The overall design of the E-Elves is shown in Figure .
Each proxy is called Friday and acts on behalf of its user in
the agent team. The basic design of the Friday proxies is dis-
cussed in detail elsewhere (Tambe et al. 2000) (where they
are referred to as TEAMCORE proxies). Currently, Friday
can perform a variety of tasks for its user. If a user is delayed
to a meeting, Friday can reschedule the meeting, informing
other Fridays, who in turn inform their human users. If there
is a research presentation slot open, Friday may respond to
the invitation to present on behalf of its user. Friday can also

I3

order its user’s meals (see Figure 2(a)) and track the user’s
location, posting it on a Web page. Friday communicates
with users using wireless devices, such as personal digital
assistants (PALM VIIs) and WAP-enabled mobile phones,
and via user workstations. Figure 2(b) shows a PALM VII
connected to a Global Positioning Service (GPS) device, for
tracking users’ locations and enabling wireless communica-
tion with Friday.

Each Friday’s team behavior is based on a teamwork
model, called STEAM(Tambe 1997). Friday models each
meeting as a team’s joint intention that, by the rules of
STEAM, they keep each other informed about (e.g., a meet-
ing is delayed, cancelled, etc.). Furthermore, Fridays use
STEAM role relationships to model the relationships among
team members. For instance, the presenter role is critical
since the other attendees depend on someone giving a pre-
sentation. Thus, if the presenter cannot attend, the team rec-
ognizes a critical role failure that requires remedial attention.

AA is used for several decisions in the E-Elves, includ-
ing closing auctions for team roles, ordering lunch and
rescheduling meetings. AA is important since clearly the
user has all the critical information pertaining to the deci-
sions and hence good decisions will sometimes require user
input. The decision on which we focus is ensuring the sim-
ulataneous arrival of attendees at a meeting. If any attendee
arrives late, or not at all, to the meeting, the time of all the
attendees is wasted, yet delaying the meeting is disruptive
to the user’s schedules. Friday acts as proxy for its user,
hence its responsibility is to ensure that its user arrives at
the meeting at the same time as other users. The decision
that the agent has responsibility for making is whether the
user will arrive at the meeting’s currently scheduled time.
Clearly, the user will be often better placed to make this de-
cision. However, if the agent transfers control to the user for
the decision it must guard against mis-coordination while
the user is responding. Although the user will not take long
to make the decision, it may take a long time to contact the
user, e.g., if the user is in another meeting. If the user is
contacted they can decide to delay the meeting to a time
when they will be able to arrive simulataneously with other
users or inform the team they will not arrive at all (allow-
ing other attendees to proceed without them). Although the
agent can make the same decisions as the user, to decide
that the user is not attending is costly and the agent should
avoid deciding on it autonomously. Thus, unless it is cer-
tain that a potentially costly action is the correct one to take,
the agent should try to transfer control to the user rather
than acting autonomously. To buy more time for the user
to make the decision the agent could delay the meeting, i.e.,
do a coordination change. So the agent has several options,
i.e., autonomous decision, transfer of control and coordina-
tion change, and a variety of competing influences, e.g., not
wasting the user’s time and not making mistakes, that need
to be balanced by its autonomy reasoning.

Decision-tree approach
Whilst the problem of AA in a team context is intuitively
more subtle than that of the single agent - single human case,
care needs to be taken not to develop new complex, solutions

when simpler, previously reported solutions would suffice.
To this end, a first attempt was inspired by CAP (Mitchell
et al. 1994), an agent system for helping a user schedule
meetings. Like CAP, Friday learned user preferences using
C4.5 decision-tree learning (Quinlan 1993). The key idea
was to resolve the transfer-of-control decision by learning
from user input. In training mode, Friday recorded values of
a dozen carefully selected attributes and the user’s preferred
action (identified by query via a dialog box, as in Figure)
whenever it had to make a decision. Friday used the data to
learn a decision tree (e.g., if the user has a meeting with his
or her advisor, but is not at ISI at the meeting time, then de-
lay the meeting 15 minutes). Also in training mode, Friday
asked if the user wanted such decisions taken autonomously
in the future. Friday again used C4.5 to learn a second deci-
sion tree from these responses.

Initial tests with the above setup were promising (Tambe
et al. 2000), but a key problem soon became apparent.
When Friday encountered a decision it learned not take au-
tonomously, it would wait indefinitely for the user to make
the decision, even though this inaction led to miscoordina-
tion with teammates. To address this problem, if a user did
not respond within a fixed time limit, Friday took an au-
tonomous action. Although results improved, when the re-
sulting system was deployed 24/7, it led to some dramatic
failures, including:

1. Tambe’s (a user) Friday incorrectly, autonomously cancelled a
meeting with the division director. C4.5 over-generalized from
training examples.

2. Pynadath’s (another user) Friday incorrectly cancelled the
group’s weekly research meeting. A time-out forced the choice
of an (incorrect) autonomous action when Pynadath did not re-
spond.

3. A Friday delayed a meeting almost 50 times, each time by 5
minutes. The agent was correctly applying a learned rule but
ignoring the nuisance to the rest of the meeting participants.

4. Tambe’s proxy automatically volunteered him for a presenta-
tion, though he was actually unwilling. Again, C4.5 had over-
generalized from a few examples and when a timeout occurred
had taken an undesirable autonomous action.

Some failures were due to the agent making risky deci-
sions despite considerable uncertainty because the user did
not quickly respond (examples 2 and 4). Other failures were
due to insufficient consideration being given to team costs
and the potential for high team costs due to incorrect ac-
tions. Yet, other failures could be attributed to the agent not
planning ahead adequately. For instance, in example 3, each
five-minute delay is appropriate in isolation, but the rules
did not consider the ramifications of one action on succes-
sive actions. Planning could have resulted in a one-hour de-
lay instead of many five-minute delays. From the growing
list of failures, it became clear that the approach faced some
significant problems. While the agent might have eventu-
ally been able to learn rules that would successfully balance
all the costs and deal with all the uncertainty and handle all
the special cases and so on, a very large amount of training
data would be required, even for this relatively simple deci-
sion. Hence, while the C4.5 approach worked in the single

I4

agent - single human context, AA in the team context has too
many subtleties and too many special cases for the agent to
learn appropriate actions with a reasonable amount of train-
ing data. Furthermore, the fixed timeout strategy constrained
the agent to certain sequences of actions, limiting its ability
to deal flexibly with changing situations.

Flexible Transfer of Control via MDPs
In a multi-agent domain to avoid miscoordination we must
design agents centered around the notion of a transfer-of-
control strategy. A transfer-of-control strategy is a planned
sequence of transfer-of-control actions, which include both
those that actually transfer control and those that change co-
ordination constraints to buy more time to get input. The
agent executes such a strategy by performing the actions
in sequence, transferring control to the specified entity and
changing coordination as required, until some point in time
when the entity currently in control exercises that control
and makes the decision. More precisely, we consider a sce-
nario where an agent, �, is responsible for making a deci-
sion, �. The agent can draw upon � other entities from a set
� � ��� 	 	 	 ���, who are all capable (perhaps unequally)
of making decision � instead. The entities can be either hu-
mans or other agents. Agent� can transfer decision-making
control to any entity ��, and we denote such a transfer-of-
control action with the symbol ��. In the typical AA setting,
the agent � is itself one of the available decision-making
entities.

For the purposes of this discussion, we assume that the
agent can make the decision instantaneously (or at least,
with no delay significant enough to affect the overall value of
the decision). On the other hand, the other entities may not
make the decision instaneously, e.g., a human user may not
be able to respond immediately. Therefore, when the agent
transfers decision-making control to another entity, it may
stipulate a limit on the time that it will wait for a response
from that entity. To capture this additional stipulation, we
denote transfer-of-control actions with this time limit as an
action ���
�, i.e., �� has decision-making control for a max-
imum time of
. Such an action has two possible outcomes:
either �� responds before time
 and makes the decision, or
else it does not respond and decision � remains unmade at
time
. As an illustration, consider the E-Elves, where there
are two entities: the human user, � , and the agent, �. The
action, ����, would denote asking the user for input and
waiting at most 5 minutes before timing out on the query.

In addition, the agent has some mechanism by which it
can take a deadline-delaying action (denoted�) to alleviate
any temporal pressures on the decision. A � is a general-
ization of the “delay meeting” action from the E-Elves. The
� action has an associated value,������, which specifies its
magnitude, i.e., how much the� has alleviated the temporal
pressure.

We can concatenate these individual transfer-of-control
actions to produce a strategy. The agent then executes the
sequence of transfer-of-control actions in the sequence, halt-
ing whenever the entity in control responds. For instance,
in the E-Elves, the strategy ����� would specify that the
agent first give up control and ask the human user. If the

human responds with a decision within 5 minutes, then the
task is complete. If not, then the agent proceeds to the next
transfer-of-control action in the sequence. In this example,
this next action, �, specifies that the agent itself make the
decision and complete the task. We can define the space of
all possible strategies as follows:

� � �� ���� ��� ��� � ���� (1)

For readability, we will frequently omit the time specifi-
cations from the transfer-of-control actions and instead write
just the order in which the agent transfers control among the
entities and executes�s (e.g.,�� instead of�����). Thus,
this shorthand does not record the timing of the transfers of
control. Using this shorthand, we will focus on a smaller
space of possible transfer-of-control strategies:

� � � � �� � ���� (2)

This space of strategies provides an enormous set of pos-
sible behavior specifications. The agent must select the strat-
egy that maximizes the overall utility of the eventual deci-
sion. Presumably, each entity has different decision-making
capabilities; otherwise, the choice among them has little im-
pact. We model each entity as making the decision with
some expected quality, �� � ����

� � � � ������. The
agent knows ��, perhaps with some uncertainty.

In addition, when given decision-making control, each
entity may have different response times. The functions,
� � ����
� � � � �� ���, represent continuous probabil-
ity distributions over the time that the entity in control will
respond with a decision of quality ���

��
�. In other words,
the probability that �� will respond within time
� is ���
��.

The agent and the entities are making decisions within
a dynamic environment, and in most real-world environ-
ments, there are time pressures. We model this tempo-
ral element through a wait-cost function, �� �
 � ��,
that represents the cost of delaying a decision until time

. The set of possible wait-cost functions is �. We as-
sume that ��
� is non-decreasing and that there is some
point in time, �, beyond which there is no further cost of
waiting (i.e., �
 	 ���
 ���
� � ����). The
deadline-delaying action moves the agent further away from
this deadline and reduces the rate at which wait costs are ac-
cumulating. We model the value of the � by letting � be
a function of
 � ������ (rather than
) after the � action.
Presumably, such delays do not come for free, or else the
agents could postpone the decision indefinitely to no one’s
loss. We model the� as having a fixed cost, ��	
�, incurred
immediately upon its execution.

We can use all of these parameters to compute the ex-
pected utility of a strategy, �. The uncertainty arises from
the possibility that an entity in control may not respond. The
strategy specifies a contingent plan of transfer-of-control ac-
tions, where the agent executes a particular action contingent
on the lack of response from all of the entities previously
given control. The agent derives utility from the decision
eventually made by a responding entity, as well as from the
costs incurred from waiting and from delaying the deadline.
The problem for the agent can then be defined as:

I5

Definition 3.1 For a decision �, the agent must select �
 �
such that ���
 � �� �� � ���

 �
� 	 ���

��
�

MDP-based Evaluation of Strategies
MDPs are a natural mechanism for choosing a transfer of
control strategy that maximizes expected utility. By encod-
ing the transfer-of-control actions and the associated costs
and utilities within an MDP, we can use standard algo-
rithms (Puterman 1994) to compute an optimal policy of
action that maps the agent’s current state into the optimal
action for that state. We can then interpret this policy as a
transfer-of-control strategy.

In representing the state of execution of a transfer-of-
control strategy, the key feature is the ��-response, a vari-
able indicating the response (if any) of ��. The state must
also represent various aspects of the decision �, which, in
the E-Elves, concerns a team activity, �, and the user’s role,
�, within �. Thus, the overall state, within the MDP repre-
sentation of a decision �, is a tuple:
� team-orig-expect-� team-expect-� agent-expect-�

�-status ��-response other � attributes �
Here, team-expect-� is the team’s current expectations of

what fulfilling the role � implies, while team-orig-expect-
� is what the team originally expected of the fulfilling of
the role. Similarly, agent-expect-� is the agent’s (proba-
bilistic) estimation for how � will be fulfilled. For example,
for a meeting scenario, team-orig-expect-� could be “Meet
at 3pm”, team-expect-� could be “Meet at 3:15pm” after a
user requested a delay and agent-expect-� could be “Meet at
3:30pm” if it believes its user will not make the resecheduled
meeting.

We can specify the set of actions for this MDP represen-
tation as 	 � � � ��wait�. The set of actions subsumes
the set of entities, �, since the agent can transfer decision-
making control to any one of these entities. The � action
is the deadline-delaying action as discussed earlier. The
“wait” action puts off transferring control and making any
autonomous decision, without changing coordination with
the team. The agent should reason that “wait” is the best
action when, in time, the situation is likely to change to put
the agent in a position for an improved autonomous deci-
sion or transfer of control, without significant harm to the
team-level coordination relationships.

The transition probabilities represent the effects of these
actions as a distribution over their effects (i.e., ensuing state
of the world). When the agent chooses an action that trans-
fers decision-making control to an entity other than the agent
itself, there are two possible outcomes: either the entity
makes a decision (producing a terminal state), or the deci-
sion remains unmade (the result being as if the agent had
simply waited). We compute the relative likelihood of these
two possible transitions by using the response times mod-
eled in �. The � action has a deterministic effect, in that it
changes the coordination of � (affecting the expectations on
the user’s role through the state feature, team-expect-�).

The final part of our MDP representation is the reward
function. In general, our AA MDP framework uses a reward
function:
��� �� (3)

Figure 3: Dialog box for delaying meetings.

� ��team-orig-expect-���� team-expect-����

user-expect-���� �-status��� ��

� ������ team-orig-expect-����� team-expect-���� �(4)

������ team-expect-����� user-expect-���� �

������-status����
 �������

�

��� ��
�
� � �-response���

The �� function reflects the inherent value of perform-
ing a role as the team originally expected, hence deterring
the agent from coordination changes (separate from the cost
of the coordination change itself). The �� function reflects
the value of keeping the agent’s expectation of their perfor-
mance of the role in agreement with the team’s understand-
ing of how the role will be performed. The overall reward is
reduced based on the magnitude of the difference between
the expectation and the reality. That is, the agent receives
most reward when the role is performed exactly as the team
expects, thus encouraging it to keep other team members
informed of the role’s status. The third component of the
reward function, ��, heavily influences overall reward based
on the successful completion of the joint activity (which is
after all the goal). This component encourages the agent to
take actions that lead to the joint activity succeeding. The
fourth component, ��, factors in the cost and benefits of ac-
tion and varies with the type of action and can be broken
down further as follows:

����� �

�
��	
� if � � �
� otherwise (5)

This component discourages the agent from taking costly
actions (like coordination changes) unless it can gain some
indirect value from doing so. The final component captures
the value of getting a response from a decision-making en-
tity.

Given the MDP’s state space, actions, transition probabil-
ities, and reward function, an agent can use value iteration
to generate a policy � ���	 that specifies the optimal action
in each state (Puterman 1994). The agent then executes the
policy by taking the action that the policy dictates in each
and every state in which it finds itself. A policy may include
several transfers of control and deadline-delaying actions, as

I6

Figure 4: A small portion of the delay MDP.

well as a final autonomous action. The particular series of
actions depends on the activities of the user.

Example: Delay MDP

One example of such an AA MDP is the delay MDP, cov-
ering all meetings for which Friday may act on behalf of
its user. We model the particular AA decision within our
general framework as follows. The joint activity, �, is for
the meeting attendees to attend the meeting simulataneously.
The agent’s role, �, is to ensure that its user arrives at the
currently scheduled meeting time. The constraints between
the agent’s role and the roles of other agents is that they oc-
cur simultaneously (i.e., the users must attend at the cur-
rently scheduled time). Changing the coordination of � cor-
responds to delaying the meeting. Friday has a variety of
� actions at its disposal, including delays of various lengths,
as well as cancellation of the meeting entirely. The user can
also request a coordination change, e.g., via the dialog box
in Figure , to buy more time to make it to the meeting. If the
user decides a coordination change is required, Friday is the
conduit through which other Fridays (and hence their users)
are informed.

In the delay MDP’s state representation, team-orig-
expect-� is originally-scheduled-meeting-time, since atten-
dance at the originally scheduled meeting time is what the
team originally expects of the user and is the best possible
outcome. team-expect-� is time-relative-to-meeting, which
may increase if the meeting is delayed. �-status becomes
status-of-meeting. user-expect-� is not represented explic-
itly; instead, user-location is used as an observable heuristic
of when the user is likely to attend the meeting. For exam-
ple, a user who is away from the deparment shortly before a
meeting should begin is unlikely to be attending on time, if
at all. Figure shows a portion of the state space, showing the
user-response, and user location features. The figure also
shows some state transitions (a transition labeled “delay �”
corresponds to the action “delay by � minutes”). Each state
contains other features (e.g., previous-delays), not pictured,
relevant to the overall joint activity, for a total of 2760 states
in the MDP for each individual meeting.

The general reward function is mapped to the delay MDP
reward function in the following way. One component, de-

noted ����, focuses on the user attending the meeting at the
meeting time. ���� is the component of the reward mod-
elling the difference between team-expect-����, and user-
expect-����, i.e., the difference between what the team ex-
pected — arrive on time, and what the user did — arrive
late. ���� is negative in states after the (re-) scheduled start
of the meeting if the user is absent, but positive otherwise.
The costs of changing the meeting time, i.e., the difference
between team-orig-expect-���� and team-expect-���� is cap-
tured with ������� and is proportional to the number of meet-
ing attendees and the number and size of the delays. The
final component, ��
�� captures the value of having the user
at the meeting and is only received if the meeting actually
goes ahead. ��
�� corresponds to �-�
�
�� in the general
reward function. ��
�� gives the agent incentive to delay
meetings when its user’s late arrival is possible, but large
delays incur a team cost from rearranging schedules.The
overall reward function for a state, s, is a weighted sum:
���� � ��
����
�����
 �����������������
 �����������.

The delay MDP’s transition probabilities represent the
likelihood that a user movement (e.g., from office to meet-
ing location) will occur in a given time interval. Figure
shows multiple transitions due to “ask” (i.e., transfer con-
trol to the user) and “wait” actions, with the thickness of
the arrows reflecting their relative probability. The designer
encodes the initial probabilities, which a learning algorithm
may then tailor to individual users. Other state transitions
correspond to uncertainty associated with a user’s response
(e.g., when the agent performs the “ask” action, the user may
respond with specific information or may not respond at all,
leaving the agent to effectively “wait”). One possible pol-
icy produced by the delay MDP, for a subclass of meetings,
specifies “ask” in state S0 of Figure (i.e., the agent gives up
some autonomy). If the world reaches state S3, the policy
specifies “wait”. However, if the agent then reaches state
S5, the policy chooses “delay 15”, which the agent then ex-
ecutes autonomously. Using our language of strategies, we
can denote this policy as ���.

Data from Real-World Use
The E-Elves was heavily used between June 1, 2000 and
March, 2001 and by a smaller group of users since then.
The agents run continuously, around the clock, seven days
a week. The user base has changed over the period of exe-
cution, with usually five to ten proxy agents running for in-
dividual users, a capability matcher (with proxy), and an in-
terest matcher (with proxy). Often, temporary Friday agents
operate on behalf of special guests or other short-term visi-
tors.

The most emphatic evidence of the success of the MDP
approach is that, since replacing the C4.5 implementation,
the agents have never repeated any of the catastrophic mis-
takes enumerated in Section . For instance, the agents do not
commit error 4 from Section , because the domain knowl-
edge encoded in the bid-for-role MDP specifies a very high
cost for erroneously volunteering the user for a presentation.
Thus, the generated policy never autonomously volunteers
the user. Likewise, the agents never committed errors 1 or 2.
In the delay MDP, the lookahead inherent in the policy gen-

I7

eration allowed the agents to identify the future rewards pos-
sible through “delay” (even though some delays had a higher
direct cost than that of “cancel”). The MDP’s lookahead
capability also prevents the agents from committing error
3, since they can see that making one large delay is prefer-
able, in the long run, to potentially executing several small
delays. Although the current agents do occasionally make
mistakes, these errors are typically on the order of asking
the user for input a few minutes earlier than may be neces-
sary, etc. Thus, the agents’ decisions have been reasonable,
though not always optimal, although, the inherent subjec-
tivity in user feedback makes a determination of optimality
difficult.

The general effectiveness of E-Elves is shown by sev-
eral observations. Since the E-Elves deployment, the group
members have exchanged very few email messages to an-
nounce meeting delays. Instead, Fridays autonomously in-
form users of delays, thus reducing the overhead of wait-
ing for delayed members. Second, the overhead of send-
ing emails to recruit and announce a presenter for research
meetings is now assumed by agent run auctions. Third, a
web page, where Friday agents post their user’s location, is
commonly used to avoid the overhead of trying to track users
down manually. Fourth, mobile devices keep us informed re-
motely of changes in our schedules, while also enabling us to
remotely delay meetings, volunteer for presentations, order
meals, etc. We have begun relying on Friday so heavily to
order lunch that one local “Subway” restaurant owner even
suggested marketing to agents: “. . . more and more comput-
ers are getting to order food. . . so we might have to think
about marketing to them!!”.

Figure 5a illustrates the number of meetings monitored
for each user. Over the course of three months (June 1
to August 31) over 400 meetings where monitored. Some
users had fewer than 20 meetings, while others had over 150.
Most users had about 20% of their meetings delayed. Fig-
ure 5b shows that usually 50% or more of delayed meetings
were autonomously delayed. In particular, in this graph, re-
peated delays of a single meeting are counted only once, and
yet, the graphs show that the agents are acting autonomously
in a large number of instances. Equally importantly, humans
are also often intervening, indicating the critical importance
of AA in Friday agents.

MDP Experiments
Experience using the MDP approach to AA in the E-Elves
indicates that it is effective at consistently making reason-
able AA decisions. However, in order to determine whether
the MDP is a generally useful tool for AA reasoning, more
conventional experiments are required. The reward func-
tion is engineered to encourage the reasoning to work in a
particular way, e.g., the inclusion of a penalty for deviat-
ing from the original team plan should discourage the agent
from asking for coordination changes unnecessarily. In this
section experiments, designed to investigate the relationship
between the reward function parameters and resulting po-
lices, are presented. The first thing the experiments aim to
do is verify that the policies change in the desired way when
parameters in the reward function are changed. Secondly,

from a practical perspective it is critical to understand how
sensitive the MDP policies are to small variations in param-
eters because if the MDP is too sensitive to small variations
it will be too difficult to deploy in practice. Finally, the ex-
periments expose some unanticipated phenomena.

In each of the experiments we vary one of the � parame-
ters, i.e., the weights of the different factors, from Equation
5. The MDP is instantiated with each of a range of values for
the parameter and many policies are produced. In each case
the total policy has 2800 states. The policy is analyzed sta-
tistically to determine some basic properties of that policy,
e.g., how many states the policy specifies to ask, to delay,
etc. Such statistics give a broad feel for how the agent will
act and highlights important characteristics of its approach.
Notice that the percentage of each action that will actually
be performed by the agent will not be the same as the per-
centage of times the action appears in the policy, since the
agent will find itself in some states much more than in oth-
ers. Hence, the statistics show qualitatively how the policy
changes, e.g., asking more, rather then quantitatively how it
changes, e.g., ask 3% more often.

The first experiment looks at the effect of the �� param-
eter from Equation 5 on the policies produced by the de-
lay MDP. This parameter determines how averse the agent
should be to changing team plans. The parameter is primar-
ily represented in the delay MDP by the team repair cost
parameter. Figure 6 shows some properties of the policy
change as the team repair cost value is varied. As the cost of
delaying the meeting increases the agent will delay the meet-
ing less (Figure 6(b)) and say not attending more often (Fig-
ure 6(d)). By doing this the agent gives the user less time to
arrive at the meeting, choosing instead to just announce that
the user is not attending. This is precisely the type of be-
havior that is expected, since it reduces the amount of time
team mates will sit around waiting. The graph of the num-
ber of asks (Figure 6(a)) exhibits an interesting phenomena.
For low values of the parameter the number of places in the
policy where the agent will ask increases but for high values
it decreases. For the low values, the agent can confidently
make coordination changes autonomously, since their cost
is low, hence there is less value to relinquishing autonomy.
For very high coordination costs the agent can confidently
decide autonomously not to make a coordination change.
It is in the intermediate region that the agent is uncertain
and needs to call on the user’s decision making more often.
The MDP in use in the E-Elves has this parameter set at
2. Around this value the policy changes little, hence slight
changes in the parameter do not lead to large changes in the
policy.

In the second experiment the �� parameter is varied. This
is the factor that determines how heavily the agent should
weigh differences between how the team expects they will
fulfill their role and how they will actually fulfill the role. In
E-Elves this is primarily represented by the team wait cost
parameter which determines the cost of having other team
members waiting in the meeting room for the user. Figure
7 shows the changes to the policy when this parameter is
varied. The graphs show that as the cost of teammates time
increases the agent asks the user for input less often (Figure

I8

(a) Monitored vs. delayed meetings per user (b) Meetings delayed autonomously (darker bar) vs. by hand.

Figure 5: Results of delay MDP’s decision-making.

48
50
52
54
56
58
60
62
64
66
68

0 2 4 6 8 10

as

ks

"Team repair cost" weight

Number of asks in policy

30
40
50
60
70
80
90

100
110
120
130
140

0 2 4 6 8 10

de

la
ys

"Team repair cost" weight

Number of delays in policy

(a) (b)

90
95

100
105
110
115
120
125
130
135
140

0 2 4 6 8 10

at

te
nd

in
g

"Team repair cost" weight

Number of Attending messages in policy

0
10
20
30
40
50
60
70

0 2 4 6 8 10

N

ot
 A

tte
nd

in
g

"Team repair cost" weight

Number of Not Attending messages in policy

(c) (d)

Figure 6: Properties of the MDP policy as team repair cost
is varied.

7(a)) and acts autonomously more often (Figure 7(b-d)). The
agent asks whenever the potential costs of asking are higher
than the potential costs of errors it makes. As the cost of
time waiting for a user decision increases, the balance tips
towards acting. Notice the phenomena of the number of asks
increasing then decreasing occurs in the same way it did for
the �� parameter. In this case the agent acts when waiting
costs are very low since the cost of its errors are very low,
while when they are very high it acts because it cannot af-
ford to wait for user input. In the E-Elves, a value of 1 is
used for ��. This is in a relatively flat part of the graphs,
indicating that detailed tuning of this parameter is not re-
quired. However, there is a reasonably significant change
in the number of attending and not attending messages for
relatively small changes in the parameter around this value,
hence some tuning is required to get this to an appropriate
setting.

The experiments show three important things. Firstly,
changing the parameters of the reward function lead to the
changes in the policy that are expected and desired. Second,
the relatively smooth and predictable nature of most of the
graphs indicates that detailed fine tuning of the parameters is

20

30

40

50

60

70

0 2 4 6 8 10

as

ks

"Cost of teammates time" weight

Number of Asks in policy

0

20

40

60

80

100

120

0 2 4 6 8 10

de

la
ys

"Cost of teammates time" weight

Number of Delays in policy

Total
1st Delay

2nd Delay
3rd Delay

(a) (b)

80
100
120
140
160
180
200
220
240
260

0 2 4 6 8 10

A

tte
nd

in
g

"Cost of teammates time" weight

Number of Attending messages in policy

0

5

10

15

20

25

30

0 2 4 6 8 10

N

ot
 A

tte
nd

in
g

"Cost of teammates time" weight

Number of Not Attending messages in policy

(c) (d)

Figure 7: Properties of the MDP policy as team mate time
cost is varied.

not required to get the general characteristics policies quali-
tatively as desired. Finally, the interesting phenomena of the
number of asks reaching a peak at intermediate values of the
parameters was revealed.

Related Work
Several different approaches have been taken to the core
problem of whether and when to transfer decision making
control. While at least some of this reasoning is done in a
team or multiagent context the possibility of multiple trans-
fers of control is not considered. In fact, the possibility of
delayed response leading to miscoordination does not ap-
pear to have been addressed at all. In the Dynamic Adaptive
Autonomy framework a group of agents allocates a number
of votes to each agent in a team, hence defining the amount
of influence each agent has over a decision and thus, by their
definition, the autonomy of the agent with respect to the
goal(Barber, Martin, & Mckay 2000). The Dynamic Ada-
pative Autonomy framework gives the team more detailed
control over transfer of control decisions than does our ap-
proach, since only part of the decision making control can
be transferred. However, since often more than one team

I9

member will be able to vote on a decision, this approach
is even more susceptible to miscoordination due to delayed
response than was the failed C4.5 approach used in the E-
Elves, yet there is no mechanism for flexible back and forth
transfers of control.

Hexmoor(Hexmoor 2000) defines situated autonomy as
an agent’s stance towards a goal at a particular point in time.
That stance is used to guide the agent’s actions. One fo-
cus of the work is how an understanding of autonomy af-
fects the agent’s decision making at different decision mak-
ing “frequencies”, e.g., reflex actions and careful delibera-
tion (Hexmoor 1999). For example, for reactive actions only
the agent’s pre-disposition for autonomy towards the goal is
taken, while for decisions with more time available a de-
tailed assessment is done to optimize the autonomy stance.
Like our work, Hexmoor focuses on time as being an im-
portant factor in AA reasoning. However, the time scales
looked at are quite different. Hexmoor looks at how much
time is available for AA reasoning and decides which rea-
soning to do based on the amount of time available. We take
the amount of time available into account while following
the same reasoning process. Hence, Hexmoor’s approach
might be more appropriate for very highly time constrained
environments, i.e., of the order of seconds.

Horvitz et al(Horvitz, Jacobs, & Hovel 1999) have looked
at AA for reducing annoying interruptions caused by alerts
from the variety of programs that might be running on a
PC, e.g., notification of new mail, tips on better program
usage, print jobs being finished and so on. Decision the-
ory is used to decide, given a probability distribution over
the user’s possible focii of attention and potential costs and
benefits of action, whether the agent should take some ac-
tion autonomously. The agent has the further possibility of
asking the user for information in order to reduce its deci-
sion making uncertainty. As described above, the reasoning
balances the costs and benefits of autonomous action, in-
action and a clarification dialog and then takes a one shot
decision. Provided the interruptions are not critical the ap-
proach might be sufficient, however, if a team context was
introduced, e.g., the incoming mail requiring notification is a
request for an urgent meeting, our experiences with E-Elves
suggest that a more flexible approach will be necessary.

While, to the best of our knowledge, E-Elves is the
first deployed application using sophisticated AA reasoning
there are reported prototype implementations of AA which
demonstrate various ideas. Experiments using a simulated
naval radar frequency sharing problem, show that different
decision making arrangements lead to different performance
levels depending on the particular task(Barber, Goel, & Mar-
tin 2000). This is an important result because it clearly
shows AA can improve system performance by showing no
one particular autonomy configuration is right for all situa-
tions.

An AA interface to the 3T architecture (Bonasso et al.
1997) has been implemented to solve human-machine in-
teraction problems experienced using the architecture in a
number of NASA projects (Brann, Thurman, & Mitchell
1996). The experiences showed that interaction with the
system was required all the way from the deliberative layer

through to detailed control of actuators. At the deliberative,
planning level of 3T the user can influence the developed
plan while the system ensures that hard constraints are not
violated. At the middle level, i.e., the conditional sequenc-
ing layer, either the human user or system (usually a robot)
can be responsible for the execution of each task. Each task
has a pre-defined autonomy level that dictates whether the
system should check with the user before starting on the ac-
tion or just go ahead and act. The AA at the reactive level
is implemented by a tele-operation skill that lets the user
take over low level control, overriding commands of the
system. The AA controls at all layers are encapsulated in
what is referred to as the 3T’s fourth layer – the interaction
layer (Schreckenhost 1999). A similar area where AA tech-
nology is required is for safety critical intelligent software,
such as for controlling nuclear power plants and oil refiner-
ies(Musliner & Krebsbach 1999). The work has resulted
in a system called AEGIS (Abnormal Event Guidance and
Information System) that combines human and agent capa-
bilities for rapid reaction to emergencies in a petro-chemical
refining plant. AEGIS features a shared task representation
that both the users and the intelligent system can work with
(Goldman et al. 1997). A key hypothesis of the work is
that the model needs to have multiple levels of abstraction
so the user can interact at the level they see fit. Both the
user and the system can manipulate the shared task model.
The model, in turn, dictates the behaviour of the intelligent
system.

Meta-reasoning makes a choice of computations given
the fact that completely rational choice is not possible(Rus-
sell & Wefald 1989). The idea is to treat computations as
actions and “meta-reason” about the EU of doing certain
combinations of computation and (base-level) actions. In
general this is just as intractable as pure rationality at the
“base-level” hence approximation techniques are needed at
the meta level. AA can be viewed in essentially the same
framework by viewing entities at computations. Then the
AA meta-reasoning performs the same essential function as
the meta-reasoning in an agent, i.e., choose computations to
maximise EU. However, like much earlier AA work meta-
reasoning does not consider the possibility of several trans-
fers of control.

Conclusion
The E-Elves provides a unique opportunity for doing re-
search into AA for complex multi-agent systems. Our early
experiences dramatically demonstrated that single shot ap-
proaches from earlier work failed to meet the challenges
of acting in cooperation with other agents. To avoid mis-
coordination, while not forcing an agent into risky decisions,
we introduced the notion of a transfer of control strategy. An
important aspect of the transfer of control strategies is the
ability for the agent to change team coordination in order to
buy more time for a decision to be made. Transfer of control
strategies are operationalized via MDPs which creates a pol-
icy for the agent to follow. The MDP’s reward function takes
into account team factors, including the benefit of having the
team knowing the status of individual roles and the cost of
changing coordination. The MDP version of AA reasoning

I10

used in the E-Elves performs well, not making the mistakes
of the earlier, simpler implementation. Moreover, experi-
ments show that the policies produced by the MDP exhibit
a range of desirable properties, e.g., delaying activities less
often, when the cost of doing so is high. The experiments
indicate that MDPs are a practical and robust approach to
implementing AA reasoning.

References
Barber, K.; Goel, A.; and Martin, C. 2000. Dynamic adaptive
autonomy in multi-agent systems. Journal of Experimental and
Theoretical Artificial Intelligence 12(2):129–148.

Barber, K. S.; Martin, C.; and Mckay, R. 2000. A communication
protocol supporting dynamic autonomy agreements. In Proceed-
ings of PRICAI 2000 Workshop on Teams with Adjustable Auton-
omy, 1–10.

Bonasso, R.; Firby, R.; Gat, E.; Kortenkamp, D.; Miller, D.; and
Slack, M. 1997. Experiences with an architecture for intelligent
reactive agents. Journal of Experimental and Theorectical Artifi-
cial Intelligence 9(1):237–256.

Brann, D.; Thurman, D.; and Mitchell, C. 1996. Human interac-
tion with lights-out automation: A field study. In Proceedings of
the 1996 symposium on human interaction and complex systems,
276–283.

Chalupsky, H.; Gil, Y.; Knoblock, C.; Lerman, K.; Oh, J.; Pyna-
dath, D.; Russ, T.; and Tambe, M. 2001. Electric elves: Applying
agent technology to support human organizations. In Interna-
tional Conference on Innovative Applications of AI, 51–58.

Collins, J.; Bilot, C.; Gini, M.; and Mobasher, B. 2000. Mixed-
initiative decision-support in agent-based automated contracting.
In Proceedings of the International Conference on Autonomous
Agents (Agents’2000).

Dorais, G.; Bonasso, R.; Kortenkamp, D.; Pell, B.; and Schreck-
enghost, D. 1998. Adjustable autonomy for human-centered au-
tonomous systems on mars. In Proceedings of the first interna-
tional conference of the Mars society, 397–420.

Ferguson, G.; Allen, J.; and Miller, B. 1996. TRAINS-95 : to-
wards a mixed-initiative planning assistant. In Proceedings of the
third conference on artificial intelligence planning systems, 70–
77.

for Papers, C. 1999. Aaai spring symposium on aa. www.aaai.org.

Goldman, R.; Guerlain, S.; Miller, C.; and Musliner, D. 1997.
Integrated task representation for indirect interaction. In Working
Notes of the AAAI Spring Symposium on computational models
for mixed initiative interaction.

Gunderson, J., and Martin, W. 1999. Effects of uncertainty on
variable autonomy in maintainance robots. In Agents’99 work-
shop on autonomy control software, 26–34.

Hexmoor, H. 1999. Adjusting autonomy by introspection. In Pro-
ceedings of AAAI Spring Symposium on Agents with Adjustable
Autonomy, 61–64.

Hexmoor, H. 2000. A cognitive model of situated autonomy.
In Proceedings of PRICAI-2000, Workshop on Teams with Ad-
justable Autonomy, 11–20.

Horvitz, E.; Jacobs, A.; and Hovel, D. 1999. Attention-sensitive
alerting. In Proceedings of UAI’99, Conference on Uncertainty
and Artificial Intelligence, 305–313.

Lesser, V.; Atighetchi, M.; Benyo, B.; Horling, B.; Raja, A.; Vin-
cent, R.; Wagner, T.; Xuan, P.; and Zhang, S. 1999. The UMASS

intelligent home project. In Proceedings of the Third Annual Con-
ference on Autonomous Agents, 291–298.

Mitchell, T.; Caruana, R.; Freitag, D.; McDermott, J.; and
Zabowski, D. 1994. Experience with a learning personal assis-
tant. Communications of the ACM 37(7):81–91.

Musliner, D., and Krebsbach, K. 1999. Adjustable autonomy in
procedural control for refineries. In AAAI Spring Symposium on
Agents with Adjustable Autonomy, 81–87.

Puterman, M. L. 1994. Markov Decision Processes. John Wiley
& Sons.

Pynadath, D. V.; Tambe, M.; Chalupsky, H.; Arens, Y.; et al.
2000. Electric elves: Immersing an agent organization in a hu-
man organization. In Proceedings of the AAAI Fall Symposium
on Socially Intelligent Agents.

Quinlan, J. R. 1993. C4.5: Programs for machine learning. San
Mateo, CA: Morgan Kaufmann.

Russell, S. J., and Wefald, E. 1989. Principles of metareason-
ing. In Brachman, R. J.; Levesque, H. J.; and Reiter, R., eds.,
KR’89: Principles of Knowledge Representation and Reasoning.
San Mateo, California: Morgan Kaufmann. 400–411.

Schreckenhost, D. 1999. Human interaction with control soft-
ware supporting adjustable autonomy. In Musliner, D., and Pell,
B., eds., Agents with adjustable autonomy, AAAI 1999 spring
symposium series, 116–119.

Tambe, M.; Pynadath, D. V.; Chauvat, N.; Das, A.; and Kaminka,
G. A. 2000. Adaptive agent integration architectures for het-
erogeneous team members. In Proceedings of the International
Conference on MultiAgent Systems, 301–308.

Tambe, M. 1997. Towards flexible teamwork. Journal of Artificial
Intelligence Research (JAIR) 7:83–124.

I11

