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a b s t r a c t 

We introduce and study the main properties of a class of convex risk measures that refine Expected 

Shortfall by simultaneously controlling the expected losses associated with different portions of the tail 

distribution. The corresponding adjusted Expected Shortfalls quantify risk as the minimum amount of 

capital that has to be raised and injected into a financial position X to ensure that Expected Shortfall 

ES p (X ) does not exceed a pre-specified threshold g(p) for every probability level p ∈ [0 , 1] . Through the 

choice of the benchmark risk profile g one can tailor the risk assessment to the specific application of 

interest. We devote special attention to the study of risk profiles defined by the Expected Shortfall of a 

benchmark random loss, in which case our risk measures are intimately linked to second-order stochastic 

dominance. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

In this paper we introduce and discuss the main properties of 

 new class of quantile-based risk measures. Following the sem- 

nal paper by Artzner et al. (1999) , we view a risk measure as a

apital requirement rule. More precisely, we quantify risk as the 

inimal amount of capital that has to be raised and invested in 

 pre-specified financial instrument (which is typically taken to be 

isk free) to confine future losses within a pre-specified acceptable 

evel of security. Value at Risk (VaR) and Expected Shortfall (ES) 

re the most prominent examples of monetary risk measures in 

he above sense. Throughout, we always adopt the convention to 

ssign positive values to losses. Under VaR, a financial position is 

cceptable if its loss probability does not exceed a given thresh- 

ld. In line with our convention, this means that VaR coincides 

he lower quantile of the underlying distribution at an appropri- 

te level. Under ES, a financial position is acceptable if, on average, 

t does not produce a loss beyond a given VaR. In the banking reg-

latory sector, the Basel Committee has recently decided to move 

rom VaR at level 99% to ES at level 97 . 5% for the measurement

f financial market risk. In the insurance regulatory sector, VaR at 

evel 99 . 5% is the reference risk measure in the Solvency II and in

he forthcoming Insurance Capital Standard framework while ES at 

evel 99% is the reference risk measure in the Swiss Solvency Test 
∗ Corresponding author. 
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ramework. In the past 20 years, an impressive body of research 

as investigated the relative merits and drawbacks of VaR and ES 

t both a theoretical and a practical level. This investigation led to 

 better understanding of the properties of these two risk mea- 

ures at the same time triggering a variety of new research ques- 

ions about risk measures in general. We refer to early work on ES 

n Acerbi and Tasche (2002) Acerbi (2002) , Frey and McNeil (2002) , 

nd Rockafellar and Uryasev (2002) (where ES was called Condi- 

ional VaR). Some recent contributions to the broad investigation 

n whether and to what extent VaR and ES meet regulatory objec- 

ives are Koch-Medina and Munari (2016) , Embrechts et al. (2018) , 

eber (2018) , Bignozzi et al. (2020) , Baes et al. (2020) , and

ang and Zitikis (2021) . For robustness problems concerning VaR 

nd ES, see, e.g., Cont et al. (2010) and Krätschmer et al. (2014) ,

nd for their backtesting, see, e.g., Ziegel (2016) , Du and Escan- 

iano (2017) , and Kratz et al. (2018) . 

A fundamental difference between VaR and ES is that, by defi- 

ition, VaR is completely blind to the behavior of the loss tail be- 

ond the reference quantile whereas ES depends on the whole tail 

eyond it. It is often argued that this difference, together with the 

onvexity property, makes ES a superior risk measure compared to 

aR. In fact, this is the main motivation that led the Basel Com- 

ittee to shift from VaR to ES in their market risk framework; see 

CBS (2012) . However, every risk measure captures risk in a spe- 

ific manner and, as such, is bound to possess some limitations. 

his is also the case of ES. Indeed, being essentially an average be- 

ond a given quantile, ES can only provide an aggregate estima- 

ion of risk which, by its very definition, does not distinguish across 

https://doi.org/10.1016/j.jbankfin.2021.106297
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ifferent tail behaviors with the same mean . While in specific situa- 

ions a finer risk classification can be obtained by means of other 

isk measures, including spectral and deviation risk measures, our 

oal is to introduce a general class of convex risk measures that 

elp make that distinction by using ES as their fundamental build- 

ng block . The advantage of this approach is that it can be directly 

inked to a regulatory framework based on ES. To this end, we con- 

truct a risk measure that is sensitive to changes in the ES profile 

f a random variable X , i.e., the curve of ES 

p �→ ES p (X ) 

iewed as a function of the underlying confidence level. More 

pecifically, we “adjust” ES into 

S g (X ) := sup 

p∈ [0 , 1] 

{ ES p (X ) − g(p) } 

here g : [0 , 1] → (−∞ , ∞ ] is a given increasing function. The risk

easure ES g is called the adjusted ES with risk profile g and is a 

onetary risk measure in the sense of Artzner et al. (1999) . Indeed, 

he quantity ES g (X ) can be interpreted as the minimal amount of 

ash that has to be raised and injected into X in order to ensure 

he following target solvency condition: 

S g (X ) � 0 ⇐⇒ ES p (X ) � g(p) for every p ∈ [0 , 1] . 

n this sense, the function g defines the threshold between accept- 

ble and unacceptable ES profiles. Interestingly, ES g is a convex risk 

easure but is not coherent unless it reduces to a standard ES. 

The goal of this paper is to introduce the class of adjusted ES’s 

nd discuss their main theoretical properties. In Section 2 we pro- 

ide a formal definition and a useful representation of adjusted ES 

ogether with a number of illustrations. The focus of Section 3 is 

n some basic mathematical properties. A special interesting case 

s when the risk profile g is given by the ES of a benchmark ran-

om variable. We focus on this situation in Section 4 and show 

hat such special adjusted ES’s are strongly linked with second- 

rder stochastic dominance. More precisely, they coincide with the 

onetary risk measures for which acceptability is defined in terms 

f carrying less risk, in the sense of second-order stochastic dom- 

nance, than a given benchmark random variable. In Section 5 we 

ocus on a variety of optimization problems featuring risk function- 

ls either in the objective function or in the optimization domain 

nd study the existence of optimal solutions in the presence of this 

ype of risk measures. In each case of interest we are able to es- 

ablish explicit optimal solutions. 

. Introducing adjusted ES 

Throughout the paper we fix an atomless probability space 

�, F , P ) and denote by L 1 the space of (equivalent classes with re-

pect to P -almost sure equality of) P -integrable random variables. 

or any two random variables X, Y ∈ L 1 we write X ∼ Y whenever

and Y are identically distributed. We adopt the convention that 

ositive values of X ∈ L 1 correspond to losses. In this setting, Value 

t Risk (VaR) and Expected Shortfall (ES) are respectively defined 

s 

aR p (X ) := 

{
inf { x ∈ R | P (X � x ) � p} if p ∈ (0 , 1] , 
ess inf X if p = 0 , 

S p (X ) := 

{
1 

1 −p 

∫ 1 
p VaR q (X ) d q if p ∈ [0 , 1) , 

ess sup X if p = 1 . 

The quantities VaR p (X ) and ES p (X ) represent the minimal 

mount of cash that has to be raised and injected into X in order 

o ensure the following target solvency condition (for 0 < p < 1 ): 

aR p (X ) � 0 ⇐⇒ P (X � 0) � p, 
2 
S p (X ) � 0 ⇐⇒ 

∫ 1 

p 

VaR q (X ) d q � 0 . 

he VaR solvency condition requires that the loss probability of X

s capped by 1 − p whereas the ES solvency condition states that 

here is no loss on average beyond the (left) p-quantile of X . 

The focus of the paper is on the following class of risk mea- 

ures. Here and in the sequel, we denote by G the set of all func- 

ions g : [0 , 1] → (−∞ , ∞ ] that are increasing (in the non-strict

ense) and not identically ∞ . Moreover, we use the convention 

 − ∞ = −∞ . 

efinition 2.1. Consider a function g ∈ G and define the set 

 g := 

{
X ∈ L 1 | ES p ( X ) � g ( p ) , ∀ p ∈ [ 0 , 1 ] 

}
. 

he functional ES g : L 1 → (−∞ , ∞ ] defined by 

S g (X ) := inf { m ∈ R | X − m ∈ A g } . 
s called the g-adjusted Expected Shortfall (g-adjusted ES) . 

To best appreciate the financial interpretation of the above risk 

easure, it is useful to consider the ES profile associated with a 

andom variable X ∈ L 1 , i.e., the function 

p �→ ES p (X ) . 

rom this perspective, the function g in the preceding definition 

an be interpreted as a threshold between acceptable (safe) and 

nacceptable (risky) ES profiles. In this sense, the set A g consists of 

ll the positions with acceptable ES profile and the quantity ES g (X ) 

epresents the minimal amount of capital that has to be injected 

nto X in order to align its ES profile with the chosen acceptability 

rofile. For this reason, we will sometimes refer to g as the target 

S profile or, more generally, the target risk profile . If, for given p ∈
0 , 1] , we consider the target ES profile 

(q ) = 

{
0 if q ∈ [0 , p] , 
∞ if q ∈ (p, 1] , 

hen ES g (X ) = ES p (X ) for every random variable X ∈ L 1 . In words, 

he standard ES is a special case of an adjusted ES. The next propo- 

ition highlights an equivalent but operationally preferable formu- 

ation of adjusted ES’s which also justifies the chosen terminology. 

roposition 2.2. For every risk profile g ∈ G and for every X ∈ L 1 we

ave 

S g (X ) = sup 

p∈ [0 , 1] 

{ ES p (X ) − g(p) } . 

roof. Fix X ∈ L 1 and note that for every m ∈ R the condition X −
 ∈ A g is equivalent to 

S p (X ) − m = ES p (X − m ) � g(p) 

or every p ∈ [0 , 1] . For p = 1 both sides could be equal to ∞ . How-

ver, in view of our convention ∞ − ∞ = −∞ , the above inequality 

olds if and only if m � ES p (X ) − g(p) for every p ∈ [0 , 1] . The de-

ired representation easily follows. �

emark 2.3. (i) In line with our main motivation, the adjusted ES 

s a tool that allows us to distinguish risks with the same tail ex- 

ectation without leaving the world of ES. In the context of the 

iscussion on tail risk triggered by BCBS (2012) , the authors of 

iu and Wang (2021) proposed the following way to quantify the 

egree of tail blindness of a risk measure: For a given p ∈ (0 , 1) ,

 functional ρ : L 1 → (−∞ , ∞ ] satisfies the p-tail property if for all

, Y ∈ L 1 

aR q (X ) = VaR q (Y ) for every q ∈ [ p, 1) ⇒ ρ(X ) = ρ(Y ) . 

n this case, ρ does not distinguish between two random losses 

aving the same (left) quantiles beyond level p. It is not difficult 
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Fig. 1. Left: Density function of X 1 (blue) and X 2 (black). The vertical lines correspond to the respective 99% quantiles. Right: Tails of of X 1 (blue) and X 2 (black) beyond the 

99% quantile. Below: ES profile of X 1 (blue) and X 2 (black) for p � 0 . 99 . (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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o prove that ES g satisfies the p-tail property if and only if g is 

onstant on the interval (0 , p) . This provides a simple way to tailor

he tail sensitivity of ES g . 

(ii) The definition of ES g is reminiscent of the Loss Value at 

isk (LVaR) introduced in Bignozzi et al. (2020) . In that case, one 

akes an increasing and right-continuous function α : [0 , ∞ ) → 

0 , 1] (the so-called benchmark loss distribution) and defines the 

cceptance set by 

 α := { X ∈ L 1 | P (X > x ) � α(x ) , ∀ x � 0 } . 
he corresponding LVaR is given by 

VaR α(X ) := inf { m ∈ R | X − m ∈ A α} . 
he quantity LVaR α(X ) represents the minimal amount of capital 

hat has to be injected into the position X in order to ensure that, 

or each loss level x , the probability of exceeding a loss of size x is

ontrolled by α(x ) . According to Proposition 3.6 in the cited paper, 

e can equivalently write 

VaR α(X ) = sup 

p∈ [0 , 1] 

{
VaR p (X ) − α−1 

+ (p) 
}
, (1) 

here α−1 
+ is the right inverse of α. This highlights the similarity 

ith adjusted ES’s. 

To illustrate the functioning of the adjusted ES, we consider 

he following simple example. Consider two normally distributed 

andom variables X i ∼ N(μi , σ
2 
i 
) , with μ1 = 1 , μ2 = 0 , σ1 = 0 . 125 ,

2 = 0 . 5 . For every probability level p ∈ (0 , 1) we have 

S p (X i ) = μi + σi 

φ(�−1 (p)) 

1 − p 
, 

here φ and � are, respectively, the density and the distribution 

unction of a standard normal random variable. For p = 99% the ES 

f both random variables is approximately equal to 1.33. In Fig. 1 

e plot the two distribution functions. Despite having the same 

S, the two risks are quite different mainly because of their differ- 

nt variance: The potential losses of X tend to accumulate around 
1 

3 
ts mean whereas those of X 2 are more disperse and can be sig- 

ificantly higher (compare the tails in Fig. 1 ). A closer look at the 

S profile of both random variables shows that the ES profile of X 1 
s more stable than that of X 2 (see again Fig. 1 ). A simple way to

istinguish X 1 and X 2 while, at the same time, focusing on average 

osses beyond the 99% quantile is to consider the adjusted ES with 

isk profile 

(p) = 

{ 

0 if p ∈ [0 , 0 . 99] , 
0 . 1 if p ∈ (0 . 99 , 0 . 9975] , 
∞ if p ∈ (0 . 9975 , 1] . 

n this case, we easily obtain 

S g (X i ) = max { ES 0 . 99 (X i ) , ES 0 . 9975 (X i ) − 0 . 1 } 
= 

{
ES 0 . 99 (X 1 ) ≈ 1 . 33 for i = 1 , 

ES 0 . 9975 (X 2 ) − 0 . 1 ≈ 1 . 45 for i = 2 . 

(2) 

he focus of ES g is still on the tail beyond the 99% quantile. How- 

ver, the risk measure ES g is able to detect the heavier tail of X 2 
nd penalize it with a higher capital requirement. This is because 

S g is additionally sensitive to the tail beyond the 99 . 75% quantile 

nd penalizes any risk whose average loss on this far region of the 

ail is too large. 

We use a similar target risk profile to compare the behavior of 

he classical ES and the adjusted ES on real data. We collect the 

&P 500 and the NASDAQ Composite indices daily log-returns (us- 

ng closing prices) from January 01, 1999 to June 30, 2020. Each in- 

ex has 5406 data points (publicly available from Yahoo Finance). 

e estimate the risk measures using a standard AR(1)-GARCH(1,1) 

odel with t innovations (see Chapter 4 of McNeil et al. (2015) for 

etails). In line with Basel III guidelines, to obtain less volatile out- 

omes we compute average risk measure estimates based on a 60- 

ays moving window. We consider the risk profile function 

(p) = 

{ 

0 if p ∈ [0 , 0 . 95] , 
0 . 01 if p ∈ (0 . 95 , 0 . 99] , 
∞ if p ∈ (0 . 99 , 1] , 
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Fig. 2. Estimated ES 0 . 95 , ES g , and VaR 0 . 95 for S&P 500 and NASDAQ. 
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hich yields 

S g (X ) = max { ES 0 . 95 (X ) , ES 0 . 99 (X ) − 0 . 01 } 
imilar to (2) in a different context. The numbers 0.95, 0.99, and 

.01 that appear in g are chosen for the ease of illustration only. 

he 20-year estimated values of ES at level 95% and ES g , as well as 

hose of VaR at level 95% , are plotted in Fig. 2 . As we can see from

he numerical results on both S&P 500 and NASDAQ, the estimated 

alues of ES g and the reference ES approximately agree with each 

ther during most of the considered time horizon. However, during 

eriods of significant financial stress, such as the dot-com bubble 

n 20 0 0, the subprime crisis in 20 08, and the COVID-19 crisis in

arly 2020, ES g is visibly larger than the reference ES . This illus- 

rates that ES g may capture tail risk in a more appropriate way 

han ES , especially under financial stress. 

.1. Choosing the target ES profile 

As illustrated above, a key feature of adjusted ES is the flexibil- 

ty in the choice of the target risk profile g. Indeed, the same ran-

om loss can be considered more or less relevant depending on a 

ariety of factors, including the availability of hedging strategies or 

ther risk mitigation tools in the underlying business sector. The 

hoice of g can be therefore tailored to the particular area of ap- 

lication by assigning different weights to different portions of the 

eference tail. Two examples are especially relevant. On the one 

and, we consider a continuous risk profile of the form 

(p) = ES p (L ) , 

here L is a benchmark random loss. In this case, we have 

S g (X ) = sup 

p∈ [0 , 1] 

{ ES p (X ) − ES p (L ) } . 

he associated target solvency condition reads: 

S g (X ) � 0 ⇐⇒ ES p (X ) � ES p (L ) for every p ∈ [0 , 1] . 

his choice of g seems appropriate in the context of portfolio risk 

anagement. The distribution of the random loss L may belong to 

 class of benchmark distributions and the adjusted ES corresponds 

o the smallest amount of cash that has to be raised and injected 

n the portfolio to shift its profit and loss distribution until the new 

istribution dominates the benchmark distribution in the sense of 

econd order stochastic dominance. In other words, the above ad- 

usted ES incorporates second-order stochastic dominance into a 

onetary risk measure by 

S g (X ) = inf { m ∈ R | X − m � SSD L } 

4 
here � SSD denotes second-order stochastic domination. Despite 

he importance of such a concept, we are not aware of earlier at- 

empts to explicitly construct monetary risk measures whose un- 

erlying acceptability condition is based on second-order stochas- 

ic dominance. This paper offers first results in this direction 

hereby preparing the theoretical ground for new contributions 

o the rich literature on the application of stochastic dominance 

o portfolio risk management, for which we refer to the sur- 

ey by Levy (1992) and to the more recent contributions by, 

.g., Ogryczak and Ruszczynski (2002) , De Giorgi (2005) , and 

odder et al. (2015) . 

In the second example, we consider a piecewise constant func- 

ion of the form 

(p) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

r 1 if p ∈ [0 , p 1 ] , 
r 2 if p ∈ (p 1 , p 2 ] , 
. . . 

r n if p ∈ (p n −1 , p n ] , 
∞ if p ∈ (p n , 1] , 

(3) 

here 0 = r 1 < · · · < r n −1 < ∞ and 0 < p 1 < · · · < p n < 1 . In this

ase, we have 

S g (X ) = max 
i =1 , ... ,n 

{ ES p i (X ) − r i } . 
he associated target solvency condition reads: 

S g (X ) � 0 ⇐⇒ ES p i (X ) � r i for every i = 1 , . . . , n . 

he coefficients r 1 , . . . , r n represent benchmark risk thresholds 

hereas p 1 , . . . , p n correspond to some pre-specified confidence 

evels. Note that, by design, we always have 

S g (X ) � ES p 1 (X ) . 

his choice of g seems appropriate in the context of solvency reg- 

lation. If p 1 coincides with a reference regulatory level, e.g. 97 . 5% 

n Basel III and 99% in the Swiss Solvency Test, the adjusted ES 

s by design as stringent as the regulatory ES and the additional 

hresholds r 2 , . . . , r n impose extra limitations to the amount of 

isk that a firm is allowed to take. In particular, different bounds 

an be imposed for the, e.g., one in a hundred times event, one 

n a thousand times event, and the one in a hundred thousand 

imes event. These bounds may correspond to suitable fractions 

f available capital so that, in case of such adverse events, one 

an directly quantify the necessary cost for covering the underly- 

ng losses. In this way, the actual risk bounds would be firm spe- 

ific but the rule to determine them would be the same for ev- 

ry company. This is reminiscent of the proposal about Loss VaR 

n Bignozzi et al. (2020) , with ES replacing VaR. It is worth point-

ng out that imposing additional constraints for higher risks may 
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s  
ead to lower the base regulatory requirement by taking p 1 strictly 

maller than the reference regulatory level. By doing so, regulators 

ay avoid penalizing firms that are particularly careful about their 

ail behavior. 

A piecewise constant risk profile may be adopted also in 

ther applications. We provide a simple illustration in the con- 

ext of cyber risk. Differently from other operational risks, cyber 

isk has a strong geographical component. The empirical study 

iener et al. (2015) , which takes into account 22,075 incidents 

eported between March 1971 and September 2009, reveals that 

Northern America has some of the lowest mean cyber risk and 

on-cyber risk losses, whereas Europe and Asia have much higher 

verage losses despite Northern American companies experience 

ore than twice as many (51.9 per cent) cyber risk incidents 

han European rms (23.2 per cent) and even more than twice as 

any as firms located on other continents”. A possible reason is 

hat North American companies may be better equipped to pro- 

ect themselves against such events. Cyber risk cannot be properly 

anaged by a simple frequency-severity analysis. In the qualita- 

ive analysis of Refsdal et al. (2015) , many additional factors are 

dentified including ease of discovery, ease of exploit, awareness 

nd intrusion detection. The answers may very well depend on 

he specific sector if not on the specific firms under consideration. 

he choice of different reference risk profiles g across companies 

ight be a way to apply the theory of risk measures in the spirit

f Artzner et al. (1999) to the rather complex analysis of this type 

f risk. For example, it would be possible to set 

(p) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

ES 0 . 99 (Z 1 ) if p ∈ [0 , 0 . 99] , 
ES 0 . 999 (Z 2 ) if p ∈ (0 . 99 , 0 . 999] , 
ES 0 . 9999 (Z 3 ) if p ∈ (0 . 999 , 0 . 9999] , 
∞ otherwise , 

here Z 1 , Z 2 , Z 3 are suitable benchmark random losses. The result- 

ng adjusted ES is 

S g (X ) = max { ES 0 . 99 (X ) − ES 0 . 99 (Z 1 ) , ES 0 . 999 (X ) 

−ES 0 . 999 (Z 2 ) , ES 0 . 999 (X ) − ES 0 . 999 (Z 3 ) } . 
he associated target solvency condition is given by 

S g (X ) � 0 ⇐⇒ 

{ 

ES 0 . 99 (X ) � ES 0 . 99 (Z 1 ) , 
ES 0 . 999 (X ) � ES 0 . 999 (Z 2 ) , 
ES 0 . 9999 (X ) � ES 0 . 9999 (Z 3 ) . 

he choice of g should be motivated by specific cyber risk events 

see Refsdal et al. (2015) for a categorization of likelihood/severity 

or different cyber attacks): The one in a hundred times event 

ould be the malfunctioning of the server, the one in a thousand 

imes event the stealing of the profile data of the clients, the one 

n a hundred thousand times event the stealing of the credit cards 

etails of the customers. Note that it is possible to choose a sin- 

le benchmark random loss or a different benchmark random loss 

or each considered incident. This choice could also be company 

pecific so as to reflect the company’s ability to react to the differ- 

nt types of cyber attacks. This is in line with Biener et al. (2015) ,

hich says that “Regarding size (of the average loss per event), we 

bserve a U-shaped relation, that is, smaller and larger firms have 

igher costs than medium-sized. Possibly, smaller firms are less 

ware of and less able to deal with cyber risk, while large firms 

ay suffer from complexity”. 

While in principle a different risk category may call for a dif- 

erent choice of the acceptable ES profile g, it is sometimes impor- 

ant in practice to ensure a certain degree of comparability across 

isk assessments. 1 Suppose for example that a bank wants to com- 

are the exposure to different risks X 1 , . . . , X k arising from different 
1 We thank an anonymous referee for stressing this important point. 

t

a

m

5 
usiness lines. In principle, each business unit may use a specific 

S profile g j . However, if the bank requires that g 1 = · · · = g k = 0

n [0 , p) for a common p ∈ (0 , 1) , we can write 

S g j (X j ) = ES p (X j ) + ES g j (X j ) − ES p (X j ) ︸ ︷︷ ︸ 
� 0 

. 

or each X j , the first component in the decomposition is an ES 

ith common confidence level p, which can be used for compar- 

son. The exceedance term ES g j (X j ) − ES p (X j ) represents the extra 

mount of capital that is needed to cover the specific risk type. 

he above decomposition takes a more explicit form if each g j is a 

iecewise constant function as in (3) with customized parameters 

 

j 
i 
’s and p 

j 
i 
’s. If we take p 1 

1 
= · · · = p k 

1 
= p, then we obtain 

S g j (X j ) = ES p (X j ) + max 

{ 

max 
i =2 , ... ,n 

{ ES 
p j 

i 

(X j ) − ES p (X j ) − r j 
i 
} , 0 

} 

. 

n this case, the risk-specific component is activated only when 

S 
p 

j 
i 

(X j ) is larger than the penalized benchmark ES term ES p (X j ) + 

 

j 
i 

for some index i . The parameters r 
j 
i 
’s and p 

j 
i 
’s can be tailored,

.g., to the size of the underlying tails. This example can be easily 

dapted to include a different number of thresholds for each risk 

lass, i.e., n may also depend on j. The choice may depend, e.g., on 

he size of the available observation sample and the frequency of 

ail observations. 

. Basic properties of adjusted ES 

In this section we discuss a selection of relevant properties 

f adjusted ES. It is a direct consequence of our definition that 

very adjusted ES is a monetary risk measure in the sense of 

öllmer and Schied (2016) , i.e., is monotone and cash additive. The 

ther properties listed below are automatically inherited from the 

orresponding properties of ES. For every risk profile g ∈ G the risk 

easure ES g satisfies the following properties: 

• monotonicity : ES g (X ) � ES g (Y ) for all X, Y ∈ L 1 such that X � Y . 

• cash additivity : ES g (X + m ) = ES g (X ) + m for all X ∈ L 1 and m ∈
R . 

• convexity : ES g (λX + (1 − λ) Y ) � λES g (X ) + (1 − λ) ES g (Y ) for all

X, Y ∈ L 1 and λ ∈ [0 , 1] . 

• law invariance : ES g (X ) = ES g (Y ) for all X, Y ∈ L 1 such that X ∼ Y .

• normalization : ES g (0) = 0 if and only if g(0) = 0 . 

Being convex and law invariant, every adjusted ES is auto- 

atically consistent with second-order stochastic dominance; see, 

.g., Bellini et al. (2021) . In fact, the link between adjusted ES’s 

nd stochastic dominance is far stronger. Recall that for any ran- 

om variables X, Y ∈ L 1 we say that X dominates Y with respect to 

econd-order stochastic dominance , written X � SSD Y , whenever the 

ollowing condition holds: 

E [ u (−X )] � E [ u (−Y )] for every 

increasing and concave function u : R → R . 

n the language of utility theory, this means that X is preferred to 

 by every risk-averse agent (recall that positive values of a ran- 

om variable represent losses). We refer to Levy (1998) for a clas- 

ical reference on stochastic dominance. By convexity and law in- 

ariance, for every risk profile g ∈ G the risk measure ES g satisfies: 

• consistency with � SSD : ES g (X ) � ES g (Y ) for all X, Y ∈ L 1 such

that X � SSD Y . 

This implies that ES g belongs to the class of consistent risk mea- 

ures as defined in Mao and Wang (2020) . In fact, it is shown in

hat paper that any consistent risk measure can be expressed as 

n infimum of a collection of risk measures which, using the ter- 

inology of this paper, are precisely of adjusted ES type. 
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roposition 3.1 (Theorem 3.1 in Mao and Wang (2020) ) . Let ρ : 

 

1 → (−∞ , ∞ ] be cash additive and consistent with � SSD . Then, there

xists H ⊂ G such that for every X ∈ L 1 we have 

(X ) = inf 
g∈H 

ES g (X ) . 

The above proposition shows that adjusted ES can be seen as 

he building block for risk measures that are consistent with second- 

rder stochastic dominance . This class is large and includes, e.g., all 

aw-invariant convex risk measures. 

It is well known that, in addition to convexity, ES satisfies pos- 

tive homogeneity. This qualifies it as a coherent risk measure in 

he sense of Artzner et al. (1999) . In the next proposition we show

hat ES g satisfies positive homogeneity only in the case where it 

oincides with some ES. In other words, with the exception of ES, 

he class of adjusted ES’s consists of monetary risk measures that 

re convex but not coherent. 

roposition 3.2. For every risk profile g ∈ G the following statements 

re equivalent: 

a) ES g is positively homogeneous, i.e., ES g (λX ) = λES g (X ) for all X ∈ 

L 1 and λ ∈ (0 , ∞ ) . 

b) g(0) = 0 and g(p) ∈ (0 , ∞ ) for at most one p ∈ (0 , 1] . 

c) ES g = ES p where p = sup { q ∈ [0 , 1] | g(q ) = 0 } . 
roof. “(a) ⇒ (b)”: Since ES g is positively homogeneous we have 

g(0) = −λES g (0) = −ES g (λ0) = −ES g (0) = g(0) 

or every λ ∈ (0 , ∞ ) . As g(0) < ∞ by our assumptions on the class

, we must have g(0) = 0 . Now, assume by way of contradiction

hat 0 < g(p 1 ) � g(p 2 ) < ∞ for some 0 < p 1 < p 2 � 1 . Take now

 ∈ (p 1 , p 2 ) and b ∈ (0 , g(p 1 )) and set 

 = min 

{
− (1 − q ) b 

p − p 1 
, inf 

p∈ [0 ,p 1 ) 

(1 − p) g(p) − b(1 − q ) 

q − p 

}
. 

ote that a < 0 . Since the underlying probability space is assumed 

o be atomless, we can always find a random variable X ∈ L 1 satis-

ying 

 X (x ) = 

{ 

0 if x ∈ (−∞ , a ) , 
q if x ∈ [ a, b) , 
1 if x ∈ [ b, ∞ ) . 

ote that, for every p ∈ [0 , p 1 ) , the definition of a implies 

(1 − p) g(p) − b(1 − q ) 

q − p 
� a. 

oreover, for every p ∈ [ p 1 , q ) , the choice of b implies 

(1 − p) g(p) − b(1 − q ) 

q − p 
� 

(1 − p) g(p 1 ) − b(1 − q ) 

q − p 

� 

(1 − p) b − b(1 − q ) 

q − p 
= b � a. 

s a result, for every p ∈ [0 , q ) we obtain 

S p (X ) = 

a (q − p) + b(1 − q ) 

1 − p 
� g( p) . 

imilarly, for every p ∈ [ q, 1] we easily see that 

S p (X ) = b < g(p 1 ) � g(q ) � g(p) . 

his yields ES g (X ) � 0 . However, taking λ > 0 large enough deliv- 

rs 

S g (λX ) = sup 

p∈ [0 , 1] 

{ λES p (X ) − g(p) } � λES q (X ) − g(q ) 

= λb − g(q ) > 0 

n contrast to positive homogeneity. As a consequence, we must 

ave p = p and thus (b) holds. 
1 2 

6 
“(b) ⇒ (c)”: Set q = sup { p ∈ [0 , 1] | g(p) = 0 } . Note that q ∈ [0 , 1] .

learly, we have g(p) = 0 for every p ∈ [0 , q ) and g(p) = ∞ for ev-

ry p ∈ (q, 1] by assumption. Take an arbitrary X ∈ L 1 . From the

efinition of ES and the continuity of the integral, it follows that 

p �→ ES p (X ) is continuous. As a result, we obtain 

S g (X ) = sup 

p∈ [0 ,q ] 
{ ES p (X ) − g(p) } = sup 

p∈ [0 ,q ] 
ES p (X ) = ES q (X ) . 

“(c) ⇒ (a)”: The implication is clear. �

An adjusted ES is convex but, unless it coincides with a 

tandard ES, not subadditive. It is therefore natural to focus 

n infimal convolutions of adjusted ES’s, which are important 

ools in the study of optimal risk sharing and capital alloca- 

ion problems involving non-subadditive risk measures; see, e.g., 

arrieu and El Karoui (2005) , Burgert and Rüschendorf (2008) , 

ilipovi ́c and Svindland (2008) for results in the convex world and 

mbrechts et al. (2018) for results beyond convexity. 

efinition 3.3. Let n ∈ N and consider ρ1 , . . . , ρn : L 
1 → (−∞ , ∞ ] .

or every X ∈ L 1 we set 

 

n (X ) := 

{ 

(X 1 , . . . , X n ) ∈ L 1 × · · · × L 1 
∣∣∣ n ∑ 

i =1 

X i = X 

} 

. 

he map �n 
i =1 

ρi : L 
1 → [ −∞ , ∞ ] defined by 

n 
i =1 ρi (X ) := inf 

{ 

n ∑ 

i =1 

ρi (X i ) 

∣∣∣ (X 1 , . . . , X n ) ∈ S n (X ) 

} 

, 

s called the inf-convolution of ρ1 , . . . , ρn . For n = 2 we simply

rite ρ1 �ρ2 . 

emark 3.4. Recall that, if ρ1 , . . . , ρn are monetary risk measures, 

hen for every X ∈ L 1 

n 
i =1 ρi (X ) = inf { m ∈ R | X − m ∈ A 1 + · · · + A n } 
here A i = { X ∈ L 1 | ρi (X ) � 0 } is the acceptance sets induced by

i for i = 1 , . . . , n . This shows that the infimal convolution of mon-

tary risk measures is also a monetary risk measure. 

We establish a general inequality for inf-convolutions. More 

recisely, we show that any inf-convolution of adjusted ES’s can 

e controlled from below by a suitable adjusted ES. This allows us 

o derive a formula for the inf-convolution of an adjusted ES with 

tself. 

roposition 3.5. Let n ∈ N and consider the risk profiles 

, g 1 , . . . , g n ∈ G. For every X ∈ L 1 

n 
i =1 ES g i (X ) � ES 

∑ n 
i =1 g i (X ) . (4) 

n particular, for every X ∈ L 1 

n 
i =1 ES g (X ) = ES ng (X ) . (5) 

roof. To show (4) , it suffices to focus on the case n = 2 . For all

 ∈ L 1 and p ∈ [0 , 1] we have 

S g 1 (Y ) + ES g 2 (X − Y ) � ES p (Y ) − g 1 (p) + ES p (X − Y ) − g 2 (p) 

� ES p (X ) − (g 1 + g 2 )(p) 

y subadditivity of ES. Taking the supremum over p and the infi- 

um over Y delivers the desired inequality. To show (5) , note that 

he inequality “� ” follows directly from (4) . To show the inequality 

� ”, observe that 

S g 
(

1 

n 

X 

)
= 

1 

n 

sup 

p∈ [0 , 1] 

{ ES p (X ) − ng(p) } = 

1 

n 

ES ng (X ) . 

s a result, we infer that 

n 
i =1 ES g (X ) � 

n ∑ 

i =1 

ES g 
(

1 

n 

X 

)
= ES ng (X ) . 
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his yields the desired inequality and concludes the proof. �

emark 3.6. A risk measure that is not subadditive may incen- 

ivize the splitting and (internal) reallocation of risk with the 

ole purpose of reaching a lower level of capital requirements. 

his is related to the notion of regulatory arbitrage introduced in 

ang (2016) . In line with that paper, we say that a functional 

: L 1 → (−∞ , ∞ ] is either free of regulatory arbitrage or has lim-

ted or infinite regulatory arbitrage if the quantity (recall our con- 

ention ∞ − ∞ = −∞ ) 

(X ) − inf 
n ∈ N 

�n 
i =1 ρ(X ) 

s null, finite, or infinite for every X ∈ L 1 . Clearly, every risk mea-

ure that is not subadditive admits regulatory arbitrage. The pre- 

eding result on infimal convolutions allows us to show that an 

djusted ES exhibits regulatory arbitrage only in a limited form. 

ore precisely, for a risk profile g ∈ G with g(0) = 0 we have: 

i) ES g (X ) − inf n ∈ N �n 
i =1 

ES g (X ) < ∞ for every X ∈ L 1 with ES g (X ) < 

∞ . 

ii) ES g (X ) − inf n ∈ N �n 
i =1 

ES g (X ) = ∞ for every X ∈ L 1 with ES g (X ) = 

∞ . 

In particular, to prove (i), it suffices to note that 

roposition 3.5 implies for every X ∈ L 1 

inf 
 ∈ N 

�n 
i =1 ES g (X ) = inf 

n ∈ N 
ES ng (X ) � ES 0 (X ) = E [ X ] > −∞ . 

We conclude this section by focusing on dual representations, 

hich are a useful tool in many applications, notably optimization 

roblems; see the general discussion in Rockafellar (1974) and the 

esults on risk measures in Föllmer and Schied (2016) . In what fol- 

ows we denote by P the set of probability measures on (�, F ) 

nd use standard notation for Radon-Nikodym derivatives. 

roposition 3.7. Consider a risk profile g ∈ G. For every X ∈ L 1 we

ave 

S g (X ) = sup 

Q ∈P ∞ 
P 

{ 

E Q [ X ] − g 

(
1 −

∥∥∥dQ 

dP 

∥∥∥−1 

∞ 

)} 

, 

here P 

∞ 

P 
= { Q ∈ P | Q 
 P , d Q /d P ∈ L ∞ } . 

roof. For notational convenience, for every Q ∈ P 

∞ 

P 
set 

 (Q ) = 

{ 

p ∈ [0 , 1] 

∣∣∣ dQ 

dP 

� 

1 

1 − p 

} 

= 

[ 
1 −

∥∥∥dQ 

dP 

∥∥∥−1 

∞ 

, 1 

] 
. 

ake X ∈ L 1 . The well-known dual representation of ES states that 

S p (X ) = sup 

{ 

E Q [ X ] 

∣∣∣Q ∈ P 

∞ 

P , 
dQ 

dP 

� 

1 

1 − p 

} 

or every p ∈ [0 , 1] ; see, e.g., Föllmer and Schied (2016) . Then, it

ollows that 

S g (X ) = sup 

p∈ [0 , 1] 

{ 

sup 

Q ∈P ∞ 
P 

, p∈ D (Q ) 
{ E Q [ X ] − g(p) } 

} 

= sup 

Q ∈P ∞ 
P 

{ 

sup 

p∈ D (Q ) 
{ E Q [ X ] − g(p) } 

} 

= sup 

Q ∈P ∞ 
P 

{ 

E Q [ X ] − inf 
p∈ D (Q ) 

g(p) 
} 

. 

t remains to observe that the above infimum equals g(1 −
 d Q /d P ‖ −1 ∞ 

) by monotonicity of g. �

. Benchmark-adjusted ES 

In this section we focus on a special class of adjusted ES’s for 

hich the target risk profiles are expressed in terms of the ES 
7 
rofile of a reference random loss. As shown below, these spe- 

ial adjusted ES’s are intimately linked with second-order stochas- 

ic dominance. 

efinition 4.1. Consider a functional ρ : L 1 → (−∞ , ∞ ] . 

1) ρ is called a benchmark-adjusted ES if there exists Z ∈ L 1 such 

that for every X ∈ L 1 

ρ(X ) = sup 

p∈ [0 , 1] 

{ ES p (X ) − ES p (Z) } . 

2) ρ is called an SSD-based risk measure if there exists Z ∈ L 1 such 

that for every X ∈ L 1 

ρ(X ) = inf { m ∈ R | X − m � SSD Z} . 
It is clear that benchmark-adjusted ES’s are special instances of 

djusted ES’s for which the target risk profile is defined in terms 

f the ES profile of a benchmark random loss. The distribution of 

his random loss may correspond, for example, to the (stressed) 

istorical loss distribution of the underlying position or to a tar- 

et (risk-class specific) loss distribution. It is also clear that SSD- 

ased risk measures are nothing but monetary risk measures asso- 

iated with acceptance sets defined through second-order stochas- 

ic dominance. 

The classical characterization of second-order stochastic domi- 

ance in terms of ES can be used to show that benchmark-adjusted 

S’s coincide with SSD-based risk measures. In addition, we pro- 

ide a simple characterization of this class of risk measures. 

heorem 4.2. For a monetary risk measure ρ : L 1 → (−∞ , ∞ ] the

ollowing are equivalent: 

i) ρ is a benchmark-adjusted ES. 

ii) ρ is an SSD-based risk measure. 

ii) ρ is consistent with � SSD and the set { X ∈ L 1 | ρ(X ) � 0 } has an

� SSD -minimum element. 

roof. Recall that for all X ∈ L 1 and Z ∈ L 1 we have X � SSD Z if

nd only if ES p (X ) � ES p (Z) for every p ∈ [0 , 1] ; see, e.g., Theo-

em 4.A.3 in Shaked and Shanthikumar (2007) . For convenience, 

et A = { X ∈ L 1 | ρ(X ) � 0 } . To show that (i) implies (ii), assume

hat ρ is a benchmark-adjusted ES with respect to Z ∈ L 1 . Then, for

very X ∈ L 1 

(X ) = inf { m ∈ R | X − m ∈ A} 
= inf { m ∈ R | ES p (X ) − m � ES p (Z) , ∀ p ∈ [0 , 1] } 
= inf { m ∈ R | X − m � SSD Z} . 

o show that (ii) implies (i), assume that ρ is SSD-based with re- 

pect to Z ∈ L 1 . Then, we have 

(X ) = inf { m ∈ R | X − m � SSD Z} 
= inf { m ∈ R | ES p (X ) − m � ES p (Z) , ∀ p ∈ [0 , 1] } 
= sup 

p∈ [0 , 1] 

{ ES p (X ) − ES p (Z) } . 

t is clear that (iii) implies (ii). Finally, to show that (ii) implies 

iii), assume that ρ is an SSD-based risk measure with respect 

o Z ∈ L 1 . It is clear that Z ∈ A . Now, take an arbitrary X ∈ A . We

nd a sequence (m n ) ⊂ R such that m n ↓ ρ(X ) and X − m n � SSD Z

or every n ∈ N . This implies that X − ρ(X ) � SSD Z. Since ρ(X ) � 0 ,

e infer that X � SSD Z as well. This shows that A has an SSD- 

inimum element. To establish that ρ is consistent with � SSD , take 

rbitrary X, Y ∈ L 1 satisfying X � SSD Y . For every m ∈ R such that

 − m � SSD Z we clearly have that X − m � SSD Y − m � SSD Z. This

mplies that ρ(X ) � ρ(Y ) and concludes the proof. �

The preceding result delivers an interesting representation of a 

enchmark-adjusted ES in terms of utility functions which helps 

ighlighting its “risk aversion” nature. More precisely, we show 
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hat an adjusted ES with risk profile given by the ES profile of 

 benchmark random loss Z ∈ L 1 determines the minimal amount 

f capital that makes every risk-averse agent better off than being 

xposed to the loss Z. In this sense, one may view a benchmark- 

djusted ES as a worst-case utility-based risk measure over all con- 

eivable risk-averse profiles. Recall that, if one moves from utility 

unctions to loss functions, then utility-based risk measures corre- 

pond to the so-called shortfall risk measures as defined, e.g., in 

Föllmer and Schied, 2016, Section 4.9) . 

roposition 4.3. Let Z ∈ L 1 and consider the risk profile g(p) = 

S p (Z) for every p ∈ [0 , 1] . Moreover, let U be the family of all (non- 

onstant) concave and increasing functions u : R → R . Then, for every

 ∈ L 1 

S g (X ) = sup 

u ∈U 
inf { m ∈ R | E [ u (m − X )] � E [ u (−Z)] } . 

roof. Let A = { X ∈ L 1 | ES p (X ) � ES p (Z) , ∀ p ∈ [0 , 1] } and set

 u = { X ∈ L 1 | E [ u (−X )] � E [ u (−Z)] } for every u ∈ U . To establish

he claim, we can equivalently prove that for every X ∈ L 1 

nf { m ∈ R | X − m ∈ A} = sup 

u ∈U 
inf { m ∈ R | X − m ∈ A u } . (6)

o this effect, Theorem 4.A.3 in Shaked and Shanthiku- 

ar (2007) implies that 

 = { X ∈ L 1 | X � SSD Z} = { X ∈ L 1 | ∀ u ∈ U , E [ u (−X )] 

� E [ u (−Z)] } = 

⋂ 

u ∈U 
A u . 

his implies (6) . Indeed, the inequality “� ” is clear. To show the in-

quality “� ”, take any number k > sup u ∈U inf { m ∈ R | X − m ∈ A u } .
hen, for every u ∈ U we must have X − k ∈ A u or, equivalently,

 − k ∈ A . This yields k � inf { m ∈ R | X − m ∈ A} . Taking the infi-

um over such k ’s delivers the desired inequality and completes 

he proof. �

In light of the relevance of benchmark adjusted ES’s, we are 

nterested in characterizing when the acceptable risk profile g of 

n adjusted ES can be expressed in terms of an ES profile. To this 

ffect, it is convenient to introduce the following additional class 

f risk measures, which will be shown to contain all benchmark- 

djusted ES’s. We denote by L 0 the space of all random variables. 

efinition 4.4. A functional ρ : L 1 → (−∞ , ∞ ] is called a quantile-

djusted ES if there exists Z ∈ L 0 such that for every X ∈ L 1 

(X ) = sup 

p∈ [0 , 1] 

{ ES p (X ) − VaR p (Z) } . 

To establish our desired characterization, for a risk profile g ∈ G
e define h g : [0 , 1] → (−∞ , ∞ ] by 

 g (p) := (1 − p) g(p) . 

ere, we set 0 · ∞ = 0 so that h g (1) = 0 . Moreover, we introduce

he following sets: 

G VaR := { g ∈ G | g is finite on is finite on [0,1), left-continuous 

on [0,1], and right-continuous at 0 } , 

 ES := { g ∈ G VaR | h g is concave on (0,1) and left-continuous at 1

emma 4.5. For every risk profile g ∈ G the following statements 

old: 

i) g ∈ G VaR if and only if there exists a random variable Z ∈ L 0 that

is bounded from below and satisfies g(p) = VaR p (Z) for every p ∈ 

[0 , 1] . 

ii) g ∈ G ES if and only if there exists a random variable Z ∈ L 1 such
that g(p) = ES p (Z) for every p ∈ [0 , 1] . o

8 
roof. (i) The “if” part is clear. For the “only if” part, let U be a 

niform random variable on [0,1] and set Z = g(U) . Then, it is well

nown that VaR p (Z) = g(p) for every p ∈ [0 , 1] . Moreover, since

(0) > −∞ , we see that Z is bounded from below. 

(ii) The “if” part is straightforward. For the “only if” part, let U

e a uniform random variable on [0,1]. We denote by h ′ g the left 

erivative of h g . Then, for every p ∈ [0 , 1) we have 

S p (−h g ′ (U)) = − 1 

1 − p 

∫ 1 

p 

h g ′ (u ) d u = −h g (1) − h g (p) 

1 − p 
= g(p) . 

This shows that, by taking Z = −h ′ g (U) , we have g(p) = ES p (Z)

or every p ∈ [0 , 1) . The left continuity of g and ES ·(Z) at 1 gives

he same equality for p = 1 . �

As a direct consequence of the previous lemma we derive a 

haracterization of quantile- and benchmark-adjusted ES’s in terms 

f the underlying risk profile. 

heorem 4.6. For every risk profile g ∈ G the following statements 

old: 

i) There exists Z ∈ L 0 that is bounded from below and such that ES g 

is a quantile-adjusted ES with respect to Z if and only if g ∈ G VaR . 

ii) There exists Z ∈ L 1 such that ES g is an benchmark-adjusted ES with 

respect to Z if and only if g ∈ G ES . 

emark 4.7. We infer from Theorem 4.2 and 4.6 that the classical 

S does not belong to the class of SSD-based risk measures as the 

ssociated risk profile is not in G ES (see also Proposition 3.2 ). 

Since we clearly have G ES ⊂ G VaR , it follows from the above re- 

ults that every benchmark-adjusted ES is also a quantile-adjusted 

S. In particular, this implies that, for every random variable Z ∈ L 1 ,

e can always find a random variable W ∈ L 0 such that VaR p (W ) =
S p (Z) for every p ∈ [0 , 1] . In words, every ES profile can be repro-

uced by a suitable VaR profile. As pointed out by the next propo- 

ition, the converse result is, in general, not true. In addition, we 

lso show that an adjusted ES need not be a quantile-adjusted ES. 

roposition 4.8. 

i) There exists g ∈ G such that ES g � = ES h for every h ∈ G VaR . 

ii) There exists g ∈ G VaR such that ES g � = ES h for every h ∈ G ES . 

roof. The second assertion follows immediately from 

heorem 4.6 and the fact that the inclusion G ES ⊂ G VaR is strict. 

o establish the first assertion, fix q ∈ (0 , 1) and define g ∈ G by

etting 

(p) = 

{
0 if p ∈ [0 , q ] , 
∞ if p ∈ (q, 1] . 

t follows that 

S g (X ) = sup 

p∈ [0 ,q ] 
{ ES p (X ) } = ES q (X ) 

or every X ∈ L 1 . We claim that ES g is not a quantile-adjusted ES. 

o the contrary, suppose that there exists a random variable Z ∈ L 0 

hat is bounded from below and satisfies 

S q (X ) = ES g (X ) = sup 

p∈ [0 , 1] 

{ ES p (X ) − VaR p (Z) } 

or every X ∈ L 1 . Take r ∈ (q, 1) and X ∈ X such that ES r (X ) >

S q (X ) . Then, for each λ > 0 

S q ( X ) = 

1 

λ
ES q ( λX ) = 

1 

λ
sup 

p∈ [ 0 , 1 ] 
{ ES p ( λX ) − VaR p ( Z ) } 

≥ 1 

λ
( ES r ( λX ) − VaR r ( Z ) ) = ES r ( X ) − 1 

λ
VaR r ( Z ) . 

y sending λ → ∞ , we obtain ES q (X ) � ES r (X ) , which contradicts 

ur assumption on X . �
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Note that ES is always finite on our domain. Here, we are inter- 

sted in discussing the finiteness of adjusted ES’s associated with 

isk profiles in the class G VaR and G ES . We show that finiteness on

he whole reference space L 1 can never hold in the presence of a 

isk profile in G ES while it can hold if we take a risk profile in G VaR .

roposition 4.9. Consider a risk profile g ∈ G. If g ∈ G VaR , then ES g 

an be finite on L 1 . If g ∈ G ES , then ES g cannot be finite on L 1 . 

roof. To show the first part of the assertion, set g(p) = 

1 
1 −p for 

very p ∈ [0 , 1] (with the convention 

1 
0 = ∞ ). Note that g ∈ G VaR .

ix X ∈ L 1 and note that there exists q ∈ (0 , 1) such that 

sup 

p∈ [ q, 1] 

∫ 1 

p 

VaR r (X ) d r < 1 . 

t follows that 

sup 

p∈ [ q, 1] 

{ 

ES p (X ) − 1 

1 − p 

} 

= sup 

p∈ [ q, 1] 

{
1 

1 − p 

(∫ 1 

p 

VaR r (X ) d r − 1 

)}
� 0

herefore, 

S g (X ) � max 

{
sup 

p∈ [0 ,q ] 

{ 

ES p (X ) − 1 

1 − p 

} 

, 0 

}
� max { ES q (X ) , 0 } < ∞

his shows that ES g is finite on the entire L 1 . To establish the sec-

nd part of the assertion, take Z ∈ L 1 and set g(p) = ES p (Z) for ev-

ry p ∈ [0 , 1] . Note that g ∈ G ES by Lemma 4.5 . If Z is bounded from

bove, then take X ∈ L 1 that is unbounded from above. In this case,

t follows that 

S g (X ) � ES 1 (X ) − ES 1 (Z) = ∞ . 

f Z is unbounded from above, then take X = 2 Z ∈ L 1 . In this case,

e have 

S g (X ) � ES 1 (2 Z) − ES 1 (Z) = ES 1 (Z) = ∞ . 

ence, we see that ES g is never finite on L 1 . �

The next result improves Proposition 3.5 by showing that the 

nf-convolution of benchmark-adjusted ES’s can still be expressed 

s an adjusted ES. 

roposition 4.10. Let n ∈ N and consider the risk profiles g 1 , . . . , g n ∈
 ES . For every X ∈ L 1 

n 
i =1 ES g i (X ) = ES 

∑ n 
i =1 g i (X ) . 

roof. The inequality “� ” follows from Proposition 3.5 . To show 

he inequality “� ”, note that there exist Z 1 , . . . , Z n ∈ L 1 such that

 g i = { X ∈ L 1 | X � SSD Z i } by Theorem 4.6 . We prove that 

 := { X ∈ L 1 | ES 
∑ n 

i =1 g i (X ) � 0 } ⊂
n ∑ 

i =1 

A g i 

hich, together with Remark 3.4 , yields the desired inequality. Let 

be a uniform random variable and, for any X ∈ L 1 , denote by

 

−1 
X 

the (left) quantile function of X . Take i ∈ { 1 , . . . , n } and note

hat F −1 
Z i 

(U) ∼ Z i . It follows from the law invariance of ES that 

S p (F −1 
Z i 

(U)) = ES p (Z i ) for every p ∈ [0 , 1] , so that F −1 
Z i 

(U) ∈ A g i .

ince the random variables F −1 
Z i 

(U) ’s are comonotonic, 

n 
 

i =1 

ES p (Z i ) = 

n ∑ 

i =1 

ES p (F −1 
Z i 

(U)) = ES p (Z) 

ith Z = 

∑ n 
i =1 F 

−1 
Z i 

(U) . We deduce that each X ∈ A satisfies

S p (X ) � ES p (Z) for every p ∈ [0 , 1] , which is equivalent to X � SSD 

. Note that Z ∈ 

∑ n 
i =1 A g i so that �n 

i =1 
ES g i (Z) � 0 . Since the inf-

onvolution is consistent with � SSD , as shown in Theorem 4.1 by 

ao and Wang (2020) , we have �n 
i =1 

ES g i (X ) � �n 
i =1 

ES g i (Z) , which ∑ n 
mplies X ∈ i =1 A g i as desired. � s

9 
. Optimization with benchmark-adjusted ES 

Using the characterization of benchmark-adjusted ES’s estab- 

ished in Theorem 4.2 , many optimization problems related to 

enchmark-adjusted ES’s or, equivalently, SSD-based risk measures 

an be solved explicitly. In this section, we focus on risk minimiza- 

ion and utility maximization problems in the context of a multi- 

eriod frictionless market that is complete and arbitrage free. The 

nterest rate is set to be zero for simplicity. As is commonly done 

n the literature, this type of optimization problems, which are nat- 

rally expressed in terms of dynamic investment strategies, can be 

onverted into static optimization problems by way of martingale 

ethods. Below we focus directly on their static counterparts. For 

ore details we refer, e.g., to Schied et al. (2009) or Föllmer and 

chied (2016) . In addition, to ensure that all our problems are well 

efined, we work in the space L ∞ of P -bounded random variables. 

In the sequel, we denote by Q the risk-neutral pricing measure 

whose existence and uniqueness in our setting are ensured by the 

undamental Theorem of Asset Pricing), by w ∈ R a fixed level of 

nitial wealth, by x ∈ R a real number representing a constraint, by 

 : R → R ∪ {−∞} a concave and increasing function that is contin-

ous (at the point where it potentially jumps to −∞ ) and satisfies 

im y →−∞ 

u (y ) < x < lim y →∞ 

u (y ) , and by ρ : L ∞ → (−∞ , ∞ ] a risk

unctional. We focus on the following five optimization problems: 

) Risk minimization with a budget constraint: 

minimize ρ(X ) over X ∈ L ∞ subject to E Q [ w − X ] � x . 

B) Price minimization with controlled risk: 

minimize E Q [ w − X ] over X ∈ L ∞ subject to ρ(X ) � x . 

C) Risk minimization with a target utility level: 

minimize ρ(X ) over X ∈ L ∞ subject to E [ u (w − X )] = x . 

) Worst-case utility with a reference risk assessment: 

minimize E [ u (w − X )] over X ∈ L ∞ subject to ρ(X ) = x . 

E) Worst-case risk with a reference risk assessment: 

maximize ρ ′ (X ) over X ∈ L ∞ subject to ρ(X ) = x , 

where ρ′ is an SSD-consistent functional that is continuous 

with respect to the L ∞ -norm. 

Problem (A) is an optimal investment problem minimizing the 

isk given a budget constraint. Conversely, problem (B) aims at 

inimizing the cost given a controlled risk level. Problem (C) is 

bout minimizing the risk exposure with a target utility level, sim- 

lar to the mean-variance problem of Markowitz (1952) . The inter- 

retation of problems (D) and (E) is different from the first three 

roblems: They are not about optimization over risk, but about 

mbiguity, i.e., in these problems the main concern is model risk. 

ndeed, the set L ∞ may represent the class of plausible models for 

he distribution of a certain financial position of interest. In the 

ase of problem (D), the assumption is that the only available in- 

ormation for X is the risk figure ρ(X ) , evaluated, e.g., by an ex- 

ert or another decision maker. In this context, we are interested 

n determining the worst case utility among all possible models 

hich agree with the evaluation ρ(X ) = x (see also Example 5.3 of 

ang et al. (2019) ). A similar interpretation can be given for prob- 

em (E). 

roposition 5.1. Each of the optimization problems (A)-(E) relative 

o a benchmark-adjusted ES ρ = ES g for g ∈ G ES admits an optimal 

olution of the explicit form Z + z where Z ∈ L ∞ has the ES profile g

nd z ∈ R . Moreover, Z is comonotonic with dQ 
dP 

in (A)-(B), and the 

binding) constraint uniquely determines z in each problem. 

roof. The result for the optimization problem (A) is a direct con- 

equence of Proposition 5.2 in Mao and Wang (2020) . Let Z be 



M. Burzoni, C. Munari and R. Wang Journal of Banking and Finance 134 (2022) 106297 

c

i  

a  

ρ

E

H

b

(  

 

 

 

 

 

 

(  

 

 

 

 

(i

R

b

d

t

e

t

l

t

c

t

o

L

9

p

a

X

E

a

r

t

S  

f  

c

E

T

d

f  

O

n  

o

i

f

l

r

n

c

C

a

r

s

R

D

R

A

A  

A  

B  

B  

B

B  

B  

B

B

C  

D

D

E  

F  

F

F  

H

K

omonotonic with d Q /d P which has ES profile g (comonotonicity 

s only relevant in problems (A) and (B)). Note that ρ(Z) = 0 . For

ny random variable X ∈ L ∞ , we set Y X = Z + ρ(X ) . It is clear that

(Y X ) = ρ(X ) and 

S p (Y X ) = g(p) + ρ(X ) = g(p) + sup 

q ∈ [0 , 1] 

{ ES q (X ) − g(q ) } � ES p (X ) . 

ence, X � SSD Y X . This observation will be useful in the analysis 

elow. 

i) We first look at problem (B). First, since both X �→ E Q [ X] and

ρ are translation-invariant, the condition ρ(X ) � x is binding, 

and problem (B) is equivalent to maximizing E Q [ X] over X ∈ L ∞ 

such that ρ(X ) = x . Let X ∈ L ∞ be any random variable with

ρ(X ) = x and let X ′ be identically distributed as X and comono- 

tonic with d Q /d P . Since X ′ ∼ X , by the Hardy–Littlewood in-

equality (see, e.g., Remark 3.25 of Rüschendorf (2013) ), we have 

E Q [ X] � E Q [ X 
′ ] . Moreover, for any random variable Y ∈ L ∞ that

is comonotonic with d Q /d P , we can write (see, e.g., (A.8) of

Mao and Wang (2020) ) 

E Q [ Y ] = 

∫ 1 

0 

ES p (Y ) d μ(p) 

for some Borel probability measure μ on [0,1]. Hence, X ′ � SSD 

Y X implies E Q [ X 
′ ] � E Q [ Y X ] , and we obtain 

E Q [ X ] � E Q [ X 

′ ] � E Q [ Y X ] . 

Note also that ρ(Y X ) = ρ(X ) = x . Hence, for any random vari-

able X ∈ L ∞ , there exists Z + z for some z ∈ R which dominates

X for problem (B). Since both the constraint and the objective 

are continuous in z ∈ R , an optimizer of the form Z + z exists. 

ii) We next look at problem (C). Let X ∈ L ∞ be any random vari-

able such that E [ u (w − X )] = x . The aforementioned fact X � SSD 

Y X implies that E [ u (w − Y )] � E [ u (w − X )] = x since u is a con-

cave utility function. Therefore, there exists ε � 0 such that 

E [ u (w − (Y − ε))] = x , and we take the largest ε satisfying this

equality, which is obviously finite. Let z = ρ(X ) − ε. It is then 

clear that E [ u (w − (Z + z))] = E [ u (w − X )] = x and ρ(Z + z) =
ρ(Y − ε) = ρ(X ) − ε � ρ(X ) . Hence, Z + z dominates X as an

optimizer for problem (C). Since both the constraint and the ob- 

jective are continuous in z ∈ R , an optimizer of the form Z + z

exists. 

ii) Problems (D) and (E) can be dealt with using similar argu- 

ments. 

�

emark 5.2. (i) Recall that ES does not belong to the class of SSD- 

ased risk measures. As a consequence, the results in this section 

o not directly apply to ES. In particular, although ES is consis- 

ent with SSD, its acceptance set does not have a minimum SSD 

lement as required by Proposition 4.2 . We refer to Wang and Zi- 

ikis (2021) for a different characterization of ES. 

(ii) In the context of decision theory and, specifically, portfo- 

io selection, it is sometimes argued that (second order) stochas- 

ic dominance is too extreme in the sense that it ranks risks ac- 

ording to the simultaneous preferences of every risk-averse agent, 

hus including utility functions that may lead to counterintuitive 

utcomes. A typical example is the one proposed by Leshno and 

evy (2002) . Consider a portfolio that pays one million dollars in 

9% of cases and nothing otherwise and another portfolio that 

ays one dollar with certainty. According to the sign convention 

dopted in this paper, the corresponding payoffs are given by 

 = 

{
0 with probability 1% 

−10 

6 with probability 99% 

and Y = −1 . 

ven though X does not dominate Y with respect to SSD, most 

gents prefer X to Y . Thus, the authors argue for the necessity of 
10 
elaxing SSD in favor of a more reasonable notion. We point out 

hat our approach yields a novel and reasonable generalization of 

SD. First, consider the risk profile defined by g(p) = ES p (Y ) = −1

or every p ∈ [0 , 1] and note that X is acceptable under ES g pre-

isely when X � SSD Y . Note also that 

S p (X ) � g(p) ⇐⇒ p � p̄ := 1 − 10 

−4 

10 

6 − 1 

≈ 1 − 10 

−10 . 

his fact has two implications. On the one hand, it confirms that X

oes not dominate Y with respect to SSD and highlights that this 

ailure is due to the behavior of X in the far region of its left tail.

n the other hand, it suggests that it is enough to consider the 

ew risk profile defined by h (p) = g(p) for p � p̄ and h (p) = ∞
therwise to make X acceptable under ES h . In other words, mov- 

ng from g to h is equivalent to moving from SSD to a relaxed 

orm of SSD that enlarges the spectrum of acceptability in portfo- 

io selection problems. However, note that ES h is not an SSD-based 

isk measure and, hence, the existence results obtained above do 

ot apply to it. A systematic study of optimization problems under 

onstraints of ES h type requires further research. 
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