ADJUSTING BIAS IN CONCEPT LEARNING *

Paul E. Utgoff**

Department of Computer Science
Rutgers University
New Brunswick, New Jersey 08903

ABSTRACT

We approach concept learning as a heuristic search through a
space of concepts for a concept that satisfies the learning task at
hand The heuristics represent bias that the concept learning
program employs when forming an inductive generalization. We
present a model of bias adjustment and report our experience
with an implementation of the model.

| ROLE OF BIAS

A major objective in research on inductive concept learning is
creation of a program that can accept training data, apply
knowledge, and form inductive hypotheses of the concept, all
without human intervention. The learning program searches a
space of hypotheses for those that are consistent with the
observed examples, and which classify the unobserved instances
as indicated by heuristics. The heuristics, which we call bias,
determine the inductive generalizations that the program will
form, given some set of training examples. The initial bias may
be appropriate for one learning task, yet inappropriate for
another. In many concept learning programs to date, e.g.
(Michalski 83), (Mitchell 77), the search for appropriate bias is
done by hand. We examine an approach to mechanizing that
search.

Vere (Vere 80) and Lenat (Lenat 83) have programs that adjust
their bias. Vere uses the set difference operator to construct a
new description C = A-B when no other consistent description is
available. Lenat's EURISKO learns heuristics that lead the
program to discover interesting concepts. EURISKO is an
advance from Lenat's AM where the search for appropriate bias
was done by hand.

Il AN APPROACH TO ADJUSTING BIAS

We represent bias as a restricted search space of concepts that
we call the concept description language. We use Mitchell's
Candidate Elimination Algorithm (Mitchell 77) to maintain a
version space of all concept descriptions in the concept description
language that are consistent with the training instances. When
the trainer supplies a positive instance, all concept descriptions
that exclude the instance are refuted and removed from the
version space. Similarly, when the trainer supplies a negative
instance, all concept descriptions that include the instance are
refuted and removed from the version space. As shown in Figure
1, as the version space shrinks, the complementary set of refuted
hypotheses grows. If the version space becomes empty, then all
descriptions in the concept description language have been
refuted. A refuted concept description language indicates a
refuted bias, and is sufficientjustification for adjusting bias. We

* This work was supported by National Science Foundation
Grant GMCS80-08889, Rutgers University Laboratory for
Computer Science Research, and Siemens Research and
Technology Laboratories.

** Current address is Siemens Research and Technology
Laboratories, 105 College Road East, Princeton, New Jersey
08540.

do not yet know stronger justifications The role of bias
adjustment is to enlarge the concept description language so that
the version space becomes nonempty and search can continue. It
may be that certain concepts are not describable within a
particular formalism. If so, shift to a more appropriate formalism
may be necessary.

Concepts Deseribable
in Formalism

.
w— ' Enlargeiient via

.
' Haus Adpustiment

Concept Descriplion
Lunguage

FECETN H

Refuted _’.: Ealargementvia
Hypolheses ¥ Camlisare Elnvinutien

Figure 1 Model of Bias

We approach bias adjustment as a three step process:

1. Determine a membership specification for the new
concept.

2. Translate the membership specification into a
description that uses the formalism of the concept
description language.

3. Assimilate the new concept description into the
hierarchy of the concept description language.

A membership specification is itself a concept description, but is
expressed in an unbiased language so that the heuristics for
determining the specification are not compromised by what is
expressible. Because the membership specification may be
expressed in an alternate formalism, we require the ability to
translate the membership specification into a concept description
in the formalism of the concept description language. The
translation step may require creation of new descriptive terms
that correspond to membership specifications that are not
describable in the current concept description language. A new
concept must then be assimilated into the concept description
language by defining its location in the hierarchy of descriptions.

I AN EXAMPLE

We have implemented a program that models bias
adjustment as part of the LEX program (Mitchell 83) LEX is a
concept learning program that learns heuristics that suggest
whether a given operator should be applied to a given problem
state. Each operator heuristic is represented as the concept "set
of states to which this operator should be applied."

LEX currently learns heuristics in the domain of integral
calculus. The program is initially given a set of problem-solving
operators. Each operator has a domain of applicability, a rewrite
rule, and a range of producible states. For each operator, the
legal domain of applicability describes states to which the

448 P. Utgoff

operator can be applied. For each operator, the heuristic domain
of applicability describes states to which the operator should be
applied.

LEX solves a problem by producing a state that contains no
integral. The solution tree is then criticized Each operator
application along the minimum solution path is labelled as a
positive instance showing a state to which the given operator
should be applied. Each operator application that leads away
from the minimum solution path is labelled as a negative
instance showing a state to which the given operator should not
be applied. The training instances are then used to update the
heuristics being learned for the operators For each operator,
Mitchell's Candidate Elimination Algorithm is used to maintain
a version space of all candidate versions of the heuristic that have
not yet been refuted If a version space becomes empty, then the
bias adjustment module is invoked

A A Heuristic for Membership

Deciding the membership of a new concept is the essence of
induction. Which instances should be included, and which should
be excluded? We employ a heuristic:

The domain of an operator sequence that leads to a solution
should be describable in the concept description language.

We choose this heuristic because of our a priori knowledge that
the operator heuristic we hope to learn will be the disjunction of
all useful sequences that start with that operator To describe the
disjunction, we can start by being able to describe the disjuncts
To compute a specification of the domain of an operator sequence
that produces a state in a given range, in this case the set of
solved problems, we apply a deduction procedure that we call
constraint back-propagation.

Constraint back-propagation is a procedure for deducing the
domain of a macrooperator that produces some constrained range
of states. Consider an operator sequence of length 1 that uses
operator Op,, as shown in Figure 2. If we constrain.the range of
the Op, to some set of states RCRange(Op,), and then apply the
inverse operator Op1; to R, then we deduce a constrained set
DC l)omain(Ops,) such that Op;i(D) = R. For example, an operator
r->Ir-2] has the set of real numbers as its domain and also as its
range. Ifthe domain is constrained to the set of integers, then the
range is constrained to the set of even integers.

Domain Range

Figure 2 - Constraint Propagation

Op,

If we know that Ops can produce a state that is a solved
problem, we can compute Op i(IntersecUSolvedProblems,
Range(Opj))) to deduce a constrained set D. D is then the set of
states to which application of Op; will produce a solved problem.
For operator sequences of length greater than 1, the deduction
step is simply applied sequentially to the result of the previous
deduction.

B. A Translation Method

A nested expression of intersections and inverse-operator
applications, as shown above, is a specification of concept
membership, but is not useful as a concept description because
operator applications are required to evaluate whether an
instance matches the description. The nested expression must be
translated from a membership specification into a structural
concept description that uses the formalism of the concept
description language. Our translation method is to evaluate the

membership specification To let this work, we have defined a
description of the set of solved problems, an Intersection function,
and inverse operator definitions. New concepts are created and
assimilated during evaluation of the membership specification,.

When an operator only restructures a state via a simple
rewrite rule, e.g a-b-»b-a, creation of new concepts is not
required because the range of the operator is expressible by a
description in the concept description language. When an
operator requires a computation, e.g. multiplication by 2, the
range may be describable in the operator language, but not the
concept description language. For example, consider an operator
r->[r-2]. The [r-2] indicates that the bound value of r should be
multiplied by 2, and the result used in the rewritten state Ifan
operator is to be applied to a set of states, as with constraint back-
propagation, then correct specification of the operator's domain
and range becomes very important. Application of r->|r-2] to the
set of integers k produces a description f k-2 J. This is a description
in the operator language, not the concept description language!

Our method of translating a description implied by a
computation y = f(x) to a term in the concept description language
is to first create a definition {yl(A(y)(match f-'(y) x))} and then
search for a term with the same definition |If a term with that
definition is not found, then a new term is created and defined as
per the constructed definition, For example, the definition that
corresponds to |k-2] is {yl(A(y)(match y/2 'k))} which we could
associate with a new term "even "

C An Assimilation Method

Assimilation is the process of inserting a new concept
description into the hierarchy of description in the concept
description language Assimilation is necessary so that we can
use the match predicate to evaluate whether one concept is more
specific or equal to another.

Our present method is imprecise. In general, if we are to
assimilate z={yl(A(y)(match f*y) x))}, then we make z a
specialization of y. This method is correct only in the sense that
no false match relation is asserted. For example, our method
may assert that "even integers" is a specialization of "real
numbers", but fail to assert that "even integers" is also a
specialization of "integers". At the same time, the method does
indicate y as a most general bound on where z should be
assimilated. Ifthe set of possible assimilations is small, we would
expect that a mechanical procedure could prune these by
empirical refutation, but we have not pursued this. Below we
show an example of deducing the correct assimilation

D Experiments

We present three experiments with the implementation.
Several problems came to light.

1. Experiment #1

As in (Utgoff82), LEX found a solution for Jcos’(x) dx similar
to that shown in Figure 3. LEX was then given Jcos®(x)dx, for
which the same solution sequence, and /cose(x)dx for which the
same solution sequence did not work because the polynomial in
the integrand was not an integer. Because the concept description
language did not contain a description that included Jcos7(x)dx
and Jcos®(x)dx and excluded Jcoss(x)-dx, the heuristic for Op51
could not be described. Bias adjustment was invoked, and
constraint back-propagation was expected to proceed as shown in
Figure 3. The implementation was successful for the last three
propagation steps through Op'52, Op-150, and Op'51. Back-
propagation through Op'13 failed because our formalism, a
modified context-free grammar, does not permit specifying that
whatever matches f be the derivative of whatever matches f.
This example shows that the formalism of the concept description
language also implies bias. The ability to identify the kind of bias
that is associated with a given formalism is an important open
problem.

Back-propagation of the set of integers k through the
exponent in Op 150 caused a new description {xI(A(x)(match x/2
'k))} to be constructed, the set of even integers. Because the
operator could divide any real exponent by 2, the constructed set
description was assimilated as a specialization of the set of real
numbers. It would have been better to assimilate the set of even

frasTix)-dx feosedd(x) dx :
Op51: frixjeefr-Tox)-fix) :0pr151

i

Jeos6(x)-cosix}-dx

f:fcos"\'t‘"{x]-cnslx)-dx

Ops0: frix) e {20 x)2 {Op 150

Jieosd(x))3-cos{x)-dx _.f(cos'f(lek-r_'uslx}-dx

Oph2: cus?{x)erl-5indix) Op-152

: Fpolykifoan- £ ix-dx '

! J(1-sin2tx)}3-costx)-dx

! Opl3: [polyilfoobl (x)-drefpolyiui-du, u = itx) :Op 113 I

Jil-u¥du, u=sinia}

[polyktuidu, u=Hfxj.

multiply polynomial factor polynomial

Figure 3 - Solution and propagation for [cosix)-dx

integers as a speciulization of the set of integers. Precise
ugsimilation could have been determined with the foliowing
Teasoning: An alternate definition of even integers is
{yl(Ix€lntegersiy=2-x)}. Because x und 2 wre integers, and
because we know that integers ure closed under multiplication,
we prove thul every v is also an integer. The critical piece of
knowledge for ithe proof is that integers are closed under
mulliplication. We have not implemenled a mechanism for
execuling such proofs. Proposing and then proving subsel
relulionships is un open problem of great interest. The backward
constraint propagalion method is useful for deducing which
conjectures arg worth proving.

2 Experimenl #2

In this expuriment, the set of real numbers "¢ was to be back-
propaguted through Op22 as shown in Figure 4 . The result of the
back-propagation step was rg-{rg/rg). Because this set was
describable by un existing set description, it was not necessury to
add any new descriptions to the search space.

56 Trelrairy)
l Op22: rlr2es(rl-r2] :Op-122 I

‘30 i ir3

Figure 4 - Evaluating Product with Op22

Nevertheless, the back-propagation failed because the
deduced set r4(r3/r4) did not satisfy a safety check requiring that
a deduced set, in this case r4-(rs/r4), match the state that occurred
in the original solution sequence, in this case 5-6. Although ry4
matched 5, ri/r, did not match 6. The concept description
language did not include knowledge that rs/rs is equivalent to the
set of rational numbers, and that 6 is an instance of a rational
number. The inverse operator had inserted an implicit
computation; division!

3. Experiment #3
A problem Jx2dx was given to LEX, and was solved by Op2 as

shown in Figure 5. Other instances were also provided that
caused the bias adjustment module to be invoked. The program

P. Utgoff 449

needed to back-propagate the set of real numbers "r" through the
exponent in Op2 '. The code created a description {xKA(x)(match
x+1 'r))|, and assimilated it us a specialization of r. This
produced a description with infinite recursion of the form "x is a
real number if x + 1 is a real number". If the program could have
applied knowledge that the real numbers are closed under
addition, in this case by 1, then it would have proven that adding
1 to an x will not alter whether that x is a real number.

It is important to consider not only where to assimilate a new
description, but whether to assimilate a new description. To
circumvent superfluous descriptions, we added an ad hoc
procedure for computing closures; if the description Dww is
intended to be a specialization of an existing description D,i,i, but
Din.w is more general or equal to Dgm, then Dy is superfluous

feran anre

]
4

0p2: furz-ldussutr+Lh{r+1) +rg :Op-12

x93+ unfrtey

Figure 5 - Solution and propagation for Jx2-dx

v SUMMARY

We suggested that heuristics used for induction should be
found by the learning program itself, not by hand. We presented
a model of a concept learning program that adjusts its own bias,
thereby altering the inductive generalizations it will make. We
implemented an example of the model by adding a bias
adjustment module to the existing LEX concept learning
program. Experience with the implementation uncovered
examples where the formalism was weak, or additional
knowledge was needed to determine whether or where to
assimilate a newly constructed description. Where these
problems were not a factor, the program was able to
automatically adjust its own bias.

ACKNOWLEDGEMENTS

| thank Tom Mitchell, Rich Keller, and Donna Nagel for
discussions of ideas presented here. | thank Jack Mostow and
Bruce Ladendorffor helpful comments on a draft.

REFERENCES

[11 Lenat, D. B., "The Role of Heuristics in Learning by
Discovery," Machine Learning, Michalski, Carbonell,
Mitchell (eds.), Tioga, Palo Alto, 1983, pp. 243-306.

[21 Michalski, R. S., "A Theory and Methodology of Inductive
Learning," Machine Learning, Michalski, Carbonell, Mitchell
(eds.), Tioga, Palo Alto, 1983, pp. 83-134.

[31 Mitchell, T. M., "Version Spaces: A Candidate Elimination
Approach to Rule Learning," Proceedings of the Fifth
International Joint Conference on Artificial Intelligence,
Cambridge, Mass., 1977, pp. 305-310.

[4] Mitchell, T. M., UtgofT, P. E., and Banerji, R. B. "Learning by
Experimentation: Acquiring and Refining Problem-Solving
Heuristics," Machine Learning, Michalski, Carbonell,
Mitchell (eds), Palo Alto, Tioga, 1983, pp. 163-190.

[51 UtgofT, P. E. and Mitchell, T. M., "Acquisition of Appropriate

Bias for Inductive Concept Learning," Proceedings of the
Second National Conference on Artificial Intelligence,
Pittsburgh, August 1982, pp. 414-417.

[61 Vere, S. A. "Multilevel Counterfactuals for Generalizations of
Relational Concepts and Productions," Artificial Intelligence,
14:2, September 1980, pp. 138-164.

