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ABSTRACT 

We approach concept learning as a heuristic search through a 
space of concepts for a concept that satisfies the learning task at 
hand The heuristics represent bias that the concept learning 
program employs when forming an inductive generalization. We 
present a model of bias adjustment and report our experience 
wi th an implementation of the model. 

I ROLE OF BIAS 

A major objective in research on inductive concept learning is 
creation of a program that can accept t ra in ing data, apply 
knowledge, and form inductive hypotheses of the concept, al l 
without human intervention. The learning program searches a 
space of hypotheses for those that are consistent wi th the 
observed examples, and which classify the unobserved instances 
as indicated by heuristics. The heuristics, which we call bias, 
determine the inductive generalizations that the program wi l l 
form, given some set of t ra in ing examples. The in i t ia l bias may 
be appropriate for one learning task, yet inappropriate for 
another. In many concept learning programs to date, e.g. 
(Michalski 83), (Mitchel l 77), the search for appropriate bias is 
done by hand. We examine an approach to mechanizing that 
search. 

Vere (Vere 80) and Lenat (Lenat 83) have programs that adjust 
their bias. Vere uses the set difference operator to construct a 
new description C = A-B when no other consistent description is 
available. Lenat's EURISKO learns heuristics that lead the 
program to discover interesting concepts. EURISKO is an 
advance from Lenat's AM where the search for appropriate bias 
was done by hand. 

I I AN APPROACH TO ADJUSTING BIAS 

We represent bias as a restricted search space of concepts that 
we call the concept description language. We use Mitchell 's 
Candidate El iminat ion Algor i thm (Mitchel l 77) to maintain a 
version space of al l concept descriptions in the concept description 
language that are consistent wi th the t ra in ing instances. When 
the trainer supplies a positive instance, all concept descriptions 
that exclude the instance are refuted and removed from the 
version space. Simi lar ly , when the trainer supplies a negative 
instance, al l concept descriptions that include the instance are 
refuted and removed from the version space. As shown in Figure 
1, as the version space shrinks, the complementary set of refuted 
hypotheses grows. If the version space becomes empty, then al l 
descriptions in the concept description language have been 
refuted. A refuted concept description language indicates a 
refuted bias, and is sufficient just i f icat ion for adjusting bias. We 
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do not yet know stronger justif ications The role of bias 
adjustment is to enlarge the concept description language so that 
the version space becomes nonempty and search can continue. It 
may be that certain concepts are not describable wi th in a 
part icular formal ism. If so, shift to a more appropriate formal ism 
may be necessary. 

Figure 1 Model of Bias 

We approach bias adjustment as a three step process: 

1. Determine a membership specification for the new 
concept. 

2. Translate the membership specification into a 
description that uses the formal ism of the concept 
description language. 

3. Assimilate the new concept description into the 
hierarchy of the concept description language. 

A membership specification is i tself a concept description, but is 
expressed in an unbiased language so that the heuristics for 
determining the specification are not compromised by what is 
expressible. Because the membership specification may be 
expressed in an alternate formal ism, we require the abi l i ty to 
translate the membership specification into a concept description 
in the formal ism of the concept description language. The 
translat ion step may require creation of new descriptive terms 
that correspond to membership specifications that are not 
describable in the current concept description language. A new 
concept must then be assimilated into the concept description 
language by defining its location in the hierarchy of descriptions. 

I l l A N E X A M P L E 

We have implemented a program that models bias 
adjustment as part of the LEX program (Mitchel l 83) LEX is a 
concept learning program that learns heuristics that suggest 
whether a given operator should be applied to a given problem 
state. Each operator heurist ic is represented as the concept "set 
of states to which this operator should be applied." 

LEX current ly learns heuristics in the domain of integral 
calculus. The program is in i t i a l l y given a set of problem-solving 
operators. Each operator has a domain of applicabil i ty, a rewrite 
rule, and a range of producible states. For each operator, the 
legal domain of appl icabi l i ty describes states to which the 
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operator can be applied. For each operator, the heuristic domain 
of applicabil i ty describes states to which the operator should be 
applied. 

LEX solves a problem by producing a state that contains no 
integral . The solution tree is then crit icized Each operator 
application along the min imum solution path is labelled as a 
positive instance showing a state to which the given operator 
should be applied. Each operator application that leads away 
from the min imum solution path is labelled as a negative 
instance showing a state to which the given operator should not 
be applied. The t ra in ing instances are then used to update the 
heuristics being learned for the operators For each operator, 
Mitchell 's Candidate El iminat ion A lgor i thm is used to maintain 
a version space of al l candidate versions of the heuristic that have 
not yet been refuted If a version space becomes empty, then the 
bias adjustment module is invoked 

A A Heurist ic for Membership 

Deciding the membership of a new concept is the essence of 
induction. Which instances should be included, and which should 
be excluded? We employ a heuristic: 

The domain of an operator sequence that leads to a solution 
should be describable in the concept description language. 

We choose this heuristic because of our a pr ior i knowledge that 
the operator heuristic we hope to learn wi l l be the disjunction of 
al l useful sequences that start w i th that operator To describe the 
disjunction, we can start by being able to describe the disjuncts 
To compute a specification of the domain of an operator sequence 
that produces a state in a given range, in this case the set of 
solved problems, we apply a deduction procedure that we call 
constraint back-propagation. 

Constraint back-propagation is a procedure for deducing the 
domain of a macrooperator that produces some constrained range 
of states. Consider an operator sequence of length 1 that uses 
operator Op,, as shown in Figure 2. If we constrain.the range of 
the Op, to some set of states RCRange(Op,), and then apply the 
inverse operator O p 1 ; to R, then we deduce a constrained set 
DC I)omain(Op1,) such that Op i(D) = R. For example, an operator 
r->lr-2] has the set of real numbers as its domain and also as its 
range. If the domain is constrained to the set of integers, then the 
range is constrained to the set of even integers. 

If we know that Op1 can produce a state that is a solved 
problem, we can compute Op i(IntersecUSolvedProblems, 
Range(Opj))) to deduce a constrained set D. D is then the set of 
states to which application of Op1 w i l l produce a solved problem. 
For operator sequences of length greater than 1, the deduction 
step is simply applied sequentially to the result of the previous 
deduction. 

B. A Translat ion Method 

A nested expression of intersections and inverse-operator 
applications, as shown above, is a specification of concept 
membership, but is not useful as a concept description because 
operator applications are required to evaluate whether an 
instance matches the description. The nested expression must be 
translated from a membership specification into a structural 
concept description that uses the formal ism of the concept 
description language. Our t ranslat ion method is to evaluate the 

membership specification To let this work, we have defined a 
description of the set of solved problems, an Intersection function, 
and inverse operator definit ions. New concepts are created and 
assimilated dur ing evaluation of the membership specification,. 

When an operator only restructures a state via a simple 
rewrite rule, e.g a-b-»b-a, creation of new concepts is not 
required because the range of the operator is expressible by a 
description in the concept description language. When an 
operator requires a computation, e.g. mult ip l icat ion by 2, the 
range may be describable in the operator language, but not the 
concept description language. For example, consider an operator 
r->[r-2]. The [r-2] indicates that the bound value of r should be 
mult ip l ied by 2, and the result used in the rewri t ten state If an 
operator is to be applied to a set of states, as wi th constraint back-
propagation, then correct specification of the operator's domain 
and range becomes very important. Application of r->|r-2] to the 
set of integers k produces a description f k-2 J. This is a description 
in the operator language, not the concept description language! 

Our method of t ranslat ing a description implied by a 
computation y = f(x) to a term in the concept description language 
is to first create a defini t ion {yl(A(y)(match f-'(y) x))} and then 
search for a term wi th the same defini t ion If a term wi th that 
def ini t ion is not found, then a new term is created and defined as 
per the constructed definit ion, For example, the definit ion that 
corresponds to |k-2] is {yl(A(y)(match y/2 'k))}( which we could 
associate wi th a new term "even " 

C An Assimi lat ion Method 

Assimi lat ion is the process of insert ing a new concept 
description into the hierarchy of description in the concept 
description language Assimi lat ion is necessary so that we can 
use the match predicate to evaluate whether one concept is more 
specific or equal to another. 

Our present method is imprecise. In general, if we are to 
assimilate z = {yl(A(y)(match f 1 y ) x))}, then we make z a 
specialization of y. This method is correct only in the sense that 
no false match relation is asserted. For example, our method 
may assert that "even integers" is a specialization of "real 
numbers", but fail to assert that "even integers" is also a 
specialization of " integers". At the same t ime, the method does 
indicate y as a most general bound on where z should be 
assimilated. If the set of possible assimilations is smal l , we would 
expect that a mechanical procedure could prune these by 
empir ical refutat ion, but we have not pursued this. Below we 
show an example of deducing the correct assimilat ion 

D Experiments 

We present three experiments wi th the implementat ion. 
Several problems came to l ight. 

1. Experiment #1 

As in (Utgoff 82), LEX found a solution for Jcos7(x) dx s imi lar 
to that shown in Figure 3. LEX was then given Jcos5(x)dx, for 
which the same solution sequence, and /cos6 (x)dx for which the 
same solution sequence did not work because the polynomial in 
the integrand was not an integer. Because the concept description 
language did not contain a description that included Jcos7(x)dx 
and Jcos5(x)dx and excluded Jcos6(x)-dx, the heuristic for Op51 
could not be described. Bias adjustment was invoked, and 
constraint back-propagation was expected to proceed as shown in 
Figure 3. The implementat ion was successful for the last three 
propagation steps through Op 1 52 , Op-150, and O p 1 5 1 . Back-
propagation through Op 1 13 failed because our formal ism, a 
modified context-free grammar, does not permit specifying that 
whatever matches f be the derivat ive of whatever matches f. 
This example shows that the formal ism of the concept description 
language also implies bias. The abi l i ty to identify the k ind of bias 
that is associated w i th a given formal ism is an important open 
problem. 
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Back-propagation of the set of integers k through the 
exponent in Op 150 caused a new description {xl(A(x)(match xl2 
'k))} to be constructed, the set of even integers. Because the 
operator could divide any real exponent by 2, the constructed set 
description was assimilated as a specialization of the set of real 
numbers. It would have been better to assimilate the set of even 

Figure 4 - Evaluat ing Product wi th Op22 

Nevertheless, the back-propagation failed because the 
deduced set r4 ( r3/ r4 ) did not satisfy a safety check requir ing that 
a deduced set, in this case r4-(r3/r4), match the state that occurred 
in the or iginal solution sequence, in this case 5-6. Although r4 
matched 5, r3/r4 did not match 6. The concept description 
language did not include knowledge that r3/r4 is equivalent to the 
set of rat ional numbers, and that 6 is an instance of a rat ional 
number. The inverse operator had inserted an impl ic i t 
computation; division! 

3. Experiment #3 

A problem Jx 2 dx was given to LEX, and was solved by Op2 as 
shown in Figure 5. Other instances were also provided that 
caused the bias adjustment module to be invoked. The program 

needed to back-propagate the set of real numbers "r" through the 
exponent in Op2 l. The code created a description {xKA(x)(match 
x + 1 'r))|, and assimilated it us a specialization of r. This 
produced a description wi th inf ini te recursion of the form "x is a 
real number if x + 1 is a real number". If the program could have 
applied knowledge that the real numbers are closed under 
addit ion, in this case by 1, then it would have proven that adding 
1 to an x wi l l not alter whether that x is a real number. 

It is important to consider not only where to assimilate a new 
description, but whether to assimilate a new description. To 
circumvent superfluous descriptions, we added an ad hoc 
procedure for computing closures; if the description DMt,vv is 
intended to be a specialization of an existing description D„i,i, but 
DIH.W is more general or equal to D0m, then D m w is superfluous 

Figure 5 - Solution and propagation for Jx2-dx 

IV SUMMARY 

We suggested that heuristics used for induction should be 
found by the learning program itself, not by hand. We presented 
a model of a concept learning program that adjusts its own bias, 
thereby al ter ing the inductive generalizations it w i l l make. We 
implemented an example of the model by adding a bias 
adjustment module to the exist ing LEX concept learning 
program. Experience wi th the implementat ion uncovered 
examples where the formal ism was weak, or addit ional 
knowledge was needed to determine whether or where to 
assimilate a newly constructed description. Where these 
problems were not a factor, the program was able to 
automatical ly adjust its own bias. 
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