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Background Mendelian randomization uses a carefully selected gene as an
instrumental-variable (IV) to test or estimate an association
between a phenotype and a disease. Classical IV analysis assumes
linear relationships between the variables, but disease status is
often binary and modelled by a logistic regression. When the
linearity assumption between the variables does not hold the IV
estimates will be biased. The extent of this bias in the phenotype-
disease log odds ratio of a Mendelian randomization study is
investigated.

Methods Three estimators termed direct, standard IV and adjusted IV, of the
phenotype-disease log odds ratio are compared through a simula-
tion study which incorporates unmeasured confounding. The
simulations are verified using formulae relating marginal and
conditional estimates given in the Appendix.

Results The simulations show that the direct estimator is biased by unmea-
sured confounding factors and the standard IV estimator is atten-
uated towards the null. Under most circumstances the adjusted IV
estimator has the smallest bias, although it has inflated type I error
when the unmeasured confounders have a large effect.

Conclusions In a Mendelian randomization study with a binary disease outcome
the bias associated with estimating the phenotype-disease log odds
ratio may be of practical importance and so estimates should be
subject to a sensitivity analysis against different amounts of hypo-
thesized confounding.

Keywords Instrumental-variable analysis, Mendelian randomization, bias,
unobserved confounding

Introduction
In traditional epidemiological studies the associations
between biological phenotypes and diseases can be
distorted by confounding or reverse causation. The aim

of Mendelian randomization analysis is to test or
estimate the association between a biological pheno-
type and a disease in the presence of unmeasured
confounding.1–3 This is achieved using a carefully
selected gene as an instrumental-variable (IV).4–7

When certain assumptions hold Mendelian randomiza-
tion will remove the distorting effects and produce
unconfounded estimates of the association between
a phenotype and a disease.3,8 Genes that influence the
disease through their effect on the biological phenotype
of interest can be used as instrumental-variables in
the analysis because a subject’s genotype is essentially

* Corresponding author. University of Leicester, Department of
Health Sciences, 2nd Floor, Adrian Building, University Road,
Leicester LE1 7RH, UK. E-mail: tmp8@le.ac.uk

1 Department of Health Sciences, University of Leicester, UK.
2 Departments of Health Sciences and Genetics, University of

Leicester, UK.

Published by Oxford University Press on behalf of the International Epidemiological Association

� The Author 2008; all rights reserved. Advance Access publication 7 May 2008

International Journal of Epidemiology 2008;37:1161–1168

doi:10.1093/ije/dyn080

1161

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/article/37/5/1161/867574 by guest on 21 August 2022



randomly assigned before birth and thus should not
be influenced by the many environmental and life-
style factors that typically act as confounders in
epidemiology.9

In this article, we show that, for binary outcomes, the
observed bias towards the null in Mendelian randomi-
zation estimates is due to the impact of random effects
that are not explicitly included in the linear predictor.
This is analogous to the discrepancy between marginal
and conditional parameter estimates in generalized
linear mixed models with a logistic link.10,11 Theoretical
formulae for approximating this difference are provided
for each of three different estimators and their accuracy
is verified by simulation. In theory, knowledge of the
difference between marginal and conditional estimates
could provide a correction for the bias that pertains
in Mendelian randomization analyses. However, the
extent of this bias depends on the properties of the
unmeasured confounders, which are always unknown.
An adjusted instrumental-variable estimator is applied
to Mendelian randomization analyses to produce an
improved estimate of the phenotype-disease associa-
tion. The adjusted IV estimator partially compensates
for the unknown confounders by exploiting informa-
tion from the residuals of the regression of the
intermediate phenotype on the genotype.

Methods
Estimators for Mendelian randomization
studies with binary responses
The key variables in describing the Mendelian ran-
domization model are; the disease status (Y), inter-
mediate phenotype (X), genotype (G) and confounder
(U). The assumed relationship between these vari-
ables is shown in Figure 1. For the ith subject in
a cohort, let yi represent their binary disease status,
pi represent their probability of having the disease,
xi represent the level of the biological phenotype and
gi represent their genotype, which is coded 0, 1 and 2
to indicate the number of copies of the relevant risk
allele. Typically there will be many unmeasured
confounders, so it is assumed that they can be repre-
sented by a single variable, ui, that captures their
combined effect. This confounding variable is

arbitrarily assumed to be standardized to have a
mean of zero and a standard deviation of one. For
simplicity, we assume an additive effect of genotype
on the intermediate phenotype, although the argu-
ment would apply equally to any known mode of
inheritance. It is also assumed that the confounder
acts additively in the linear predictors of the associa-
tions between the genotype and phenotype and
between the phenotype and the disease.

The coefficients in the regression of phenotype on
genotype are denoted by �’s so that,

xi ¼ �0 þ �1gi þ �2ui þ �i, with �i � Nð0, �2
� Þ, ð1Þ

and � represents the effects of measurement error and
unmeasured factors that are not confounders because
they do not influence disease. The coefficients in the
linear predictor between phenotype and disease are
denoted by �’s, so that the disease status follows
a Bernoulli distribution,

yi � BernðpiÞ, with log
pi

1� pi
¼ �0 þ �1xi þ �2ui: ð2Þ

Implicit in the notation is the idea that �i and ui are
independent of one another. The primary interest in
this paper is to recover �1.

If both regressions were linear, ignoring the con-
founder in the instrumental-variable analysis would not
bias the estimate of �1, but this is not the case for a non-
linear relationship between phenotype and disease.12

Substituting the formula for xi in Equation (1) into the
logistic regression in Equation (2) gives,

log
pi

1� pi
¼ �0 þ �1ð�0 þ �1gi þ �2ui þ �iÞ þ �2ui: ð3Þ

The coefficient of gi in this relationship is �1�1 while
the coefficient of gi in the linear regression in
Equation (1) is �1. In principle the ratio of the
estimates of these coefficients should give an estimate
of �1,4 which is the effect of the phenotype on disease
risk after adjusting for confounding. Unfortunately ui

and �i are unknown, so the estimate of �1�1 is taken
from the logistic regression without those terms, thus
in effect replacing the true conditional model with a
marginal model which averages over the unknown
terms, ui and �i.

An alternative to the ratio estimate of �1 is obtained
by taking the predicted values of the intermediate
phenotype from the first regression ignoring the
confounding,

x̂i ¼ �̂0 þ �̂1gi � �0 þ �1gi ð4Þ

and substituting those into the logistic regression in
Equation (2), in which case,

log
pi

1� pi
� �0 þ �1ðx̂i þ �2ui þ �iÞ þ �2ui: ð5Þ

In this two-stage approach, the estimate of interest
is just the coefficient of the predicted phenotype x̂i,

Figure 1 The relationship between the variables (�i is the
linear predictor of the logistic regression)
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but the biases will be similar to those that occur for
the ratio estimator.

In an attempt to correct for this difference between
marginal and conditional parameter estimates,
and thus improve upon the standard instrumental-
variable estimator an adjusted IV estimator is applied.
The estimated residuals from the first stage linear
regression in Equation (1) are,

ri ¼ xi � x̂i: ð6Þ

These estimated residuals capture some of the
variability contained in the unknown confounders
and the phenotype error term, �. This information can
be used in the second regression by fitting,

log
pi

1� pi
¼ �0 þ �1x̂i þ �rri: ð7Þ

The information about the confounding contained in
the residuals should, in part, compensate for the
missing terms in the marginal form of the logistic
regression model and therefore reduce the difference
between the conditional and marginal estimates of �1.

This article considers three estimators of �1. First,
the direct estimator, that does not use Mendelian
randomization but performs a logistic regression of
disease status on the intermediate as in a traditional
epidemiological study. The direct estimator of �1 is
derived from the linear predictor,

log
pi

1� pi
¼ �0 þ �1xi: ð8Þ

The standard IV estimator uses Mendelian randomi-
zation so that the linear predictor is,

log
pi

1� pi
¼ �0 þ �1x̂i: ð9Þ

The third estimator is the adjusted IV estimator
obtained from Equation (7). In the Appendix,
formulae are given for calculating the size of the
bias in �1 under the three estimators.

Data simulation
A simulation study was performed to validate the
formulae for the three estimators. In a cohort of size
10 000, subjects were each randomly assigned two
alleles in Hardy-Weinberg equilibrium with the allele
frequency of the risk allele set to 30%. The confound-
ing variable was simulated to be normally distributed
with mean zero and variance equal to one, ui�N(0,1).
The phenotype, xi, was generated as a Normal random
variable with mean equal to, �0þ �1giþ �2ui following
Equation (1), and the standard deviation of the
phenotype error term, ��, was set to one. Each
subject’s probability of disease was simulated, follow-
ing Equation (2) such that log pi/(1� pi)¼ �0þ

�1yiþ �2ui.
The baseline prevalence of disease was set to 5% by

fixing �0. Different amounts of confounding were

considered by changing the values of �2 and �2.
In particular, four confounding scenarios were con-
sidered by setting the confounding effect on the
phenotype, �2, to 0, 1, 2 and 3 whilst the confounding
effect on the disease, �2, was varied between zero and
three for each scenario. The other parameters were
fixed as follows; �0¼ 0, �1¼ 1 and �1¼ 1. For each set
of parameter values 10 000 simulations were per-
formed. Statistical analysis was performed using
R (version 2.6.1).13

Results
The three estimators are assessed using the median
parameter estimates, coverage probabilities and type I
errors of the phenotype-disease log odds ratio, �1. The
coverage probability of �1 was calculated as the pro-
portion of simulations whose confidence interval
included the true value of �1. A set of simulations
was performed with �1 equal to 0 to represent the
situation in which there is no association between
phenotype and disease. For those simulations, the
proportion of statistically significant estimates of �1 is
an estimate of the type I error of the Wald test of �1.

Assessment of the bias of the estimators
Figure 2 shows the median of �1 for the three esti-
mators from the simulations, represented by the
symbols, and the values of the estimators calculated
from the formulae given in the Appendix represented
by the lines.

Figure 2 shows that the median values from the
simulations are in close agreement with the theore-
tical predictions, there is the same pattern to the
estimates of �1 for the different values of �2 except
when �2 is equal to zero. When �2 is equal to zero the
direct and adjusted estimators are equivalent due to
the assumptions underlying the relationship between
the confounder and the phenotype. When �2 is non-
zero, allowing the confounder to take effect, the direct
estimate of �1 is greater than the set value of one.
However, the effect the unmeasured confounding has
on the standard IV estimates is to bias them towards
zero, producing estimates that are always below
the true value of one. The values of the adjusted IV
estimator are between the other two sets of estimates
and have the smallest bias of the three estimators. For
the adjusted IV estimates the bias in �1 reduces with
largest values of �2 because the estimated residuals
are more informative.

Assessment of the coverage probabilities
of the estimators
Figure 3 shows the coverage probabilities of the
three estimators, when the nominal level was 95%.
The direct estimator and the standard IV estimator
demonstrate very low coverage for all four scenarios
due to the bias in �1. The adjusted IV estimator
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demonstrates the best coverage properties with levels
around 95% over the range of values of �2 for which
its estimate of �1 was approximately equal to the set
value of one in Figure 2.

Assessment of type I error
Figure 4 shows the type I error of the standard IV and
adjusted IV estimators when the nominal rate is 5%.
The type I error of the direct estimator is not shown
on Figure 4 because the values were very large. Under
the three scenarios with non-zero values of �2 the
adjusted IV estimator has a substantially higher type I
error rate than the standard IV estimator because the
inclusion of the estimated residuals in the adjusted IV
estimator reduced its estimated standard error.

Discussion
This article considers the bias in the estimates from
Mendelian randomization studies with binary out-
comes. Three estimators of the phenotype-disease log

odds ratio, termed; direct, standard IV and adjusted
IV, have been evaluated through a simulation study.
The simulations are in agreement with formulae
relating conditional and marginal parameter estimates
from logistic regression given in the Appendix. The
adjusted IV estimator was the least biased, but it had
high type I error when the effect of the unmeasured
confounder was large. Further, unreported simula-
tions show that the difference between marginal and
conditional parameter estimates would also exist with
probit regression and hence a similar but not identical
adjustment between the conditional and marginal
estimates of �1 would be required if probit regressions
were used in place of logistic regressions for the three
estimators.10

The simulations investigated the performance of the
estimators over a range of values of the confounder.
Over the four panels in Figure 2, when �2¼ 0, 1, 2
and 3, the confounder accounted for approximately
0%, 45%, 80% and 90% of the phenotype variance. For
the log odds of disease the confounder accounted for
between 0% and 90% of the variance in the linear
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predictor when �2¼ 0 and �2 varied from 0 to 3,
between 45% and 90% when �2¼ 1, between 80% and
90% when �2¼ 2 and between 85% and 95% when
�2¼ 3. Typically the gene used in a Mendelian ran-
domization study will only explain a small percentage
of the variance in the phenotype, perhaps <10%. The
impact of the confounders can therefore be large
causing large bias. If it is possible to include
measured confounders in the analysis this will
reduce the importance of the unmeasured confoun-
ders and so reduce the bias in all of the estimators.

The adjusted IV estimator uses the estimated resid-
uals as well as the predicted values from the first
stage regression of the genotype on the phenotype
as covariates in the second stage logistic regression
between the phenotype and the disease outcome.
A similar adjusted IV estimator was introduced in the
context of clinical trials subject to non-compliance.14

The first stage residuals contain some information
about the unmeasured confounder since they capture
the variance in the phenotype that is not explained by

the genotype. The argument used in the clinical trials
context was that these first stage residuals meet
Pearl’s back-door criterion and their inclusion in the
model results in the adjusted IV estimate having a
causal interpretation.14

Point estimates of causal effects from instrumental
variable analyses require strong parametric and
distributional assumptions, e.g. all relationships are
linear without interactions.6,15 Although the relation-
ship between a gene and an intermediate phenotype
might well be approximated by a linear regression,
the final response variable in epidemiological studies
is often a binary indicator of disease status and so the
phenotype-disease relationship is typically non-linear.
Instrumental variable theory has not been fully gener-
alized to non-linear situations6 so the practical impli-
cations of such a violation of the core assumptions
have not yet been clearly defined. Most crucially,
both the specification of the relevant causal parameter
and identification of how it relates to what can
be estimated in the observational regime are not
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generally straightforward.12 There are many examples
where causal estimates have been obtained for binary
outcomes but the particular parameter that can be
estimated depends on the situation being considered
and the assumptions that can be made.16–22 Whilst,
this is an important issue, our focus here is simply on
improving the estimates of the parameter for the
effect of phenotype on disease in the relevant logistic
regression equation when contemporary Mendelian
randomization methods are applied to binary outcome
data. For now, we ignore the issue of whether, and
under what conditions, this parameter has a strictly
causal interpretation.

The bias associated with binary outcomes in a
Mendelian randomization study may be of practical
importance, so more detailed sensitivity analyses
should be performed in which the biasing effects of
hypothesized amounts of confounding are investi-
gated using the formulae given in the Appendix.
The three estimators considered here give different

values of the phenotype-disease log odds ratio under
different scenarios of confounding. The differences
between the estimates are greater when the effects
of the unmeasured confounders are larger. There are
now several published examples of Mendelian ran-
domization analyses, and the collection of genotype,
phenotype and disease status information is becoming
increasingly common, especially with the creation of
large-scale Biobanks such as the UK Biobank. Large-
scale collaborative genetic epidemiological studies23,24

will ensure that there will be many genes available for
use as instrumental variables in future Mendelian
randomization analyses.
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Appendix
Formulae for the difference between
the marginal and conditional parameter
estimates of the three estimators
The difference between marginal and conditional
parameter estimates has been investigated for the
case of linear, logistic, probit and Poisson regression
models.10,25 In the case of logistic regression this
difference can be expressed by a multiplicative factor,

�marg � �cond �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c2V
p , where c ¼

16
ffiffiffi
3
p

15�
: ð10Þ

where �marg and �cond are the marginal and conditional
parameter estimates and V is the variance of the
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covariates over which the marginal estimates are
averaged. The formulae for the three estimators
are derived by approximating the logistic regression
as a simple regression of the log odds ratio,
�¼ log(p/(1� p)) on the covariates and confounders.26

If the terms included in the linear predictor of
the logistic regression are denoted by Z then the
remaining variance after allowing for these terms will
be given by,

V ¼ varð�jZÞ ¼ varð�Þ �
covð�, ZÞ2

varðZÞ
ð11Þ

since � and Z can both be assumed to be normally
distributed.27 From Equation (3),

�i ¼ �0 þ �1�0 þ �1�1gi þ ð�1�2 þ �2Þui þ �1�i ð12Þ

and because u is standardized, it follows that

varð�Þ ¼ ð�1�1Þ
2varðgÞ þ ð�1�2 þ �2Þ

2
þ �2

1�
2
� ð13Þ

and we can approximate var(g) by 2q(1� q) where
q is the minor allele frequency. Hence to apply
Equation (10) it is necessary to derive V for each of
the three estimators.

The direct estimator
The direct estimator performs a logistic regression of
disease on the intermediate phenotype. In this case
Z¼ xi where,

xi ¼ �0 þ �1gi þ �2ui þ �i ð14Þ

so,

varðZÞ ¼ �2
1varðgÞ þ �2

2 þ �
2
� : ð15Þ

The covariance between the log odds and the terms in
the linear predictor is given by

covð�, ZÞ ¼ �1 �2 1
� �

�

varðgÞ 0 0

0 1 0

0 0 �2
�

2
64

3
75 �

�1�1

�1�2þ �2

�1

2
64

3
75

¼ �2
1�1varðgÞ þ �2ð�1�2þ �2Þ þ �1�

2
� : ð16Þ

Hence Vdirect can be formed using Equations (13),
(16) and (15).

The standard IV estimator
For the standard IV estimator the log odds are
regressed on the fitted values from the linear
regression of the phenotype on the genotype. Thus
Z� �0þ �1g and,

varðZÞ ¼�2
1varðgÞ, ð17Þ

covð�, ZÞ ¼�2
1�1varðgÞ: ð18Þ

Hence for the standard IV estimator V is given by,

Vstandard ¼ ð�1�2 þ �2Þ
2
þ �2

1�
2
� : ð19Þ

The adjusted IV estimator
The adjusted IV estimator makes use of the estimated
residuals, r, from the regression of the phenotype on
genotype to capture some of the variance explained by
confounding variables not included in the standard IV
estimator. Therefore the value of V is reduced com-
pared with the standard IV estimator. For the
adjusted IV estimator V is given by,

V ¼ varð�jZÞ �
covð�jZ, rÞ2

varðrÞ
: ð20Þ

If the confounder u is standardized the estimated
residuals and their variance are given by,

ri ¼ �2ui þ �i ð21Þ

varðriÞ ¼ �
2
2 þ �

2
� ð22Þ

The covariance between the log odds given the
phenotype information and the estimated residuals
is given by,

covð�jZ, rÞ ¼ �1�2 þ �2 �1

� �
�

1 0

0 �2
�

� �
�
�2

1

� �
ð23Þ

¼ �2ð�1�2 þ �2Þ þ �1�
2
� : ð24Þ

Since var(�|Z)¼Vstandard from the standard IV esti-
mator above, for the adjusted IV estimator we have,

Vadjusted ¼ ð�1�2þ �2Þ
2
þ �2
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