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Consider a study whose design calls for the study subjects to be followed from enrollment (time t = 0) to time t = T , at
which point a primary endpoint of interest Y is to be measured. The design of the study also calls for measurements on a vector
V(t) of covariates to be made at one or more times t during the interval [0, T ). We are interested in making inferences about
the marginal mean µ0 of Y when some subjects drop out of the study at random times Q prior to the common fixed end of
follow-up time T . The purpose of this article is to show how to make inferences about µ0 when the continuous drop-out time Q is
modeled semiparametrically and no restrictions are placed on the joint distribution of the outcome and other measured variables.
In particular, we consider two models for the conditional hazard of drop-out given (V̄(T ), Y ), where V̄(t) denotes the history of
the process V(t) through time t, t ∈ [0, T ). In the first model, we assume that λQ(t|V̄(T ), Y ) = λ0(t|V̄(t)) exp(α0Y ), where α0
is a scalar parameter and λ0(t|V̄(t)) is an unrestricted positive function of t and the process V̄(t). When the process V̄(t) is high
dimensional, estimation in this model is not feasible with moderate sample sizes, due to the curse of dimensionality. For such
situations, we consider a second model that imposes the additional restriction that λ0(t|V̄(t)) = λ0(t) exp(γ′

0W(t)), where λ0(t) is
an unspecified baseline hazard function, W(t) = w(t, V̄(t)), w(·, ·) is a known function that maps (t, V̄(t)) to Rq , and γ0 is a q ×1
unknown parameter vector. When α0 6= 0, then drop-out is nonignorable. On account of identifiability problems, joint estimation
of the mean µ0 of Y and the selection bias parameter α0 may be difficult or impossible. Therefore, we propose regarding the
selection bias parameter α0 as known, rather than estimating it from the data. We then perform a sensitivity analysis to see how
inference about µ0 changes as we vary α0 over a plausible range of values. We apply our approach to the analysis of ACTG 175,
an AIDS clinical trial.
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1. INTRODUCTION

Rotnitzky, Robins, and Scharfstein (1998) proposed aug-
mented inverse probability of censoring weighted (AIPCW)
semiparametric estimators for the marginal mean µ0 of
an outcome of interest Y measured at a fixed time T
from longitudinal data when (a) some subjects drop out of
the study, (b) drop-out is nonignorable, and (c) the prob-
ability of drop-out is a function of the potentially unob-
served Y and additional time-dependent covariates V(t)
and follows a parametric model. The Rotnitzky–Robins–
Scharfstein AIPCW estimators are semiparametric in the
sense that they are guaranteed to be consistent and asymp-
totically normal (CAN) for µ0 regardless of the joint distri-
bution of the outcome Y and the additional variables V(t),
provided that the parametric model for drop-out is correct.
A natural extension of their approach is to allow the model
for drop-out to be semiparametric. This generalization will
be particularly important in studies in which time to drop-
out is a continuous random variable. In particular, to ensure
additional robustness to model misspecification, we allow
the time to drop-out to depend on Y and other possibly
time-dependent variables V(t) through a semiparametric
proportional hazards model.

Before proceeding further, it is useful to place this article
in the context of previous work on nonignorable drop-out.
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Recent years have brought an explosive growth of litera-
ture in this area. This is reflective of the increasing recog-
nition that subjects may drop out of a longitudinal study
because of factors related either directly or indirectly to the
outcome under investigation. The literature can be divided
into likelihood-based and nonlikelihood-based approaches.
In the likelihood framework, full parametric specification
of the joint distribution of outcomes and the nonresponse
mechanism is required. Hogan and Laird (1997a) and Little
(1995) have provided reviews of much of this literature, in-
cluding the work of DeGruttola and Tu (1994), Diggle and
Kenward (1994), Fitzmaurice, Clifford, and Heath (1996),
Fitzmaurice, Laird, and Zahner (1996), Fitzmaurice, Molen-
berghs, and Lipsitz (1995), Hogan and Laird (1997b), Laird
(1988), Little (1993a,b), Mori, Woodworth, and Woolson
(1992), Schluchter (1992), Self and Pawitan (1992), Tsiatis,
DeGruttola, and Wulfsohn (1994), Wu and Bailey (1988,
1990), Wu and Carroll (1988). In the nonlikelihood ap-
proach considered by Robins (1997), Robins, Rotnitzky, and
Zhao (1995), Rotnitzky and Robins (1997), and Rotnitzky
et al. (1998), the joint distribution of the outcomes is as-
sumed to follow a nonparametric or semiparametric model,
whereas the nonresponse mechanism is assumed to follow a
parametric model. The current work extends the nonlikeli-
hood approach by allowing for semiparametric nonresponse
mechanisms.

In the next section we describe our data structure and de-
fine and motivate models for these data. We discuss issues
of identifiability of parameters in these models, which lead
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us into a exposition of our philosophy of sensitivity analy-
sis. We also set the stage for the remainder of the article.

2. DATA, MODELS, IDENTIFIABILITY, AND
PHILOSOPHY OF SENSITIVITY ANALYSIS

2.1 Identifiability

We assume that we observe n iid copies, {Oi = (Qi, ∆i,
∆iYi, V̄i(Qi)): i = 1, . . . , n}, of

O = (Q,∆,∆Y, V̄(Q)),

where Q is time to drop-out, Y is the outcome of in-
terest measured at the fixed nonrandom end-to-follow-up
time T,∆ = I(Q ≥ T ) is the drop-out indicator, and
V̄(t) = {V(u): 0 ≤ u ≤ t} is the history of all other vari-
ables that would be recorded through time t in the absence
of drop-out. Note that Y is observed if and only if ∆ = 1.
For notational convenience, for subjects who do not drop
out, we set the drop-out time Q equal to the end of follow-
up time T .

The goal of this article is to consider inference about a
smooth functional of the marginal distribution of Y using
the observed data {Oi, i = 1, . . . , n}. For concreteness, we
concentrate on inference about the mean µ0 of Y , although
we briefly consider the median in Section 7.1.

Consider model A, in which we assume that the condi-
tional hazard of Q, given the data (V̄(T ), Y ) that would
be observed in the absence of drop-out, follows a stratified
Cox proportional hazards model of the form

λQ(t|V̄(T ), Y ) = λ0(t|V̄(t)) exp(α0Y ), (1)

where λQ(t|V̄(T ), Y ) = limh→0 Pr[t ≤ Q < t +
h|V̄(T ), Y,Q ≥ t]/h, λ0(t|V̄(t)) is an unrestricted positive
function, and α0 is an unknown parameter. Equation (1)
states that the hazard of drop-out at time t depends in an
arbitrary and unknown way on the observed past V̄(t), but
depends on the possibly unobserved future only through the
term exp(α0Y ). When α0 = 0, drop-out at time t is con-
ditionally independent of the possibly unobserved outcome
Y given the observed past V̄(t). Thus α0 = 0 corresponds
to the assumption that the data are coarsened at random
(CAR) as defined by Heitjan and Rubin (1991). Robins and
Rotnitzky (1992) previously studied inference in model A
when α0 = 0. This article extends their work by allowing
for nonzero α0. The sensitivity analysis philosophy that we
adopt herein is motivated by the following identification
theorem, whose proof is given in Appendix A.

Theorem 1. Under the regularity conditions given in
Appendix A, (a) in model A, neither α0 nor the distribu-
tion of (V̄(T ), Y ) is identified, and (b) for each law FO

of the observed data O and each value of α0, there exists
a unique λ0(t|V̄(t)) and a unique joint law, say FV̄(T ),Y ,
of (V̄(T ), Y ) such that FO is the marginal distribution of
O under the law FV̄(T ),Y,Q for (V̄(T ), Y,Q) determined by
FV̄(T ),Y and (1).

Consider model A(α0), which differs from model A only
in that α0 is assumed known to the data analyst. Theorem

1(b) implies that model A(α0) is nonparametric (i.e., satu-
rated) for FO in the sense that it places no restrictions on the
joint law of the observed data. That is, model A(α0) fits the
data perfectly and cannot be rejected by any statistical test.
The theorem also implies that model A(α0) is just identi-
fied in the sense that the joint distribution of (V̄(T ), Y,Q)
is uniquely determined by the law of the observables. We
thus refer to model A(α0) as a “nonparametric (just) identi-
fied” (NPI) model. In (A.1a)–(A.1c) of Appendix A we give
an explicit characterization of the map from (FO, α0) to the
law FV̄(T ),Y,Q.

It follows that under model A(α0), for any given law FO

of O, we can plot the mean of Y , say µ(α0), as a function of
the nonidentified selection bias parameter α0. In practice,
the law FO is unknown, but it can be estimated from the
observed data. Thus we can replace µ(α0) by an estimator
µ̂(α0) and provide a confidence interval for µ(α0) that will
be guaranteed to asymptotically cover µ(α0) at its nominal
rate. Our estimation procedure is described in Section 3.
We now illustrate our approach with a concrete example.

2.2 Example: ACTG 175

ACTG 175 was a randomized, double-blind clinical
trial designed to evaluate nucleoside monotherapy (zidovu-
dine or didanosine) versus combination therapy (zidovu-
dine/didanosine or zidovudine/zalcitabine) in HIV-1 in-
fected individuals with CD4 cell counts of 200–500/mm3.
Specifically, 2,467 subjects were randomized to one of four
treatment arms: (1) zidovudine 200 mg three times daily
(AZT); (2) zidovudine 200 mg three times daily plus di-
danosine 200 mg twice daily (AZT + ddI); (3) zidovudine
200 mg three times daily plus zalcitabine .75 mg daily (AZT
+ ddC); and (4) didanosine 200 mg twice daily (ddI). Enroll-
ment began in December 1991 and was closed in October
1992. CD4 counts were obtained at baseline and again at
weeks 8, 20, 32, 44, and 56 (Hammer et al. 1996).

One goal of the investigators was to compare the four
treatment arm–specific mean CD4 counts at week 56 had
(possibly contrary to fact) all subjects complied with their
assigned therapy through that week. This goal differs from
that of an intent-to-treat analysis, which aims to compare
treatment arm–specific means of subjects as randomized,
regardless of compliance. Therefore, for the purpose of
our analyses, subjects were considered to be drop-outs if
they died or were lost to follow-up prior to week 56, if
they missed their 56 week clinic visit, or if they were ob-
served to discontinue their assigned therapy prior to week
56. Drop-outs varied from 26.5 to 36% in the four arms.
An approximate time to drop-out was available for these
subjects. Note that, as is common in randomized trials, our
interest is in the unconditional mean of CD4 count Y at
week 56 rather than the conditional mean of Y given V̄(t).
The conditional mean of Y given baseline covariates V(0)
might be of interest for “subset” analyses, which are not
considered in this article. Figure 1 presents a sensitivity
analysis based on model A(α0) in which we took V̄(t) to
be the time-independent indicator of whether the subject
was an IV drug user at baseline. In Figure 1 we show the
estimated means along with 95% confidence intervals for
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Figure 1. Treatment-Specific Predicted Means and 95% Confidence Intervals for Varying α0 ’s in Model A(α0 ) with IV Drug User Status as the
Time-independent Regressor.

α0’s ranging from −.02 to .02 for each of the four treatment
groups. Between-treatment group comparisons are reported
in Section 6. In Figure 1 α0 is interpreted as the log hazard
ratio for drop-out between subjects with the same baseline
IV drug user status, but who differ by 1 in CD4 count at
week 56. Setting α0 > 0 (< 0) is tantamount to assum-
ing that among subjects with the same IV drug user status,
those with higher (lower) CD4 counts at 56 weeks are more
likely to be drop-outs than those with lower (higher) CD4
counts. For example, setting α0 = .01 specifies that at each
time t an IV drug user with a 200 CD4 count at 56 weeks
has a drop-out hazard 2.7 times that of an IV drug user
with a 100 CD4 count at 56 weeks and a drop-out hazard
(2.7)3/2 times that of a drug user with a CD4 count of 50
at 56 weeks. As expected, for each treatment group, the
estimated means increased monotonically with α0.

2.3 A Philosophy of Sensitivity Analysis

The reader should not be discouraged that we only pro-
vide a sensitivity analysis for the mean of Y . Because the
parameter α0 represents the magnitude of selection bias due

to unmeasured factors, it would not be desirable or scien-
tifically reasonable for α0 to be identified from the data
in the absence of further knowledge of these factors. Our
model A(α0) formalizes this desiderata; we cannot iden-
tify the magnitude of selection bias, but we can identify
the law of Y , and in particular its mean, as a function of
the selection bias parameter. Because the data contain no
independent evidence about α0, final substantive conclu-
sions would depend on which values of α0 are considered
plausible by relevant subject matter experts. In Appendix
A we prove that Theorem 1 remains true if we replace
α0Y in (1) by any other fixed function r(t, α0; V̄(T ), Y )
of t, α0, V̄(T ), and Y that satisfies the regularity conditions
of Appendix A. Thus there will never be any data evidence
that can determine either the magnitude of α0 or the func-
tional form r(t, α0; V̄(T ), Y ) of the selection bias process.
It follows that one may wish to repeat the preceding sensi-
tivity analysis with α0Y replaced by other functional forms
r(t, α0; V̄(T ), Y ) satisfying r(t, 0; V̄(T ), Y ) = 0, so α0 = 0
continues to imply CAR. Note that the substantive mean-
ing of the magnitude of α0 depends on the functional form
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chosen for r(t, α0; V̄(T ), Y ). Sensitivity analyses based on
other NPI models have been considered in the missing-
data literature by Baker, Rosenberger, and DerSimonian
(1992), Nordheim (1984), Robins (1997), and Rotnitzky et
al. (1998) and in the competing risks literature by Klein
and Moeschberger (1988), Slud and Rubinstein (1983), and
Zheng and Klein (1994, 1995). With the exception of those
of Robins (1997) and Rotnitzky et al. (1998), these NPI
models do not allow for time-dependent processes V̄(t).

It is important to note that it would be possible to jointly
identify the nonignorable selection bias parameter α0 and
the mean µ0 of Y (as well as estimate them at n1/2-rates)
if, in addition to (1), we specified that either FY,V̄(T ) or
λ0(t|V̄(t)) followed particular parametric models. How-
ever, one would rarely, if ever, have such firm prior knowl-
edge of the functional form of either FY,V̄(T ) or λ0(t|V̄(t))
so that such parametric restrictions should be used to iden-
tify the parameters of scientific interest. Little (1985) and
Little and Rubin (1987) expressed similar sentiments. In
our opinion, it is preferable that µ0 and α0 not be jointly
identified from the data in the absence of additional well-
supported substantive knowledge. This position is in line
with the adage: “It’s not what you don’t know that hurts
you; it’s the things you think you know, but don’t.” To para-
phrase Freedman, Rothenberg, and Sutch (1984), identify-
ing α0 and µ0 by specifying parametric models will increase
the stock of things that we think we know, but do not.

Clearly the biggest challenge in conducting such a sensi-
tivity analysis is the choice of one or more sensible parame-
terized selection bias functions r(t, α0; V̄(T ), Y ) whose in-
terpretation can be communicated to relevant subject mat-
ter experts with sufficient clarity so that they can provide
a plausible range for the parameter α0, including its mag-
nitude and direction. Hard as this challenge may sound,
we believe it to be a worthwhile exercise when compared
to the alternative of identifying α0 and µ0 based on poorly
motivated parametric functional forms and/or distributional
shape restrictions.

When a decision is required (e.g., whether a drug should
be licensed based on the study results), a drawback of sensi-
tivity analysis is that it produces a range of answers rather
than a single answer. In this case it would be reasonable
to place a prior distribution on the nonidentified selec-
tion bias parameter α0, and also on the functional form of
r(t, α0; V̄(T ), Y ). Robins, Rotnitzky, and Scharfstein (1999,
sec. 11) provided details of this approach, although the dis-
cussion there is restricted to a rather simple setting be-
cause of unsolved technical problems with implementing
nonparametric Bayesian procedures. Even if one wished to
summarize inferences by Bayesian averaging over possi-
ble values of α0, we recommend that one also publish the
results of the sensitivity analysis itself, to make the reader
aware of how inferences about µ0 vary with α0. In this sense
we regard a sensitivity analysis as useful “preprocessing”
for any full Bayesian analysis that places prior distributions
on α0 and the other parameters.

2.4 The Curse of Dimensionality

Theorem 1 guarantees that both the law of (V̄(T ), Y ) and
λ0(t|V̄(t)) are nonparametrically identified under model
A(α0). Furthermore, in Section B.1.1 of Appendix B
we prove that the asymptotic semiparametric information
bound for n1/2-consistent estimators of µ0 in model A(α0)
is nonzero. Nonetheless, neither Theorem 1 nor the positive
information bound guarantees that we can construct estima-
tors of µ0 that perform well in the moderate-sized samples
found in practice. In fact, when V̄(t) is high dimensional
and the sample size is moderate (say, less than 1,000), then,
due to the curse of dimensionality, there is no estimator of
µ0 that has, under all laws allowed by model A(α0), an ap-
proximately normal sampling distribution centered near µ0
with variance sufficiently small to be of substantive inter-
est (Robins and Ritov 1997). This reflects the fact that to
estimate µ0 under model A(α0), it is necessary to use multi-
variate nonparametric smoothing techniques, which would
require impractically large samples when V̄(t) is high di-
mensional.

We regard the process V̄(t) as high dimensional if (a) for
each t, the vector V(t) has two or more continuous com-
ponents or many discrete components, or (b) V̄(t) jumps at
many different times. In such cases we consider model B,
in which we assume that (1) holds and

λ0(t|V̄(t)) = λ0(t) exp(γ′
0W(t)), (2)

where λ0(t) is an unspecified baseline hazard function,
W(t) = w(t, V̄(t)),w(·, ·) is a known function that maps
(t, V̄(t)) to Rq, and γ0 is a q-dimensional unknown param-
eter. In Section 4 we show that inference about µ0 under
model B(α0) (i.e., model B with α0 assumed known) does
not require high-dimensional smoothing. Thus we can leave
the baseline hazard λ0(t) unrestricted and still obtain well-
behaved estimates of µ0.

Theorem 1 does not hold for model B. As a consequence
of the restriction on the functional form of λ0(t|V̄(t)) im-
posed by (2), µ0 and α0 are often jointly identified. But if
we choose the dimension of W(t) in (2) moderately large,
to preserve some robustness to misspecification, then there
would be generally little independent information about α0
and µ0, and thus their joint estimation would require very
large sample sizes. Thus we continue to recommend that
one regard α0 as fixed and known when estimating µ0 and
vary α0 in a sensitivity analysis. As this model B(α0) is no
longer a nonparametric model for the distribution of the ob-
served data, it can in principle be subjected to a goodness-
of-fit test. In conducting a sensitivity analysis, we would
like to choose the dimension of W(t) in (2) large enough
so that any goodness-of-fit test will have little power to re-
ject model B(α0), but choose the dimension small enough
so that the estimators described in Section 4 have a nearly
normal sampling distribution with variance small enough to
be of substantive use to subject matter experts. It is not clear
that both of these competing criteria can always be met.
Clearly, the choice of the dimension of W(t) will depend
on the size of the dataset and on the precision required by
the experts. Furthermore, because different models B(α0)
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associated with different choices for the functional form of
W(t) = w(t, V̄(t)) cannot be easily distinguished based on
a goodness-of-fit test and may lead to quite different infer-
ences for µ0, it would be best to repeat a sensitivity analysis
a number of times, varying not only the functional form of
the nonidentified selection bias function r(t, α0; V̄(T ), Y ),
but also the functional form of w(t, v̄(t)) in (2).

In Sections 3 and 4 we show how to estimate µ0 in mod-
els A(α0) and B(α0). These estimation procedures are a
special case of a general theory of inference in settings in
which the full data (i.e., V̄(T ) and Y ) and the drop-out
mechanism (i.e., Q) follow arbitrary semiparametric mod-
els with distinct parameters. For ease of presentation, we
describe this general theory and then give specific applica-
tions to the models considered in this article in Appendix B.
In Section 5 we present the results of two simulation stud-
ies that evaluate the performance of our estimation proce-
dures in moderate-sized samples. In Section 6 we perform
a sensitivity analysis of the ACTG 175 dataset using our
two models. In Section 7 we describe settings in which our
method breaks down and offer alternative methods appro-
priate for these settings. We denote the final section to a
discussion.

3. ESTIMATION IN MODEL A(α)

To motivate our estimation method, suppose first that
λ0(t|V̄(t)) were known. Let Λ0(t|V̄(t)) =

∫ t

0 λ0(u|V̄(u)) du
denote the cumulative conditional baseline hazard. Then we
could estimate µ0 by µ̃(b) solving

n∑
i=1

h(Oi;µ,Λ0; b) = 0,

where b = b(v̄(t), t;µ) is a function specified by the data
analyst and

h(O;µ,Λ0; b)

=
∆

π(V̄(T ), Y )

× (Y − µ− E[(1 − ∆)b(V̄(Q), Q;µ)|V̄(T ), Y ])

+ (1 − ∆)b(V̄(Q), Q;µ), (3)

with π(V̄(T ), Y ) = Pr[∆ = 1|V̄(T ), Y ]. By (1), we
have Pr[∆ = 1|V̄(T ), Y ] = S(T |V̄(T ), Y ), where
S(t|V̄(T ), Y ) = exp(−Λ0(t|V̄(t)) exp(α0Y )). Furthermore,
the conditional expectation in (3) can be explicitly evaluated
as
∫ T

0 b(V̄(t), t; µ) exp(−Λ0(t|V̄(t)) exp(α0Y )) exp(α0Y )
λ0(t|V̄(t)) dt. In the special case in which b(v̄(t), t;µ) is
chosen to be identically 0, we refer to µ̃(b) as an inverse
probability of censoring weighted (IPCW) estimator. This
is a generalization of the Horvitz–Thompson (Horvitz and
Thompson 1952) estimator used in the sample survey liter-
ature. When b(v̄(t), t;µ) is nonzero, we refer to µ̃(b) as an
augmented IPCW (AIPCW) estimator.

The regularity condition 2 of Appendix A guaran-
tees that π(V̄(T ), Y ) > 0 with probability 1. Thus
E[∆/π(V̄(T ), Y )|V̄(T ), Y ] = 1, and hence E[h(O;µ0,
Λ0; b)] = 0 for any function b. Using standard Tay-

lor series arguments, it can be shown that n1/2(µ̃(b) −
µ0) is asymptotically normal with mean 0 and asymp-
totic variance τ(b)−2 var[h(O;µ0,Λ0; b)] where τ(b) =
∂E[h(O;µ,Λ0; b)]/∂µ|µ=µ0 . Given a consistent estimator
τ̃(b) of τ(b), the asymptotic variance can be consistently
estimated by τ̃(b)−2n−1∑n

i=1 h(Oi; µ̃(b),Λ0; b)2. When the
functional µ0 is the mean of Y, τ(b) = 1, and τ̃(b) can be
taken to be 1 as well.

Because in fact λ0(u|V̄(u)), and thus π(V̄(T ), Y ) and the
conditional expectations in (3) are unknown, we consider
estimators µ̂(b) solving

n∑
i=1

h(Oi;µ, Λ̂; b) = 0,

where

h(O;µ, Λ̂; b)

=
∆

π̂(V̄(T ), Y )

× (Y − µ− Ê[(1 − ∆)b(V̄(Q), Q;µ)|V̄(T ), Y ])

+ (1 − ∆)b(V̄(Q), Q;µ),

π̂(V̄(T ), Y ) is equal to exp(−Λ̂(T |V̄(T )) exp(α0Y )), Ê[(1−
∆)b(V̄(Q), Q; µ)|V̄(T ), Y ] is equal to

∫ T

0 b(V̄(t), t; µ)
exp(−Λ̂(t|V̄(t)) exp(α0Y )) exp(α0Y ) dΛ̂(t|V̄(t)), and Λ̂(t|
V̄(t)) is the estimate of the cumulative baseline hazard
Λ0(t|V̄(t)) described later.

Unfortunately, due to the curse of dimensionality, non-
parametric estimation of Λ0(t|V̄(t)) is not feasible when
V(t) has multiple continuous components or the process
V̄(t) jumps at many different times. In the remainder of
this section we consider the special case in which V̄(t) is
time independent so that V̄(t) = V for all t.

If V is discrete, then Λ̂(t|V) is estimated separately
within each level of V. If V is univariate and continu-
ous, then Λ̂(t|V) is nonparametrically estimated by a “his-
togram” estimator that places subjects with similar values
of V into a common bin and constructs estimators Λ̂(t|V)
separately for each bin. Suppose that V is discrete or has
been discretized by grouping into a finite number of “bins.”
If we were always able to observe Y , then we could sim-
ply partition the sample into groups based on the value of
V and estimate the cumulative baseline hazard separately
within each group using the Nelson–Aalen estimator with
censoring times as the jump times (Andersen, Borgan, Gill,
and Keiding 1993). That is, we could estimate Λ0 (t|V = v)
by

Λ̃(t|V = v)

=
∫ t

0

(
1
nv

n∑
i=1

I(Vi = v) exp(α0Yi)I(Qi ≥ u)

)−1

×
(

1
nv

n∑
i=1

dN v
i (u)

)
, (4)
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where N v
i (u) = I(Vi = v, Qi ≤ u,∆i = 0) and nv =∑n

i=1 I(Vi = v). Because Y is not always observed, we
need to modify the foregoing estimator. The integrand
of (4) is not observable. So we would like to replace it
with an observable quantity that has the same probability
limit. The key observation is that E[∆I(V = v)S(u|V =
v, Y )/S(T |V = v, Y )|V = v, Y,Q ≥ u] = 1, so that by a
uniform large of large numbers,

sup
u∈[0,T ]

∣∣∣∣ 1
nv

n∑
i=1

I(Vi = v) exp(α0Yi)I(Qi ≥ u)

− 1
nv

n∑
i=1

∆iI(Vi = v) exp(α0Yi)I(Qi ≥ u)

exp{− exp(α0Yi)(Λ0(T |Vi = v) − Λ0(u|Vi = v))}

∣∣∣∣
P→ 0.

The latter quantity within the absolute value depends on
Λ0(·|V = v), but we can substitute Λ̂(·|V = v) to define
the recursive estimator

Λ̂(t|V = v)

=
∫ t

0

(
1

nv

n∑
i=1

∆iI(Vi = v) exp(α0Yi)I(Qi ≥ u)

exp(− exp(α0Yi)(Λ̂(T |Vi = v) − Λ̂(u|Vi = v)))

)−1

×
(

1
nv

n∑
i=1

dN
v
i (u)

)
.

We can obtain an explicit solution for Λ̂(t|V = v) as fol-
lows. First, note that Λ̂(t|V = v) is a step function with
jumps at each of the unique censoring times in the group
with V = v. Thus we need only compute the jump sizes.
Henceforth, let Qv

(1), < . . . , < Qv
(kv)

denote these unique
times. Let cv

k denote the number of subjects who are cen-
sored at Qv

(k), k = 1, . . . , kv. Note that when, as we have
assumed, Q has a continuous distribution function, cv

k will
only take value 1. Thus we can write Λ̂(t|V = v) =∑kv

k=1 λ̂
v
kI(Q

v
(k) ≤ t), where the jump size λ̂v

k is found by
the following procedure:

1. λ̂v
kv

= (
∑n

i=1 ∆iI(Vi = v) exp(α0Yi))−1cv
kv

.
2. For k = kv − 1, . . . , 1, sequentially compute

λ̂v
k =

(
n∑

i=1

∆iI(Vi = v) exp(α0Yi)

exp(− exp(α0Yi)
∑kv

j=k+1 λ̂
v
j)

)−1

cv
k.

Under regularity conditions, we would expect n1/2{Λ̂(·|V =
v) − Λ0(·|V = v)} to converge to a Gaussian process.
Hence we consistently estimate the survivor function of
Q given V = v and Y by Ŝ(t|V = v, Y ) = exp(−Λ̂(t|V =
v) exp(α0Y )).

If V is discrete or V is univariate and continuous, λ0(t|V)
is smooth as a function of V, and the binwidth is decreased
with increasing sample size at an appropriate rate, then, un-
der some additional mild regularity conditions µ̂(b) should
be a regular and asymptotically linear (RAL) estimator of
µ0 with influence function d(O; b). Recall that an estima-

tor µ̂(b) is asymptotically linear with influence function
d(O; b) if n1/2(µ̂(b) − µ0) = n−1/2∑n

i=1 d(Oi; b) + op(1),
where E[d(O; b)] = 0, 0 < E[d(O; b)2] < ∞, and op(1)
refers to a random variable converging to 0 in probabil-
ity. An estimator µ̂(b) of µ0 is regular in a semipara-
metric model if its convergence to µ0 is locally uniform.
(See Bickel, Klassen, Ritov, and Wellner 1993 for a more
precise definition.) Regularity is a technical condition im-
posed to prohibit superefficient estimators. In fact, even
a fully parametric model will have nonregular estima-
tors whose asymptotic variance is less than the Cramer–
Rao variance bound. If µ̂(b) is asymptotically linear, then
n1/2(µ̂(b) − µ0) is asymptotically normal with mean 0 and
variance E[d(O; b)2]. Further, any two asymptotically linear
estimators with the same influence function are asymptot-
ically equivalent in the sense that n1/2 times their differ-
ence converges to 0 in probability. In general, the influence
function d(O; b) of µ̂(b) will not be equal to the influence
function −τ(b)−1h(O;µ0,Λ0; b) of µ̃(b), and the asymp-
totic variance E[d(O; b)2] will not be consistently estimated
by

n−1τ̃(b)−2
n∑

i=1

h(Oi; µ̂(b), Λ̂; b)2. (5)

This is because for most choices of b, estimation of
Λ0(t|V) contributes a term to the asymptotic vari-
ance of µ̂(b), in which case the asymptotic variance
τ(b)−2E[h(O;µ0,Λ0; b)2] of µ̃(b) cannot be the same as
E[d(O; b)2].

In fact, regardless of the choice of the function b, all es-
timators µ̂(b) will have the same influence function with
asymptotic variance equal to the semiparametric variance
bound for estimators of µ0 in model A(α0). This follows
from the fact that by Theorem 1, model A(α0) is a non-
parametric model for the observed data O, and Bickel et al.
(1993) proved that for any nonparametric model, all RAL
estimators of any functional of FO (such as µ0) have the
same influence function. Thus if we can find a function b∗

for which estimation of Λ0(t|V) does not contribute to the
asymptotic variance of µ̂(b), then for all b, µ̂(b) will have
influence function −τ(b∗)−1h(O;µ0,Λ0; b∗). For b 6= b∗, the
asymptotic variance of µ̂(b) will be consistently estimated
not by (5), but rather by

n−1τ̃(b∗)−2
n∑

i=1

h(Oi; µ̂(b), Λ̂; b∗)2. (6)

We now present a heuristic approach to finding b∗. Our
estimating function h(O;µ,Λ0; b) depends on the unre-
stricted infinite-dimensional nuisance parameter Λ0(t|V).
Estimation of Λ0(t|V) does not contribute to the asymp-
totic variance of µ̂(b) when Λ0(t|V) is unrestricted if and
only if the same is true when Λ0(t|V) follows any arbitrary
correctly specified parametric submodel. But if Λ0(t|V),
or, equivalently λ0(t|V), had a known parametric form in-
dexed by η with true value η0 and estimated value η̂, then
we could write h(O;µ,Λ0; b) as h†(O;µ, η0; b) and expand
h†(O;µ, η̂; b) around η0 to derive the asymptotic variance
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of µ̂(b). Inspection of the Taylor expansion terms would
reveal that a necessary and sufficient condition for the esti-
mation of η not to affect the asymptotic variance of µ̂(b) is
that n−1∑

i ∂h
†(Oi;µ0, η0; b)/∂η converge to 0 in probabil-

ity, or, equivalently, that E[∂h†(O;µ0, η0; b)/∂η] = 0. But it
can be shown (Newey 1990) that E[∂h†(O;µ0, η0; b)/∂η] =
E[h(O;µ0,Λ0; b)Sη], where Sη = ∂ lnL(µ0, η0;O)/∂η
is the derivative of the observed-data log-likelihood
lnL(µ0, η;O) for a single subject with respect to η. Thus
we conclude that estimation of Λ0(t|V) will not contribute
to the asymptotic variance only for those choices of b such
that h(O;µ0,Λ0; b) is uncorrelated with the scores Sη of all
parametric submodels for λ0(t|V). In Appendix B we show
that there exists one and only one such function b∗, given
by

b∗(V, t;µ) = b∗(V;µ)

= E[(Y − µ) exp(α0Y )|V]/E[exp(α0Y )|V].

(7)

The function b∗(V;µ) is not available for data analysis,
because it depends on the unknown conditional expectations
in (7). However, using the arguments of Robins, Mark, and
Newey (1992), it can be shown that if b̂∗(v;µ) is a consistent
estimator of b∗(v;µ) for each v, then µ̂(b∗) and µ̂(b̂∗) have
the same asymptotic variance, so that (6), with b∗ replaced
by b̂∗, is a consistent variance estimator for µ̂(b̂∗). Indeed
it is consistent for the asymptotic variance of any µ̂(b). In
practice, we recommend that one use the estimator µ̂(b̂∗) in
lieu of the alternative estimators µ̂(b), because then one ob-
tains “for free” a consistent variance estimator. Under regu-
larity conditions, for any given function l(·), E[l(Y )|V = v]
is consistently estimated by

Ê[l(Y )|V = v] =
1
nv

n∑
i=1

∆iI(Vi = v)l(Yi)
π̂(v, Yi)

.

Thus we estimate b∗(v;µ) by b̂∗(v;µ) = Ê[(Y −
µ) exp(α0Y )|V = v]/Ê[exp(α0Y )|V = v]. Note that µ̂(b̂∗)
can be written in closed form as

µ̂(b̂∗) =
1
n

n∑
i=1

∆i

π̂(Vi, Yi)
Yi

− ∆i − π̂(Vi, Yi)
π̂(Vi, Yi)

Ê[Y exp(α0Y )|V = Vi]
Ê[exp(α0Y )|V = Vi]

.

To summarize the results of this section, we state the
following proposition. Here and throughout, results whose
proof would require the detailed checking of precise reg-
ularity conditions are termed propositions rather than the-
orems. Rigorous proofs would require modern empirical
process theory and are beyond the scope of this article.

Proposition 1. Suppose that Λ0(T |V = v) is finite, V is
a discrete random vector, and Y has bounded support. Then
µ̂(b̂∗) and µ̂(b), for any b, are RAL with influence function

−τ(b∗)−1h(O;µ0,Λ0; b∗) with asymptotic variance that can
be consistently estimated by (6) with b∗ replaced by b̂∗.

Interestingly, when V̄(t) = V is time independent, our
estimate Λ̂(T |V = v) of Λ0(T |V = v) depends on the data
only through {(∆i, Yi∆i,Vi): i = 1, . . . , n}. In particular, it
is not a function of the actual drop-out times Q or even of
their ranks. It follows that for choices of b(v̄(t), t;µ) that do
not depend on t, including b∗(v;µ), µ̂(b) is not a function of
the Qi’s. In contrast, it follows from the proof of Theorem
1 in Appendix A that if V̄(t) were time dependent or if we
replaced α0Y in (1) by a known function r(t, α0; V̄(T ), Y )
that depended on t, then µ0 would not even be identified in
model A(α0) in the absence of data on the drop-out times
Q. Given data on Q, it is straightforward to generalize the
estimators µ̂(b) to obtain estimators of µ0 in model A(α0)
when V̄(t) is time dependent (but still low dimensional)
and/or r(t, α0; V̄(T ), Y ) replaces α0Y . In this setting the
function b∗(v̄(t), t;µ), for which h(O;µ0,Λ0; b∗) is uncor-
related with all nuisance scores, will depend on t and is
characterized in Appendix B.

When V̄(t) is low dimensional, an obvious competitor to
our AIPCW estimator µ̂(b̂∗) is the nonparametric maximum
likelihood estimator (NPMLE) of µ0 (van der Laan 1993),
which is asymptotically equivalent to µ̂(b̂∗). Indeed, it may
be algebraically equivalent, depending on which of sev-
eral possible “nonparametric likelihood functions” is max-
imized (Murphy 1995). However, as shown in Section 4,
the AIPCW methodology generalizes straightforwardly to
model B(α0) with V̄(t) high dimensional. In this latter set-
ting, the NPMLE is undefined (Robins and Ritov 1997).

4. ESTIMATION IN MODEL B(α)

4.1 A Class of Estimators

To motivate our estimator of ψ0 = (µ0,γ
′
0)

′ in model
B(α0), suppose for the moment that the baseline hazard
λ0(t) in (2) is known. Let Λ0(t) =

∫ t

0 λ0(u) dt denote the cu-
mulate baseline hazard. We assume that W(t) and γ0 in (2)
are q-dimensional. Consider the q + 1 vector of augmented
IPCW estimating functions h(O;ψ,Λ0;b), where h(O; ψ,
Λ0; b) = (h1(O; ψ, Λ0, b1), . . . , hq+1(O;ψ,Λ0, bq+1))′,b =
(b1, . . . , bq+1), bj = bj(v̄(t), t;ψ) are real-valued functions
of (v̄(t), t,ψ) chosen by the data analyst, h1(O;ψ,Λ0, b1) =
∆(Y − µ)/π(V̄(T ), Y ;γ) + a(O;ψ,Λ0; b1), for j 6=
1, hj(O;ψ,Λ0, bj) = a(O;ψ,Λ0; bj) with π(V̄(T ), Y ;γ) ≡
S(T |V̄(T ), Y ;γ), S(t|V̄(T ), Y ;γ) ≡ exp(− ∫ t

0 exp(γ′W(u)
+ α0Y )λ0(u) du),

a(O;ψ,Λ0; bj)

≡ − ∆
π(V̄(T ), Y ;γ)

Eγ [(1 − ∆)bj(V̄(Q), Q;ψ)|V̄(T ), Y ]

+ (1 − ∆)bj(V̄(Q), Q;ψ),

and Eγ [·|V̄(T ), Y ] indicates expectations with respect to
the distribution F (t|V̄(T ), Y ;γ) = 1 − S(t|V̄(T ), Y ;γ).
Because E[a(O;ψ0,Λ0; bj)] = 0, the estimating function
h(O;ψ0,Λ0,b) has mean 0. Thus, by standard Taylor se-
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ries arguments, the solution ψ̃(b) to

n∑
i=1

h(Oi;ψ,Λ0;b) = 0

will be asymptotically normal with mean 0 and asymp-
totic variance τ (b)−1var[h(O;ψ0,Λ0;b)]τ (b)−1′

provided
that τ (b) ≡ ∂E[h(O;ψ,Λ0;b)]/∂ψ|ψ=ψ0 is invertible. The
asymptotic variance can be consistently estimated by

τ̃ (b)−1

[
n−1

n∑
i=1

h(Oi; ψ̃(b),Λ0;b)⊗2

]
τ̃ (b)−1′

, (8)

with τ̃ (b) = n−1∑n
i=1 ∂h(Oi; ψ̃(b),Λ0;b)/∂ψ.

Because Λ0(u) is unknown, it must be estimated. If we
could always observe Y , then we could replace Λ0 in the
foregoing estimating functions by Breslow’s profile estima-
tor for the baseline hazard with censoring times represent-
ing the jump times (Andersen et al. 1993). We can express
this profile estimator as

Λ̃(t;γ) =
∫ t

0

(
1
n

n∑
i=1

exp(γ′Wi(u) + α0Yi)I(Qi ≥ u)

)−1

×
(

1
n

n∑
i=1

dNi(u)

)
,

where Ni(u) = I(Qi ≤ u,∆i = 0). Because Y is not always
observed, we modify the foregoing estimator using a similar
argument as in Section 3 to yield the following recursive
profile estimator for Λ0(t):

Λ̂(t;γ)

=
∫ t

0

(
1
n

n∑
i=1

∆i exp(γ′Wi(u) + α0Yi)I(Qi ≥ u)

exp(− ∫ T

u
exp(γ′Wi(x) + α0Yi) dΛ̂(x;γ))

)−1

×
(

1
n

n∑
i=1

dNi(u)

)
.

We can obtain an explicit solution for Λ̂(t;γ) using
an approach analogous to that described in Section
3. Given Λ̂(t;γ), we can estimate S(t|V̄(T ), Y ;γ) by
Ŝ(t|V̄(T ), Y ;γ) = exp(− ∫ t

0 exp(γ′W(u)+α0Y ) dΛ̂(u;γ))
and F (t|V̄(T ), Y ;γ) by F̂ (t|V̂(T ), Y ;γ) = 1 − Ŝ(t|V̄(T ),
Y ;γ)

Now define ψ̂(b) to be the solution to

n∑
i=1

h(Oi;ψ, Λ̂(·;γ);b) = 0,

where h(O;ψ, Λ̂(·;γ);b) is defined like h(O;ψ,Λ0;b) ex-
cept that S and F are replaced by Ŝ and F̂ , so Êγ [(1 −
∆)bj(V̄(Q), Q;ψ)|V̄(T ), Y ] =

∫ T

0 bj(V̄(t), t;ψ) dF̂ (t|V̄
(T ), Y ;γ) and π̂(V̄(T ), Y ;γ) = Ŝ(T |V̄(T ), Y ;γ). In the
foregoing estimating equation, the function b need be eval-
uated only at the censoring times. One would expect that

under mild regularity conditions, ψ̂(b) would be a reg-
ular asymptotically linear estimator of ψ0 with influence
function d(O;b), say. However, the asymptotic variance
E[d(O;b)⊗2] of ψ̂(b) will not in general be given by an
analog of (8), because we need to adjust for the estimation
of Λ0(t). Hence further work will be required to obtain
confidence intervals for ψ0. We consider three variance es-
timation procedures.

The first procedure is to follow the approach of Section
3 and determine those functions b∗(v̄(t), t;ψ) for which
h(O;ψ0,Λ0;b∗) is uncorrelated with the scores Sη for all
parametric models λ(t; η) for λ0(t) of (2), so that no adjust-
ment to the variance will be required. As in the previous
case, b∗ will have to be estimated from the observed data.
If b̂(v̄(t), t;ψ) converges in probability to b∗(v̄(t), t;ψ),
then, under mild regularity conditions, the estimator ψ̂(b̂∗)
will be a RAL estimator with asymptotic variance that
can be consistently estimated by the following analog
of (8):

τ̂ (b̂∗)−1

×
[
n−1

n∑
i=1

h(Oi; ψ̂(b̂∗), Λ̂(·, γ̂(b̂∗)); b̂∗)⊗2

]
τ̂ (b̂∗)−1, (9)

where τ̂ (b̂∗) = n−1∑n
i=1 ∂h(Oi; ψ̂(b̂∗), Λ̂(·, γ̂(b̂∗)); b̂∗)/

∂ψ. The second approach is to develop an analytic expres-
sion for the influence function d(O;b) of ψ̂(b) for any
choice of b. In model B(α0) this approach is somewhat
complex, and it is not considered further in this article. The
third approach is to recognize that if ψ̂(b) is a RAL estima-
tor, then we can obtain a consistent estimate of its asymp-
totic variance by the nonparametric bootstrap (Gill 1989).
Because in conducting a sensitivity analysis it is necessary
to calculate confidence intervals for µ0 for many values
of the selection bias parameter α0, bootstrap variance esti-
mation may require impractically large computation time.
Thus in the simulations and data analyses reported in Sec-
tions 5 and 6, we use the first of the three approaches, which
we describe in the next subsection. However, it should be
noted that the bootstrap variance estimator, in contrast to
the analytic estimator (9), will remain a consistent estima-
tor of the asymptotic variance even under misspecification
of model B(α0).

4.2 Estimation of b∗

In model B(α0), in contrast to model A(α0), the set b∗ of
functions b∗ such that h(O;ψ0,Λ0,b∗) is orthogonal to the
scores Sη for any parametric model λ(t; η) has an infinite
number of elements. In Appendix B we show that we can
map an arbitrary q+1-dimensional function φ ≡ φ(V̄(t), t)
into a particular member b∗ of the set b∗ by solving the
Volterra integral equation,

b∗(V̄(t), t;ψ0)

= φ(V̄(t), t) − E[S(t|V̄(T ), Y ;γ0)

× exp(γ′
0W(t) + α0Y )]−1qb∗,φ(t;ψ0), (10)
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where

qb,φ(t;ψ0)
= E[φ(V̄(t), t)S(t|V̄(T ), Y ;γ0) exp(γ′

0W(t) + α0Y )]

+
{∫ t

0
E
[
b(V̄(u), u;ψ) dF (u|V̄(T ), Y ;γ0)

× exp(γ′
0W(t) + α0Y )]

}

− E[e1(Y − µ0) exp(γ′
0W(t) + α0Y )]

and e1 is the q+1-dimensional vector whose first component
is 1 and whose remaining components are 0. We also show
that any b∗ ∈ b∗ satisfies (10) for some φ(v̄(t), t).

As in Section 3, because the solution b∗ to (10) depends
on the unknown distribution FO of the data, b∗ will have to
be estimated. In practice, one selects a function φ(V̄(t), t),
then obtains an estimator b̂∗(V̄(t), t;ψ) for the correspond-
ing function b∗(V̄(t), t;ψ) that is consistent at ψ = ψ0. Let
Q(j) be the jth ordered censoring time and define Q(0) = 0.
Then the estimator b̂∗(V̄(t), t;ψ) is recursively defined (in
forward time) by the following empirical version of (10).
For t ∈ (Q(k), Q(k+1)], k = 0, 1, 2, . . . ,

b̂∗(V̄(t), t;ψ)

= φ(V̄(t), t) − Êγ [Ŝ(t|V̄(T ), Y ;γ)

× exp(γ′W(t) + α0Y )]−1q̂b̂∗,φ(t;ψ), (11)

where, for any Z = z(V̄(T ), Y ), Êγ(Z) ≡ n−1∑n
i=1 ∆i

Zi/π̂(V̄i(T ), Yi;γ); π̂, F̂ , and Ŝ are as defined earlier;

q̂b,φ(t;ψ)

= Êγ [φ(V̄(t), t)Ŝ(t|V̄(T ), Y ;γ) exp(γ′W(t) + α0Y )]

+
k∑

j=1

Êγ [b(V̄(Q(j)), Q(j);ψ)dF̂ (Q(j)|V̄(T ), Y ;γ)

× exp(γ′W(t) + α0Y )]

− Êγ [e1(Y − µ) exp(γ′W(t) + α0Y )];

and
∑0

j=1 ≡ 0. To execute this recursive algorithm, it is suf-

ficient to have computed b̂∗(V̄(Q(j)), Q(j);ψ), j = 0, . . . , k
to compute b̂∗(V̄(t), t;ψ) for all t ∈ (Q(k), Q(k+1)]. In sum-
mary, we can state the following proposition.

Proposition 2. Suppose that Λ0(T ) is finite, V(t)
is a stochastic process with bounded support, ψ0 lies
in the interior of a compact set Ψ0 ⊂ Rq+1, and
b̂∗ is determined by some function φ via (11). Then,
in model B(α0), ψ̂(b̂∗) is RAL with influence function
−∂E[h(O;ψ,Λ0;b∗)]/∂ψ−1

|ψ=ψ0
h(O;ψ0,Λ0;b∗) and with

asymptotic variance that can be consistently estimated by
(9). Here b∗ is the probability limit of b̂∗ at ψ = ψ0.

In Appendix B we show that our class of estimators
{ψ̂(b̂∗)} contains, up to asymptotic equivalence, all RAL
estimators in model B(α0). That is, if ψ̃ is any other RAL
estimator of ψ0 in model B(α0), then there will exist some

function φ = φ(v̄(t), t) such that ψ̃ and ψ̂(b̂∗) have the
same influence function, with b̂∗ determined by φ via (11).

4.3 Efficiency

The efficiency of the estimator ψ̂(b̂∗) will depend on the
choice of φ. The optimal choice φopt will result in an es-
timator ψ̂(b̂∗

opt) whose asymptotic variance will attain the
semiparametric variance bound for model B(α0). Further-
more, because model B(α0) does not suffer from the curse
of dimensionality due to the dimension reduction implicit
in (2), the finite-sample variance of ψ̂(b̂∗

opt) should be gen-
erally close to the variance predicted by asymptotic theory
(Robins and Ritov 1997). Unfortunately, the optimal choice
φopt is not available for two reasons. First, φopt is a func-
tion of the unknown distribution joint distribution FO of the
observed data. Second, even if FO were known, calculation
of φopt would require solving an exceedingly complex inte-
gral equation. In light of this second reason, we forego try-
ing to obtain a semiparametric efficient estimator. A simple
choice of φ that we use in our simulation studies and in our
reanalysis of the ACTG 175 data in Sections 5 and 6 is to
take

φ(V̄(t), t;ψ) = (0,W(t))′. (12)

Although not efficient, this choice of φ will be suitable
when the uncertainty in the mean µ0 due to not knowing the
true value of α0 is considered by subject matter experts to
dominate the uncertainty due to sampling variability. How-
ever, in settings where sampling variability dominates, it
will often be useful to attempt to find more efficient choices
for φ. To this end, in Appendix C we propose an adaptive
choice for φ, φ̂adap, that will result in highly, although not
fully, efficient estimates of the mean µ0 of Y under model
B(α0). Our approach is motivated by the observations that
(a) if α0 = 0, the semiparametric variance bounds in models
A(α0) and B(α0) will be identical (Robins and Rotnitzky
1992), and (b) even when α0 6= 0, if W(t) in (2) is high
dimensional, the semiparametric variance bound in model
B(α0) will be only slightly less than the variance bound for
the larger model A(α0). Thus if we can obtain an estima-
tor of µ0 whose asymptotic variance is close to the variance
bound for modelA(α0), then it should have reasonably good
efficiency relative to the semiparametric efficient estimator
ψ̂(b̂∗

opt) for model B(α0).

5. SIMULATION STUDIES

To evaluate the finite-sample performance of our estima-
tion techniques under models A(α0) and B(α0), we con-
ducted two simulation studies.

5.1 Model A(α)

We generated data under the assumption that V was a
Bernoulli random variable with mean .3 and that the con-
ditional law of Y given V was normally distributed with
mean V − .3 and variance 1, truncated at V − 2.26 and
V+1.66. These assumptions imply that the marginal mean
of Y is 0. We also assumed that the conditional law of Q
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given V and Y follows an exponential distribution with
hazard (δ0 + δ1V) exp(α0Y ), where δ0 and δ1 are fixed
constants. We took T = 1. We selected δ0, δ1, and α0 so
that P [Q ≥ 1|V = 0, Y = −.3] = .65, P [Q ≥ 1|V = 1, Y =
.7] = .50, and P [Q ≥ 1|V = 1, Y = 2.35] = .40. These con-
straints yield true values of δ0, δ1, and α0 of .4308, .1849,
and .1691, indicating that subjects with high values of Y
and V were more likely to drop out. We simulated 500
datasets of 500 subjects each. To reflect the fact that in
practice one would not know the true value of α0, we fit
five models with equally spaced α0’s ranging from −.1691
to .5073. The results of this simulation study are presented
in Table 1. For each α0, the table displays the averages of
the parameter estimates, the standard deviation of the pa-
rameter estimates, and the averages of the standard errors.
We see that when we guess the true α0, we get an unbiased
estimate of the mean. Note that our variance estimator ap-
pears virtually unbiased for all values of α0. This reflects
the fact that model A(α0) is, as indicated by Theorem 1,
a nonparametric model for the distribution FO of the ob-
served data. This implies that our variance estimate will be
consistent for all values of α0, not just for the value that
generated the data.

5.2 Model B(α)

For this simulation study, we conceived of a longitudi-
nal study in which measurements were taken at five time
points, t = 0, .25, .5, .75, 1. Let Vt denote the measurement
at time t. We are interested in making inference about the
mean of the measurement Y = V1 at time T = 1. We gen-
erated data under the assumption that the measurements
were multivariate normal with mean 0, variance 1, and an
AR-1 covariance structure in which the covariance between
Vs and Vt was equal to .64|s−t|. We truncated the mea-
surements at −1.96 and 1.96. So the true mean of Y is 0.
We assumed that the measurements were constant between
measurements times so that

V(t) = V0I(0 ≤ t < .25) + V.25I(.25 ≤ t < .5)
+V.5I(.5 ≤ t < .75) + V.75I(.75 ≤ t < 1) + V1I(t ≥ 1).

In model B(α0) we chose λQ(t|V̄(1), Y ) = λ0(t) exp
(γ0V(t) + α0Y ); that is, w(t, V̄(t)) = V(t). In generat-
ing Q’s, we assumed that the baseline hazard was constant.
We selected the baseline hazard, γ0, and α0 so that Pr[Q ≥
1|V̄(1−) = 0, Y = 0] = .65,Pr[Q ≥ 1|V̄(1−) = 1.645, Y =
0] = .50, and Pr[Q ≥ 1|V̄(1−) = 0, Y = 1.645] = .40. Thus
the true baseline hazard was set equal to .4308, the true γ0
equal to .2891, and the true α0 equal to .4588. We simu-
lated 100 datasets of 500 subjects each. Because in reality

Table 1. Results of Simulation Study for Model A(α0 )

Fixed α0

−.1691 0 .1691 .3382 .5073

Average −.1548 −.0791 −.0026 .0747 .1520
Standard deviation .0584 .0592 .0604 .0618 .0638
Average of standard

error .0565 .0567 .0570 .0574 .0578

Table 2. Results of Simulation Study for Model B(α0 )

Fixed α0

0 .2294 .4588 .6882 .9176

µ0 Average −.1782 −.0926 −.0041 .0869 .1771
Standard deviation .0500 .0513 .0539 .0577 .0618
Average of standard

errors .0514 .0538 .0592 .0685 .0823

γ0 Average .4138 .3524 .2884 .2238 .1622
Standard deviation .0887 .0917 .0968 .1047 .1161
Average of standard

errors .0808 .0811 .0827 .0866 .0934

we do not know the true value of α0, we fit five models
with equally spaced α0’s ranging from 0 to .9176. In the
estimation procedure, we chose the φ(V̄(t), t;ψ) given by
(12). The results of this simulation study are presented in
Table 2. For varying levels of α0, this table displays the
averages of the parameter estimates, the standard deviation
of the parameter estimates, and the averages of the stan-
dard errors. We see that when we guess the true α0, we
get unbiased parameter estimates. Finally, it is encourag-
ing to note that our variance estimator performs relatively
well at all values of α0. Note that because model B(α0)
is not nonparametric, our asymptotic theory only predicts
that our variance estimator should perform well at the true
value of α0.

6. SENSITIVITY ANALYSIS OF ACTG 175

In this section we return to the analysis of ACTG 175
started in Section 2.2. Table 3 presents the estimated means
and standard errors for CD4 at week 56 for each of the
treatment groups using only the completers; that is, non–
drop-outs. We have also included the drop-out rates. One
naive way to estimate the mean CD4 count µ0 at week 56
is to simply take the sample average over the completers.
This estimate will be unbiased if the data are missing com-
pletely at random (MCAR). Treatment comparisons at week
56 using the naive approach show that AZT is inferior to
the other three treatments, with some mild evidence of su-
periority of AZT + ddI over ddI. We fit models A(α0) and
B(α0) to these data to see how robust this inference is to vi-
olation of the MCAR assumption. Due to space limitations,
we provide the results of only two sensitivity analyses, one
for model A(α0) and one for model B(α0).

6.1 Model A(α)

As described in Section 2.2, we considered model A(α0)
with V(t) the time-independent covariate denoting IV drug

Table 3. Comparison of Mean Observed CD4 Counts at Week 56

CD4 at 56 Weeks

Treatment Mean S.E. Drop-outs

AZT 312.05 7.11 36.0%
AZT + ddI 384.42 8.54 33.6%
AZT + ddC 369.55 7.71 36.6%
ddI 359.60 7.68 26.5%
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user status at baseline. Figure 1 presented the estimated
means along with 95% confidence intervals for α0’s ranging
from −.02 to .02 for each of the four treatment groups.

To compare treatment groups, consider Figure 2. Here
we present six contour plots, each representing a pairwise
treatment comparison. To illustrate the AZT versus AZT +
ddI comparison, note that on the x-axis we have varying
levels of selection bias for the AZT arm, and on the y-axis
we have varying levels of selection bias in the AZT + ddI
arm. For each combination of selection biases, we perform
a test (at the .05 level) of the null hypothesis of no treatment
difference between mean CD4 at week 56. The graph is a
contour plot of the Z statistic as a function of the two levels
of selection biases. The two lines in each plot represent the
combinations that lead to a Z statistic of 1.96 and −1.96.
To the left of the −1.96 line, we conclude that the data
provide evidence that AZT + ddI is better than AZT, and
to the right of the 1.96 line, we conclude that the data favor
AZT. Between the lines, there is not enough evidence to
draw either conclusion. The point at (0, 0) represents the
CAR comparison, which jibes with the MCAR conclusion

that AZT + ddI is better than AZT. This plot shows that this
conclusion is quite robust. Significant differential selection
biases would have to occur to alter this conclusion. For
example, we would change our conclusion if the selection
bias parameters in the AZT and AZT + ddI arms were .01
and 0.

How did we decide to choose the range of −.02– +.02 for
α0 in Figure 1? The simple rule, which we followed, is that
a sensitivity analysis should include a range of selection
bias parameters α0 that contains all values that would be
considered plausible by relevant subject matter experts. To
include values of α0 that lie outside the plausible range does
no harm, because subject matter experts will discount the
results for values of α0 outside this range.

6.2 Model B(α)

In model B(α0) we included CD4 as a time-varying
regressor as well as the baseline covariates: age, CD4
count, and IV drug use. As in the simulation study in
the previous section, we assume that CD4 counts are con-
stant between measurements. Specifically, we let T =

Figure 2. Pairwise Comparison of Treatment Groups in Model A(α0 ) with IV Drug User Status as the Time-Independent Regressor.
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56, Z(t) denote the CD4 count at time t, V0 = Z(0), Y =
Z(T ), V1 denote age, V2 denote IV drug user status, and
V(t) = (V0, V1, V2, Z(t))′. Then, in modelB(α0) we assume
that

λQ(t|V̄(T ), Y )

= λ0(u) exp(γ00V0 + γ01V1 + γ02V2 + γ03Z(t) + α0Y ).

In the estimation procedure, we chose φ(V̄(t), t;ψ) given
by (12). In this setting α0 is interpreted as the log hazard
ratio of nonresponse between patients who have the same
covariate history, but differ by 1 CD4 count at week 56.
When α0 = 0, the Y ’s are CAR. When α0 > 0, we are
assuming that among subjects with the same covariate his-
tory, those with higher values of Y are more likely to drop
out. The opposite interpretation holds when α0 < 0. Figures
3 and 4 are the exact analogs of Figures 1 and 2 for this
model. In general, we include time-independent and time-
dependent covariates in V̄(t) that are correlated with the
outcome Y and may predict drop-out at t in the hopes of
making the selection process approximately ignorable. (See
Sec. 7.2 for further discussion of this matter.)

The conclusions based on Figures 3 and 4 are qual-
itatively the same as those based on Figures 1 and 2.
That is, significant differential selection bias would have
to occur for us to change our inference about AZT rela-
tive to the other three treatments, and inference about the
other treatment comparisons is highly sensitive to nonig-
norability. However, the sensitivity of the estimated mean
to comparable changes in α0 is rather less in Figures 3
and 4 than in Figures 1 and 2. Specifically, the varia-
tion in the estimated mean CD4 count at week 56 as α0
varies from −.02 to .02 is less in Figure 3 than in Fig-
ure 1. Similarly, when we restrict α0 in the arms be-
ing compared to the interval (−.005, .005), we observe
that in Figure 2 but not in Figure 4 there are small re-
gions where AZT is preferred to the other treatments. In
Section 7.2 we consider possible explanations for these
observations.

7. ADDITIONAL CONSIDERATIONS

In this section we take up a number of remaining issues,
several of which were raised by the referees.

Figure 3. Treatment-Specific Predicted Means and 95% Confidence Intervals for Varying α0 ’s in Model B(α0 ) With Baseline CD4, Age, IV Drug
User Status, and Time-Dependent CD4 as the Regressors.
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7.1 Estimation of Other Smooth Functionals of the
Distribution of Y

It is easy to adapt the estimation procedures described
in Sections 3 and 4 to estimate other smooth functionals of
the marginal distribution of Y . One simply needs to replace
(Y − µ) in the equations of these sections with the full
data influence function for the functional of interest. For
example, if we would like to estimate the median of Y ,
then we replace (Y − µ) by I(Y ≥ µ) − .5, where µ now
denotes the median. For influence functions that are not
differentiable in µ, we suggest using numerical derivatives
to estimate τ(b) in the asymptotic variance. In model A(α0)
we estimated the median as a function of α0 for each of
the four treatment groups. As expected, for each treatment
group, the estimated medians increased monotonically with
α0. For positive values of α0, the rate of increase was less
for the median than for the mean. This observation can be
explained as follows. Because the empirical distributions of
the observed Y ’s have short left tails but long right tails,
we would expect that the mean, but not the median, would
be highly sensitive to the assumption, encoded in a large

positive value of α0, that the drop-outs consist largely of
subjects with values of Y in the extreme right tail.

7.2 Bounds and the Breakdown of Augmented Inverse
Probability of Censoring Weighted Estimators

7.2.1 Bounds. An alternative to our approach based
on sensitivity analysis is one based on estimating upper
and lower bounds for the mean µ0 compatible with the ob-
served data. Specifically, if Y is a bounded random vari-
able and the upper and lower bounds are known, then one
obtains an estimate µ̂upper (µ̂lower) of the upper (lower)
bound for µ0 by filling in the unobserved Y ’s with the
largest (smallest) possible value of variable Y, ymax (ymin).
It seems natural to hope that our choice of selection bias
function r (t, α0; V̄(T ), Y ) attains these bounds in the sense
that, as α0 approaches infinity and minus-infinity, our esti-
mates of µ0 approach the estimated upper and lower bounds
just described. In model A(α0) our choice of α0Y for
r(t, α0; V̄(T ), Y ) often satisfies this hope even in finite sam-
ples when the random variable V̄(T ) is discrete with only a
moderate number of levels. Specifically, suppose that V(t)

Figure 4. Pairwise Comparison of Treatment Groups in Model B(α0 ) with Baseline CD4, Age, IV Drug User Status, and Time-Dependent CD4
as the Regressors.
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Figure 5. Observed CD4 at Week 56 Versus the Inverse of the Associated Estimated Weights in Model A(α0 ), Stratified by IV Drug User Status
(1, IV Drug User; 0, Non—Drug User).

is discrete for each t and the number of potential jump times
for the process V̄(t) is small. Then, if at each possible level
v̄(T ) of V̄(T ) there is a subject in the dataset whose ob-
served value of Y attains the upper (lower) bound for Y ,
then the estimates µ̂(b) and µ̂(b̂∗) of Section 3 will approach
µ̂upper (µ̂lower) as α0 → ∞ (α0 → −∞).

To see why, we study the simplest case. Specifically, we
consider the behavior of the IPCW estimator µ̂(0) solving
the estimating equation 0 =

∑
i ∆i(Yi − µ)/π̂(Vi, Yi) of

Section 3, when V̄(t) = V is time independent and dis-
crete and r(t, α0; V̄(T ), Y ) = α0Y . Each completer (non–
drop-out) contributes a weight π̂−1 that depends on α0.
When α0 = 0, each completer in stratum V = v re-
ceives weight π̂−1 = 1 + nv

drop/n
v
complete, where nv

drop and
nv

complete are the number of drop-outs and the number of
completers in stratum v. This is because in stratum v we
need to redistribute the contribution of the nv

drop drop-outs
to the completers. When α0 = 0, within stratum v all com-
pleters are exchangeable. So we redistribute the drop-outs’
contribution equally among the nv

complete completers. Thus
each completer receives a weight 1 (corresponding to them-

selves) and an additional weight nv
drop/n

v
complete to account

for the drop-outs. Because model A(α0) leaves the baseline
hazard λ0(t|V) unrestricted, all redistribution of weight is
stratum specific. For α0 6= 0, in stratum v the fraction of
the drop-outs’ total contribution nv

drop assigned to a com-
pleter will depend on the completer’s outcome Y . Let yv

max
(yv

min) be the maximum (minimum) of the observed values
of Y among completers in stratum v, and let nv

max (nv
min)

be the number of completers in stratum v with Y = yv
max

(yv
min). Then as α0 → ∞ (α0 → −∞), completers in stra-

tum v with Y = yv
max (yv

min) are assigned weights tending to
π̂−1 = 1 + nv

drop/n
v
max (π̂−1 = 1 + nv

drop/n
v
min); completers

whose observed Y do not equal yv
max (yv

min) are assigned
weights tending to 1. The intuition is as follows. Consider
two values y1 and y2 of Y with y2 > y1. Then within stratum
v, the hazard ratio for drop-out of a subject with Y = y2
compared to a subject with Y = y1 is exp(α0(y2 − y1)),
which goes to ∞(0) as α0 → ∞ (α0 → −∞). Thus when
α0 → ∞ (α0 → −∞), our estimation assigns any drop-out
the largest (smallest) possible value of Y in the stratum; that
is, yv

max (yv
min). It follows that as α0 → ∞ (α0 → −∞), µ̂(0)
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[and indeed µ̂(b̂∗) and µ̂(b) for any b] tends to µ̂max (µ̂min),
where µ̂max (µ̂min) is the sample average of Y over the n
study subjects when the drop-outs in stratum v have been
imputed the common value yv

max (yv
min). If yv

max = ymax

(yv
min = ymin) for all v, then µ̂max and µ̂min will equal the

upper and lower bounds µ̂upper and µ̂lower.
To illustrate the foregoing discussion of weights, we re-

turn to our analysis of the ACTG 175 data under model
A(α0). Figure 5 plots, for the AZT treatment arm, the in-
verse weights π̂ for the completers as a function of the ob-
served outcome Y and IV drug user status V for different
values of α0. As expected, when α0 is very positive (neg-
ative), the weights π̂−1 greatly exceed 1 for only the few
subjects with extremely large (small) values for Y . Further,
as seen in Figure 1, as α0 becomes very positive (nega-
tive), µ̂(b̂∗) approaches an asymptote equal to µ̂max (µ̂min).
The weights in our simulation experiment did not blow up
similarly, because of our truncation of the range of Y .

7.2.2 Breakdown of Augmented Inverse Probability of
Censoring Weighted Estimators. It is well known that
the performance of IPCW and AIPCW estimators such
as µ̂(b̂∗) can degrade as the weights π̂−1 become highly
skew, because the estimator µ̂(b̂∗) is then largely deter-
mined by those few individuals with large weights. When
as in the ACTG 175 data (with V being IV drug user
status), the empirical conditional distributions of Y given
V = 1 and V = 0 in the completers are reasonably
spread out and have substantial overlap, and α0 is chosen
very positive (negative), the estimated weights π̂−1 will be
markedly skew and highly positively (negatively) correlated
with the observed Y . This indicates that it is likely that un-
der the law FO of the observed data, the population weights
π(V, Y )−1 = Pr[∆ = 1|V, Y ]−1 will also be quite skew
and highly positively (negatively) correlated with Y given
∆ = 1. In such a case the AIPCW estimator of the mean
breaks down, because, with high probability, subjects with
large (small) values of Y will not be captured in the sample.
As a result, with high probability, the estimator µ̂(b̂∗) will
seriously underestimate (overestimate) the mean µ0, and,
furthermore, the variance estimator (6) will severely under-
estimate the true variability of µ̂(b̂∗). Indeed, µ0 is identified
under model A(α0) if and only if π(V, Y ) > 0 with proba-
bility 1, which is equivalent to saying that at each level of V,
the support of Y among the drop-outs (∆ = 0) is contained
within the support of Y for the completers (∆ = 1). Regu-
larity condition 2 of Appendix A implies that π(V, Y ) > 0
with probability 1.

One can try to deal with the breakdown of the estimator
µ̂(b̂∗) by a combination of one or more of the following:
(a) reassess the substantive plausibility of the values of α0

causing the trouble; (b) restrict attention to functionals such
as the median that are less sensitive to the tails of the dis-
tribution of Y ; (c) replace exp(α0Y ) in (1) by a bounded,
less rapidly increasing function of Y ; (d) incorporate in the
analysis additional time-independent or dependent covari-
ates V(t) (as in Sec. 6.2); (e) specify a parametric model for
the law of (V, Y ) and replace our AIPCW estimator with

a parametric likelihood-based estimator (which effectively
imputes values of Y to the drop-outs that lie outside the
observed sample range); and (f) replace model A(α0) with
an alternative NPI model that naturally allows for extrap-
olation outside the range of Y in the completers, by not
requiring that π(V, Y ) > 0 with probability 1 for identifi-
cation of the mean. None of these alternatives is necessarily
a satisfactory solution.

For instance, whether strategy (a) is satisfactory will de-
pend on the substantive setting. For example, in ACTG 175,
the estimator µ̂(b̂∗) of Section 6.1 will break down only for
values of α0 that imply that the mean of Y among the drop-
outs in at least one stratum v is nearly as large (small) if
not larger (smaller) than yv

max (yv
min). The AIDS clinicians

we have consulted do not find this magnitude of selection
bias credible. Suggestion (b) may be unsatisfactory for two
reasons. First, the median may not be an estimand of sci-
entific interest. Second, the estimated median might on oc-
casion be surprisingly sensitive. As an extreme but illustra-
tive example, suppose that no covariate data V are available
and that 51% of the subjects drop out. Then as α0 → ∞
(α0 → −∞), the estimate of the median converges to the
maximum (minimum) observed Y and will be greater (less)
than the estimated mean, indicating greater sensitivity of
the median than of the mean to the changes in α0. Sugges-
tion (c) may be unsatisfactory when, based on subject mat-
ter considerations, the exponential form form exp(α0Y ) is
considered to be more plausible than other forms. However,
we used the exponential form in our analysis of ACTG 175,
not because we thought it substantively plausible, but rather
because it is the usual default choice, and because it can re-
sult in the breakdown of AIPCW estimators, opening the
door to this very discussion. Suggestion (d) is considered
in the next section. Suggestion (e) can be unsatisfactory be-
cause, as discussed earlier, assuming a parametric model
may result in scientifically unjustified identification of α0
and µ0. In fact, we recommend option (f) whenever it is
substantively plausible that the support of the distribution
of Y among the drop-outs may differ from that among the
completers. (See Sec. 7.3.2 for details and caveats.)

7.2.3 Adjustment for Additional Covariates and Plausi-
ble Ranges for Sensitivity Analysis Parameters. It is sci-
entifically desirable to adjust for selection bias due to mea-
sured covariates by including them in V̄(t). In this sense,
suggestion (d) is always a good one. Because the number
and nature of measured factors varies from study to study,
it is important that subject matter experts be able to pro-
vide a plausible range for α0 in (1) for various choices of
V̄(t). Adding to V̄(t) data on additional time-independent
and dependent covariates that are both correlated with the
outcome Y and predict drop-out at t will usually serve to
diminish the degree of nonignorable selection bias due to
unmeasured factors. Initially, we had expected this to im-
ply that adding covariates to the analysis would also serve
to restrict the range of values of α0 considered plausible.
We were mistaken, because the meaning of the parameter
α0 of the multiplicative hazard model (1) changes when
we change the covariates in (1), as we now explain. We
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use the subscript 1 to indicate models in which the co-
variate V̄(t) = V is the dichotomous covariate IV drug
user status and the subscript 2 to denote models in which
V̄(t) is IV drug user status, age, baseline CD4, and cur-
rent CD4 count. We also use these subscripts to distin-
guish, when necessary, the selection bias parameter α0 of
model A1 from that of model A2 or B2. Thus α02 is the
selection bias parameter of models A2 and B2. Let µ̂1(α0)
and µ̂2(α0) denote the maps from α0 to µ̂ ≡ µ̂(b̂∗), de-
picted in Figures 1 and 3, where in the definition of µ̂1(α0)
and µ̂2(α0) we have suppressed their dependence on b̂∗.
Inspection of these figures reveals that µ̂1(α0) and µ̂2(α0)
are both monotone increasing, with µ̂1(α0) increasing more
rapidly. Each value of α02 determines a unique value of
α01 through the map µ̂−1

1 (µ̂2(α02)). This map is evaluated
in Table 4 for various values of α02. For the moment, sup-
pose that sampling variability and model misspecification
are absent so that models A2 and B2 are correct with com-
mon parameter α02 and model A1 is correct with param-
eter α01. Then, by Theorem 1, if α02 is the true value of
α0 in (1) that generated the underlying data (Y, V̄(T ), Q)
under model A2 and B2, then α01 = µ−1

1 (µ2(α02)) must
be the true value of α0 under model A1, as µ−1

1 {µ2(α02)}
is the only value of α01 that implies the same mean for
Y . It follows that if a subject matter expert has specified
a plausible range of, say, (−.01, .01) for α02 in the AZT
arm, then the expert’s plausible range for α01, once the dis-
tribution FO of the data becomes known, is logically fixed
at (µ̂−1

1 (µ̂2(−.01)), µ̂−1
1 (µ̂2(.01))) = (−.0070, .0025). Quite

generally if, as in the ACTG 175 data, the slope of µ̂1(α0) is
steeper than that of µ̂2(α0), then, as is borne out in Table 4
and contrary to our initial intuition, the length of any plau-
sible range for α01 will be narrower than that for α02. Put
differently, in the ACTG 175 data, the magnitude of non-
ignorable selection bias for estimation of µ0 encoded by
α01 = c for some nonzero constant c is generally greater
than that encoded by α02 = c. In practice, due to sampling
variability and model misspecification or incompatibility,
α01 will not actually be logically tied to α02 through the
function µ̂−1

1 (µ̂2(α02)), but the foregoing discussion should
remain qualitatively correct. Incompatibility of models A1

and A2 is defined as follows. Given FO, let F1(α01) and
F2(α02) be the laws for (V, Y,Q) and (V̄(T ), Y,Q) under
models A1(α01) and A2(α02), as described in Theorem 1.
Let Fmarginal,2(α02) be the marginal law for (V, Y,Q) in-

Table 4. µ̂−1
1 (µ̂2 (α02 )) for Various Values of α02

α01 = µ̂−1
1 (µ̂2 (α02 ))

α02 AZT AZT + ddI AZT + ddC ddI

−.020 −.0110 −.0125 −.0140 −.0103
−.015 −.0090 −.0105 −.0110 −.0083
−.010 −.0070 −.0083 −.0075 −.0060
−.005 −.0040 −.0045 −.0035 −.0040

.000 −.0020 −.0008 −.0008 −.0013

.005 .0000 .0043 .0025 .0033

.010 .0025 .0070 .0048 .0053

.015 .0040 .0080 .0053 .0064

.020 .0045 .0085 .0060 .0068

duced by F2(α02), with V being IV drug user status. We
then say that model A1 is incompatible with model A2 at
α02 if there exists no value of α01 for which F1(α01) equals
Fmarginal,2(α02).

We now show, somewhat informally, that the ACTG 175
data are not anomalous. Specifically, we argue that when,
as in the ACTG 175 data, V̄(t) and Y are highly corre-
lated among the completers (∆ = 1) for most times t,
we would expect µ̂1(α0) to be steeper than µ̂2(α0). This
was first suggested to us by Victor DeGruttola. Informally
and qualitatively, we can think of representing the time-
independent and time-dependent covariates in model A2 as
a single, discrete covariate V with many strata. We know
that as α02 → ∞ (α02 → −∞), each drop-out in stratum
V = v will effectively be imputed yv

max (yv
min), as discussed

earlier. If V is highly correlated with Y among the com-
pleters, then the difference in a given stratum v between
yv
max and yv

min will be small, and thus we get little differ-
ence in the estimated mean for α02 very positive versus
α02 very negative. In contrast, when there is a single di-
chotomous covariate V, as in model A1, there will often be
a large difference between yv

max and yv
min, so that, as dis-

cussed previously, the estimated mean will depend greatly
on whether the drop-outs are assigned yv

max versus yv
min.

Thus, as suggested by Figures 1 and 3, we would expect
that for large values of α0, µ̂1(α0)− µ̂1(−α0) would greatly
exceed µ̂2(α0) − µ̂2(−α0) whenever Y is highly correlated
with the covariates among the completers (∆ = 1).

To illustrate the connection between the adjustment for
additional covariates and the breakdown of our AIPCW es-
timators, Figure 6 plots the estimated inverse weights π̂
as a function of the observed Y ’s for various values of
α02 obtained from our fit of model B2(α02) in Section 6.2
to the data for the AZT treatment arm. We note two im-
portant differences from Figure 5. For the same value of
α0 = α01 = α02, both the skewness of the weights and
their correlation with the observed Y ’s are less in model
B2(α02) than in model A1(α01), particularly for large pos-
itive values of α0. A full explanation of these differences
would require careful consideration of the smoothing effect
of model restriction (2) and of the effect of inclusion of
time-dependent CD4 count. Here we provide just one pos-
sible qualitative explanation for the weight distribution. Our
purpose is solely to provide a sense of the issues involved.
To this end, we again informally represent V̄(t) as a sin-
gle, discrete covariate V with very many levels. If V were
only weakly predictive of drop-out, then there would be at
most a few dropouts at any level. Then, even as α0 → ∞
(α0 → −∞), the maximal (minimal) weight 1 + nv

drop/
nv

max (1 + nv
drop/n

v
min) assigned to any individual in each

stratum v would not be large. But in Figure 6, at α02 = 0,
we see that π̂ ranges from about .22 to .85, indicating a
rather strong effect of V on drop-out at time t. Thus the
pattern of weights seen in Figure 6 could occur if in addi-
tion to V being highly predictive of drop-out, it was also
the case that yv

max differed markedly across strata of v but
yv
min did not. Such a distribution would imply that, as seen

in Figure 6, when α0 is very negative, all subjects with
large estimated weight have small CD4 counts, but when
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Figure 6. Observed CD4 at Week 56 Versus the Inverse of the Associated Estimated Weights in Model B(α0 ).

α0 is very positive, there is little correlation between the
observed Y ’s and the estimated weights.

What are the lessons of this subsection? First, it is im-
portant to remember that the meaning of the selection bias
parameter α0 depends on the covariates V̄(t) that are condi-
tioned on in (1). Second, if we were previously so confused
about how to logically map a range for α02 to one for α01

(or vice-versa), then how can we expect statistically naive
subject matter experts to succeed at doing so? Obviously we
cannot without providing guidance. Third, suggestion (d) of
the preceding subsection may help avoid the breakdown of
AIPCW estimators in model A1(α01) in the sense that the
value of α02 at which breakdown will occur will exceed,
in absolute value, that of α01. However, the foregoing dis-
cussion implies that this help would best be understood as
possibly alerting our expert to the fact that her plausible
range for α01 should not have reached the breakdown point
after all.

7.2.4 Multiplicative Versus Additive Hazard Models.
We argued earlier that the length of any plausible range
for α02 should logically exceed that for α01 when the co-

variates V̄(t) in model A2 are highly associated with the
outcome Y among the completers (∆ = 1). Thus if one
wishes to assess the relationship between plausible ranges
for α01 and α02 before seeing the data and learning about
FO, then it is important to understand when V̄(t) and Y will
be highly associated among the completers. Subject matter
experts will generally have stronger prior opinions about
qualitative aspects of the marginal distribution of Y and
V̄(t) than about their conditional distribution given ∆ = 1.
Thus it is important to recognize that when α02 6= 0 and
V̄(t) is a strong predictor of drop-out, Y and V̄(t) can,
in principle, be highly correlated given ∆ = 1 under the
multiplicative hazard model (1), even if they are marginally
independent. In contrast, if we had replaced the multiplica-
tive hazard model A of (1) with the additive hazard model
Aadd that specifies

λQ(t|V̄(T ), Y ) = λ0(t|V̄(t)) + exp(r(t, α0;Y ))

with r(t, α0;Y ) a known function, then marginal indepen-
dence of V̄(t) and Y imply conditional independence given
∆ = 1. Estimators of the mean µ0 under an additive haz-
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ard model can be straightforwardly obtained by merging
the methods described by Lin and Ying (1994) with the in-
verse probability of censoring weighting method described
in Sections 3 and 4.

To clarify the potential importance of the foregoing ob-
servations, consider the following hypothetical scenario,
where, to simplify matters, we now let models A1 and
Aadd,1 represent models in which no covariate data are
available. Models A2 and Aadd,2 denote models in which
there is a single continuous covariate V. Suppose that a sub-
ject matter expert believes that there is selection bias and
specifies a plausible range of (.003, .010) for α01. Data now
become available on the covariate V that is known to be
highly correlated with time to drop-out Q, and the data are
reanalyzed using model A2(α02). The expert is thus asked
to provide a plausible range for α02. Suppose that the ex-
pert is quite uncertain as to the marginal association of V
and Y . At one extreme, he or she believes that it is possible
that the assumed correlation between Q and Y (encoded in
α01) is completely explained by the covariate V, and thus
α02 = 0. At the other extreme, he or she believes it is pos-
sible that V and Y are marginally independent. He or she
thus provides a plausible interval (0, .010) for α02, naively
assuming that if V is independent of Y , then the magni-
tude of the conditional selection bias (encoded in α02) will
equal the magnitude of the marginal selection bias encoded
in α01. But the expert can be quite wrong. To see why,
we consider a result of Hougaard (1986), which shows that
if λ0(t|V) = λV and V has an α-stable distribution with
α < 1, then α02 = α01/α. For instance, if it was known
that α was .5, then logically the expert should have pro-
vided an interval of (0, .020) for α02 to be consistent with
her interval for α01. This reflects the fact that under these
conditions, V and Y will be dependent given ∆ = 1. Thus
even conditioning on a covariate V independent of Y can
greatly increase the plausible range for the selection bias
parameter. In contrast, under the additive hazard model, the
expert would have been correct in his or her intuition that
if V is independent of Y , then the marginal and conditional
selection bias parameters α01 and α02 would be equal.

Should the foregoing counterintuitive result for the mul-
tiplicative hazard model A(α0) suggest that we use the addi-
tive hazard model Aadd(α0) in conducting sensitivity anal-
yses? We think not, for several reasons. First, epidemiolo-
gists are more familiar with modelling the shape and magni-
tude of a rate ratio function than a rate difference function.
Second, marginal independence of Y and V does not imply
conditional independence given ∆ = 1 even under an addi-
tive hazard model, when there is an interaction between Y
and V on an additive hazard scale; that is, when we replace
r(t, α0;Y ) by r(t, α0; V̄(T ), Y ) in model Aadd. Third, α-
stable distributions with α < 1 are quite pathological (e.g.,
they have no moments), and it may be rare to find Y and V
strongly conditionally correlated when they are marginally
independent.

7.3 Alternative Nonparametric Identified Models

Our NPI selection model A(α0) is but one of many al-

ternative NPI models that we could have used to conduct a
sensitivity analysis. The choice among NPI models should
ultimately depend on the ease with which subject matter ex-
perts can provide meaningful opinions about the sign and
magnitude of the nonidentified selection bias parameters,
such as the parameter α0 in model A(α0). In the follow-
ing subsections we describe several alternative models and
compare the strengths and weaknesses of the NPI model
A(α0) with those of the alternative models.

7.3.1 A Nonparametric Identified Selection Model for
the Effect of Y Only on Selection. The most general form
of our model A(α0) is

λQ(t|V̄(T ), Y ) = λ0(t|V̄(t)) exp(r(t, α0; V̄(T ), Y )) (13)

with r(t, α0; V̄(T ), Y ) known to the data analyst. Our model
(1) specified that

r(t, α0; V̄(T ), Y ) = α0Y. (14)

In Appendix A we prove that there can never be any data ev-
idence contradicting (14), as r(t, α0; V̄(T ), Y ) is not identi-
fied. Nonetheless, a subject matter expert would most likely
be unwilling to believe (14), because there is no good sub-
stantive reason why drop-out at time t should depend on
the unobserved future (Y,V(t) ≡ {V(u); t ≤ u ≤ T}) only
through the outcome of interest Y . Yet it seems an impos-
sible burden for a subject matter expert to specify plausible
functional forms for r(t, α0; V̄(T ), Y ) if V̄(T ) is a high-
dimensional process. Thus model A(α0) may not be useful
for a sensitivity analysis.

The way out of this apparent dilemma is to ask the subject
matter expert to provide plausible functional forms only for
the effect of the outcome of interest Y on drop-out at t,
ignoring the future covariate process V(t). Formally, this
means that we consider a model A∗(α0),

λQ(t|V̄(t), Y ) = λ0(t|V̄(t)) exp(r∗(t, α0; V̄(t), Y )), (15)

for the hazard of drop-out at t conditional on and
only on past covariate history V̄(t) and future Y with
r∗(t, α0; V̄(t), Y ) a known function satisfying r∗(t, 0; V̄(t),
Y ) = 0, λ0(t|V̄(t)) an unrestricted positive function, and
the parameter α0 assumed known. Robins and Rotnitzky
(1992) studied model A∗(α0) in the special case in which
α0 = 0. In Lemma A.1 of Appendix A, we show that model
A∗(α0) is a nonparametric model for the distribution FO of
the observed data. Furthermore, we show that the distri-
bution of Y is identified under model A∗(α0) (although the
distribution of V̄(T ) is not identified). Under model A∗(α0),
the functional form α0Y for r∗(t, α0; V̄(t), Y ) might well
be viewed as substantively plausible by a subject matter ex-
pert, because it only says that the effect of Y on the hazard
of drop-out at time t has an exponential dependence on Y
with no interaction on a hazard ratio scale with the past
covariates V̄(t). Model B∗(α0), which imposes restriction
(2) in addition to (15), may be used in lieu of A∗(α0) when
the covariate process V̄(t) is high dimensional.

If we agree that when our goal is to make inferences con-
cerning a functional of the marginal distribution of Y such
as the mean µ0, it is more natural to consider models A∗(α0)
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and B∗(α0) than models A(α0) and B(α0), then we are left
with the question of how to estimate µ0 under these new
models. Fortunately, we can borrow, without modification,
the estimation methods used for model A(α0) and B(α0)
discussed in Sections 3 and 4. Specifically, suppose that we
replace (1) by (15) with r∗(t, α0; V̄(t), Y ) = α0Y . Then the
estimators µ̂(b) and ψ̂(b) of Sections 3 and 4 remain RAL
estimators of µ0 and ψ0. It may help to restate this result
in a slightly different manner. Suppose that model A(α0)
given by (1) was misspecified, because λQ(t|V̄(T ), Y ) ac-
tually depended on future covariate history V(t). Suppose,
however, that (15) was true with r∗(t, α0; V̄(t), Y ) = α0Y .
Then the estimators of µ0 in Sections 3 and 4 remain RAL
estimators.

The foregoing results follow from the fact that, as
shown in Lemma A.1, µ0 is the same functional of FO

in both model A(α0) and model A∗(α0) when the function
r(t, α0; V̄(T ), Y ) specified in model A(α0) does not depend
on V(t) and is equal to the function r∗(t, α0; V̄(t), Y ) spec-
ified in model A∗(α0).

7.3.2 Nonparametric Identified Mean Models. Con-
sider the “mean” model Amean(α0), which specifies that

Φ(E[Y |Q = t, V̄(t)])

= Φ(E[Y |Q > t, V̄(t)]) + r(t, α0; V̄(t)), t ∈ (0, T ), (16)

where r(t, α0; V̄(t)) is a known selection bias function sat-
isfying r(t, 0; v̄(t)) = 0;α0 is a parameter assumed known
to the data analyst, Φ(x) is a known monotone increas-
ing function, and E[Y |Q = t, V̄(t)] is assumed smooth in
(t, V̄(t)). The function r(t, α0; V̄(t)) contrasts the mean of
Y among subjects who drop out at time t with the mean
among subjects continuing on study at t. Note that α0 = 0
implies the absence of selection bias on unobservables.

Suppose that Y is a dichotomous (0,1) variable and
we choose Φ(x) = ln(x/(1 − x)). Then it follows by
an application of Bayes’ theorem that model Amean(α0)
with selection bias function r(t, α0; v̄(t)) is equivalent to
model A∗(α0) with selection bias function r∗(t, α0; v̄(t), y)
given by r∗(t, α0; v̄(t), y) = yr(t, α0; v̄(t)). In a modifica-
tion of the usual nomenclature, in this case we refer to
model Amean(α0) as a “continuous-time sequential-pattern-
mixture” representation of the selection model A∗(α0).
Conversely, model A∗(α0) with selection bias function
r∗(t, α0; v̄(t), y) is equivalent to model Amean(α0) with
r(t, α0; v̄(t)) = r∗(t, α0; v̄(t), 1) − r∗(t, α0; v̄(t), 0). Having
two representations may help subject matter experts in spec-
ifying functional forms for r and r∗ and plausible values for
the parameter α0.

Next, suppose that Y is a random variable whose distri-
bution may be arbitrary. Then Robins et al. (1999) showed
that model Amean(α0) with Φ(x) = x is a nonparametric
model for the distribution of FO of the observed data. Fur-
thermore, the marginal mean µ0 of Y is identified via

µ0 = E

[
∆{Y +

∫ T

0 r(t, α0; V̄(t))λQ(t|V̄(t)) dt}
S(T |V̄(T ))

]
, (17)

where now S(t|V̄(t)) = exp(− ∫ t

0 λQ(u|V̄(u)) du) and
λQ(t|V̄(t)) is the hazard of drop-out at t given V̄(t). Robins
et al. (1995) showed that when α0 = 0, the mean µ0 of Y is
the same functional of the law of FO under the mean model
Amean(α0) as under model A∗(α0) and model A(α0). When
α0 6= 0, this equivalence no longer holds. Indeed, when
α0 6= 0, in contrast to model A∗(α0), µ0 remains identified
under model Amean(α0) even when the support of Y for the
drop-outs (∆ = 0) is not contained within the support of Y
for the completers (∆ = 1).

When V̄(t) is high dimensional, we consider a model
Bmean(α0) that imposes, in addition to (16), the time-
dependent Cox model λQ(t|V̄(t)) = λ0(t) exp(θ′

0W
∗(t)),

where λ0(t) is an unspecified positive function, θ0 is an un-
known parameter to be estimated, and W∗(t) is a known
vector-valued function of V̄(t). We then estimate µ0 by re-
placing the expectation in (17) by a sample average and
estimating λQ(t|V̄(t)) and S(t|V̄(t)) based on the fit of the
Cox model.

Finally, consider the case where Y is a positive random
variable whose distribution is otherwise unrestricted. Then
Robins et al. (1999) showed that model Amean(α0) with
Φ(x) = ln(x) is a nonparametric model for FO and that the
marginal mean µ0 of Y is identified. These authors also pro-
vided an identifying formula for µ0 and proposed a method
of estimation.

7.3.3 Comparison of Model A∗(α) With Amean(α).
We spoke with a number of epidemiologists about our sen-
sitivity analysis of ACTG 175. They were split as to the ease
with which they could provide meaningful opinions about
the selection bias functions and parameters in model A∗(α0)
versus model Amean(α0) with Φ(x) either x or ln(x). Those
who preferred model Amean(α0) made two points. First, the
mean model, in contrast to the selection model, asks one to
form opinions about unknowns that are directly related to
the final estimated of interest, the mean µ0 of Y . (However,
an advantage of the selection model A∗(α0) over the mean
model is that one can treat the multiple functionals of the
law of Y that may be of interest in a unified fashion.) Sec-
ond, because the outcome Y is observed only (if ever) at
week 56, it is more natural to think about the mean of Y
given the past as in model Amean(α0) than to think about
the effect of the yet (and possibly never) to be observed Y
on drop out at earlier times as in model A∗(α0). This crit-
icism of model A∗(α0) loses some of its sting if we allow
our experts to reassess their plausible range for α0 after the
data have been analyzed and they are provided with both
the difference between the mean of Y in the completers
and the estimated (i.e., imputed) mean in the drop-outs and
a plot of the estimated weights as a function of Y . At first,
this might seem totally unacceptable. However, as pointed
out by I. J. Good (Good 1983), if the expert were to carry
out this reassessment for multiple simulated datasets before
seeing the actual data, then this would be a perfectly valid
method for eliciting the expert’s actual prior beliefs about
α0. This method is Good’s “device of imaginary results.”
If one’s prior uncertainty concerning the distribution FO of
the observed data is much less than that concerning the non-
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identified selection bias parameter α0, as should often be the
case, then most of the “imaginary” (i.e., simulated) datasets
would result in a similar “reassessed” plausible range for
α0. In this case one perhaps might dispense with the sim-
ulations altogether and reassess only the actual data. The
problem of course is that we may, as humans, react quite
differently to the same data, depending on whether we know
it to be real versus “imaginary.”

A major difference between models A∗(α0) and
Amean(α0) is that the latter model can lead to out-of-sample
extrapolation. Specifically, as discussed in Section 7.2, the
AIPCW estimators µ̂(b) of µ0 in model A∗(α0) are guar-
anteed to lie within the range of the observed Y ’s. In con-
trast, for large values of α0, estimates of µ0 under model
A∗

mean(α0) can lie outside that range. In general, a method
that can extrapolate far outside the range of the data will be
extremely sensitive to the choice of selection bias function
and should be used with caution. However, whenever it is
considered plausible that selection bias is so extreme that
the support of Y in the dropouts and the completers differ,
it is essential to use methods that extrapolate.

8. SUMMARY

In this article we have shown how to estimate the mean
µ0 of an outcome of interest Y measured at a fixed time
T when (a) some subjects drop out of the study, (b) drop
out is nonignorable, (c) the probability of nonresponse is
a function of Y and additional time-independent and time-
dependent covariates V̄(t) and follows a semiparametric
model, and (d) no restrictions are placed on the joint dis-
tribution of V̄(T ) and Y . From a practical and philosoph-
ical perspective, we argued that it was more natural to fix
the parameter associated with Y in the nonresponse model
and perform a sensitivity analysis to see how inference
about µ0 changes as we vary this parameter over a plausi-
ble range of values. We illustrated our technique with data
from an AIDS clinical trial, ACTG 175. We described set-
tings in which our method breaks down and offered alterna-
tive methods appropriate for these settings. We discussed,
but left unresolved, the question of whether subject matter
experts will be able to provide a plausible range of values
for the selection bias parameter. If not, then these methods
may ultimately be of limited scientific value. On a simi-
lar note, it is unknown whether our formal methods will
prove of more use to practicing scientists than the informal
sensitivity analyses they already conduct, based on “back
of the envelope” calculations. Our guess is that many sci-
entists underestimate uncertainty, and our formal methods
combined with informative graphical displays can usefully
serve as a brusque reminder of just how much is uncertain.

In Appendix B we present a general theory for construct-
ing estimators of a parameter of interest when drop-out is
nonignorable and both the full-data and nonresponse mech-
anism follow semiparametric models. In later reports we
plan to use this general theory to extend our results to fail-
ure time outcomes, repeated-measures outcomes, and re-
gression and counterfactual causal models for the effect of
baseline and time-dependent covariates on the outcome. As

we have worked only with the proportional hazards nonre-
sponse models, we also plan to develop methods to handle
other nonresponse models, such as the accelerated failure
time and additive hazard models.

APPENDIX A: PROOF OF THEOREM 1

We actually prove a generalization of Theorem 1 in which
we replace (1) by the more general expression (13), where
r(t, α0; V̄(T ), Y ) is any known function satisfying condition 3
given here. Throughout this proof, we assume that the observed
data law FO is absolutely continuous with respect to a dominating
measure ν and we denote expectations, densities, and probabili-
ties under FO with the superscript ∗. We assume the following
conditions:

1. Given ∆ = 1, the process V̄(T ) has CADLAG sample paths
with all discontinuities occurring at a finite number of fixed non-
random times 0 ≡ t0 < t1 < · · · < tM with tM < T .

2. For t ∈ [0, T ), λ∗
Q(t|V̄(t)) is bounded by a constant c with

probability 1 and has a bounded derivative except at tk, k ∈
{0, . . . , M}.

3. For t ∈ [0, T ) and v̄(t) in the support of V̄(t) on ∆ =
1, |r(t, α0; V̄(T ), Y )| < k(α0) with probability 1 for some con-
stant k(α0) under F ∗̄

V(T ),Y |∆=1,V̄(t)=v̄(t), and r(t, α0; V̄(T ), Y )
has a bounded derivative with respect to t except at tk, k ∈
{0, . . . , M}.

4. f∗(Y |∆ = 1, V̄(tM )) and f∗(V(tk)|V̄(tk−1), Q > tk) are
bounded with probability 1 for k ∈ {0, . . . , M}.

We first prove part (b) of the theorem. We establish that the
map from (FO, α0) to FV̄(T ),Y and λ0(t|V̄(t)) is given by

f(v̄(T ), y) = g(0, y, v̄(T ))f∗(v̄(0)) (A.1a)

and

λ0(t|v̄(t)) = λ∗
Q(t|v̄(t))/pg(t, α0, v̄(t)), (A.1b)

where

pg(t, α0, v̄(t)) =
∫ ∫

exp(r(t, α0; v̄(T ), y))

× g(t, y, v̄(T )) dν(y)
∏

k:tk>t

dν(v(tk))

and g(t, y, v̄(T )) is the unique solution on t ∈ [0, T ] to the non-
linear Volterra integral equation

g(t, y, v̄(T ))

= f∗(y|∆ = 1, v̄(tM ))
∏

k:tk>t

f∗(v(tk)|v̄(tk−1), Q > tk)

× exp

(
−
∫ T

t

λ∗
Q(x|v̄(x))

{
1 − exp(r(x, α0; v̄(T ), y))

pg(x, α0, v̄(x))

}
dx

)
.

(A.1c)

We now prove (A.1a)–(A.1c). First, it can be shown that, un-
der Assumption 2, the conditional densities on the right side of
(A.1c) have well-defined versions that are continuous (with re-
spect to the weak topology) in all of their arguments, by argu-
ing as in Gill and Robins (1999). Assumptions 3 and 4 guarantee
that exp(r(x, α0; v̄(T ), y))/pg(x, α0, v̄(x)) in (A.1c) is bounded.
Arguing as in the work of Tricomi (1957, sec. 1.13), it follows
that by the smoothness assumptions 2–4, (A.1c) has a solution,
and it is unique. We next show that the right side of (A.1a) in-
tegrates to 1, so f(v̄(T ), y) is a density. It is sufficient to show
that Z(t) ≡ ∫ ∫

g(t, y, v̄(T )) dν(y)
∏

k:tk>t
dν(v(tk)) = 1 for
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all t. Under our smoothness assumptions, Z(t) is continuous on
[0, T ] and differentiable except at the tk’s. Now it follows from
(A.1c) and the definition of pg that Ż(t) = λ∗

Q(t|v̄(t))(Z(t) − 1)
for t 6= tk, where for any function h(t, ·), ḣ(t, ·) = ∂h(t, ·)/∂t.
Because Z(t) is equal to 1 at t = T , it follows by the uniqueness
of solutions to differential equations that Z(t) = 1 for all t.

We now prove that any candidate law FV̄(T ),Y,Q marginalizing
to FO satisfying (13) will have density f(y, v̄(T )|v̄(t), Q > t) that
satisfies (A.1c) and λ0(t|v̄(t)) given by (A.1b). If FO ≡ F ∗ is the
marginal of our candidate law, then

f(y, v̄(T )|v̄(t), Q > t) Pr[∆ = 1|v̄(T ), y, Q > t]

= f∗(∆ = 1, v̄(T ), y|v̄(t), Q > t). (A.2)

Dividing both sides of (A.2) by Pr[∆ = 1|v̄(T ), y, Q > t] =
exp(− ∫ T

t
λQ(x|v̄(T ), y) dx) and noting that

f∗(∆ = 1, v̄(T ), y|v̄(t), Q > t)

= f∗(y|∆ = 1, v̄(tM ))
∏

k:tk>t

f∗(v(tk)|v̄(tk−1), Q > tk)

× exp

(
−
∫ T

t

λ∗
Q(x|v̄(x))

)
, (A.3)

and, by (13),

λQ(t|v̄(T ), y)
λ∗

Q(t|v̄(t))
=

exp(r(t, α0; v̄(T ), y))
pf (t, α0, v̄(t))

, (A.4)

where f in pf is equal to f(y, v̄(T )|v̄(t), Q > t), we obtain that
f(y, v̄(T )|v̄(t), Q > t) must solve (A.1c). It thus follows that
(A.1a) is the unique candidate density f(y, v̄(T )) for the marginal
law of (Y, V̄(T )). Further, (A.4) and (13) imply the unique candi-
date (A.1b) for λ0(t|v̄(t)). Thus it only remains to show that our
unique candidate law Fcand ≡ FV̄(T ),Y,Q determined by (A.1a)–
(A.1c) has marginal law Fmarg for O equal to the given F ∗.

Now it is easy to see by inspection that the map from F ∗

to the solution g of (A.1c) is 1 to 1. Hence we can con-
clude that Fmarg = F ∗ if we can show that the density
fcand(y, v̄(T )|v̄(t), Q > t, ) derived from Fcand solves (A.1c), be-
cause, by the arguments in (A.2)–(A.4), this density solves (A.1c)
when F ∗ is replaced by Fmarg in (A.1c). Now, taking deriva-
tives with respect to t for t 6= tk, by (A.1c), ġ(t, y, v̄(T )) =
g(t, y, v̄(T ))λ0(t|v̄(t)){pg(t, α0, v̄(t)) − exp(r(t, α0; v̄(T ), y))}.
Also,

ḟcand(y, v̄(T )|v̄(t), Q > t) = fcand(y, v̄(T )|v̄(t), Q > t)

× λ0(t|v̄(t)){pfcand(t, α0, v̄(t)) − exp(r(t, α0; v̄(T ), y))},

because

fcand(y, v̄(T )|v̄(t), Q > t)

= g(0, y, v̄(T )) exp

{
−
∫ t

0

λ0(x|v̄(x)) exp(r(x, α0; v̄(T ), y))

}

÷
{∫ ∫

g(0, y, v̄(T ))

× exp

{
−
∫ t

0

λ0(x|v̄(x)) exp(r(x, α0; v̄(T ), y))

}

× dν(y)
∏

k:tk>t

dν(v(tk))

}
.

Further, from its definition, ḟcand(y, v̄(T )|v̄(0), Q > 0) =
g(0, y, v̄(T )). Hence, by the uniqueness of solutions to differ-

ential equations, ḟcand(y, v̄(T )|v̄(t), Q > t) = g(t, y, v̄(T )) for
t ∈ [0, t1). But then they are equal at t1 and thus on [t1, t2). Con-
tinuing, we conclude equality for all t, proving part (b) of the
theorem.

The proof of part (a) follows from the fact that the foregoing
construction depends on the values of α0. As α0 varies, the map-
ping from the law of the observed data to the law of the full data
changes. This shows the lack of identifiability.

Corollary A.1. In model A(α0) defined by (13), if r(t, α0;
V̄(T ), Y ) = r∗(t, α0; V̄(t), Y ), then the density f(y|v̄(t), Q > t)
is the unique solution g(t, y, v̄(t)) to the nonlinear Volterra integral
equation

g(t, y, v̄(t))

=
∫

· · ·
∫ ∫

f∗(y|∆ = 1, v̄(tM ))

×
∏

k:tk>t

dF ∗(v(tk)|v̄(tk−1), Q > tk)

× exp

(
−
∫ T

t

λ∗
Q(x|v̄(x))

×
{
1 − exp(r∗(x, α0; v̄(x), y))∫

exp(r∗(x, α0; v̄(x), y))g(x, y, v̄(x)) dν(y)

}
dx

)
,

(A.5a)

and λ0(t|v̄(t)) is given by

λ0(t|v̄(t)) = λ∗
Q(t|v̄(t))

÷
∫

exp(r∗(t, α0; v̄(t), y))f(y|v̄(t), Q > t) dν(y). (A.5b)

Proof. Under our regularity conditions, (A.5a) has a
unique solution. In the proof of Theorem 1 we showed that
f(y, v̄(T )|v̄(t), Q > t) solves (A.1c). The corollary now follows
from (A.1b) and (A.1c) on integrating out the necessary v(tk).

When α0 = 0, so r∗(x, α0; v̄(x), y) = 0, the solution to (A.5a)
is given by the g-computation algorithm formula of Robins (1986,
1987),

f(y|v̄(t), Q > t) =
∫

· · ·
∫

f∗(y|∆ = 1, v̄(tM ))

×
∏

k:tk>t

dF ∗(v(tk)|v̄(tk−1), Q > tk).

Lemma A.1. Suppose that assumptions 1–4 of Theorem 1
hold, except that in 3 we replace r by r∗ and T by t. Then model
A∗(α0) defined by (15) is a nonparametric model for FO with
f(y|v̄(t), Q > t) identified and given by (A.5a) and λ0(t|v̄(t))
given by (A.5b).

Proof. As in the proof of Theorem 1, let f∗ denote densi-
ties under FO . By the proof of Theorem 1, (A.6) has unique
nonnegative solutions g1(t, y, v̄(t)), g2(v̄(tk), y), k ∈ {k: tk >
t}, and ρ(t, v̄(t)) satisfying the unit integral restrictions 1 =∫

g1(t, y, v̄(t)) dν(y) =
∫

g2(v̄(tk), y) dν(v(tk)):

{f∗(q, v̄(q), y|v̄(t), Q > t)}δ{f∗(q, v̄(q)|v̄(t), Q > t)}1−δ

= {ρ(q, v̄(q)) exp(r∗(q, α0; v̄(q), y))}δ

×
∫

(dν(y))1−δg1(t, y, v̄(t))
∏

k:t<tk<q

g2(v̄(tk), y)
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× exp

(
−
∫ q

t

ρ(x, v̄(x)) exp(r∗(x, α0; v̄(x), y)) dx

)
, (A.6)

where if δ = 1, then the first integration is not performed. As
model A(α0) is nonparametric, we can regard (A.6) as the density
of the observed data given the event (V̄(t) = v̄(t), Q > t) un-
der model A(α0) with r(t, α0; v̄(T ), y) = r∗(t, α0; v̄(t), y). Hence
we conclude that g1(t, y, v̄(t)) = f(y|v̄(t), Q > t) solves (A.5a),
ρ(t, v̄(t)) = λ0(t|v̄(t)) is given by (A.5b), and g2(v̄(tk), y) =
f(v(tk)|v̄(tk−1), y) = f(v(tk)|v̄(tk−1), y, Q > tk) is determined
by the law fV̄(T ),Y defined by (A.1a)–(A.1c), as (A.6) uniquely
determines the conditional density of (V̄(T ), Y, Q) through the
foregoing formulas, according to our proof of Theorem 1 and
Corollary A.1. However, (A.6) is also the density of the observed
data under model A∗(α0) [i.e., (15)], with g2(v̄(tk), y) now only
f(v(tk)|v̄(tk−1), y, Q > tk). Because we have just shown that
(A.6) has a unique solution satisfying the foregoing positivity
and unit integral restriction, we conclude that there exists only
one law FY,Q,V̄(Q)|V̄(t),Q>t that satisfies (15) and marginalizes to
F ∗

Q,V̄(Q),∆Y |Q>t,V̄(t), and that this law has λ0(t|v̄(t)) satisfying
(A.5b) and f(y|v̄(t), Q > t) solving (A.5a). This concludes the
proof of the lemma.

APPENDIX B: GENERAL THEORY

Let L denote the complete (full) data. Suppose that we observe
only (R, L(R)), where L(R) = ϕR(L) and ϕr(L) is a known func-
tion of L that depends on r. Specifically, R indexes the part of
L that is actually observed. We assume that there exists a unique
value of R, r∗, such that ϕr∗(L) = L. Let ∆ = I(R = r∗).
Furthermore, we assume that (a) L follows an arbitrary semipara-
metric model, FL, indexed by a p×1 parameter µ and an infinite-
dimensional parameter θ; (b) R given L follows an arbitrary semi-
parametric model, FR|L, indexed by a q × 1 parameter γ and an
infinite-dimensional parameter η; and (c) Pr[∆ = 1|L] > σ > 0.
We assume that the parameters in model FL are variation inde-
pendent of those in the model FR|L. We let µ0,γ0,θ0, and η0

denote the true values of µ,γ,θ, and η. We are interested in esti-
mating ψ0 = (µ′

0,γ
′
0)′. We observe n independent and identically

distributed copies of O = (R, L(R)).
Let Λ1 = Λ(FL) and Λ2 = Λ(FR|L) denote the (nuisance) tan-

gent spaces for θ and η had we observed (R, L). (For a defini-
tion of nuisance tangent space see, e.g., Newey 1990). Through-
out, our spaces are subspaces of the Hilbert space of q + p-
dimensional mean 0 random vectors with the covariance inner
product, and Π(·|·) denotes the projection operator. Note that
Λ(FL) and Λ(FR|L) are orthogonal. For the “observed data,” there
is an induced semiparametric model that we denote by O. In model
O the observed data nuisance tangent space is ΛO = ΛO

1 + ΛO
2 ,

where ΛO
1 is the observed data nuisance tangent space for θ and

ΛO
2 is the observed data nuisance tangent space for η. Specifi-

cally, ΛO
j = R(g ◦ Πj), where R(·) is the range of an operator, g:

Ω(R,L) → Ω(R,L(R)), g(·) = E[·|R, L(R)], Ω(R,L) and Ω(R,L(R))

are spaces of p + q-dimensional mean 0 random functions of
(R, L) and (R, L(R)), Πj is the projection operator from Ω(R,L)

onto Λj , and S̄ denotes the closed linear span of the set S (Bickel
et al. 1993). A space superscripted by ⊥ denotes the orthogonal
complement of that space. We are interested in finding ΛO,⊥ be-
cause in sufficiently smooth models including all those studied in
this article, the set of influence functions of all RAL estimators
of ψ0 is the set {E[AS′

ψ]−1A; A ∈ ΛO,⊥}, where Sψ is the ob-
served data score for ψ evaluated at the truth. Another motivation
for our interest in this space is as follows. An element in the ΛO,⊥

space is a (p + q)-dimensional function of the observed data for

an individual and the true values of the parameters ψ0,θ0, and
η0. Denote this function by H ≡ h(O;ψ0,θ0,η0). Suppose that
we estimate ψ0 by ψ̂ solving

∑n

i=1 h(Oi;ψ, θ̂(ψ), η̂(ψ)) = 0,

where θ̂(ψ0) and η̂(ψ0) converge to θ0 and η0. Then Bickel et
al. (1993) and Newey (1990) showed that under suitable regularity
conditions ψ̂ is a RAL estimator with influence function τ−1H,
where τ = E[HS′

ψ] = −∂E[h(O;ψ,θ0,η0)]/∂ψ|ψ=ψ0 . But this
is the same influence function as would have been obtained by
solving the estimating equation

∑n

i=1 h(Oi;ψ,θ0,η0) = 0 in
which the infinite-dimensional components (θ0,η0) are known
rather than estimated. It is precisely the orthogonality of H to
ΛO that obviated the need to adjust the asymptotic variance for
estimation of the nuisance parameters.

Taking orthogonal complements, ΛO,⊥ = ΛO,⊥
1 ∩ ΛO,⊥

2 . Let
a(L) and b(R, L(R)) be p + q-dimensional functions of L and
(R, L(R)). Rotnitzky and Robins (1997) showed how to compute
ΛO,⊥

1 . Specifically,

ΛO,⊥
1 = {∆Pr[∆ = 1|L]−1a(L) + b(R, L(R)):

a(L) ∈ Λ(FL)⊥ and E[b(R, L(R))|L] = 0}.

By the relationship between ranges and null spaces, we know
that ΛO,⊥

2 = N(ΠT
2 ◦ gT ), where N(·) is the null space of an

operator and superscript T denotes the adjoint of an operator. As
a projection operator, ΠT

2 = Π2 and gT is the identity operator.
So,

ΛO,⊥
2 = {b(R, L(R)): Π[b(R, L(R))|Λ(FR|L)] = 0}

= {b(R, L(R)): b(R, L(R)) ∈ Λ(FR|L)⊥}.

B.1. Application of the General Theory to Models A(α0)
and B(α0)

We now apply this general theory to obtain ΛO,⊥ in models
A(α0) and B(α0). In these models we have L = (V̄(T ), Y ), R =
Q, L(R) = ϕQ(L) = (V̄(Q), I(Q = T )Y ), r∗ = T , and
∆ = I(R = T ). We actually consider a generalization of model
A(α0) in which (1) is replaced with the more general expression
(13), where r(t, α0; V̄(T ), Y ) is any known function satisfying
the condition 3 of Theorem 1 in Appendix A. Define S(t) =
exp(− ∫ t

0
λ0(u|V̄(u)) exp(r(u, α0; V̄(T ), Y )) du), S ≡ S(T ), and

ε = Y − µ0. Note that under (13), S = P [∆ = 1|V̄(T ), Y ]. Note
also that under model B(α0), λ0(t|V̄(t)) = λ0(t) exp{γ′

0W(t)},
and hence S(t) depends on the value of γ0. To emphasize this
dependence, when developing the results for model B(α0), we
write S(t;γ0) for S(t). Throughout, we use N(t) to denote the
counting process for censoring I(Q ≤ t, ∆ = 0) and M(t) =
N(t)−∫ t

0
I(Q ≥ u)λ0(u|V̄(u)) exp{r(u, α0; V̄(T ), Y )} du to de-

note its associated martingale.
In model A(α0),

Λ(FL) = {a(ε) + a(V̄(T ), ε): a(ε) and a(V̄ (T ), ε)

are scalar functions with E[a(ε)] = E[εa(ε)]

= E[a(V̄ (T ), ε)|Y ] = 0}

and

Λ(FL)⊥ = {kε: k ∈ R1}

by theorem 8.3 of Robins et al. (1994). To compute ΛO,⊥
1 , note

that any function c(R, L(R)) admits the unique representation
∆a(V̄(T ), Y )+ (1−∆)b(V̄(Q), Q). Thus E[c(R, L(R))|L] = 0 if
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and only if

c(R, L(R)) = −∆
E[(1 − ∆)b(V̄(Q), Q)|V̄(T ), Y ]

S

+ (1 − ∆)b(V̄(Q), Q).

Thus we have

ΛO,⊥
1 =

{
∆

(
kε

S
− E[(1 − ∆)b(V̄(Q), Q)|V̄(T ), Y ]

S

)

+ (1 − ∆)b(V̄(Q), Q): k ∈ R1

}
.

In model B(α0) the preceding representations of Λ(FL), Λ(FL)⊥,
and ΛO,⊥

1 still hold, except that k is replaced by k ∈ Rq+1, and
the functions a and b are (q + 1) dimensional and denoted by a
and b.

B.1.1 Computation of ΛO,⊥ in Model A(α0). To compute ΛO,⊥,
we first compute ΛO,⊥

2 , then intersect it with ΛO,⊥
1 given earlier.

It follows from Ritov and Wellner (1988) that in model A(α0),

Λ(FR|L) =

{∫ T

0

g(t, V̄(t)) dM(t): g(t, V̄(t))

is an arbitrary function of t and V̄(t)

}

and

Λ(FR|L)⊥

=

{
a(V̄(T ), Y ) +

∫ T

0

g(t, V̄(T ), Y ) dM(t):

E[g(t, V̄(T ), Y )|Q = t, V̄(t)] = 0,

and E[a(V̄(T ), Y )] = 0

}
.

To compute ΛO,⊥
2 , we write an arbitrary function c(R, L(R)) ≡

∆a(V̄(T ), Y ) + (1 − ∆)b(V̄(Q), Q) as

c(R, L(R)) =
{

∆A + (1 − ∆)B +
∆
S

E[(1 − ∆)B|V̄(T ), Y ]
}

− ∆
S

E[(1 − ∆)B|V̄(T ), Y ]

=
∆
S

m(V̄(T ), Y ) + (1 − ∆)B

− ∆
S

E[(1 − ∆)B|V̄(T ), Y ]

= m(V̄(T ), Y ) +
∫ T

0

g(t, V̄(T ), Y ) dM(t), (B.1)

where A = a(V̄(T ), Y ), B = b(V̄(Q), Q), m(V̄(T ), Y ) =
E[∆A + (1 − ∆)B|V̄(T ), Y ], and

g(t, V̄(T ), Y ) = b(V̄(t), t)

+

∫ t

0
b(V̄(u), u)fQ(u|V̄(T ), Y ) du

S(t)
− m(V̄(T ), Y )

S(t)

with fQ(·|V̄(T ), Y ) the conditional density of Q given (V̄(T ), Y ).
The third identity in (B.1) follows from lemma 4.1 of Robins et
al. (1999). Note that because A is arbitrary, so is m(V̄(T ), Y ).

From the representation of Λ(FR|L)⊥ just given, we conclude
that c(R, L(R)) ∈ Λ(FR|L)⊥ if and only if E[m(V̄(T ), Y )] = 0
and for all t ∈ [0, T ),

E

[
b(V̄(t), t) +

∫ t

0
b(V̄(u), u)fQ(u|V̄(T ), Y ) du

S(t)

− m(V̄(T ), Y )
S(t)

∣∣∣∣∣Q = t, V̄(t)

]
= 0. (B.2)

Equation (B.2) can be rewritten as the Volterra integral equation

b(V̄(t), t) = Jm(t) −
∫ t

0

b(V̄(u), u)f(u, t, V̄(t)) du, (B.3a)

where

Jm(t) =
E[m(V̄(T ), Y ) exp{r(t, α0; V̄(T ), Y )}|V̄(t)]

E[S(t) exp{r(t, α0; V̄(T ), Y )}|V̄(t)]
(B.3b)

and

f(u, t, V̄(t)) =

E[λ0(u|V̄(u))S(u) exp{r(t, α0; V̄(T ), Y )
+ r(u, α0; V̄(T ), Y )}|V̄(t)]
E[S(t) exp{r(t, α0; V̄(T ), Y )}|V̄(t)]

.

(B.3c)

For each m(V̄(T ), Y ), (B.3a) has a unique solution. Because ΛO,⊥
2

is comprised precisely by all the functions of the observed data
that belong to Λ(FR|L)⊥, we conclude that

ΛO,⊥
2 =

{∆
S

m(V̄(T ), Y ) + (1 − ∆)b(V̄(Q), Q)

− ∆
S

E[(1 − ∆)b(V̄(Q), Q)|V̄(T ), Y ]:

E[m(V̄(T ), Y )] = 0, b(V̄(t), t)

solves (B.3a) for ∀t ∈ [0, T )
}

.

Finally, intersecting ΛO,⊥
1 and ΛO,⊥

2 , we obtain

ΛO,⊥

=
{

kH: k ∈ R1 and H ≡ ∆
S

ε + (1 − ∆)b(V̄(Q), Q)

− ∆
S

E[(1 − ∆)b(V̄(Q), Q)|V̄(T ), Y ],

where b(V̄(t), t) solves (B.3a) with m(V̄(T ), Y ) = ε
}

.

(B.4)

Because this set comprises multiples of the unique random vari-
able H , we conclude that there is a single influence function for
the parameter µ0. This must be the case, because by Theorem 1,
model A(α0) is a nonparametric model for the observed data.

We now prove that h(O; µ0, Λ0; b∗) with b∗ as in (7) is the
unique h(O, µ0, Λ0; b) uncorrelated with all nuisance scores Sη .
In the special case in which V̄(t) = V and r(t, α0;V, Y ) =
r(α0;V, Y ) for all t, (B.3a) has an explicit solution b(V, t) =
b∗(V) independent of t given by

b∗(V) =
E[m(V, Y ) exp{r(α0;V, Y )}|V]

E[exp{r(α0;V, Y )}|V]
.

In particular, when m(V, Y ) = Y − µ0, b
∗(V) coincides

with b∗(V; µ0) in (7) and H in the set (B.4) coincides with
h(O, µ0, Λ0; b∗). Thus h(O, µ0, Λ0; b∗) is uncorrelated with the
nuisance scores Sη , because it is an element of ΛO,⊥

2 . The unique-
ness of H follows from the uniqueness of b∗.

B.1.2 Computation of ΛO,⊥ in Model B(α0). It follows from
the results of Ritov and Wellner (1988) that in model B(α0),
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Λ(FR|L) =

{∫ T

0

g(t) dM(t): g(t) is an arbitrary

(q + 1) dimensional function of t

}
and

Λ(FR|L)⊥ =

{
a(V̄(T ), Y ) +

∫ T

0

g(t, V̄(T ), Y ) dM(t):

E[g(t, V̄(T ), Y )|Q = t] = 0,

E[a(V̄(T ), Y )] = 0,

and a and g are (q + 1) dimensional

}
We now use the representation (B.1) for any c(R, L(R))

and conclude that c(R, L(R)) ∈ Λ(FR|L)⊥ if and only if
E[m(V̄(T ), Y )] = 0 and for all t ∈ [0, T ),

E

[
b(V̄(t), t) +

∫ t

0
b(V̄(u), u)fQ(u|V̄(T ), Y ) du

S(t)

− m(V̄(T ), Y )
S(t)

∣∣∣∣∣Q = t

]
= 0, (B.5)

where m is now a (q + 1) dimensional function.
Equation (B.5) can be rewritten as

E[b(V̄(t), t)D(t) + cb,m(t)] = 0, (B.6)

where

D(t) = S(t;γ0) exp{γ′
0W(t) + r(t, α0; V̄(T ), Y )}

and

cb,m(t)

= E

[
exp{γ′

0W(t) + r(t, α0; V̄(T ), Y )}

×
∫ t

0

b(V̄(u), u)fQ(u|V̄(T ), Y ;γ0) du

]
− E[m(V̄(T ), Y ) exp{γ′

0W(t) + r(t, α0; V̄(T ), Y )}].

For any fixed function m(V̄(T ), Y ), (B.6) has an infinite num-
ber of solutions. But we now show that the set b∗

m of solutions
to (B.6) is equal to the set

b∗∗
m = {b(V̄(t), t) = φ(V̄(t), t) − E[D(t)]−1

×{E[φ(V̄(t), t)D(t)] + cb,m(t)}:

φ(V̄(t), t) is an arbitrary q + 1 dimensional function}.

That b∗∗
m ⊆ b∗

m follows by direct verification that the elements of
b∗∗
m solve (B.6). That b∗

m ⊆ b∗∗
m follows because for any arbitrary

solution b(V̄(t), t) to (B.6),

b(V̄(t), t)

= b(V̄(t), t) − E[D(t)]−1{E[b(V̄(t), t)D(t)] + cb,m(t)}.

Because ΛO,⊥
2 is comprised precisely by all (q+1)-dimensional

functions c(R, L(R)) of the observed data that belong to
Λ(FR|L)⊥, we conclude that

ΛO,⊥
2 =

{∆
S

m(V̄(T ), Y ) + (1 − ∆)b(V̄(Q), Q)

− ∆
S

E[(1 − ∆)b(V̄(Q), Q)|V̄(T ), Y ]:

E[m(V̄(T ), Y )] = 0 and b(V̄(t), t) ∈ b∗∗
m

}
.

Finally, intersecting ΛO,⊥
1 and ΛO,⊥

2 , we obtain

ΛO,⊥ =
{
H: H =

∆
S

kε + (1 − ∆)b(V̄(Q), Q)

− ∆
S

E[(1 − ∆)b(V̄(Q), Q)|V̄(T ), Y ]:

k ∈ Rq+1 and b(V̄(t), t) ∈ b∗∗
m

with m(V̄(T ), Y ) = kε
}

.

This indeed shows that (10) characterizes the members of the
set b∗ of Section 4.2, because b∗(V̄(t), t;ψ0) satisfies (10) if and
only if b∗(V̄(t), t;ψ0) ∈ b∗∗

m with m(V̄(T ), Y ) = ke1ε and e1 is
the (q+1) dimensional vector (1, 0, . . . , 0)′. Further, it is simple to
show that the set of influence functions corresponding to the class
of estimators {ψ̂(b̂∗)} contains all influence functions for ψ0.

APPENDIX C: AN ADAPTIVE ESTIMATOR

We propose an adaptive choice by φ̂adap for the function φ.
φ̂adap will depend on both the data and the selection bias parame-
ter α0. The estimator µ̂(b̂∗

adap) determined by φ̂adap via (11) will
have asymptotic variance that should be close to the semiparamet-
ric variance bound for model A(α0). To allow us to reuse the no-
tation from Section 4.1, we assume that r(t, α0; V̄(T ), Y ) = α0Y .
We calculate φ̂adap(V̄(t), t) using the following five-step proce-
dure:

1. Obtain a preliminary inefficient RAL estimator ψ̂(b) =
(µ̂(b), γ̂(b)′)′ based on a convenient choice of b as in Section
4.1.

2. Specify a parametric model f(ε, V̄(T );η) with η an un-
known finite-dimensional parameter for the unknown law of
(ε, V̄(T )) with ε ≡ Y − µ0.

3. Estimate η by the solution η̂ to the IPCW score equation

0 = Êγ̂(b)[∂ ln f(Y − µ̂(b), V̄(T );η)/∂η].

4. Replace the Volterra integral equation (B.3a)–(B.3c) by an
estimated version where, in the estimated version, we replace

a. in (B.3b) and (B.3c), E[·|V̄(t)] with expectations Eη̂,µ̂(b)

[·|V̄(t)] computed under f(ε̂(b), V̄(T ); η̂) with ε̂(b) ≡ Y −
µ̂(b)

b. in (B.3b) and (B.3c), S(·) by Ŝ(·|V̄(T ), Y ; γ̂(b)) of Sec-
tion 4.1

c. in (B.3c), λ0(u|V̄(u)) by exp(γ̂(b)′W(u))dΛ̂(u; γ̂(b))
d. in (B.3c), f(u, t, V̄(t)) by dF̂ (u, t, V̄(t))
e. in (B.3a), f(u, t, V̄(t)) du by dF̂ (u, t, V̄(t)).

5. Solve the estimated version of (B.3a)–(B.3c) and call
the solution φ̂1,adap(V̄(t), t), and define φ̂adap(V̄(t), t)′ =
(φ̂1,adap(V̄(t), t),W(t)′).

Then, under mild regularity conditions, µ̂(b̂∗
adap) will be a RAL

estimator under model B(α0) with asymptotic variance equal to
the semiparametric variance bound for model A(α0) if the para-
metric model f(ε, V̄(T );η) is correctly specified. Even under mis-
specification of the parametric model, µ̂(b̂∗

adap) will remain a RAL
estimator under model B(α0) with asymptotic variance that should
remain close to the bound for model A(α0) if η is a rather high-
dimensional parameter.

[Received February 1998. Revised June 1999.]
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