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Abstract

Background: Next-generation 16S ribosomal RNA gene sequencing is widely used to determine the relative

composition of the mammalian gut microbiomes. However, in the absence of a reference, this does not reveal

alterations in absolute abundance of specific operational taxonomic units if microbial loads vary across specimens.

Results: Here we suggest the spiking of exogenous bacteria into crude specimens to quantify ratios of absolute

bacterial abundances. We use the 16S rDNA read counts of the spike-in bacteria to adjust the read counts of

endogenous bacteria for changes in total microbial loads. Using a series of dilutions of pooled faecal samples from

mice containing defined amounts of the spike-in bacteria Salinibacter ruber, Rhizobium radiobacter and Alicyclobacillus

acidiphilus, we demonstrate that spike-in-based calibration to microbial loads allows accurate estimation of ratios of

absolute endogenous bacteria abundances. Applied to stool specimens of patients undergoing allogeneic stem cell

transplantation, we were able to determine changes in both relative and absolute abundances of various phyla,

especially the genus Enterococcus, in response to antibiotic treatment and radio-chemotherapeutic conditioning.

Conclusion: Exogenous spike-in bacteria in gut microbiome studies enable estimation of ratios of absolute OTU

abundances, providing novel insights into the structure and the dynamics of intestinal microbiomes.

Keywords: Microbial load, Spike-in bacteria, 16S rRNA gene sequencing, Standardization, Microbiome profiling,

Bacterial communities, Community analysis

Background
The human intestinal tract is populated by an ecological

community of microorganisms, the gut microbiome. This

complex community plays an important role in health and

disease [1–7] and varies greatly among individuals. Next

generation sequencing of the 16S rRNA gene allows profil-

ing of the bacterial and archaeal components of the gut

microbiome at unprecedented precision and depth [8–10].

Computational tools such as QIIME [11] and mothur [12]

cluster reads into operational taxonomic units (OTUs)

[13], which may then be jointed into taxonomic groups at

the genus, family, order, class, and phylum level.

Current studies focus on the relative abundance or pro-

portions of OTUs [14, 15]. As an example, a specific OTU

may contribute 5 % to microbiome A and 10 % to micro-

biome B corresponding to a ratio of 1:2. If we further as-

sume that the total number of bacteria or microbial load

of in A is four times larger than in B, the 5 % in A account

for twice as many bacteria as the 10 % in B, thus bringing

the actual ratio to 2:1.

Antibiotic treatment, diet, and/or disease affect both

microbial loads and compositions. For example, Holler

et al. [16] observed that the relative abundance of the

genus Enterococcus in stool specimens collected from

patients undergoing allogeneic stem cell transplantation

(ASCT) can increase from undetectable levels prior to

ASCT to up to 94 % after ASCT. More interestingly, this

relative shift to Enterococcus was associated with an

increased risk of acute gastrointestinal graft-versus-host
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disease (GI-GvHD). Without knowledge of total micro-

bial load, however, it is impossible to infer whether this

shift was the result of either an absolute increase in the

number of Enterococcus or a decrease in the number of

bacteria other than Enterococcus.

Application of synthetic spike-in standards allows for

changing the profiles’ reference points. The reference

point of relative abundances is a fixed aliquot of 16S

rDNA. These profiles are insensitive to the microbial

load of a stool specimen. Adding controlled amounts of

spike-in material allows for rescaling the profiles such

that the measured concentrations of the standard are

constant across samples, making the spike-in standard

the new reference point of the profiles and the profiles

sensitive to microbial loads. Spike-in strategies featuring

different GC contents and covering a wide concentration

range in combination with appropriate normalization

strategies have already been proposed to correct for li-

brary preparation and nuisance technical effects in the

inference of gene expression levels from RNA-Seq exper-

iments [17]. This approach, as well as similar schemes

employed in proteomics [18] and metabolomics, [19]

adds the spike-in standards to transcriptomes, pro-

teomes and metabolomes only after cell lysis and extrac-

tion of mRNA, proteins and metabolites, respectively,

and thus do not allow correction of variation originating

from these critical experimental steps. Recently Jones et

al. [20] suggested using whole cell spike-in controls for

monitoring this technical variability in the field of

microbiome research.

Extending their results, we here suggest the addition of

exogenous viable spike-in bacteria to rescale the read

counts of endogenous bacteria. We call this protocol spike-

in-based calibration to total microbial load (SCML), and

test it in a dilution experiment with defined absolute spike-

in bacteria abundances against serially diluted background

microbiomes. Moreover, we reconsider the emergence of

Enterococcus as the predominant genus in ASCT using

SCML.

Results

Choice of spike - in bacteria

We used Salinibacter ruber (S. ruber, GenBank ID:

CP000159), an extreme halophilic bacterium found in

hypersaline environments [21], Rhizobium radiobacter

(R. radiobacter, GenBank ID: ASXY01000000), a non-

phytopathogenic member of the Biovar I group of Agro-

bacterium found in the soil and the plant rhizosphere

[22], as well as the thermo-acidophilic, endospore form-

ing soil bacterium Alicyclobacillus acidiphilus (A. acidi-

philus, GenBank ID: PRJDB697) [23]. These eubacteria

belong to different phyla typically found in mammalian

faecal microbiomes. They do not exist in the gut micro-

biome under physiological conditions and are well

distinguishable from the bacteria in the gut using 16S

rRNA gene sequencing. Whole bacteria are spiked-in at

fixed amounts. 16S rRNA gene copy numbers per gen-

ome vary between these species (1, 4 and 6 rRNA gene

copies per genome for S. ruber, R. radiobacter and A.

acidiphilus, respectively). We quantify spike-in concen-

trations and measured concentrations relative to 16S

rRNA gene copies. Hence, if we say that we spiked-in

bacteria in the same amounts, this means that the num-

ber of 16S rRNA copies, but not necessarily the number

of bacterial cells is identical.

Design of spike-in calibration experiments

Experiments were performed with spike-in bacteria whose

absolute abundance was defined by design in increasingly

diluted gut microbiomes. The dilution simulates non-

constant microbial loads.

S. ruber, R. radiobacter and A. acidiphilus were spiked

into each of 36 aliquots of pooled murine stool samples.

While A. acidiphilus and R. radiobacter were spiked into

these samples at variable amounts, that of S. ruber was

kept constant. S. ruber was used to measure microbial

loads, while A. acidiphilus and R. radiobacter were used

to validate the SCML approach. The precision of the

spike-ins was independently validated using quantitative

real time PCR (qRT-PCR). Importantly, this analysis also

verified that all three bacteria were in fact not present in

the pooled murine stool (Additional file 1: Table S1).

Additional file 2: Table S2 summarizes the design of the

validation experiment.

To validate the spike-in assay we compare calibrated

ratios of observed reads with the expected ratios defined

by the experimental design. The experimental design

controls microbial loads at several levels:

(i) For each sample, we have expected total microbial

loads defined by the stool dilution factor and the spike-in

concentrations. (ii) For each of the two spike-ins A. acidi-

philus and R. radiobacter we have expected within-species

ratios of concentrations for every pair of samples (intra-

OTU comparison). (iii) For every pair of samples we have

expected inter-species ratios between the two spike-ins

both within and across samples (inter-OTU comparison).

(iv) For all taxonomic units of the background micro-

biome we have expected abundance ratios defined by the

dilution factor and the spike-in concentrations.

The three spike-in bacteria yield different read turnouts

but correlate well with microbial loads

Figure 1a shows linear relationships between the spiked-

in 16S rDNA copies (x-axis in log2 scale) of A. acidiphi-

lus and R. radiobacter, respectively, and the resulting

log2 read counts. The total number of spike-in reads in-

creases with dilution of the background microbiome.

Simultaneously, as a constant amount of S. ruber was
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added to each sample, the portion of the spike-in bac-

teria increases (Fig. 1b). As a result, the read count

assigned to a spike-in OTU is expected to inversely cor-

relate with the total microbial load.

Figure 1b shows box plots of the log2 transformed read

counts of S. ruber, R. radiobacter and A. acidiphilus as a

function of microbial loads across all 36 samples. The

counts were adjusted for their varying spike-in concen-

trations by design. For example, if in an experiment the

concentration of the A. acidiphilus spike-in was only

50 % of that of S. ruber, the A. acidiphilus counts were

doubled. After adjustment of A. acidiphilus and R. radio-

bacter, we observe an inverse correlation of log2 spike-in

counts with the microbial load (reciprocal dilution

factor) for all three spike-in bacteria (Fig. 1b). In detail

there is a correlation of r = -0.834 for S. ruber, r = -0.795

for R. radiobacter (adjusted) and r = -0.725 for A. acidi-

philus (adjusted). Additionally, we observe that the three

bacteria have notably different read yields, with S. ruber

showing the highest counts.

SCML yields almost unbiased estimates of ratios of

absolute abundances within taxonomic units

For comparing SCML to standard relative abundance

analysis, we generated two data sets by scaling the read

counts with respect to two different reference points:

a b

Fig. 1 Log2 transformed read counts of the three spike-in bacteria as a function of total microbial load. S. ruber was added at a constant number

of 16S rDNA copies, while A. acidiphilus and R. radiobacter were spiked in variably (cf. Additional file 2: Table S2). a Resulting read counts of A.

acidiphilus and R. radiobacter versus spiked-in 16S rDNA copies at different background stool microbiota dilutions. Each dot represents a caecal

specimen, while the colour specifies its dilution. b Boxplots showing the read counts of all three spike-in bacteria as a function of total microbial

load. The log2 read counts of S. ruber are coloured blue, while A. acidiphilus and R. radiobacter are coloured red and green, respectively. Read

counts of A. acidiphilus and R. radiobacter were adjusted by a factor corresponding to their difference of the predefined spike-in concentration to

S. ruber. The x-axis is discrete and represents increasing stool dilution (bottom), as well as decreasing microbial load from left to right (grey arrowhead

on the top)
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First, we scaled the observed read counts relative to the

library sizes. This gives us the standard relative abun-

dances (standard data). In a second data set we scaled

the same counts relative to the spike-in reads of S. ruber

(SCML data).

We first compared the data for A. acidiphilus and R.

radiobacter separately. By design the expected ratio for

A. acidiphilus and R. radiobacter between every pair of

samples is known. Figure 2 shows the observed inter-

sample ratios for both data sets as a function of expected

ratios. Plot (a) was created using standard data, while

plot (b) was created using SCML data. We observe a

reduced systematic error in (b) when comparing the data

trend to the identity line (purple). The standard data

shows systematically overestimated ratios in both direc-

tions. SCML reduced this bias. Moreover, we observe a

high variability of estimated ratios, which was almost cut

in half by SCML (Fig. 2c).

We next analysed the ratios for the background OTUs.

By design, experimentally controlled ratios can be calcu-

lated from the dilution factor of the background micro-

biome. In contrast to A. acidiphilus and R. radiobacter

the ratios derived from relative abundances (standard

data) of these OTUs is zero by experimental design.

Figure 3 shows the distribution of observed background

ratios as a function of corresponding expected ratios.

Plot (a) was created using standard data, while plot (b)

was created using SCML data. As expected, ratios of

relative abundances cannot capture shifts in microbial

loads that do not affect the composition (Fig. 3a). In line

with the previous observations, we observe a reduction

of estimation variance when using SCML (Fig. 3c). Cor-

relations between expected and observed log2 ratios

were 0.359 and 0.833 for the standard data and the

SCML data, respectively.

SCML allows more accurate estimation of ratios than

calibrating for total 16S rRNA gene copies using qRT-PCR

Quantification of the total number of 16S rRNA gene

copies by qRT-PCR may be used to determine micro-

bial loads. To compare the practicability of the latter

with SCML we used a SYBR Green-based qPCR assay

to quantify 16S rDNA (Additional file 1: Table S1).

Figure 4 shows observed and expected log2 ratios for
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Fig. 2 Comparison of log2 ratios derived from relative abundances and after applying SCML to A. acidiphilus and R. radiobacter. Observed log2
ratios versus expected log2 ratios of the spike-ins A. acidiphilus and R. radiobacter as derived from (a) relative abundances and (b) SCML by S. ruber

for all pairwise sample comparisons. Both approaches were performed on the raw, not adjusted read counts of A. acidiphilus and R. radiobacter.

The expected log2 ratios are calculated by the theoretical number of 16S rDNA copies predetermined in the design of the validation experiment

(cf. Additional file 2: Table S2). The purple diagonal represents the identity, which represents the expected log2 ratios by design. The box plots in

(c) show the error between the expected and observed log2 ratios for both approaches. The smaller this error, the better calibrated the ratios are
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background OTUs using either (a) SCML or (b) re-

scaling to constant total 16S rRNA gene copies. It is

apparent that observed ratios derived from SCML

show higher concordance with the expected ratios re-

garding estimation bias and variance. Correlations be-

tween expected and observed log2 ratios were 0.717

and 0.833 for the qPCR and the SCML approach, re-

spectively. These findings are also supported by an

overall lower error between the observed and ex-

pected log2 ratios when derived from SCML (Fig. 4c).

However, it has to be acknowledged that the SYBR

Green-based quantification method of the bacterial

load has not been explicitly compared to probe-based

formats, so any limitations/imprecisions possibly

resulting from the use of this universal detection for-

mat were not taken into account.

−10

−5

0

5

10

o
b
s
e
rv

e
d

lo
g

2
 r

a
ti
o

a

−10

−5

0

5

10

−5.0 −2.5 0.0 2.5 5.0

expected log2 ratio

o
b
s
e
rv

e
d

lo
g

2
 r

a
ti
o

b

10 20 30 40 50

percentage of values
per exp. ratio

−10

−5

0

5

10

re
la

tiv
e
 a

b
u
n
d
a
n
c
e
s

e
rr

o
r

e
x
p
e
c
te

d
 v

s
 o

b
s
e
rv

e
d

c

−10

−5

0

5

10

S
C

M
Le

rr
o
r

e
x
p
e
c
te

d
 v

s
 o

b
s
e
rv

e
d

cor = 0.833 

cor = 0.359 

Fig. 3 Comparison of log2 ratios derived from relative abundances and after applying SCML to all background OTUs. Observed log2 ratio versus

expected log2 ratio of all background OTUs for all pairwise comparisons as derived from (a) relative abundances and (b) SCML by S. ruber. The

data is binned to hexagons because of the high number of data points. The colour of each hexagon represents the percentage of counts at the

corresponding level of expected log2 ratios contained in each bin. Bins that contributed to <0.05 % for each level of expected log2 ratio are

omitted. The purple diagonal represents the identity, which represents the expected log2 ratios by design. The box-plots in (c) show the error

between the expected and observed log2 ratios for both approaches. The smaller this error, the better calibrated the ratios are
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Combining multiple spike-in bacteria reduces estimation

errors

Figure 1b shows that the adjusted counts of all three

spike-in bacteria reciprocally correlated with microbial

loads. We next investigated whether taking the sum of

all three spike-in read counts further improves the esti-

mates. Since A. acidiphilus and R. radiobacter were

spiked in variable amounts we had to adjust their counts

prior to using them for calibration. For example, if in an

experiment the concentration of the A. acidiphilus

spike-in was only 50 % of that of S. ruber, the A. acidi-

philus counts were doubled. We then used the sum of

adjusted counts of all three spike-ins for calibration and

repeated the analysis of the previous section. Figure 4c

shows box-plots of the error between expected and ob-

served log2 ratios for background OTUs based on rela-

tive abundances, read counts normalized by total 16S

rDNA copies, as well as based on the SCML data with S.

ruber only and the combined counts of all three spike-

ins, respectively. The smaller this error, the better cali-

brated are the ratios of absolute abundances. Variances

of these errors are 3.65, 2.01, 1.28 and 1.18, respectively.

Thus, combined spike-ins yield a slightly increased pre-

cision compared to single spike-in usage. Correlations

between expected and observed log2 ratios were 0.833

and 0.845 for the SCML and the combined SCML ap-

proach, respectively.

Calibration to microbial loads reveals absolute increase of

Enterococcus in the intestine during allogeneic stem cell

transplantation

Finally, we show that SCML expands our understanding

of human microbiomes and their role in disease.

Recently, a marked early loss of gastrointestinal micro-

biome diversity and an increase in relative abundance of

members of the genus Enterococcus have been observed

in the course of allogeneic stem cell transplantation

(ASCT) and found to increase the risk of developing

acute GI-GvHD [16, 24, 25]. Since the data had been

generated without spike-in bacteria, it had not been pos-

sible to conclude whether the observed increase in rela-

tive abundance of Enterococcus was the result of an

increase in absolute abundance of Enterococcus or of a

decrease in abundance of other bacterial species.

Here we report on five patients, whose stool micro-

biomes were monitored prior to ASCT or on days 0

(d0), 7 (d7), and 14 (d14) after ASCT, respectively, using

the proposed spike-in approach. Figure 5a shows the
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Fig. 4 Comparison of SCML and normalization by qRT-PCR-derived total number of 16S rDNA copies to all background OTUs. Observed log2 ratio

versus expected log2 ratio of all background bacteria OTUs for all pairwise sample comparisons after (a) SCML by S. ruber and (b) normalization

by qRT-PCR derived total 16S rDNA copy number. The data is binned to hexagons because of the high number of data points. The colour of each

hexagon represents the percentage of all counts at the corresponding level of expected log2 ratios contained in each bin. Bins that contributed

to less than 0.05 percent for each level of expected log2 ratio are omitted. The purple diagonal represents the identity, which represents the expected

log2 ratios by design. The box-plots in (c) summarize the error between the expected and observed log2 ratios for the four different approaches. The

smaller this error, the better calibrated the ratios are. Variances of the log2 differences are 3.65, 2.01, 1.28 and 1.18 as derived from relative abundances,

counts calibrated for differences in total number of 16S rRNA gene copies, SCML (by S. ruber) and combined SCML (by S. ruber, A. acidiphilus and R.

radiobacter), respectively
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familiar diagram of relative microbiome composition

without taking the spike-in bacteria into consideration.

Reads contributing to the genus of Enterococcus are re-

ported at genus resolution, while all other bacteria are

shown on phyla resolution. In line with Holler et al.

[16], we observe dramatic relative increases in Entero-

coccus abundance on days 7 and 14 after ASCT in three

of the five patients. By scaling read counts to an even

microbial load using the S. ruber counts, we observe

marked changes in the microbial loads in the course of

the treatment (Fig. 5b). Patient 5, for instance, shows an

almost tenfold reduction of microbial load on day 14

after ASCT (S. ruber reads 4721) compared to pre-

ASCT (S. ruber reads 515). In our study, specimens

dominated by Enterococcus generally have low microbial

loads (Fig. 5b). We also observe an absolute increase in

Fig. 5 Bacterial abundances in stool specimens of ASCT patients. Specimens were collected prior to administration of prophylactic antibiotics and

radio-chemotherapeutic conditioning (pre-ASCT) and on days 0, 7 and 14 after ASCT (d0, d7, d14). a Microbial composition given as in relative

abundances; (b) read counts scaled to a uniform count of the spike-in S. ruber and (c) log2 ratios of Enterococcus of the last time point to pre-ASCT of

patients 2, 4 and 5 as derived from relative abundances (light grey) and SCML (dark grey). In (a) and (b) the reads of the three spike-in bacteria are omitted.

Additionally, the reads that contributed to the genus of Enterococcus are excluded from the Firmicutes phylum and coloured separately (purple)
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abundance of the genus Enterococcus in these micro-

biomes relative to the specimens collected before ASCT

(Fig. 5c). Patients 2, 4 and 5 showed log2 ratios of En-

terococcus between the last and first time point of 10.93,

9.22 and 3.60, respectively, employing SCML, compared

to log2 ratios of 14.76, 11.46 and 8.69 based on standard

data. This suggests that Enterococcus dominance is in

fact associated with both a decrease in microbial load

and a rise in absolute abundance of Enterococcus.

Discussion

Here we suggest the use of spike-in bacteria to calibrate

multiple intestinal microbiome profiles to microbial

loads (SCML). We employed A. acidiphilus, R. radiobac-

ter and S. ruber as spike-in bacteria and demonstrated

their excellent suitability for a comprehensive and in-

formative profiling of gut microbiomes. Usually, these

three bacteria are absent in the intestinal microbiomes of

mammals, and their unique 16S rRNA gene sequences

cannot be mistaken for those of bacteria found in the

gastrointestinal tract. All three bacteria are valid reporters

of the actual microbial load. Thus SCML adds a new

perspective to gut microbiome profiling that expands the

common relative microbiome composition analysis.

Variability in microbial loads of intestines is a genuine

and potentially clinically relevant biological feature that

remains underutilised in standard protocols. On a more

technical side, adding whole cells prior to lysis enables

control for DNA recovery and pyrosequencing errors as

a side benefit. Following this, the addition of exogenous

spike-ins could also enhance other studies like whole-

genome sequencing, qPCR-based quantification of path-

ogens as well as approaches using alternative marker

genes [20, 26, 27].

Bacterial species compete for nutrients and can mutu-

ally displace each other, while others can only live in

symbiosis. These dynamics of the intestinal ecosystem

shape the structure of microbiome profiles [28, 29]. Mu-

tually displacing, e.g. concurrent or antagonistic, species

display anti-correlated profiles, while those of symbiotic

species are correlated [30]. This theoretical consider-

ation holds true for absolute numbers of bacteria. Inter-

preting the correlation structure on the basis of relative

numbers can be misleading. If one species grows in ab-

solute number, this will lead (i) to an increase of its frac-

tion within the microbiome and (ii) to a decrease of the

fractions of all other species. Hence, every change of a

single species affects relative counts for all other species

generating notorious anti-correlation between profiles of

different species due to compositionality [31, 32]. Im-

portantly, this effect is independent of ecological pro-

cesses like displacement and symbiosis. Thus, profiles

calibrated to ratios of total microbial loads provide a less

disturbed assessment of the dynamics of the intestinal

ecosystem.

We observed different sequence read yields for the

three spike-in bacteria even upon addition of identical

numbers of 16S rDNA gene copies to mouse faeces

sharing the same microbial load. Fortunately, this prob-

lem should only arise with comparisons of different spe-

cies. As demonstrated, it does not affect the estimation

of intra-species ratios between samples, where species-

specific yields cancel.

There is a difference between absolute quantification

and calibration of ratios of absolute abundances. The

former needs calibration to a defined unit such as bac-

teria per volume. External spike-ins do not enable abso-

lute quantification due to e.g. variable lysis efficiency

across intestinal bacteria and variable 16S rDNA copy

numbers. In ratios the unit cancels. Hence, if in a com-

parison of the same OTU in two samples SCML cali-

brated values show a ratio of 2, then the OTU is in fact

represented (almost) twice as often. With standard rela-

tive data this is not the case, when microbial loads in

these samples differ. Importantly, ratios between differ-

ent OTUs are not calibrated by SCML. We can thus

calibrate microbiome profiles to ratios of absolute abun-

dance but not to absolute quantities of bacteria

themselves.

A drawback of the spike-in approach is the propaga-

tion of PCR amplification errors from the spike-in bac-

terium to all other taxonomic units. Indeed, the spike-in

counts can be affected by PCR amplification or sequen-

cing errors. The earlier these errors occur, the more they

could influence the final read tallies. By using these

reads to calibrate microbial ratios, this error-derived

variance propagates to all other taxonomic units. The

calibration reduces bias, but inflates variance. One may

attenuate this undesired effect by using multiple spike-in

bacteria of fixed concentrations across samples and aver-

aging or summing their counts as shown here.

Conclusion
In summary, we suggest that scaling of read counts to

total microbial load and thereby calibrating the ratios of

taxonomic units become standard routine in micro-

biome analysis, complementing the classical analysis of

relative microbiome composition. SCML allows for ac-

curate inter-sample comparison of microbiome profiles

even in the presence of variation in microbial loads. Fur-

ther, compared to the measurement of total number 16S

rDNA gene copies by qPCR, the spike-in bacteria are

able to control additionally to DNA isolation and PCR

amplification the sequencing process. Finally, our

method allows a more robust identification of differen-

tially abundant OTUs by enabling more accurate estima-

tions of OTU-specific ratios.
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Methods
Spike-in bacteria

In this study we used Salinibacter ruber DSM 13855T, an

extreme halophilic bacterium found in hypersaline envi-

ronments [21], Rhizobium radiobacter DSM 30147T, a

non-phytopathogenic member of the Biovar I group of

Agrobacterium found in soil and the plant rhizosphere

[22], as well as the thermo-acidophilic, endospore forming

soil bacterium Alicyclobacillus acidiphilus DSM 14558T

[23]. All bacteria were purchased from the DSMZ

(German Collection of Microorganisms and Cell Cultures

GmbH, Braunschweig, Germany). These eubacteria

belong to different phyla typically found in mammalian

faecal microbiomes, contributing to Bacteroidetes/Chlor-

obi group, Proteobacteria, and Firmicutes, respectively.

They do not exist in the gut microbiome under physio-

logical conditions and are well distinguishable from bac-

teria commonly found in the gut using 16S rRNA gene

sequencing. S. ruber and R. radiobacter are gram-negative

bacteria, whereas A. acidiphilus is a spore-forming gram-

positive bacterium. The difference in the chemical consti-

tution of the cell wall accounts for a specific susceptibility

to the cell lysis protocol used. Spike-in bacteria were har-

vested in the late logarithmic/early stationary growth

phase by centrifugation and subsequently resuspended in

5 ml of sterile PBS buffer. Bacterial densities in suspen-

sions were quantified by OD600 measurement using em-

pirical conversion factors determined by direct

microscopic cell counting. Accordingly, 1 OD600 unit cor-

responds to 4.6 x 109 cells/ml for S. ruber, 1.4 x 109 cells/

ml for R. radiobacter, and 1.2 x 109 cells/ml for A. acidi-

philus, respectively. 16S rRNA gene copy numbers per

genome for the spike-in bacteria were obtained from the

rrnDB database [33]. Six pools of bacterial mock commu-

nities containing S. ruber, R. radiobacter and A. acidiphi-

lus were generated according to the scheme provided in

Additional file 3: Table S3.

Sample preparation and DNA extraction

Mouse specimens

For the validation experiment, cecum contents were

collected from three 12-week-old male C57BL/6J mice

(200 mg wet weight each), immediately suspended

into 1 ml of PBS, homogenized by means of the Tis-

sueLyser II (QIAGEN, Hilden, Germany), pooled, ad-

justed with PBS to a total volume of 4 ml, and split

into seven aliquots of 550 μl each. Six of these ali-

quots were diluted five times according to the scheme

provided in Additional file 2: Table S2. Aliquot 7 was

used as a non-spike control.

Sixty microliters of the corresponding spike-bacteria

pool (whole cells) containing the desired number of 16S

rDNA copies (see Additional file 3: Table S3) were added

to 250 μl of all prepared, unlysed stool dilutions (see

Fig. 6, step 1) according to the scheme provided in

Additional file 2: Table S2. Then, 180 μl of Bacterial

Lysis Buffer (Roche, Mannheim, Germany) and 20 μl

Proteinase K (Fermentas GmbH, Sankt Leon-Rot,

Germany) were added. Samples were incubated at 65 °C

for 10 min followed by five cycles of freezing in liquid

nitrogen (1 min) and boiling in hot water (95 °C, 1 min).

Following the addition of 400 μl of Bacterial Lysis Buffer

and a mixture of 0.1-mm and 2.5-mm beads, samples

were treated for 2 min at 30 Hz in the TissueLyser II.

Subsequently, samples were heated at 95 °C for 15 min

and centrifuged at 4 °C to pellet stool particles and

beads (see Fig. 6, step 2). The final volume was adjusted

to 1 ml and DNA was extracted (see Fig. 6, step 3) by

means of the MagNA Pure 96 instrument employing the

MagNA Pure 96 DNA and Viral NA Large Volume Kit

(Roche). Nucleic acids were quantified using the Nano-

Drop ND-1000 (Thermo Scientific, Wilmington, DE,

USA).

Human ASCT specimens

With approval of the Ethics Committee of the University

Medical Centre of Regensburg and after receipt of signed

informed consent forms, stool specimens were collected

at four different time points: prior to administration of

prophylactic antibiotics and radio-chemotherapeutic con-

ditioning, on days 0, 7, and 14, respectively, after ASCT.

Stool specimens were stored at -80 °C until analysis. Fifty

mg (wet weight) of each stool specimen were suspended

into 250 μl PBS and subsequently subjected to DNA ex-

traction as described above. Spiking of A. acidiphilus, S.

ruber and R. radiobacter, and 454-pyrosequencing were

performed according to the validation protocol described

above. For these experiments, bacterial cells of S. ruber, R.

radiobacter and A. acidiphilus equal to 3.0 x108, 5.0x108,

1.0x108 16S rDNA copies, respectively, were spiked into

each crude sample.

Amplification of V3-V6 16S rDNA variable region and 454

pyrosequencing

Spike bacteria-specific qPCR was performed for all speci-

mens (mice and human) to identify errors in DNA isola-

tion before undergoing amplification and pyrosequencing

(see Fig. 6).

A total of 25 ng metagenomic DNA was used as a tem-

plate to amplify the V3-V6 variable regions of the 16S

rRNA gene. PCR was performed using primer pair 341 F-

1061R containing Lib-L adaptors and Roche standard

mulitiplex identifiers (MIDs) in a final volume of 40 μl

containing 0.088 μM of each primer, 2 mM MgCl2, and 1

U Platinum Taq DNA Polymerase (Life Technologies).

The PCR amplification (see Fig. 6, step 4) was carried out

over 30 cycles (30s at 95 °C, 45 s at 64 °C, 45 s at 72 °C)

with an initial 5-min hot start at 95 °C and a final
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extension step (7 min at 72 °C). The resulting 790-bp

amplicons were analysed by standard agarose gel elec-

trophoresis on a 1.5 % (w/v) gel. The amplicons were

extracted from agarose gels using the QIAquick Gel

Extraction Kit (Qiagen, Hilden, Germany) and purified

with Agencourt AMPure XP beads (Beckman Coulter,

Krefeld, Germany). Copy numbers of amplicons con-

taining LibL-adaptors were determined using the

KAPA Library Quant 454 Titanium/Lib-L Universal

Kit (KAPA Biosystems, Wilmington, DE, USA) and

pooled to a normalized library with a concentration

of 1 x 107 adaptor-labeled amplicon molecules/μl for

each sample. This library was subjected to sequencing

(see Fig. 6, step 5) using the GS FLX+ system (454/

Roche) and the GS FLX Titanium LV emPCR Kit

(Lib-L) applying 0.4 copies per bead. Sequencing was

performed on a full PTP according to manufacturer’s

protocol using the GS-FLX Titanium Sequencing Kit

XL+ and the acyclic flow pattern B. Sequencing raw

data was processed with gsRunProcessor v2.9 (Roche)

using quality filtering as defined by the default Long-

Amplicons 3 pipeline resulting in 895 Mb from

1,313,653 passed filter wells with a median read

length of 706 bases.

Quantification of 16S rRNA gene copy number by qRT-PCR

Primer design and validation

Primers and probes for quantification of eubacterial 16S

rDNA copies (Additional file 4: Table S4) were designed

and evaluated in silico based on the RefNR sequence

collection of the SILVA reference database release 119

[34] containing 534,968 16S rRNA sequences. The over-

all SILVA database coverage of universal 16S rDNA

quantification primers 764 F and 907R allowing one

primer mismatch was 86 %. Allowing no primer

mismatches, specificity of primers and probes targeting

S. ruber, R. radiobacter and A. acidiphilus DNA exhib-

ited specificities of 100 %. Specificity of primers and

probes were further evaluated in silico using the blastn

algorithm against the nucleotide collection (nt) database.

Concentration of primers were optimized by titration in

the range of the kit manufacturer’s recommendations

after PCR amplification of 16S rDNA targets from DNA

extracts of human and murine faecal specimens.

Fig. 6 Procedural overview of proposed spike-in procedure and the spike-in-based calibration to total microbial load (SCML). The overview is divided into

four sections: spike-in procedure and bacterial lysis (blue), DNA isolation, amplification and sequencing (yellow), pre-processing (red) and the actual spike-

in-based calibration to microbial load (green). White-filled boxes depict procedural intermediates, while grey-filled boxes depict the different procedural

steps. Each step is numbered. In the first step (1) whole cells of exogenous spike bacteria corresponding to a fixed number of 16S rDNA copies are added

to homogenized microbiome samples. Bacterial lysis is performed on the resulting spiked samples (2). Metagenomic DNA is extracted from the lysates (3)

and PCR amplified using 16S rDNA specific primers (4), creating 16S rDNA amplicons. These amplicons are purified and pyrosequencing is performed (5).

The resulting raw read counts are pre-processed with QIIME (quality filtering, demultiplexing and closed reference OTU picking) to generate OTU read

count tables (6). Based on the read counts associated with single or multiple reference spike-in bacteria, a size factor si for each sample i is calculated and

applied to each OTU of this particular sample i (8, see methods section). This leads to an OTU read count table calibrated to differences in microbial load.

These read counts can be utilized to more accurately assess changes between different samples. All depicted steps are described in detail in the methods

section. Stars indicate points in the procedure at which qPCR is performed to identify possible errors in DNA isolation (metagenomic DNA) or PCR

amplification (16S rDNA amplicons).
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Samples were spiked prior to DNA extraction with de-

fined cell counts of S. ruber, R. radiobacter and A. acidi-

philus, which were quantified microscopically using a

modified Neubauer counting chamber. PCR products

were screened for nonspecific bands by agarose gel elec-

trophoresis (probe based assays) or agarose gel and melt-

ing curve analysis (SYBR Green I based assays).

Specificity was further evaluated by quantitative real-

time PCR amplification of total 16S rDNA and 16S

rDNA of spike-in bacteria from ten non-spiked murine

and human DNA extracts.

Quantification of total 16S rDNA

To verify the experimental design, 16S rRNA gene cop-

ies of total and spike-in bacteria were determined by

qRT-PCR on a LightCycler 480 II Instrument (Roche).

Primers and probes used are shown in Additional file 4:

Table S4. PCR reactions included 1 μM each of eubac-

terial 16S rRNA gene primers 764 F and 907R (quantifi-

cation primers) and the LightCycler 480 SYBR Green I

Master Kit (Roche). Quantification standards were gen-

erated by cloning complex PCR amplicon mixtures that

were generated from a caecal microbiome DNA prepar-

ation of wild type C57BL/6J mice (using primers 341 F

and 1061R) into the pGEM-T.Easy vector (Promega,

Madison, WI, USA). Cloning of PCR amplicon mixtures

was carried out to mimic a complex murine microbiota

with respect to qPCR amplification efficiency in analyzed

samples as far as possible. Quantification PCR was con-

ducted over 40 cycles (95 °C for 10s, 60 °C for 15 s and

72 °C for 15 s) with an initial 10-min hot start at 95 °C.

Quantification of 16S rDNA of spike-in bacteria

16S rRNA gene copy numbers of the spike-in bacteria S.

ruber, R. radiobacter and A. acidiphilus were determined

with 16S rDNA-targeted species-specific primers and hy-

drolysis probes (see Additional file 4: Table S4). Quantifi-

cation PCR was conducted using the LightCycler 480

Probes Master kit (Roche) in a 20-μl reaction volume con-

taining 4 mM MgCl2, 0.25 μM of each primer, and 0.1 μM

probes. Quantification standards were constructed by

cloning full length 16S PCR amplicons of all spike-in bac-

teria (amplified using 27 F and 1492R primers) into

pGEM-T.Easy. Quantification PCR was conducted over

40 cycles (95 °C for 30s, 60 °C for 30 s and 72 °C for 30s)

with an initial 10-min hot start at 95 °C.

Computational analysis

We used a combination of QIIME [11] (v1.8.0) and R

version 3.2.0 [35] with installed Bioconductor package

[36] to process the read data. Reads were filtered for

quality using QIIME’s split_libraries.py script (see Fig. 6,

step 6) with default parameters except minimum and

maximum read length, which were set to 400 bp and

800 bp, respectively. This read length threshold covered

99.99 % of all sequencing reads. The filtered reads were

mapped to OTUs built on the SILVA [34] database (re-

lease 111) using QIIME’s pick_closed_reference_otus.py

script (see Fig. 6, step 6) with default parameters. The

reference database OTUs used here constituted compu-

tationally built clusters of the SILVA SSU (small subunit)

ribosomal RNA database. The clustering (see Fig. 6, step

6) was achieved by UCLUST 1.2.20 [37] and provided by

the QIIME team (available at http://qiime.org/home_-

static/dataFiles.html). Since reads from the three spike-

in bacteria mapped to multiple OTUs, due to multiple

reference OTUs encoding for the same spike-in genus,

we deleted all but one OTU encoding for each spike-in

from the database before mapping, to accumulate all

reads from the spike-in to just this one OTU. The used

reference sequences for these three OTUs are available

in Additional file 5. Raw sequencing data of the dilution

experiment is deposited in the European Nucleotide

Archive (ENA) under the study accession number

PRJEB11953, at http://www.ebi.ac.uk/ena/data/view/

PRJEB11953. Details of the sample design are shown in

Additional file 2: Table S2. Relative abundances were cal-

culated by dividing each OTU read count by total read

count of the corresponding sample.

Ratios of absolute abundances were calculated by

using the expectation that the counts of reference spike-

ins are inversely correlated to total microbial load of the

samples under investigation. Let �s be the mean read

count of the reference spike-in S. ruber over all samples

(see Fig. 6, step 7). The read count of every OTU in a

samplei is rescaled by a factor si that is calibrated such

that the spike-in count is equal to �s in every sample (see

Fig. 6, step 8). SCML can be performed by the use of an

individual spike-in bacterium or the sum of all reads ob-

tained for multiple spike-in bacteria. For further analysis,

the counts are log2 transformed.

To compare ratios derived from relative abundances

and those derived by SCML, we calculate log2 ratios be-

tween every pair of samples for each method as a sym-

metrical measure of difference. Ratios of relative

abundances are calculated by dividing the relative abun-

dances of each OTU by its relative abundance in the

compared sample, whereas ratios for SCML are calcu-

lated by means of the spike-in calibrated read counts

(SCML data). If for example OTU A shows relative

abundances of 20 % and 40 % in samples 1 and 2,

respectively, the corresponding ratio for this comparison

would be 0.4/0.2 = 2, i.e. the abundance of OTU A in

sample 2 is two times higher than in sample 1. The cor-

responding log2 ratio would be log2 (2) = 1. Both ratios

are calculated separately for each OTU.

For the combination approach of SCML, the read

counts of A. acidiphilus and R. radiobacter were
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adjusted by their difference in the predefined spike-in

concentration (Additional file 2: Table S2) towards S.

ruber. If for example A. acidiphilus was added by design

in half the concentration compared to S. ruber, then all

reads by A. acidiphilus were multiplied by two. The ad-

justed read counts of A. acidiphilus, R. radiobacter and

the raw read counts of S. ruber were summed up to one

artificial entity. These summed reads were used in the

same fashion as the S. ruber read counts in the single

spike-in calculation. For the dilution experiment the ad-

justment of A. acidiphilus and R. radiobacter read

counts was necessary, because both spike-ins were added

in varying amounts in this experiment. In an application

of our spike-in procedure (e.g. ASCT specimens in this

study) all spike-in bacteria cells are added at fixed

amounts. Therefore, an adjustment of the spike-in read

counts before the combination would be obsolete.
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