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Abstract. We propose a new learning approach for image retrieval,
which we call adjustment learning, and demonstrate its use for face recog-
nition and color matching. Our approach is motivated by a frequently
encountered problem, namely, that variability in the original data rep-
resentation which is not relevant to the task may interfere with retrieval
and make it very difficult. Our key observation is that in real applications
of image retrieval, data sometimes comes in small chunks - small subsets
of images that come from the same (but unknown) class. This is the case,
for example, when a query is presented via a short video clip. We call
these groups chunklets, and we call the paradigm which uses chunklets
for unsupervised learning adjustment learning. Within this paradigm we
propose a linear scheme, which we call Relevant Component Analysis;
this scheme uses the information in such chunklets to reduce irrelevant
variability in the data while amplifying relevant variability. We provide
results using our method on two problems: face recognition (using a
database publicly available on the web), and visual surveillance (using
our own data). In the latter application chunklets are obtained automat-
ically from the data without the need of supervision.

1 Introduction

We focus in this paper on a fundamental problem in data organization and data
retrieval, which is often ignored or swept under the carpet of “feature selection”.
More specifically, our domain is image retrieval and image organization based on
between-image distance. It is assumed that the specifics of the image representa-
tion and between-image distance were pre-determined, typically based on some
engineering design that took into account a very large scope of tasks and data.
Within this domain, data organization essentially requires graph-based cluster-
ing. Retrieval is based on the distance from a query image to stored images, and
is essentially nearest neighbor classification.

We identify the following problem: Assuming that the data is represented
compactly, a typical distance (whether Euclidean in feature space or other) is
affected by all the variability that is maintained in the data representation indis-
criminantly. However, for a particular query some of this variability is irrelevant.
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For example, if we submit as a query the image of Albert Einstein sticking his
tongue out, the relevant features in the image may be the expression (if we want
to retrieve other silly faces), or the relevant features may be the facial features
(if we want to retrieve other pictures of Albert Einstein).

Irrelevant variability is also a problem in data organization, e.g., in clustering
(which has been used in vision for image retrieval [7]). Typically we collect
data and rely on the pre-determined representation and distance function to
cluster the data. However, depending on the context of the data collection, some
variability is always irrelevant. Unaccounted for, this will damage the results,
since clustering only gives as good results as the underlying representation and
distance function.

More precisely, we first define data variability to be correlated with a specific
body of data and a specific task, if the removal of this variability from the data
deteriorates (on average) the results of clustering or retrieval. We then define
irrelevant variability as data variability which satisfied the following conditions:

– it is normally maintained in the data (i.e., it is used in the representation
and/or distance function explicitly or implicitly);

– it is not correlated with the specific task according to the definition above
and the task at hand.

Intuitively, in a task where irrelevant variability is large, performance using
the general and indiscriminating pre-determined distance measure can be poor.
For example, when a certain irrelevant environmental feature dominates all other
features because of its large variability, nearest neighbor classification using the
indiscriminating distance function could perform poorly. This is the problem
addressed in the present paper.

We propose an unsupervised adjustment scheme, which will modify the dis-
tance function so as to enhance its discriminative capabilities on the given test
data. For this purpose we identify and use relatively small sets of data points, in
which the class label is constant, but unknown. We call these small sets of data
points Chunklets.

We justify our use of chunklets for data clustering and retrieval by the fol-
lowing observations:

Data organization: we observe that very often data naturally arrives in
chunks in which the message is held constant. For example, in speaker iden-
tification, short utterances of speech are likely to come from a single speaker.
In surveillance, short video clips obtained by tracking a moving target are
likely to come from a single target. In both examples, the magnitude of the
variance due to the irrelevant variability is comparable if not larger than the
relevant variability. In both examples, we can automatically detect chunks
of data where the message is constant while the context changes.

Data retrieval: in image retrieval based on nearest-neighbor classification
chunklets may also come by naturally. For example, often a query includes
a number of images, especially when the user is allowed to use some of the
retrieved images in the first stage to refine the answers of the system in a
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second stage. In the future we may expect to see queries in the form of short
video clips, which under some circumstances can also provide chunklets.

We claim that, in data for which chunklets are known, irrelevant variability
can be reduced without the use of a fully labeled training set and without build-
ing an explicit model of the sources that created it. The first contribution of the
present paper is to note this observation and propose to use it for unsupervised
learning. We call this learning paradigm adjustment learning. Adjustment learn-
ing lies between supervised and unsupervised learning (see Section 2); we place
it closer to unsupervised learning, since it extracts the information from the test
data and not from prior labeled data.

The second contribution of this paper is to develop a method to drive ad-
justment learning in simple cases where such linear methods as Fisher Linear
Discriminant (FLD) are effective. We call the proposed method Relevant Com-
ponent Analysis (RCA), and discuss it more formally in Section 3. In Section 4
we demonstrate the use of RCA in a facial image classification task, using a pub-
lic database of faces which was obtained from the web. Section 5 demonstrates
the use of RCA in a visual surveillance and color constancy problem.

Our approach is related to the work on multi-view representation, and the
use of image manifolds for image classification and retrieval ([9,3], see also [6]).
However, whereas these approaches rely on prior training data to extract specific
regularities in the overall data, our approach works to identify regularities in the
test data which are not generally seen in the training data.

The problem of irrelevant variability has been addressed in the literature
under different guises. One approach is based on adaptation. In signal processing,
adaptation is a convenient way of tailoring the filter to the environment, if the
external environment is not known in advance [2]. In learning, the recognizer
is trained on a limited training set, but allowed to adapt to the specific values
(range of values) of the irrelevant variables. In some situations this approach is
viable, but it requires labeled training set for the ”adaptation” process.

Another approach uses a ”mixture of experts” [11], where multiple recog-
nizers are trained in such a way as to encourage each ”expert” to differ from
the rest. The outputs of the individual experts are then gated by some esti-
mate of that expert’s confidence, and then combined in a principled manner.
The mixture-of-experts solution has, in principle, the potential to yield the best
possible solution, but the solution is critically dependent on the requirement
that the training data captures the true distribution of the real-world observa-
tions. We note in passing recent statistical approaches such as boosting, and for
that matter support vector machines [11], which greatly improve the training
processes, but are plagued by the same dependencies on the veridicality of the
training set.

2 What Is Adjustment Learning?

Adjustment learning, as we pursue it here, is distinguished by the following fea-
tures:
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– We focus on classification - the generation of equivalence classes at the output
that would be relevant to the task. This classification scheme accomplishes
recognition by exemplars, where a query is associated with a set of examples
rather than an abstract label.

– We attempt to diminish the effects of irrelevant variability, without modeling
the exact sources of this variability and without reconstructing the exact
mixture of sources that created it.

– We do not assume access to labeled data for training and adaptation. Thus
our approach is cast into the domain of unsupervised learning. We only
assume that chunklets can be identified in the data.

More specifically, we assume that our test data comes naturally divided into
chunklets, which are small subsets of input equivalence classes. Each chunklet
may include a small number of measurements (1 or more). In each chunklet the
class label is known to be fixed, although the exact label is unknown. A chunklet
must be defined naturally by the data – we cannot rely on some teacher to label
the data for us.

The relationship among the data points, chunklets, and the desired classes
is illustrated in Fig. 1, using for illustration two-dimensional input data. On the
left side of Fig. 1 we illustrate the typical situation for unsupervised classifica-
tion. The other extreme, when a complete labeled set is available for supervised
learning, is illustrated on the right side of Fig. 1. The intermediate situation is
illustrated in the middle of Fig. 1, where each ellipse denotes a chunklet - a set
of test data where all data points have an identical but unknown class label.

Fig. 1. In the supervised learning paradigm (right), each data point x ∈ X is given with
an associated label y ∈ Y ; the system learns the association between data and label.
In the unsupervised learning paradigm (left) each data point x ∈ X is given without
an associated label; the system can only learn the characteristics of the distribution
of data points. In our paradigm (middle), the data is given in chunklets of points. For
each chunklet it is known that the class label has been kept fixed for all the data points
that belong to it, but the label itself is unknown.
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3 Relevant Component Analysis (RCA)

We assume that the data is represented as vectors of features, and that the
Euclidean distance in the feature space is used for classification and retrieval.
Our method modifies the feature representation of the data space by a linear
transformation W , such that the Euclidean distance in the transformed space
is less affected by irrelevant variability. Effectively, the Euclidean distance in
the transformed space is equivalent to the Mahalanobis distance in the original
data space with weight matrix WT W (thus W may be viewed as accomplishing
feature selection). We call W the rescaling transformation.

Our method is related to principal component analysis (PCA). PCA is a lin-
ear method for redundancy reduction which compresses the description of the
data along the dimensions of smallest variability. It is guaranteed to achieve the
least expected mean-square error for a given size of representation. In a similar
way, we define RCA (Relevant Component Analysis) as the compression of the
data description along the dimensions of highest irrelevant variability. Specifi-
cally, in RCA we transform the data space by a transformation matrix W which
assigns large weights to “relevant dimensions” and low weights to “irrelevant
dimensions”; thus we maintain concurrently as much relevant variability as pos-
sible and as little irrelevant variability as possible within the given data set.

We now present our method for computing the rescaling transformation W .
We start in Section 3.1 with a text-book approach to the computation of W
for normal class distribution using labeled data. In Section 3.2 we describe how
to estimate W from unlabeled data, where chunklets are available. Finally we
summarize the proposed algorithm in Section 3.3.

The assumptions made in Section 3.1 are needed to prove that our method
may give optimal classification (i.e., it is equivalent to the Bayes classifier).
Regardless of this, we propose RCA as a general method that may be used under
rather general circumstances, just like such classifiers as the Distance Classifier
and the Matched Filter [1].

3.1 Computation of the Rescaling Transformation Using Labeled
Data

In this section we show how to compute the desired rescaling transformation W
from labeled data. We define the assumptions on data distribution which allow
us to prove that nearest neighbor classification based on the Euclidean distance
in the transformed space is statistically optimal.

The Whitening transformation. Let x ∈ Ω denote the sampled data, and
|Ω| denote the size of the sample. Similarly, let |Ωm| denote the size of the
sample from class m where

⋃
Ωm = Ω. Let the random variable Cm denote the

distribution of the m-th class, and M denote the number of classes. For simplicity
we also assume that Cm is distributed normally, i.e. Cm ∼ N(µm, Σm), where
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µm denotes the mean of the class and Σm denotes its covariance matrix. Let SW

denote the within-class scatter of the data set, defined by

SW =
1

|Ω|
M∑

m=1

|Ωm|Σ̂m (1)

where

Σ̂m =
1

|Ωm|
∑

x∈Cm

(x − µm)(x − µm)T

Assume first that the covariance matrix of all the classes is identical, i.e.
Σm = Σ ∀m, and therefore SW = Σ for large enough sample. In this case the
optimal rescaling transformation [1] is the whitening transformation W defined
as

W = V Λ− 1
2

where V is the orthogonal matrix of eigenvectors of SW , and Λ is its correspond-
ing matrix of singular values. V and Λ may be obtained from the singular value
decomposition of SW = V ΛV T .

In the whitened space, nearest neighbor retrieval based on the Euclidean
distance is equivalent to maximum likelihood estimation. This is because in the
transformed whitened space, the covariance matrices of all the classes are spheri-
cal, which is equivalent to the assumption of additive white noise. It follows that
in the whitened space the Bayes optimal classifier is equivalent to the distance
classifier and the correlation classifier [1].

Irrelevant variability and the Whitening transformation. Getting back
to our model as stated in the introduction, we assume that the observable data
depends not only on the class label, but also on the environmental conditions
and sensor characteristics. Formally stated, we assume that for class m the dis-
tribution of the observed measurements is:

XObservable = Cm +G (2)

In general the random variable G denotes the additive contribution of fea-
tures due to the global environment and sensor characteristics. We assume that:

– G is additive with 0 mean and non-isotropic covariance.
– G is independent of Cm ∀m, and has an identical effect on all classes.
– The variability in G is relatively large compared to Cm, i.e |ΣG| > |Σm|.
More specifically, assume that G is distributed normally as G ∼ N(0, ΣG)

where ΣG �= I. The distribution of the m-th class is therefore normal, with mean
µm and covariance Σm +ΣG. Under the assumption that |ΣG| > |Σm| ∀m, the
class distributions are dominated by |ΣG|. This effectively brings us back to the
previous case where Σm ≈ ΣG ∀m, and therefore

SW ≈ Σ̂G



782 N. Shental et al.

3.2 RCA: Chunklet Approximation of the Rescaling Transformation

Without access to labeled data, we cannot compute SW directly. In this section
we discuss how we can approximate SW using chunklets. Intuitively, this is done
as follows: Each chunklet is first shifted so that its mean (centroid) coincides with
the origin. The shifted chunklets are then superimposed, defining a distribution
of points around the origin whose covariance matrix approximates SW .

Specifically, let Hn denote the sample of the nth chunklet where
⋃
Hn = Ω.

We assume that the number of chunklets N is much larger than the number of
classes M . We further assume that ∀n Hn ⊆ Cm for some unknown label m.
Let µ̂n denote the mean of chunklet Hn, µ̂n = 1

|Hn|
∑

x∈Hn
x, where |Hn| is the

size of the n’th chunklet. We define the chunklet scatter matrix Sch as:

Sch =
1

|Ω|
N∑

n=1

|Hn|Cov(Hn) =
1

|Ω|
N∑

n=1

|Hn|∑

j=1

(
xj

n − µ̂n

) (
xj

n − µ̂n

)T
(3)

Under the ideal conditions where each chunklet is chosen randomly from the
appropriate class and is large enough, it can be shown that Cov(Hn) approaches
Σmn + ΣG, where mn is the class label of chunklet Hn. In this case Sch = SW .
In reality, however, data points in the same chunklet tend to have stochastic
dependency, and therefore cannot be assumed to be independently sampled from
the data with distribution identical to the corresponding class distribution. Thus
in general Sch �= SW . In Section 3.4 we will show that even when this is the case,
Sch can still provide a good estimate of SW , regardless of the size of the chunklets
used.

3.3 The RCA Algorithm

Our RCA algorithm is defined as follows:

1. Compute Sch = 1
|Ω|

∑N
n=1 |Hn|Cov(Hn) as defined above. Let r denote its

effective rank (the number of singular values of Sch which are significantly
larger than 0).

2. Compute the total covariance (scatter) matrix of the original data ST , and
project the data using PCA to its r largest dimensions.

3. Project Sch onto the reduced dimensional space, and compute the corre-
sponding whitening transformation W .

4. Apply W to the original data (in the reduced space).

Step 2 is meant to insure that while the whitening transformation rescales the
variability in all directions so as to equalize them, it will not rescale directions
whose corresponding eigenvalues are effectively zero. We note that in step 3 above
we assume that the rank of Sch remains r after projection. This may not always
be the case: the rank of of Sch may become smaller than r after projection.

Our algorithm is based on the use of Sch as an approximation to SW . This
approximation may be used in ways other than whitening. We are currently in-
vestigating its use in approximating the FDA technique, which will be presented
in Section 4.2.
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3.4 Chunklet Analysis: What Makes a Chunklet Good or Bad

In the discussion above chunklets are used to approximate the scatter matrix SW ,
which depends solely on the class means. It therefore follows that the difference
between SW and Sch depends on the difference between the class mean µ̂mn

and
the chunklet’s mean µ̂n. More specifically, it follows from (1) and (3) that

SW − Sch =
1

|Ω|
N∑

n=1

|Hn|∑

j=1

(µ̂n − µ̂mn) (µ̂n − µ̂mn)
T (4)

Hence a “good” chunklet is a chunklet which approximates the mean value of
a class well, regardless of the chunklet’s size. However, size matters because as
the size of the chunklet increases, the likelihood that its mean approximates
correctly the class mean also increases.

4 Experimental Results: Face Recognition

We compare the performance of three linear classifiers for face recognition: the
Eigenface method [5], the Fisherface method [4], and the RCA method pro-
posed here. The task is to classify facial images with respect to the person
photographed. We analyze two paradigms:

1. A retrieval paradigm using nearest neighbor classification, in which a query
image is classified using its nearest neighbors or its k-nearest neighbors in
the dataset.

2. Classification using clustering, which extracts structure from the data. Clus-
tering results can then be used for exemplar-based retrieval.

4.1 The Test Data: yaleA Database

We used the yaleA database [4], which includes 155 facial images of 15 subjects
under varying lighting conditions and different facial expressions. Fig. 2 shows
ten images of one subject. As noted in the introduction, these images vary greatly
from one another due to these changes [10].

4.2 Methods

We represent each image as a vector in a high-dimensional pixel space (R32k)
as in [4]. All three methods compute a global linear transformation of the data
space. We shall now describe the two additional methods used in our comparative
study.
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Fig. 2. The YaleA database contains 155 frontal face images of fifteen individuals
(males and females) taken under different lighting conditions. Five images were taken
under different point light sources, one with or without glasses, and about four with
different facial expressions. The number of images per subject varied between 9-11.
The images were manually centered and cropped so as to include the full face and part
of the background.

Eigenfaces: The Eigenface method is based on PCA. In PCA the optimal
projection transformation is chosen to maximize the determinant of the total
scatter matrix of the projected samples. In [4] the method was augmented by
throwing out the first three principal components in order to reduce variation due
to lighting. In agreement we found that throwing out the three largest principal
components yielded better results, and we therefore adopted this strategy as
well.

Fisherfaces: The Fisherface method proposed in [4] is a variant of Fisher’s
Linear Discriminant (FLD) [1]. It is a supervised method which searches for
projection directions that “shape” the scatter in order to improve classification
results. This method selects the projection matrix W that maximizes the ratio
of the between-class scatter and the within-class scatter.

The drawback of the eigenface method is that it maximizes the total scatter
of the data. The total scatter depends not only on between-class scatter, which
is useful for classification, but also on the within-class scatter. In the task of
classification, the within-class scatter represents the irrelevant variability that
we seek to eliminate. This is essentially the problem that the Fisherface method
tries to overcome using labeled data.

Data preprocessing: Each of the three methods require different preprocessing
steps. For the Eigenface method, the images were normalized to have zero mean
and unit variance, as this improved performance. The Fisherface method requires
dimensionality reduction of the data using PCA. The RCA method also reduces
the dimensionality of the data with respect to the effective rank of the chunklet
scatter matrix Sch.
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Our RCA algorithm requires the use of chunklets. Although, as claimed
above, chunklets may be obtained from the data automatically in some applica-
tions, when using the yaleA database chunklets were chosen randomly. We tested
our method using different chunklet sizes (s = 3, 4, 5, 10). For each chunklet size
s, 1000 realizations were sampled. We tried two schemes: First, in each real-
ization we randomly divided each class into chunklets of approximately s data
points. In Section 4.5 we will address the effect of chunklet size on performance.
Second, in each realization we randomly chose 10-20 chunklets of size s from all
classes, and left the remaining data points unassigned to chunklets. This scheme
corresponds to a scenario in which only part of the data set is given in chunklets.
We will address the effects of such limited assignments in Section 4.4.

4.3 Results with Nearest Neighbor Classification

Scheme A. All data points are assigned to chunklets: We first provide
the results of a retrieval task using the “leave one out” paradigm [8]: To classify
an image of a particular person, that image is removed from the data set and
consequently the transformation matrices of the three methods are computed.
Recognition by exemplar is then performed using nearest neighbor classification.

In the Eigenface method, performance varied with the number of principal
components1. The left plot in Fig. 3 shows the relative performance of the three
methods using nearest neighbor classification, each using its optimal number of
principal components. Both the RCA and Fisherface methods outperform the
Eigenface method. While the Fisherface method achieves such performance using
a label for each of the images in the training set, RCA achieves similar error rates
relying on chunklets with unknown class label.

Another interesting measure of performance is the total number of errors on
all neighbors. Using the “leave one out” strategy once more, we compute the k-
nearest neighbors of the image xi, where k = |Ci|−1 (|Ci| is the size of the class
that the image xi belongs to). We then compute the number of neighbors which
were not retrieved correctly. The right plot in Fig. 3 shows the mean error rate
on all neighbors using all three methods. Once more, both RCA and Fisherface
achieve almost similar results.

Scheme B. Only part of the data points are assigned to chunklets: Fig. 4
shows the same classification measures as in Fig. 3, but with varying number
of chunklets (see figure caption); results are compared with the assigment of all
data points to chunklets, and with Eigenfaces. Clearly RCA always outperforms
the Eigenface method, but degradation from the fully assigned case is evident.

4.4 Clustering Results

Our goal here is to study how much each pre-processing (via the corresponding
rescaling transformation) helps in revealing the class’ structure of the data. To
1 This is also true for the Fisherface and RCA methods, but in both the optimal
number of principal components can be determined automatically from the data.
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Fig. 3. Classification Error rates of the three methods. For Eigenface we used the
30 largest eigen-vectors. For RCA we show two results, depending on the size of the
randomly sampled chunklet: 3 (middle left bar) or 5 (middle right bar). In both cases all
data points are assigned to chunklets. Error bars reflect the variability in the results
due to the sampling of chunklets (1000 realizations). On the left results of nearest
neighbor classification are shown. On the right the mean error rate on all neighbors is
shown. As can be seen RCA has error rates that approximate the errors achieved by
the Fisherface method.
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Fig. 4. The same classification errors as in Fig 3, for variable numbers of chunklets of
size 4 (left figure) and of size 5 (right figure). Labels display the percentage of points
in chunklets, e.g., the 25% bar in the left figure corresponds to 10 chunklets of size 4.
Assignment of 0% corresponds to Eigenfaces.

this end we used two clustering algorithms to cluster the data after it had been
transformed by each of the three methods. The clustering algorithms used were
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k-means [8] and the typical-cut algorithm [7]. Table 5 shows the results of both
algorithms. We tested the effect of full and partial assignment of data points
to chunklets. We also tested the effect of incorporating chunklet information as
constraints to the clustering algorithms themselves. This was done by forcing
data points which belong to a chunklet to be assigned to the same cluster2.

Clustering results are displayed using two common measures: purity and
accuracy (efficiency). Purity measures the frequency whereby data points that
belong to the same cluster share the same class label, while accuracy measures
the frequency whereby all data points from the same class label reside in one
cluster.

Table 5 clearly shows that both clustering methods (RCA and Fisherface)
achieve comparable clustering results. Eigenfaces also improves when applying
’chunklet’ constraints. We also note that applying chunklet constraints to RCA
does not improve results; this is probably due to the fact that after RCA the
constraints are typically satisfied.

K-Means K-Means Typical-Cut Typical-Cut
constrained constrained

Algorithm Purity Accuracy Purity Accuracy Purity Accuracy Purity Accuracy
Eigenface(30) 73 ± 28% 82 ± 13% 74 ± 28% 90 ± 12% 100% 84% 99 ± 1% 92 ± 2%
RCA (50%) 79 ± 26% 92 ± 12% 79 ± 26% 93 ± 10% 99 ± 1% 96 ± 2% 99 ± 1% 96 ± 2%
RCA (100%) 81 ± 26% 95 ± 12% 82 ± 26% 96 ± 10% 100% 100% 100% 100%
Fisherfaces 77 ± 28% 96 ± 11% 80 ± 27% 97 ± 10% 100% 100% 100% 100%

Fig. 5. Results of the two clustering methods (with and without chunklet constraints)
used on the data after applying each of the three transformations under investigation.
RCA was based on chunklets of size 5, either assigning 50% or 100% of the points
to chunklets. In constraining the clustering algorithms we used the chunklets of RCA-
50%. Results are averaged over 1000 chunklet realizations (and over 1000 random initial
centroid configurations in the case of k-means).

4.5 The Effect of Different Chunklet Sizes

We tested the RCA method on the yaleA database using different chunklet sizes
(when all data points were assigned to chunklets). In Section 3.4 we claimed
that a “good” chunklet is defined by how well its mean approximates the mean
of the class to which it belongs. However, it is clear that as the chunklet size
increases, its probability to become “good” increases. In the limit, when the
chunklet size equals the class size, Sch = SW . Fig. 6 shows a plot of the mean
2 For the typical-cut algorithm we assigned an infinite value to edges connecting chun-
klet points. For k-means we replaced each data point which belong to a chunklet by
the chunklet’s mean.
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Fig. 6. Comparison of mean error on all neighbors with varying chunklet sizes (all data
points were assigned to chunklets): error rates vary only slightly for different chunklet
sizes.

error on all neighbors with respect to the number of principal components used,
for different chunklets sizes. The plot clearly shows that changing the chunklet
size also changes the effective rank of the chunklet distribution and of Sch. As
before the results are an average of 1000 realizations using the same chunklet
sizes.

5 Experimental Results: Surveillance

We tested our approach on a second application where one of the main challenges
was to achieve color constancy. In this application the data was taken by a
stationary indoor surveillance camera, and was originally divided into short video
clips. The beginning and end of each clip were automatically determined by the
appearance and disappearance of a moving target. The database included many
clips each displaying only one person; however, the identity of the person was
unknown. The system’s task was to cluster together all clips in which a certain
person appeared. The application is briefly described in the following section.

5.1 The Task and Our Approach

The characteristics of the video clips are highly complex and diversified, for
several reasons. First, clips are entirely unconstrained; a person may walk all
over the scene, coming closer to the camera or walking away from it. Therefore
the size and resolution of each image vary dramatically. In addition, since the
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Fig. 7. Left: several images from a video clip of one intruder. Right: percent of correct
retrievals as a function of the number of retrieved images.

environment was not controlled, images include varying occlusions, reflections
and (most importantly from our perspective) highly variable illumination. In
fact, illumination changed dramatically across the scene both in intensity (from
brighter to darker regions), and in spectrum (from neon light to natural lighting).
Fig. 7 displays several images from one input clip.

Our goal was to devise a representation that would enable effective clustering
of clips. We found that the only low-level attribute that could be reliably used
in this application was color. Therefore our task was to accomplish some sort
of color constancy, i.e., to overcome the irrelevant variability created by the
changing illumination.

5.2 Image Representation and the Application of RCA

Each image in a clip is represented using its color histogram in L∗a∗b∗ space
(we used 5 bins for each dimension). Since a clip forms a chunklet by definition,
we can naturally apply RCA without further preprocessing of the data. This
transformation creates a new representation of each image.

In order to quantify the effect of RCA, we compute the L1 distance between
image representations both in the original space, and after the transformation.
Using this distance we sorted the neighbors of each image, before and after ap-
plying the transformation. We used over 6000 images from 130 clips (chunklets)
of 20 different people. Fig. 7 shows the percentage of ’correct’ neighbors up to
the k’th neighbor over all 6000 images. One can see that RCA makes a signif-
icant contribution by bringing ’correct’ neighbors closer to each other (relative
to other images).

6 Discussion

In the face recognition task, the difference in the results between the Eigenface
and Fisherface methods is not surprising, given that the first method is unsuper-
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vised and the second is supervised. What is interesting is that the RCA method
performed almost as well as the supervised Fisherface method, even though
it only used slightly more prior information than the unsupervised Eigenface
method. Improved performance was also demonstrated in the surveillance appli-
cation, where the distance in the transformed space (via RCA) was significantly
better than the distance in the original space. This gives us reason to hope
that in applications where chunklets can be obtained automatically, adjustment
learning will improve the results of unsupervised learning significantly.
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