Adjustment of Forest Ecosystem Root Respiration as Temperature Warms

Andrew J. Burton^{1,2*}, Jerry M. Melillo³ and Serita D. Frey⁴

(¹Ecosystem Science Center, Michigan Technological University, Houghton, Michigan 49931, USA;
²School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931, USA;
³The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA;
⁴Department of Natural Resources, University of New Hampshire, Durham, New Hampshire 03824, USA)

Abstract

Adjustment of ecosystem root respiration to warmer climatic conditions can alter the autotrophic portion of soil respiration and influence the amount of carbon available for biomass production. We examined 44 published values of annual forest root respiration and found an increase in ecosystem root respiration with increasing mean annual temperature (MAT), but the rate of this cross-ecosystem increase ($Q_{10} = 1.6$) is less than published values for short-term responses of root respiration to temperature within ecosystems ($Q_{10} = 2-3$). When specific root respiration rates and root biomass values were examined, there was a clear trend for decreasing root metabolic capacity (respiration rate at a standard temperature) with increasing MAT. There also were tradeoffs between root metabolic capacity and root system biomass, such that there were no instances of high growing season respiration rates and high root biomass occurring together. We also examined specific root respiration rates at three soil warming experiments at Harvard Forest, USA, and found decreases in metabolic capacity for roots from the heated plots. This decline could be due to either physiological acclimation or to the effects of co-occurring drier soils on the measurement date. Regardless of the cause, these findings clearly suggest that modeling efforts that allow root respiration to increase exponentially with temperature, with Q_{10} values of 2 or more, may over-predict root contributions to ecosystem CO₂ efflux for future climates and underestimate the amount of C available for other uses, including net primary productivity.

Key words: acclimation; climatic warming; root biomass; root respiration; soil warming.

Burton AJ, Melillo JM, Frey SD (2008). Adjustment of forest ecosystem root respiration as temperature warms. J. Integr. Plant Biol. 50(11), 1467–1483.

Available online at www.jipb.net

Increases in terrestrial ecosystem respiration as temperatures warm could create a positive feedback that causes atmospheric CO₂ concentration, and subsequently global temperature, to increase more rapidly (Woodwell and Mackenzie 1995; Cox et al.

Received 30 May 2008 Accepted 18 Jun. 2008

Supported by the US Department of Energy's Office of Science (BER) through the Northeastern and Midwestern Regional Centers of the National Institute for Climatic Change Research at The Pennsylvania State University and Michigan Technological University and a National Science Foundation CAREER Award to Serita Frey.

*Author for correspondence.

Tel: +1 906 487 2566;

Fax: +1 906 487 2915;

E-mail: <ajburton@mtu.edu>.

© 2008 Institute of Botany, the Chinese Academy of Sciences doi: 10.1111/j.1744-7909.2008.00750.x

2000). If plant tissue respiration acclimates to temperature over time, this feedback loop will be weakened (Luo et al. 2001; King et al. 2006), reducing the potential temperature increase. However, time-dependent acclimation of plant respiration to warmer temperatures is not included in most coupled climate-carbon models (King et al. 2006). For foliage, ecosystem modeling studies show that including temperature acclimation can have a substantial effect on estimates of C exchange and net primary productivity (NPP) (Wythers et al. 2005). For example, Hanson et al. (2005) modeled effects of CO_2 , temperature, precipitation and ozone on carbon and water cycles for an upland oak forest. When acclimation of leaf respiration to warming was included in the model, the combined influence of the multiple factors on net ecosystem exchange (NEE) for the year 2100 became a 20% increase rather than a decrease.

Like leaves, fine roots are physiologically very active. On an annual basis, root-associated respiration in forested ecosystems contributes about one half of annual soil respiration (Hanson et al. 2000; Högberg and Read 2006), but the potential for ecosystem root respiration to acclimate to warmer climates is not considered by most modeling efforts predicting future forest C cycles. Instead, root respiration is typically allowed to increase exponentially with warmer temperature (White et al. 1999). In this report, we first use published values of annual root respiration to assess the cross-ecosystem rate of increase with temperature. Then we examine the potential for tradeoffs between root metabolic capacity and biomass in regulating ecosystem root respiration, using published values for midgrowing season root specific respiration rates and root biomass. Finally, we determine if relationships that occur across ecosystems adapted to different climates might also exist within an ecosystem that is subjected to warming, by examining results from soil warming studies, including recent measurements of fine root respiration made at three warming experiments at Harvard Forest, USA.

Results

Annual root respiration increased exponentially with mean annual temperature (MAT) across forest ecosystems (Figure 1). The change in respiration with MAT is equivalent to a Q_{10} of 1.63 when all data are considered ($r^2 = 0.45$, P < 0.001) and 1.56 when only temperate and boreal data are considered ($r^2 = 0.33$, P < 0.001). Mid-growing season specific respiration rates also tended to increase with MAT (Figure 2A), but this

Figure 1. Increase in forest ecosystem annual root respiration (g C/m² of ground area) with increasing mean annual temperature (MAT).

The solid line is for all data: In (respiration) = $5.501 + 0.049 \times MAT$ ($r^2 = 0.43$; P < 0.001). The dashed line is for boreal and temperate data, excluding four data points identified as outliers (i.e. the boreal and temperate points located well above the line): In (respiration) = $5.383 + 0.045 \times MAT$ ($r^2 = 0.33$; P < 0.001). Boreal (\circ); temperate (\blacksquare); tropical (\triangle).

Figure 2. Relationships between mean annual temperature (MAT) and specific root respiration rates measured during the warm portion of the growing season (**A**; r = 0.40, P = 0.05) and root metabolic capacity (**B**; r = -0.51, P = 0.01).

Mid-growing season specific root respiration rates adjusted to a common reference temperature of 16 °C were used as an index of root metabolic capacity. Boreal (\circ); non-boreal (\blacksquare).

apparent effect occurs because the measurements were made at warmer temperatures for samples from locations with higher MAT. When specific respiration rates are adjusted to a common temperature of 16 °C, as an indicator of metabolic capacity, there is a clear decline in respiratory capacity as MAT increases (Figure 2B). Across ecosystems, root biomass was not correlated with MAT. Instead, root biomass was negatively correlated with mid-growing season fine root respiration rate, especially for temperate forests (Figure 3A). Some of the differences in respiration rates among sites are due to different measurement temperatures, which tend to cause lower mid-growing seasonspecific root respiration rates to occur for cooler, boreal forest samples. When respiration rates are adjusted to a common temperature (Figure 3B), the trade-off between respiration rate

Figure 3. Decrease in root biomass with increasing specific respiration rates at mid-growing season (A) and with increasing root metabolic capacity (B).

Mid-growing season specific root respiration rates adjusted to a common reference temperature of 16 °C were used as an index of root metabolic capacity. The trendline in (**A**) is for non-boreal forests only (r = -0.63, P = 0.02). The trendline in (**B**) is for all data (r = -0.46, P = 0.02), except an outlier with extremely high biomass of 1776 g/m² and low respiration (data point not shown, but see Table 2). Boreal (\circ); non-boreal (**B**).

and root biomass still exists, with boreal and non-boreal forests appearing to follow a common relationship. No cases of high respiration rate and high fine root biomass occurring together were found (Figure 3).

We noted no obvious differences among methodologies for responses to temperature of annual root respiration (Table 1) or specific root respiration (Table 2). However, low sample sizes for some methods and variation in the actual techniques applied within each methodological category compromise our ability to draw any clear conclusions regarding potential methodological biases.

Respiration rates at field soil temperature for heated plots from the Harvard Forest soil warming studies were 45% greater on average than for unheated plots (Figure 4A). This significant increase (P = 0.009) occurred with no experiment by warming treatment interaction (P = 0.133). This enhancement is lower than the 52%–93% increase that would be predicted by typical Q₁₀'s for forest root respiration of 2.0–3.0 (Table 2). As a result, respiration rates at the constant reference temperature of 18 °C were significantly lower (P = 0.003) for the heated plots, by an average of 23% (Figure 4B), with no experiment by warming treatment interactions (P = 0.139).

The differences between respiration rates at ambient temperature and the 18 °C reference temperature were used to calculate Q_{10} values for short-term temperature increases for the control and heated plots. These averaged 3.0 ± 0.1 (mean ± 1 *SE*) across the three experiments, with no differences in short-term Q_{10} occurring among warming treatments or experiments. We also used respiration rates at ambient temperature for control and heated plots (i.e. treatment means from Figure 4A) to estimate a long-term Q_{10} for each of the three experiments. These were all far lower than the short-term Q_{10} of 3.0, with values ranging from 2.3 for the 1991 experiment, to 1.9 for the 2003 experiment, to 0.91 for the 2006 experiment.

Root N concentration did not differ among treatments or experiments for the Harvard Forest studies (Figure 4C). Therefore, respiration rate per unit N at the 18 °C reference temperature was significantly lower for roots from heated plots (Figure 5). Soil moisture contents were 11%–18% lower for the heated plots (Table 3), with the treatment effect being significant for two of the three experiments.

Discussion

Cross-ecosystem relationships between root respiration and MAT

Reported values of Q_{10} for root respiration are often between 2 and 3 (Table 2 and references therein). The median and mean Q_{10} values for the studies reported in Table 2 are 2.4 and 2.7, respectively. These are for short-term increases in temperature associated with seasonal variations in soil temperature or derived from measurements of root respiration across a range of temperatures during one sampling period. Comparisons across ecosystems, however, show a much lower rate of increase in annual root respiration as MAT increases ($Q_{10} = 1.6$, Figure 1).

Across ecosystems, proportional increases in gross primary productivity (GPP) and autotrophic respiration with MAT have been reported (Litton et al. 2007), such that as GPP increases, the absolute C flow to all sinks also increases (biomass and respiration, above- and belowground). Aboveground net primary productivity (ANPP) in forest ecosystems tends to increase with MAT. For example, the data of Vogt et al. (1996), for 101 forested study sites, can be used to estimate a rate of

Table 1. Annual root respirati	on and fractional contribu	ution to so	il respiratio	n for 4	4 fores	t ecosystems				
						Root	Fraction			
Forest type	Location	Latitude	Longitude	MAT	MAP	respiration	of soil	Respiration type ^a	Method	Reference
				(°C)	(mm)	(g C/m ² per year)	respiration (%)			
Picea mariana (Mill.) B.S.P.,	Manitoba, Canada	55° 53' N	98°29′W	-4.7	536	382	74	Root	Excised roots, modeled	Ryan et al. 1997
150–155 y										
<i>Pinus banksiana</i> Lamb., 65–70 y	Manitoba, Canada	55° 56' N	98°37′W	-4.7	536	314	71	Root	Excised roots, modeled	Ryan et al. 1997
Populus tremuloides Michx.,	Manitoba, Canada	55° 51' N	98°2′W	-4.7	536	316		Root	Excised roots, modeled	Ryan et al. 1997
50–55 y										
Picea mariana, 115 y	Prince Albert, Canada	53° 59' N	105° 7' W	-1.5	400	143	24	Root	Carbon mass balance	Malhi et al. 1999
Picea mariana, 110–120 y	Saskatchewan, Canada	53° 59' N	105° 7' W	-1.1	405	192		Root	Excised roots, modeled	Ryan et al. 1997
Pinus banksiana, 65–70 y	Saskatchewan, Canada	53° 55' N	104°41′W	-1.1	405	151	35	Root	Excised roots, modeled	Ryan et al. 1997; Striegl and
										Wickland 1998
Poplulus tremuloides, 65–70 y	Saskatchewan, Canada	53° 38' N	106°12′W	-1.1	405	314		Root	Excised roots, modeled	Ryan et al. 1997
<i>Picea mariana</i> – feather moss	Saskatchewan, Canada	54°N	105°W	-1.1	405	124	22	Root associated	Trenching	O'Connell et al. 2003
Picea mariana – Sphagnum	Saskatchewan, Canada	54°N	105°W	-1.1	405	55	17	Root associated	Trenching	O'Connell et al. 2003
Picea mariana, 125 y	Saskatchewan, Canada	54°0′N	105° 6′ W	0.4	457	285	47	Rhizosphere	Trenching	Gaumont-Guay et al. 2008
Abies balsamea, (L.) Mill., 60 y	Eastern Canada	47° 19' N	71°06′W	1.7		235	37	Root associated	Trenching ^b	Lavigne et al. 2003
Abies balsamea, 50 y	Eastern Canada	47°44′N	68°09′W	3.1		660	57	Root associated	Trenching ^b	Lavigne et al. 2003
Pinus sylvestris L. 45–55 y	Sweden	64° 14′ N	19º 45/E	3.8	670	837	47	Root associated	Girdling	Majdi et al. 2007; Högberg
										et al. 2002
Mixed Fagus grandifolia Ehrh.,	Hubbard Brook New	43° 56' N	71°45′W	4.5	1 400	260	39	Root	Excised roots, modeled	Fahey et al. 2005
Acer saccharum Marsh., Betula	Hampshire, USA									
alleghaniensis Britt., 90 y										
Pinus resinosa Ait. plantation,	Wisconsin, USA	46° 10' N	89°40′W	4.6	586°	362	42	Root associated	Trenching	Haynes and Gower 1995
31 y										
Mixed Quercus rubra L., Acer	Harvard Forest USA	42° 30' N	72°12′W	6.0	1 100	123	33	Root	Trenching	Bowden et al. 1993
rubrum L., Betula papyrifera										
Marsh., 80 y										
Quercus crispula Blume, Betula	Central Honshu, Japan	36°8′N	137°26′E	6.1	2 175	380	45	Root associated	Trenching	Lee et al. 2005a
<i>ermanii</i> Cham., 40 y										
Abies balsamea, 40 y	Eastern Canada	46° 02' N	66°23′W	6.2		980	65	Root associated	Trenching ^b	Lavigne et al. 2003
										(Continued)

Forest type Location Latitude Location Latitude Location Latitude Location displayment displayment displayment Method Fayes zeroarda Blume, Abines Nara prefectute, Japan 34 N 135 E 7.0° (C) (m) $(2, 0m)^2$ Root C anton mass balance N frages zeroarda Blume, Abines Nara prefectute, Japan 34 N 135 E 7.0° (m) $(2, 0m)^2$ Root C anton mass balance N frame guitinosa (L) Gaentu, 40 Kit 195 N 162 N 145 N 123 H 7.0 185 N 200 Root C anton mass balance N frame growth sectors (L) Gaenta (Mitch) Canada 49 rGN 175 N 8.0 185 N 200 185 N 200	Forest typeLocationLatitudeLatitudeMATMAPrespirationFagus cremata Blume, AbiesNara prefecture, Japan 34 N 135 E 7.0° 210 210 <i>Pagus cremata</i> Blume, AbiesNara prefecture, Japan 34 N 135 E 7.0° 210 210 <i>homolepis</i> Sleb, et Zucc. oldRecenter, Japan $54^{\circ}6$ N $10^{\circ}14$ E 8.1 69° 1234 <i>Anus glutinosa</i> (L) Gaertn, 45yKiel Ecosystem Research $54^{\circ}6$ N $10^{\circ}14$ E 8.1 223 420 <i>Anus glutinosa</i> (L) Gaertn, 45yConstal British Columbia, $49^{\circ}15$ N $125^{\circ}19$ W 8.6 1234 420 <i>Featoco</i> , 56 yCanadaCosstal British Columbia, $49^{\circ}15$ N $125^{\circ}19$ W 8.6 420 86° <i>Rati</i> , Sarg.CanadaCreater, Germany $47^{\circ}15$ N $125^{\circ}19$ W 8.7 2370 420 <i>Rati</i> , Sarg.CanadaCreater, Germany $47^{\circ}15$ N $125^{\circ}19$ W 8.6 420 $86^{\circ}140$ <i>Rati</i> , Sarg.CanadaCreater, Germany $47^{\circ}15$ N $125^{\circ}19$ W 8.7 2370 $86^{\circ}140$ <i>Rati</i> , Sarg.Fagus sylvarica L, 30 yFranceFagus sylvarica L, 30 y $126^{\circ}18$ $86^{\circ}140$ $120^{\circ}8$ $86^{\circ}140$ <i>Rati</i> , Sarg.Fagus sylvarica L, 30 yFranceFagus sylvarica L, 30 y $126^{\circ}120$ $86^{\circ}140$ $86^{\circ}140$ <i>Rati</i> , Sarg.Fagus sylvarica L, 30 yFranceSarg. $126^{\circ}12$							Root	Fraction			
Flagus certainal Blume, Abies Nara prefecture, Japan 34.N 135.E 7.0" 210 42 Rot Carbon mass balance N <i>Promolegics</i> Sib. et Zucc. old growh Minus glufnose (L) Carbon Minus glufnose (L) April 2 Rot Carbon mass balance N <i>Almus glufnose</i> (L) Carbon Canada 24° N 10° 14'E 8.1 637 12.4 70 Rhizosphere Intract rods, modeled K <i>Almus glufnose</i> (L) Carbon Canada 49° 15'N 127° 19'N 8.7 2370 185 23 Rhizosphere Tractrining 51 <i>Almus glufnose</i> (L) Carst Minus glufnose Canada 44° 15'N 122° 10'N 8.7 33 Rhizosphere Tractrining 51 <i>Almus glufnose</i> (L) Carst Canada 27° 12'N 122° 10'N 8.7 237 Rhizosphere Tractrining 51 <i>Almus glufnose</i> (L) Carst Canada 27° 12'N 12° 12'N 12° 14'N 210 135 51 51 51 51 51 51 51	Fagus creata Blume, Abies Nara prefecture, Japan 34:N 135:E 7.0° (min) (g/m²) peryear) 1 Fagus creata Blume, Abies Nara prefecture, Japan 34:N 135:E 7.0° 210 210 formolepis Sieb. et Zucc., old Reit Kel Ecosystem Research 54'6'N 10'14'E 8:1 687 1234 Anus glutinose (L) Gaerth.45'y Kel Ecosystem Research 54'6'N 10'14'E 8:1 687 1234 Pseudotsuga Center, Gaemany Center, Gaemany 49'15'N 125'19'W 8:6 1452 420 Franco.56 y Castal British Columbia, 49'15'N 125'10'W 8:7 123'4 Franco.56 y Canada At'15'N 125'10'W 8:7 123'0 185 Old-growth Pseudotsuga Oregon cascades, USA 44'15'N 122'15'E 9:8 150 160 Rati Sylvarica L. 30 y France 48'40'N 7'5'E 9:8 150 160 Rati Sylvarica L. 30 y France 48'40'N 7'5'E	type	Location	Latitude	Longitude	MAT	MAP	respiration	of soil	Respiration type ^a	Method	Reference
Fague created Burne, Ables Nara prefecture, Japan 34.N 135.E 7.0° 210 42 Root Carbon mass balance N <i>inmolegis</i> Sib. et Zucc old growth Mara prefecture, Japan 34.6 N 107.14 E 8.1 697 1234 70 Rhizzephere Intlact nots, modeled Ki Alture gluinces (L) Gaertn, 45 y Kie Gemany 84.7 Si 107.14 E 8.1 697 1234 70 Rhizzephere Intlact nots, modeled Ki Preudostaga menziesi (Mirth) Canada Canada 107.125 19 W 8.5 132 230 135 Rhizzephere Chinatt nots, modeled Ki Fanco. 56 y Canada Canada Canada 122.10 W 8.7 230 135 Rhizzephere Trlact nots, modeled Ki Chance Sarat Canada Canada 122.10 W 8.7 230 135 Rhizzephere Trlact nots, modeled Tenching Tenching Tenching Tenching Tenching Tenching Tenching Tenching Tenching <td< th=""><th>Fagus crenata Blume, AbiesNara prefecture, Japan34°N135°E7.0°210homolepis Sieb. et Zucc., oldAnus plutinosa (L.) Gaeth, 45yKiel Ecosystem Research54°N10°14'E$8.1$$697$2134Anus plutinosa (L.) Gaeth, 45yKiel Ecosystem Research54°N10°14'E$8.1$$697$1234Anus plutinosa (L.) Gaeth, 45yCenter, Germany49°15'N12°19'W$8.6$$1452$$420$Pseudotsuga menziesi(Mirb.)Coastal British Columbis,44°15'N12°10'W$8.7$$2370$$185$Pseudotsuga menziesi, Tsuga heterophylaOregon cascades, USA44°15'N12°10'W$8.7$$2370$$185$Rat.) Sarg.Caestal British Columbis,44°15'N12°10'Y75°E$420$$366$Old-growth PseudotsugaOregon cascades, USA44°15'N72°12'S$120$$366$(Rat.) Sarg.Fance$42^{\circ}$13'N$72^{\circ}$12'S$120$$366$(Rat.) Sarg.FanceSouth Island, New Zealand42°13'S172°15'S2124(Rat.) Sarg.FanceSouth Island, New Zealand42°13'S122°15'S$120$$366$(Hook t.) Orest.AutorAutor120°13'S120°13'S160°14'S(Hook t.) Orest.Autor120°13'S120°13'S160°14'S<i>Psubadorosa</i> Dougl. ex.California, USA38°4'N120°38'S<</th><th></th><th></th><th></th><th></th><th>(°C)</th><th>3) (mm)</th><th>g C/m² per year) r</th><th>espiration (%)</th><th></th><th></th><th></th></td<>	Fagus crenata Blume, AbiesNara prefecture, Japan 34° N 135° E 7.0° 210homolepis Sieb. et Zucc., oldAnus plutinosa (L.) Gaeth, 45yKiel Ecosystem Research 54° N 10° 14'E 8.1 697 2134Anus plutinosa (L.) Gaeth, 45yKiel Ecosystem Research 54° N 10° 14'E 8.1 697 1234Anus plutinosa (L.) Gaeth, 45yCenter, Germany 49° 15'N 12° 19'W 8.6 1452 420 Pseudotsuga menziesi(Mirb.)Coastal British Columbis, 44° 15'N 12° 10'W 8.7 2370 185 Pseudotsuga menziesi, Tsuga heterophylaOregon cascades, USA 44° 15'N 12° 10'W 8.7 2370 185 Rat.) Sarg.Caestal British Columbis, 44° 15'N 12° 10'Y 75° E 420 366 Old-growth PseudotsugaOregon cascades, USA 44° 15'N 72° 12'S 120 366 (Rat.) Sarg.Fance 42° 13'N 72° 12'S 120 366 (Rat.) Sarg.FanceSouth Island, New Zealand 42° 13'S 172° 15'S 2124 (Rat.) Sarg.FanceSouth Island, New Zealand 42° 13'S 122° 15'S 120 366 (Hook t.) Orest.AutorAutor 120° 13'S 120° 13'S 160° 14'S(Hook t.) Orest.Autor 120° 13'S 120° 13'S 160° 14'S <i>Psubadorosa</i> Dougl. ex.California, USA 38° 4'N 120° 38'S<					(°C)	3) (mm)	g C/m ² per year) r	espiration (%)			
Inomdepis She, ret Zucc., old Inomdepis She, ret Zucc., old Intext: cold Intext: cold Anus gluthrosa (L) Gareth, 45 Kiel Ecosystem Research 54 6 N 10°14/E 8.1 697 1234 70 Rhizosphere Intext: roots, modeled Ki Paeudosuga menzisasi (Mich) Canier, Germany 2710 N 8.6 1422 420 35 Rhizosphere Cylinders with root exclusion Le Faero. 56 y Canada 47 15 N 122 10 W 8.6 1452 420 35 Rhizosphere Cylinders with root exclusion Le Farance 56 y Canada 47 15 N 122 10 W 8.7 2370 186 60 Root associated Tenching	homolepis Sieb. et Zucc., old growth Annus glutinosa (L) Gaertn, 45 y Kiel Ecosystem Research 54°6 N 10°14′E 8.1 697 1234 Alnus glutinosa (L) Gaertn, 45 y Kiel Ecosystem Research 54°6 N 10°14′E 8.1 697 1234 Pseudotsuga menziesi (Mirb.) Constal British Columbia, 49°15 N 125°19 W 8.6 1452 420 Franco, 56 y Conada 49°15 N 125°19 W 8.6 1452 420 Ratn.) Coanada 49°15 N 125°19 W 8.7 2370 185 Old-growth Pseudotsuga Oregon cascades, USA 44°15 N 125°19 W 8.7 420 (Rat.) Sarg. Fagus sylvatica L. 30 y France 48°40 N 7°5 E 9.8 1520 160 (Hook t, Derst. Oregon cascades, USA 48°40 N 7°5 E 9.8 1520 160 (Hock t, Derst. South Island, New Zealand 42°13 N 12°5 N 12°14 484 (Hock t, Derst. Juss. 12°5 N 12°5 N 160 <t< td=""><td>crenata Blume, Abies Na</td><td>ıra prefecture, Japan</td><td>34∘N</td><td>135∘E</td><td>7.0^e</td><td></td><td>210</td><td>42</td><td>Root</td><td>Carbon mass balance</td><td>Nakane 1980</td></t<>	crenata Blume, Abies Na	ıra prefecture, Japan	34∘N	135∘E	7.0 ^e		210	42	Root	Carbon mass balance	Nakane 1980
growth Anus gutinose (L.) Gaerth .45y Kel Ecosystem Research 54-6N 10^-14E 8.1 697 1234 70 Rhizsephere Indact roots, modeled Ki. Anus gutinose (L.) Gaerth .45y Kel Ecosystem Research 54-6N 10^-14E 8.1 697 1234 70 Rhizsephere Indact roots, modeled Ki. Peucoksage menzesi (Mith.) Coastal British Columbia, 49-15N 125'19W 8.6 1452 420 35 Rhizsephere Cyinders with root exclusion La France, 56 y Canada Oregon cascades, USA 44'15N 122'10W 8.7 2370 185 23 Rhizsephere Trenching 51 Red 17 Real Savi Plance Canada Oregon cascades, USA 44'15N 122'10W 8.7 2370 185 23 Rhizsephere Trenching 71 Real Savi Plance Tance 42'1N 122'10W 8.7 217 2174 48 20 60 70 60 70 71 71	growth Anus glutinosa (L) Gaertn.,45y Kiel Ecosystem Research 54°6'N 10°14'E 8.1 697 1234 Alnus glutinosa (L) Gaertn.,45y Center, Germany Center, Germany 89°15'N 10°14'E 8.1 697 1234 Pseudotsuga menziesi (Mitb.) Center, Germany 49°15'N 125°19'W 8.6 1452 420 Franco, 56 y Canada Old-growth Pseudotsuga Cenada 44°15'N 125°10'W 8.7 2370 185 Old-growth Pseudotsuga Oregon cascades, USA 44°15'N 122°10'W 8.7 2370 185 (Raf.) Sarg Canada Oregon cascades, USA 44°15'N 122°10'W 8.7 2370 185 (Raf.) Sarg Canada 27.13'S 172°15'E 9.8 1520 160 (Hook. f.) Oerst. South Island, New Zealand 42°13'S 172°15'E 9.8 1520 160 (Hook. f.) Oerst. Jorest 24°11'N 132°8'S4'N 120°3'S'N 12.1 2174 484 Old-gr	rolepis Sieb. et Zucc., old										
Almus glutinose (L) Gaerth. 450 Kiel Ecosystem Research 54 % N 101 4f E 81 607 1234 70 Rhizosphere Intact roots, modeled Ki Peudokaga meziesi (Mith) Canter, Germany Canter, Germany 6 81 35 Rhizosphere Intact roots, modeled Ki Franco. Sg Castal British Columbia, 49° 15N 122° 19V 81 2370 185 35 Rhizosphere Intact roots, modeled Ki Franco. Sg Castal British Columbia, 49° 15N 122° 19V 81 237 Rhizosphere Treorbing 81 Real Sarg Castal British Columbia, 49° 16N 122° 19V 81 237 81 81 81 Real Sarg Dioperative Arrow 47° 15N 127° 15F 91 120 160 71 17 18 17 17 17 120° 15V 121 214 42 121 121 214 42 17 18 17 17 17 Real Salo	Alnus glutinosa (L.) Gaertn.,45y Kiel Ecosystem Research 54°6'N 10°14'E 8.1 697 1234 Pseudotsuga menziesi (Mitb.) Center, Germany 2enter, Germany 89°15 N 125°19 W 8.6 1452 420 Franco, 56 y Canada Oregon cascades, USA 44°15 N 125°10 W 8.7 2370 185 Franco, 56 y Canada Oregon cascades, USA 44°15 N 122°10 W 8.7 2370 185 Imenziesii, Tsuga heterophyla Cenada Arv15 N 72°15 E 9.8 1520 185 (Raf.) Sarg. Fegus sylvatica L. 30 y France 42°15 N 72°15 E 9.8 1520 160 (Holok, f.) Oerst. Orest South Island, New Zealand 42°11 N 132°8 E 120°3 N 160 (Holok, f.) Oerst. Jorest South Island, New Zealand 42°11 N 132°8 E 120° 160 (Hook, f.) Oerst. Jorest South Island, New Zealand 42°11 N 132°8 N 120°3 N 120°5 N (Hook, f.) Oerst.	vth										
Pseudosuga marziesi (Mitb.) Coastal British Columbia, Fanco. 56 y Canada Strictophere Cylinders with root exclusion La Franco. 56 y Caastal British Columbia, Fanco. 56 y 49:15 N 122:10 W 8.6 1452 420 35 Rhizosphere Cylinders with root exclusion La Franco. 56 y Caastal British Columbia, marziesi. Toga Reincoph/a Oregon cascades, USA 44:15 N 122:10 W 8.7 2370 185 23 Rhizosphere Cylinders with root exclusion La Rearrisely. Tance Agran 75 E 9.2 820 86 60 Root associated Trenching 71 Rearrise Thunb., 102 y Hinoshina prefecture, abaan 34'11' 132'8'E 12.1 2174 494 51 Root associated Trenching 71 Old-growth Nothrifegues fusca South Island, New Zealand 47:13' 172'15'E 9.8 120 120 23 Root Excised roots, modeled 71 Ouescues servait Nort South Island, New Zealand, New Zealand 120'1' 120'1' <t< td=""><td>Center, Germany Center, Germany Pseudotsuga menziesii (Mitb.) Coastal British Columbia, 49° 15°N 125° 19°W 8.6 1452 420 Franco. 56 y Canada Canada 106-growth Pseudotsuga 0regon cascades, USA 49° 15°N 125° 19°W 8.7 2370 185 Old-growth Pseudotsuga Oregon cascades, USA 44° 15°N 122° 10°W 8.7 2370 185 Reft.) Sarg. Oregon cascades, USA 44° 15°N 122° 10°W 8.7 2370 185 Fagus sylvatica L. 30 y France A4° 15°N 122° 10°W 8.7 2370 185 Old-growth Nothofagus fusca South Island, New Zealand 42° 13° 172° 15°E 9.8 1520 160 Old-growth Nothofagus fusca South Island, New Zealand 42° 13° 172° 15°E 9.8 1520 160 Old-growth Nothofagus fusca South Island, New Zealand 48° 40°N 7°5°E 12° 12° 160 Old-growth Nothofagus fusca South Island, New Zealand 28° 4°N 120° 38° 12° 12°</td><td>glutinosa (L.) Gaertn.,45 y Kit</td><td>el Ecosystem Research</td><td>54°6′N</td><td>10°14′E</td><td>8.1</td><td>697</td><td>1 234</td><td>70</td><td>Rhizosphere</td><td>Intact roots, modeled</td><td>Kutsch et al. 2001; Dilly et al.</td></t<>	Center, Germany Center, Germany Pseudotsuga menziesii (Mitb.) Coastal British Columbia, 49° 15°N 125° 19°W 8.6 1452 420 Franco. 56 y Canada Canada 106-growth Pseudotsuga 0regon cascades, USA 49° 15°N 125° 19°W 8.7 2370 185 Old-growth Pseudotsuga Oregon cascades, USA 44° 15°N 122° 10°W 8.7 2370 185 Reft.) Sarg. Oregon cascades, USA 44° 15°N 122° 10°W 8.7 2370 185 Fagus sylvatica L. 30 y France A4° 15°N 122° 10°W 8.7 2370 185 Old-growth Nothofagus fusca South Island, New Zealand 42° 13° 172° 15°E 9.8 1520 160 Old-growth Nothofagus fusca South Island, New Zealand 42° 13° 172° 15°E 9.8 1520 160 Old-growth Nothofagus fusca South Island, New Zealand 48° 40°N 7°5°E 12° 12° 160 Old-growth Nothofagus fusca South Island, New Zealand 28° 4°N 120° 38° 12° 12°	glutinosa (L.) Gaertn.,45 y Kit	el Ecosystem Research	54°6′N	10°14′E	8.1	697	1 234	70	Rhizosphere	Intact roots, modeled	Kutsch et al. 2001; Dilly et al.
Pseudosuga menziesi (Mith.) Coasal British Columbia, 49:15N 125:19W 8.6 1452 4.20 35 Rhizosphere Cylinders with root exclusion La Franco.56y Canada Ar:15N 122:10W 8.7 2370 185 23 Rhizosphere Cylinders with root exclusion La Not-growth Pseudosuga Oregon cascades, USA 44:15N 122'10W 8.7 2370 185 23 Rhizosphere Cylinders with root exclusion La Rati.5uga heterophyla Oregon cascades, USA 47:15 9.1 172'16'E 9.2 820 396 60 Root associated Trenching Te Rati.5uga Notricella.00V Hinoshina prefecture, 34'11' 132'16' 12.1 214 484 51 Root associated Trenching Te Allow t/J Ost Hous t/10' Hinoshina prefecture, 34'11' 132'16' 12'13' 12'13' 12'14' 484 51 Root associated Tenching Te Auerus serata Thuub, 102Y Hi	Pseudotsuga menziesi((Mitb.) Coastal British Columbia, Franco, 56 y Castal British Columbia, Canada 49°15 N 125°19 W 8.6 1452 420 Franco, 56 y Canada Canada Canada 14°15 N 122°10 W 8.7 2370 185 Merziesii, Tsuga heterophylla menziesii, Tsuga heterophylla Cregon cascades, USA 44°15 N 75°16 9.2 820 396 Raft.) Sarg. South Island, New Zealand 42°15 N 77°5 E 9.2 820 396 Old-growth Nothofagus fusca South Island, New Zealand 42°15 N 77°5 F 9.2 820 396 Old-growth Nothofagus fusca South Island, New Zealand 42°15 N 72°15 F 9.8 150 160 Old-growth Nothofagus fusca South Island, New Zealand 42°15 N 72°15 F 9.8 150 160 Old-growth Nothofagus fusca South Island, New Zealand 34°11' 132°8 F 12.1 2174 484 Ouercus serata Thunb., 102 y Hiroshima prefecture, Japan 34°11' 120°38'W 12.1 120°50 <td>)</td> <td>Center, Germany</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2000</td>)	Center, Germany									2000
Franco, 56y Canada Did-growth Pseudotsuga Oregon cascades, USA 44° 15/N 12° 10W 87 2370 185 23 Rhizosphere Trenching St <i>Imaniaesi, Tsuga heterophyla</i> Oregon cascades, USA 44° 15/N 12° 10W 87 2370 185 23 Rhizosphere Trenching St "Rat/) Sarg. Fance 48° 40'N 7° 5'E 92 820 60 Root associated Trenching Tr "Lays sylvatica L. 30'y France 48° 40'N 7° 5'E 92 820 60 Root associated Trenching Tr Old-growth Nothofagus fusca Suth Island, New Zealand 42° 13'S 172'15'E 92 820 60 Root associated Trenching Tr Old-growth Nothofagus fusca Suth Island, New Zealand 42° 13'S 172'15'E 92 820 60 Root associated Trenching Tr Diversus samait Junuh, 102 y Hiroshina prefecture, Japan 38'54'N 120'38'W 126'5'2 129'5'5'2	Franco, 56 yCanadaDid-growth <i>Pseudotsuga</i> Oregon cascades, USA 44° 15'N 12° 10'W 8.7 2370 185 menzlesit, <i>Tsuga heterophylla</i> Arence, USA 44° 15'N 12° 10'W 8.7 2370 185 menzlesit, <i>Tsuga heterophylla</i> Arence, USA 44° 15'N 12° 15'E 9.2 820 396 Rati, Sarg.South Island, New Zealand 42° 13'S 172° 15'E 9.2 820 366 Uld-growth <i>Nothofagus fusca</i> South Island, New Zealand 42° 13'S 172° 15'E 9.2 820 366 Uld-growth <i>Nothofagus fusca</i> South Island, New Zealand 42° 13'S 172° 15'E 9.2 820 366 Uld-growth <i>Nothofagus fusca</i> JapanJapan 34° 11' 132° 8'E 12.1 2174 484 <i>Unercus serata</i> Thunb., 102 yHinoshima prefecture, 34° 11' 132° 8'E 12.1 2174 484 <i>Unus ponderosa</i> Dougl. ex.California, USA 38° 54'N 120° 38'W 120° 524 <i>Unus ponderosa</i> plantation, 13 yNara prefecture, Japan 35° N 135° E 13.1° 570 <i>Castanopsis cuspidata</i> (Thunb)Castanopsis cuspidata (Thunb) 35° N 35° S1'N 84° 17'W 13.3° 570 <i>Castanopsis cuspidata</i> (Thunb)Castanopsis cuspidata (Thunb) 35° N 35° S1'S 135° E 791 791 <i>Castanopsis cuspidata</i> (Thunb)USAStaris 3	ʻotsuga menziesii (Mirb.) Co	astal British Columbia,	49° 15′N	125°19′W	8.6	1 452	420	35	Rhizosphere	Cylinders with root exclusion	Lalonde and Prescott 2007
Id-growth Pseudotsuga Oregon cascades, USA 44*15'N 12°10'W 8.7 2370 185 23 Rhizosphere Tenching 8. menziesii, Tsuga heterophylla (Raf.) Sarg. (Raf.) Sarg. 186 00 Root associated Tenching 8. "agus sylvatica L. 30y France 48*40'N 7.5'E 9.2 820 386 60 Root associated Tenching 7. "agus sylvatica L. 30y France 48*40'N 7.5'E 9.2 820 366 60 Root associated Tenching 7. "agus sylvatica L. 30y Hiroshima prefecture, 34*11' 132"8E 12.1 2.17 4.4 80 60 Root associated Tenching 7. Old-growth Notholegus fusca South Island, New Zealand 42*13'S 172"15'E 9.8 150 160 7.1 17. 17. 122"16'S 184 160 7.8 7.1 17. 17. 17.8 17.4 18.4 17.4 17.4 17.4 17.4 <td>Did-growth Pseudotsuga Oregon cascades, USA 44° 15'N 12° 10'W 8.7 2370 185 menziesii, Tsuga heterophylla (Raf.) Sarg. (Raf.) Sarg. 9.2 8.7 2370 185 "enziesii, Tsuga heterophylla (Raf.) Sarg. (Raf.) Sarg. 9.2 820 396 "eagus sylvatica L. 30 y France 80 uth Island, New Zealand 42° 13'S 172° 15'E 9.8 1520 160 Old-growth Nothofagus fusca South Island, New Zealand 42° 13'S 172° 15'E 9.8 1520 160 Old-growth Nothofagus fusca South Island, New Zealand 42° 13'S 172° 15'E 9.8 150 160 Old-growth Nothofagus fusca Japan 34° 11' 132° 8'E 12.1 2174 484 Diverse serata Thunb., 102 y Hinoshima prefecture, USA 38° 54'N 120° 38'N 120° 524 Diverse serata Thunb., 102 y Nara prefecture, Japan 38° 54'N 120° 38'N 13.0 524 Diverse seratifolia Blume, Nara prefecture, Japan 35° N 13</td> <td>1co, 56y (</td> <td>Canada</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>mesh</td> <td></td>	Did-growth Pseudotsuga Oregon cascades, USA 44° 15'N 12° 10'W 8.7 2370 185 menziesii, Tsuga heterophylla (Raf.) Sarg. (Raf.) Sarg. 9.2 8.7 2370 185 "enziesii, Tsuga heterophylla (Raf.) Sarg. (Raf.) Sarg. 9.2 820 396 "eagus sylvatica L. 30 y France 80 uth Island, New Zealand 42° 13'S 172° 15'E 9.8 1520 160 Old-growth Nothofagus fusca South Island, New Zealand 42° 13'S 172° 15'E 9.8 1520 160 Old-growth Nothofagus fusca South Island, New Zealand 42° 13'S 172° 15'E 9.8 150 160 Old-growth Nothofagus fusca Japan 34° 11' 132° 8'E 12.1 2174 484 Diverse serata Thunb., 102 y Hinoshima prefecture, USA 38° 54'N 120° 38'N 120° 524 Diverse serata Thunb., 102 y Nara prefecture, Japan 38° 54'N 120° 38'N 13.0 524 Diverse seratifolia Blume, Nara prefecture, Japan 35° N 13	1co, 56y (Canada								mesh	
menziesi, Tsuga heterophyla menziesi, Tsuga heterophyla (Raf.) Sarg. (Raf.) Raf.	menziesii, Tsuga heterophylla (Raf.) Sarg. (Raf.) Sarg. 396 Fagus sylvatica L. 30y France 48°40'N 7°5'E 9.2 820 396 Fagus sylvatica L. 30y France 48°40'N 7°5'E 9.8 1520 160 Old-growth Nothofagus fusca South Island, New Zealand 42°13'S 172°15'E 9.8 1520 160 Old-growth Nothofagus fusca South Island, New Zealand 42°13'S 172°15'E 9.8 1520 160 Old-growth Nothofagus fusca Japan 34°11' 132°8'E 12.1 2174 484 Dirue sponderosa Dougi. ex. California, USA 38°54'N 120°38'W 120° 524 Dirue sponderosa plantation, 13y California, USA 38°54'N 120°38'W 13.0 524 Outerous sessififolia Blume, Nara prefecture, Japan 35°N 135°E 13.1° 570 Castanopsis cuspidata (Thunb) And protecuse, Japan 35°N 135°E 13.1° 570 Castanopsis cuspidata (Thunb) Ca	owth Pseudotsuga Or	egon cascades, USA	44° 15′N	122°10′W	8.7	2370	185	23	Rhizosphere	Trenching	Sulzman et al. 2005
(Raf.) Sarg. (Raf.) Sarg. <td< td=""><td>(Raf.) Sarg. (Raf.) Sarg. (Raf.) Sarg. 390 "Bgus sylvatica L. 30 y France 48° 40'N 7° 5' E 9.2 820 396 "Bgus sylvatica L. 30 y France South Island, New Zealand 42° 13'S 172° 15' E 9.8 1520 160 Uhook. t) Oerst. South Island, New Zealand 42° 13'S 172° 15' E 9.8 1520 160 Uhook. t) Oerst. Japan Japan 34° 11' 132° 8' F 12.1 2174 484 Dirus ponderosa Dougl. e.x. California, USA 38° 54'N 120° 38'W 12.6 524 Dirus ponderosa Dougl. e.x. California, USA 38° 54'N 120° 38'W 12.9 524 Dirus ponderosa plantation, 13 y California, USA 38° 54'N 120° 38'W 12.1° 570 Outs ponderosa plantation, 13 y California, USA 38° 54'N 120° 38'W 13.1° 570 Outs ponderosa plantation, 13 y Nara prefecture, Japan 35° N 135° F 13.1° 570 Outs ponderosa plantation, 13 y Oak Ridge, Tennessee, 35° 5'N 135° F 13.1° 570</td><td>vziesii, Tsuga heterophylla</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	(Raf.) Sarg. (Raf.) Sarg. (Raf.) Sarg. 390 "Bgus sylvatica L. 30 y France 48° 40'N 7° 5' E 9.2 820 396 "Bgus sylvatica L. 30 y France South Island, New Zealand 42° 13'S 172° 15' E 9.8 1520 160 Uhook. t) Oerst. South Island, New Zealand 42° 13'S 172° 15' E 9.8 1520 160 Uhook. t) Oerst. Japan Japan 34° 11' 132° 8' F 12.1 2174 484 Dirus ponderosa Dougl. e.x. California, USA 38° 54'N 120° 38'W 12.6 524 Dirus ponderosa Dougl. e.x. California, USA 38° 54'N 120° 38'W 12.9 524 Dirus ponderosa plantation, 13 y California, USA 38° 54'N 120° 38'W 12.1° 570 Outs ponderosa plantation, 13 y California, USA 38° 54'N 120° 38'W 13.1° 570 Outs ponderosa plantation, 13 y Nara prefecture, Japan 35° N 135° F 13.1° 570 Outs ponderosa plantation, 13 y Oak Ridge, Tennessee, 35° 5'N 135° F 13.1° 570	vziesii, Tsuga heterophylla										
Fance 48*40N 7*5E 9.2 820 396 60 Root associated Tenching Er Old-growth <i>Notholagus fusca</i> South Island, New Zealand 42*13'S 172*15'E 9.8 1520 160 23 Root Excised roots, modeled Tenching Er (Hook t.) Derst. South Island, New Zealand 42*13'S 172*15'E 9.8 1520 160 23 Root Excised roots, modeled Tenching Tenching <td>Tagues sylvatica L. 30yFrance$48^{\circ}40^{\circ}N$$7^{\circ}5^{\circ}E$$9.2$$820$$396$Did-growth Nothrofagus fuscaSouth Island, New Zealand$42^{\circ}13^{\circ}S$$172^{\circ}15^{\circ}E$$9.8$$1520$$160$(Hook. t.) Oerst.Author.Hiroshima prefecture,$34^{\circ}11^{\circ}$$132^{\circ}8^{\circ}E$$12.1$$120$$484$Duercus serrata Thunb., 102yHiroshima prefecture,$34^{\circ}11^{\circ}$$132^{\circ}8^{\circ}E$$12.1$$2174$$484$Duercus serrata Thunb., 102yLawanCalifornia, USA$38^{\circ}54^{\circ}N$$120^{\circ}38^{\circ}N$$12.6$$524$Duercus serrata Thunb., 102yAuthorServa$38^{\circ}54^{\circ}N$$120^{\circ}38^{\circ}N$$12.6$$524$Duercus serratifolia Blume,Nara prefecture, Japan$38^{\circ}54^{\circ}N$$120^{\circ}38^{\circ}N$$1290$$524$Duercus sessififolia Blume,Nara prefecture, Japan$35^{\circ}N$$135^{\circ}E$$13.1^{\circ}$$570$Castanopsis cuspidata (Thunb)Castanopsis cuspidata (Thunb)$35^{\circ}N$$36^{\circ}57^{\circ}N$$84^{\circ}17^{\circ}N$$13.3^{\circ}$$1286$Schottky, old growthUSA$35^{\circ}21^{\circ}S$$148^{\circ}6EE$$13.5$$791$$769^{\circ}$Divercut radiata D. Don, 20yCanberra, Australia$35^{\circ}21^{\circ}S$$148^{\circ}6EE$$791$$769^{\circ}$</td> <td>:) Sarg.</td> <td></td>	Tagues sylvatica L. 30yFrance $48^{\circ}40^{\circ}N$ $7^{\circ}5^{\circ}E$ 9.2 820 396 Did-growth Nothrofagus fuscaSouth Island, New Zealand $42^{\circ}13^{\circ}S$ $172^{\circ}15^{\circ}E$ 9.8 1520 160 (Hook. t.) Oerst.Author.Hiroshima prefecture, $34^{\circ}11^{\circ}$ $132^{\circ}8^{\circ}E$ 12.1 120 484 Duercus serrata Thunb., 102yHiroshima prefecture, $34^{\circ}11^{\circ}$ $132^{\circ}8^{\circ}E$ 12.1 2174 484 Duercus serrata Thunb., 102yLawanCalifornia, USA $38^{\circ}54^{\circ}N$ $120^{\circ}38^{\circ}N$ 12.6 524 Duercus serrata Thunb., 102yAuthorServa $38^{\circ}54^{\circ}N$ $120^{\circ}38^{\circ}N$ 12.6 524 Duercus serratifolia Blume,Nara prefecture, Japan $38^{\circ}54^{\circ}N$ $120^{\circ}38^{\circ}N$ 1290 524 Duercus sessififolia Blume,Nara prefecture, Japan $35^{\circ}N$ $135^{\circ}E$ 13.1° 570 Castanopsis cuspidata (Thunb)Castanopsis cuspidata (Thunb) $35^{\circ}N$ $36^{\circ}57^{\circ}N$ $84^{\circ}17^{\circ}N$ 13.3° 1286 Schottky, old growthUSA $35^{\circ}21^{\circ}S$ $148^{\circ}6EE$ 13.5 791 769° Divercut radiata D. Don, 20yCanberra, Australia $35^{\circ}21^{\circ}S$ $148^{\circ}6EE$ 791 769°	:) Sarg.										
Id-growth <i>Natholagus fusca</i> South Island, New Zealand 42°13'S 172°15'E 9.8 1520 160 23 Root Excised roots, modeled Te (Hook, f, Derst. (Hook, f, Derst. 34°11' 132°8'E 12.1 2174 484 51 Root Excised roots, modeled Ni <i>Unecus serata</i> Thurb., 102 y Hiroshima prefecture, 34°11' 132°8'E 12.1 2174 484 51 Root associated Pre- and post-harvest ^b Ni <i>Unus ponderosa</i> Dougl. ex. California, USA 38°54'N 120°38'W 12.5 1290 524 44 Root associated Terand post-harvest ^b Ta <i>Trus ponderosa</i> plantation, 13 California, USA 38°54'N 120°38'W 12.0 524 44 Root associated Terandpost-harvest ^b Ta <i>Trus ponderosa</i> plantation, 13 California, USA 38°54'N 135°E 13.1° 570 51 Root Carbon mass balance Ni <i>Our sussificia</i> Blume, Nara prefecture, Japan 35°F/N 135°E 13.1° <td>Did-growth Notinofagus fusca South Island, New Zealand 42°13'S 172°15'E 9.8 1520 160 (Hook, f,) Cerst. (Hook, f,) Cerst. 34°11' 132°8'F 12.1 2174 484 <i>Duercus serrata</i> Thunb., 102 y Hinoshima prefecture, 34°11' 132°8'F 12.1 2174 484 <i>Duercus serrata</i> Thunb., 102 y California, USA 38°54'N 120°38'W 12.5 1290 524 <i>Duercus serrata</i> Thunb., 103 y California, USA 38°54'N 120°38'W 12.5 1290 524 <i>Duercus sersitifolia</i> Blume, Nara prefecture, Japan 35°N 133°E 13.1 1290 524 <i>Duercus sessitifolia</i> Blume, Nara prefecture, Japan 35°N 133°E 13.1 570 <i>Castanopsis cuspidata</i> (Thunb) Schottky, old growth 35°N 133°E 13.1 570 <i>Schottky, old growth</i> As*17'W 133°E 13.1 1265 570 <i>Schottky, old growth</i> As*17'W 133°E 13.1 570 570</td> <td>sylvatica L. 30 y Fre</td> <td>ance</td> <td>48° 40′ N</td> <td>7°5′E</td> <td>9.2</td> <td>820</td> <td>396</td> <td>60</td> <td>Root associated</td> <td>Trenching</td> <td>Epron et al. 1999</td>	Did-growth Notinofagus fusca South Island, New Zealand 42°13'S 172°15'E 9.8 1520 160 (Hook, f,) Cerst. (Hook, f,) Cerst. 34°11' 132°8'F 12.1 2174 484 <i>Duercus serrata</i> Thunb., 102 y Hinoshima prefecture, 34°11' 132°8'F 12.1 2174 484 <i>Duercus serrata</i> Thunb., 102 y California, USA 38°54'N 120°38'W 12.5 1290 524 <i>Duercus serrata</i> Thunb., 103 y California, USA 38°54'N 120°38'W 12.5 1290 524 <i>Duercus sersitifolia</i> Blume, Nara prefecture, Japan 35°N 133°E 13.1 1290 524 <i>Duercus sessitifolia</i> Blume, Nara prefecture, Japan 35°N 133°E 13.1 570 <i>Castanopsis cuspidata</i> (Thunb) Schottky, old growth 35°N 133°E 13.1 570 <i>Schottky, old growth</i> As*17'W 133°E 13.1 1265 570 <i>Schottky, old growth</i> As*17'W 133°E 13.1 570 570	sylvatica L. 30 y Fre	ance	48° 40′ N	7°5′E	9.2	820	396	60	Root associated	Trenching	Epron et al. 1999
(Hook, f.) Oerst. (Hook, f.) Oerst. 34°11' 132°8'E 12.1 2174 484 51 Root associated Pre- and post-harvest ^b Ne <i>Unercus serrata</i> Thurb., 102 y Hiroshima prefecture, 34°11' 132°8'E 12.1 2174 484 51 Root associated Pre- and post-harvest ^b Ne <i>Inus ponderosa</i> Dougl. ex. California, USA 38°54'N 120°38'W 12.6 1290 524 44 Root associated Trenching Te <i>Inus ponderosa</i> plantation, 13y California, USA 38°54'N 120°38'W 13.0 1290 524 44 Root associated Trenching Te <i>Inus ponderosa</i> plantation, 13y California, USA 38°54'N 120°38'W 13.0 1290 524 44 Root associated Tenching Te <i>Ourse ponderosa</i> plantation, 13y California, USA 38°54'N 130°38'W 13.0 520 51 Root associated Tenching Te <i>Ourse ponderosa</i> plantation, 13y California, USA 38°54'N 135°6'E 13.1'° 570 51 Root associated Tenching Te	(Hook. f.) Oerst. (Hook. f.) Oerst. 34°11' 132°8'E 12.1 2174 484 <i>Duercus serrata</i> Thunb., 102 y Hiroshima prefecture, 34°11' 132°8'E 12.1 2174 484 <i>Duercus serrata</i> Thunb., 102 y Hiroshima prefecture, 34°11' 132°8'E 12.1 2174 484 <i>Pinus ponderosa</i> Dougl. ex. California, USA 38°54'N 120°38'W 12.5 1290 524 <i>Duus ponderosa</i> plantation, 13 y California, USA 38°54'N 120°38'W 13.0 1290 524 <i>Duus ponderosa</i> plantation, 13 y California, USA 38°54'N 120°38'W 13.0 1290 524 <i>Duus ponderosa</i> plantation, 13 y California, USA 38°54'N 120°38'W 13.0 1290 524 <i>Duus ponderosa</i> plantation, 13 y California, USA 38°54'N 133°E 13.1° 570 <i>Duercus sessififolia</i> Blume, Nara prefecture, Japan 35°N 135°E 13.1° 570 <i>Castanopsis cuspidata</i> (Thunb) Castanopsis cuspidata (Thunb) Schottky, old growth 13.3 1265 372 <i>Schottky, old growth</i> </td <td>owth Nothofagus fusca So</td> <td>uth Island, New Zealand</td> <td>42°13′S</td> <td>172°15′E</td> <td>9.8</td> <td>1520</td> <td>160</td> <td>23</td> <td>Root</td> <td>Excised roots, modeled</td> <td>Tate et al. 1993</td>	owth Nothofagus fusca So	uth Island, New Zealand	42°13′S	172°15′E	9.8	1520	160	23	Root	Excised roots, modeled	Tate et al. 1993
Quercus serrata Thunb., 102 y Hiroshima prefecture, 34°11' 132°8'E 12.1 2174 484 51 Root associated Pre- and post-harvest ^b Ni< <i>Inus ponderosa</i> Dougl. ex. California, USA 38°54'N 120°38'W 12.5 1290 524 44 Root associated Trenching Trenching <t< td=""><td>Quercus serrata Thunb., 102y Hiroshima prefecture, 34°11' 132°8'E 12.1 2174 484 Japan Japan Japan 132°8'F 12.1 2174 484 Pinus ponderosa Dougl. ex. California, USA 38°54'N 120°38'W 12.5 1290 524 Laws., 14 y Anne, 13 y California, USA 38°54'N 120°38'W 13.0 1290 524 Pinus ponderosa plantation, 13 y California, USA 38°54'N 120°38'W 13.0 1290 524 Dirus ponderosa plantation, 13 y California, USA 38°54'N 120°38'W 13.0 1290 524 Dirus ponderosa plantation, 13 y California, USA 38°54'N 120°38'W 13.0 524 Dirus ponderosa plantation, 13 y California, USA 38°54'N 130°38'Y 13.1° 570 Duecus sessififolia Blume, Nara prefecture, Japan 35°5'N 135°E 13.1° 570 Castanopsis cuspidata (Thunb) Schottky, old growth Schottky, old growth 13.3 1265 570 Schottky, old growth Scottky Oak Ridge, Tennessee,</td><td>ok. f.) Oerst.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Quercus serrata Thunb., 102y Hiroshima prefecture, 34°11' 132°8'E 12.1 2174 484 Japan Japan Japan 132°8'F 12.1 2174 484 Pinus ponderosa Dougl. ex. California, USA 38°54'N 120°38'W 12.5 1290 524 Laws., 14 y Anne, 13 y California, USA 38°54'N 120°38'W 13.0 1290 524 Pinus ponderosa plantation, 13 y California, USA 38°54'N 120°38'W 13.0 1290 524 Dirus ponderosa plantation, 13 y California, USA 38°54'N 120°38'W 13.0 1290 524 Dirus ponderosa plantation, 13 y California, USA 38°54'N 120°38'W 13.0 524 Dirus ponderosa plantation, 13 y California, USA 38°54'N 130°38'Y 13.1° 570 Duecus sessififolia Blume, Nara prefecture, Japan 35°5'N 135°E 13.1° 570 Castanopsis cuspidata (Thunb) Schottky, old growth Schottky, old growth 13.3 1265 570 Schottky, old growth Scottky Oak Ridge, Tennessee,	ok. f.) Oerst.										
Japan <i>Transporderosa</i> Dougl.ex. California, USA 38°54'N 120°38'W 12.5 1290 524 44 Root associated Trenching Ta Laws., 14y <i>Laws.</i> , 14y <i>Transporderosa</i> plantation, 13y California, USA 38°54'N 120°38'W 13.0 1290 524 44 Root associated Trenching Ta <i>Transporderosa</i> plantation, 13y California, USA 38°54'N 120°38'W 13.0 1290 524 44 Root associated Trenching Ta <i>Juercus sestifiolia</i> Blume, Nara prefecture, Japan 35°N 135°E 13.1° 570 51 Root Carbon mass balance Ni <i>Castanopsis cuspidata</i> (Thunb) Schottky, old growth <i>Schottky, old growth</i> <i>Juodendron tulpifera</i> L., 50y Oak Ridge, Tennessee, 35°57'N 84°17'W 13.3 1265 372 35 Root Excised roots, modeled Ei <i>USA</i> <i>Data Analysis and Trenching Ta</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i>Jusa</i> <i></i>	Japan Japan Pinus ponderosa Dougl. ex. California, USA 38°54'N 120°38'W 12.5 1290 524 Laws., 14 y Laws., 14 y 38°54'N 120°38'W 13.0 1290 524 Pinus ponderosa plantation, 13 y California, USA 38°54'N 120°38'W 13.0 1290 524 Duercus sessififolia Blume, Nara prefecture, Japan 35°N 135°E 13.1° 570 Castanopsis cuspidata (Thunb) Schottky, old growth 35°57'N 84°17'W 13.3 1265 372 Schottky, old growth UsA 35°57'N 84°17'W 13.3 766 372 <i>iniodendron tulipifera</i> L., 50 y Oak Ridge, Tennessee, 35°57'N 84°17'W 13.3 765 372 <i>iniodendron tulipifera</i> L., 50 y Oak Ridge, Tennessee, 35°57'N 84°17'W 771 769' <i>iniodendron tulipifera</i> L., 50 y Canberra, Australia 35°21'S 148°56'E 791 769'	us serrata Thunb., 102 y Hir	roshima prefecture,	34°11′	132°8′E	12.1	2174	484	51	Root associated	Pre- and post-harvest ^b	Nakane et al. 1996
Pinus ponderosa Dugl. ex. California, USA 38° 54'N 120° 38'W 12.5 1290 524 44 Root associated Trenching Tz Laws., 14y Laws., 14y Laws., 14y 2 44 Root associated Trenching Tz Pinus ponderosa plantation, 13y California, USA 38° 54'N 120° 38'W 13.0 1290 524 44 Root associated Trenching Tz Quercus sessifiolia Blume, Nara prefecture, Japan 35° N 135° E 13.1° 570 51 Root associated Trenching Tz Quercus sessifiolia Blume, Nara prefecture, Japan 35° N 135° E 13.1° 570 51 Root associated Trenching Tz Castanopsis cuspitata (Thunb) Schottky, old growth 570 51 Root Carbon mass balance Ni Schottky, old growth Schottky, old growth 13.5° N 135° E 13.1° 1265 372 35 Root Excised roots, modeled Ei Lindendron tulipfier L., 50y Oak Ridge, Tennessee, 35° T/N 120° T/N 126° T/N 372 35	Pinus ponderosa Dougl. ex. California, USA 38°54'N 120°38'W 12.5 1290 524 Laws., 14y Euws., 14y 38°54'N 120°38'W 12.0 524 Pinus ponderosa plantation, 13y California, USA 38°54'N 120°38'W 13.0 1290 524 Pinus ponderosa plantation, 13y California, USA 38°54'N 120°38'W 13.0 1290 524 Quercus sessifidua Blume, Nara prefecture, Japan 35°N 13.6" 13.1" 570 Castanopsis cuspidata (Thunb) Schottky, old growth 35°N 135°E 13.1" 570 Schottky, old growth Acatanopsis cuspidate L., 50 y Oak Ridge, Tennessee, 35°57'N 84°17'W 13.3 1265 372 Undendron tulipifera L., 50 y USA 35°57'N 148°56'E 13.5 791 769 ^d		Japan									
Laws., 14 y <i>Tail point of the search of th</i>	Laws., 14 y <i>Tinus ponderosa</i> plantation, 13 y California, USA 38°54'N 120°38'W 13.0 1290 524 <i>Quercus sessififolia</i> Blume, Nara prefecture, Japan 35° N 135° E 13.1° 570 <i>Castanopsis cuspidata</i> (Thunb) Schottky, old growth <i>Linodendron tulipifera</i> L., 50 y Oak Ridge, Tennessee, 35°57'N 84°17'W 13.3 1265 372 <i>USA</i> <i>Jinus radiata</i> D. Don, 20 y Canberra, Australia 35°21'S 148°56'E 13.5 791 769 ^d	<i>ponderosa</i> Dougl. ex. Ca	alifornia, USA	38° 54′N	120°38′W	12.5	1 290	524	44	Root associated	Trenching	Tang et al. 2005
<i>Pinus ponderosa</i> plantation, 13 y California, USA 38° 54′N 120° 38′W 13.0 1290 524 44 Root associated Trenching Ta <i>Quercus sessififolia</i> Blume, Nara prefecture, Japan 35°N 135°E 13.1° 570 51 Root Carbon mass balance Ni <i>Castanopsis cuspidata</i> (Thunb) Schottky, old growth <i>Castanopsis cuspidata</i> (Thunb) <i>Schottky, old growth Jiodendron tulipifera</i> L., 50 y Oak Ridge, Tennessee, 35° 57′N 84° 17′W 13.3 1265 372 35 Root Excised roots, modeled Et <i>USA Cancerdical Dia</i> 2000 <i>Concom Australia 25</i> ° 21′S <i>Australia 25</i> ° 21′S <i>Concom 25</i> ° 21′S <i>Australia 20</i> ° 21′S <i>Australia 25</i> ° 21′S <i>Australia 26</i> ° 21′S <i>Australia 20</i> ° 21′S <i>Australia 26</i> ° 21′S <i>Australia 26</i> ° 21′S <i>Australia 26</i> ° 21′S <i>Australia 20</i> ° 21′S <i>Australia 26</i> ° 21′S <i>Australia 20</i> ° <i>20</i> °	Pinus ponderosa plantation, 13y California, USA 38°54'N 120°38'W 13.0 1290 524 Quercus sessififolia Blume, Nara prefecture, Japan 35°N 135°E 13.1° 570 Castanopsis cuspidata (Thunb) Schottky, old growth 35°S'N 84°17'W 13.3 1265 Liriodendron tulipifera L., 50 y Oak Ridge, Tennessee, 35°57'N 84°17'W 13.3 1265 Jirodendron tulipifera L., 50 y USA S3°21'S 148°56'E 13.5 791 769 ^d	s., 14 y										
<i>Duercus sessififolia</i> Blume, Nara prefecture, Japan 35°N 135°E 13.1° 570 51 Root Carbon mass balance Na <i>Castanopsis cuspidata</i> (Thunb) Schottky, old growth <i>Lifodendron tulipifer</i> L., 50 y Oak Ridge, Tennessee, 35°57'N 84°17'W 13.3 1265 372 35 Root Excised roots, modeled Et USA	Unercus sessififolia Blume, Nara prefecture, Japan 35°N 135°E 13.1° 570 Castanopsis cuspidata (Thunb) Castanopsis cuspidata (Thunb) Schottky, old growth 570 Schottky, old growth Schottky, old growth 13.3 1265 372 Jriodendron tulipifera L., 50 y Oak Ridge, Tennessee, 35°57'N 84°17'W 13.3 1265 372 Jriodendron tulipifera L., 50 y Oak Ridge, Tennessee, 35°57'N 84°17'W 13.3 1265 372 Jrinus radiata D. Don, 20 y Canberra, Australia 35°21'S 148°56'E 13.5 791 769 ^d	ponderosa plantation, 13 y Ca	ilifornia, USA	38° 54'N	120°38′W	13.0	1 290	524	44	Root associated	Trenching	Tang et al. 2005
Castanopsis cuspidata (Thunb) Schottky, old growth Jriodendron tulipifera L., 50 y Oak Ridge, Tennessee, 35°57/N 84°17′W 13.3 1265 372 35 Root Excised roots, modeled Ev USA	Castanopsis cuspidata (Thunb) Schottky, old growth Jriodendron tulipifera L., 50 y Oak Ridge, Tennessee, 35°57'N 84°17'W 13.3 1265 372 USA Pinus radiata D. Don, 20 y Canberra, Australia 35°21'S 148°56'E 13.5 791 769 ^d	us sessilifolia Blume, Na	ara prefecture, Japan	35∘N	135°E	13.1 ^e		570	51	Root	Carbon mass balance	Nakane 1980
Schottky, old growth <i>Jriodendron tulipifera</i> L., 50 y Oak Ridge, Tennessee, 35°57'N 84°17'W 13.3 1265 372 35 Root Excised roots, modeled Ec USA USA Day 2014 Day 2014 140°EEE 12 E 701 7600 70 Day University and modeled Day	Schottky, old growth <i>Jriodendron tulipifer</i> a L., 50 y Oak Ridge, Tennessee, 35°57'N 84°17'W 13.3 1265 372 USA <i>Pinus radiata</i> D. Don, 20 y Canberra, Australia 35°21'S 148°56'E 13.5 791 769 ^d	tanopsis cuspidata (Thunb)										
<i>Liriodendron tuliptier</i> L., 50 y Oak Ridge, Tennessee, 35°57/N 84°17′W 13.3 1265 372 35 Root Excised roots, modeled Ec USA Discretion Don 2004 Control Activities 25°57/S 140°56/E 12.5 701 7500 70 Doot Introd modeled D.	uriodendron tulipifera L., 50 y Oak Ridge, Tennessee, 35°57'N 84°17'W 13.3 1265 372 USA Pinus radiata D. Don, 20 y Canberra, Australia 35°21'S 148°56'E 13.5 791 769 ^d	ottky, old growth										
USA Divine endiated Dan 2014 Candenalia 25:9215 148°5261 42.5 701 7200 78 Davt Interat motor modeled D	USA <i>Pinus radiata</i> D. Don, 20y Canberra, Australia 35°21′S 148°56′E 13.5 791 769 ^d	ndron tulipifera L., 50 y Oa	ak Ridge, Tennessee,	35° 57' N	84°17′W	13.3	1 265	372	35	Root	Excised roots, modeled	Edwards and Sollins 1973;
Diano madiate D. Dan 2010 - Cambarra Australia - 26.01/C 1108.62/C 12.6 70.1 - 76.0d 70 - Dat - Intrat mada mada	Pinus radiata D. Don, 20 y Canberra, Australia 35°21'S 148°56'E 13.5 791 769 ^d	1	USA									Edwards and Harris 1977
		radiata D. Don, 20 y Ca	anberra, Australia	35°21′S	148°56′E	13.5	791	769 ^d	78	Root	Intact roots, modeled	Ryan et al. 1996

Table 1. Continued.

						Root	Fraction			
Forest type	Location	Latitude	Longitude	MAT	MAP	respiration	of soil	Respiration type ^a	Method	Reference
				(°C)	3) (mm)	g C/m ² per year)	respiration (%)			
Quercus cerris L., 1 y coppice	Italy	43°24′N	11°55′E	14.0	755	210	23	Root associated	Trenching	Rey et al. 2002
Quercus, Carya	Oak Ridge, Tennessee,	35°57′N	84°17′W	14.0	1400	395	53	Root	Carbon mass balance	Malhi et al. 1999
	NSA									
Pinus densiflora Sieb. et Zucc.,	Hiroshima City, Japan	34∘N	134∘E	15.0	1544	603	47	Root associated	Pre- and post-harvest ^b	Nakane et al. 1983
80 y										
Pinus taeda L., 16 y	North Carolina, USA	35°97′N	M,60∘62	15.8	1145	394		Fine root (<1 mm)	Excised roots, modeled	Matamala and Schlesinger
										2000
Pinus elliotti Engelm. plantation	Florida, USA	29°44′N	82° 9′W	21.7	1342	810	62	Root associated	Trenching	Ewel et al. 1987b
29 y										
Pinus elliotti plantation 9 y	Florida, USA	29°44′N	82° 9′W	21.7	1342	430	51	Root associated	Trenching	Ewel et al. 1987b
Tropical rain forest, old growth	West Malaysia	3∘N	102°E	25.1 ^e		700	49	Root	Carbon mass balance	Nakane 1980
Tropical forest	Manaus, Brazil	2°35′S	50°06′W	25.5	2200	680	41	Root	Carbon mass balance	Malhi et al. 1999
Hyeronima alchorneoides	La Selva, Cosa Rica	10°26′N	83°59′W	25.8	3 900	820	40	Rhizosphere	Carbon mass balance	Valverde-Barrantes 2007
Allemão plantation, 16 y										
Pentaclethra macroloba (Willd)	La Selva, Cosa Rica	10°26′N	83°59′W	25.8	3 900	890	50	Rhizosphere	Carbon mass balance	Valverde-Barrantes 2007
Kuntze plantation, 16 y										
Pinus patula ssp. tecunumanii	La Selva, Cosa Rica	10°26′N	83°59′W	25.8	3 900	890	55	Rhizosphere	Carbon mass balance	Valverde-Barrantes 2007
(Eguiluz & J.P. Perry) Styles										
plantation, 16 y										
Virola koschyna Warb. plantation,	La Selva, Cosa Rica	10°26′N	83°59′W	25.8	3 900	1 100	62	Rhizosphere	Carbon mass balance	Valverde-Barrantes 2007
16 y										
Vochysia guatemalensis Donn.	La Selva, Cosa Rica	10°26′N	83°59′W	25.8	3 900	1 340	57	Rhizosphere	Carbon mass balance	Valverde-Barrantes 2007
Sm. plantation, 16 y										
Tropical forest	Brazilian state of Pará	2∘59′S	47°31′W	25.8	1750	1510	63	Root	Carbon mass balance	Trumbore et al. 1995
^a Root respiration includes on	y roots; root associated re	espiration	includes r	oot res	oiration,	mycorrhizal re	spiration and	microbial respirati	on of root exudates; and rh	hizosphere respiration is the
equal to root associated resp	iration less the respiratior	n of myco	irrhizal hyp	hae ex	tending	into the bulk s	oil. ^b Soil resp	iration rates in tre	enched or harvested plots	were adjusted for dead root
decomposition when calculati	ng root-associated respira	ation by d	lifference f	rom co	ntrol plo	t root respiratic	on. ^c Precipiatio	on is for growing :	season only. ^d Value for roo	t respiration would be 274 if
adjustment recommended by	Ryan et al. (1996) for me	asuring ro	ot respirat	iion at a	atmosph	teric [CO2] is ir	icluded. ^e Data	are for mean an	nual soil temperature. y, ye	ars.

Table 1. Continued.

anie z. Ivilu-glowilig	במשמחו וווום וחחר ובשלי	nauon anu				IN COL CONSIS								
						Root				Fine root		Root		
orest type	Location	Latitude	Longitude	MAT	MAP	respiration	Measurement	Time of	Fine root	mass	Q ₁₀	diameter	Method	Reference
				(° C)	(mm)	(nmol/g per s)	temperature (°C)	year	N (g/kg)	(m/g)		(mm)		
Picea mariana,	Manitoba, Canada	55°53′ N	98° 29′ W	-4.7	536	7.2	10.0	June-August		170	1.9	<2	Intact root mats	Ryan et al. 1997; Steele
150–155 y														et al. 1997
^{>} inus banksiana,	Manitoba, Canada	55°56' N	98° 37' W	-4.7	536	7.1	10.0	June-July		205	1.9	2 ×	Intact root mats	Ryan et al. 1997; Steele
65–70 y														et al. 1997
^o opulus tremuloides,	Manitoba, Canada	55°51′ N	98°2′ W	-4.7	536	3.9	10.0	June-July		158	1.9	<2×	Intact root mats	Ryan et al. 1997; Steele
50–55 y														et al. 1997
² opulus balsamifera, L.,	Alaska, USA	64°40′ N	148o15' W	-3.3	287	3.0	8.4	Mid-June	14.9	472	2.4	V	Excised roots	Burton et al. 2002; Ruess
80–100 y														et al. 1996
^{>} icea glauca (Moench)	Alaska, USA	64∘41′ N	148o14' W	-3.3	287	2.9	10.8	Mid-June	10.6	288	2.9	$\overline{\mathbb{V}}$	Excised roots	Burton et al. 2002; Ruess
<i>Vos</i> s, 200–300 y														et al. 1996
Picea mariana,	Alaska, USA	64°48″ N	147°52′ W	-3.3	269	1.8	8.0	Mid-June	9.1	1776	2.3	$\overline{\mathbb{V}}$	Excised roots	Ruess et al. 2003; Burton
160–200 y														unpublished
Picea mariana,	Saskatchewan,	53°59′ N	105°7′ W	-1.1	405	4.4	10.0	June-July		77	1.9	2 ×	Intact root mats	Ryan et al. 1997; Steele
110–120 y	Canada													et al. 1997
^p inus banksiana,	Saskatchewan,	53°55' N	104°41′ W	-1.1	405	3.9	10.0	June-July		06	1.9	<2×	Intact root mats	Ryan et al. 1997; Steele
65–70 y	Canada													et al. 1997
^o oplulus tremuloides,	Saskatchewan,	53°38' N	106°12′ W	-1.	405	6.2	10.0	June-July		79	1.9	~2 ~	Intact root mats	Ryan et al. 1997; Steele
65–70 y	Canada													et al. 1997
^{>} icea mariana, 80 y	Saskatchewan,	53°50' N	105°30′	1.5	389	10.2	15.0	July		398		$\overline{\mathbb{V}}$	Excised roots	Uchida et al. 1998
	Canada													
<i>arix gmelini</i> (Rupr.)	Northeast China	45°20′ N	127°34′ E	2.8	724	6.6	17.0	August	14.8	606	5.6	AII	Trenched plots	Jiang et al. 2005
Rupr., 17 y														
<i>arix gmelini (</i> Rupr.)	Northeast China	45°20′ N	127°34′ E	2.8	724	5.0	17.0	August	14.4	357	4.2	AII	Trenched plots	Jiang et al. 2005
Rupr., 31 y														
														(Continued)

c

root biomass for 25 forest ecosystems and fine fi o fine Table 2. Mid-growing

						Root				Fine root		Root		
Forest type	Location	Latitude	Longitude	MAT	MAP	respiration	Measurement	Time of	Fine root	mass	0 ₁₀	diameter	Method	Reference
				(° C)	(mm)	(nmol/g per s)	temperature (°C)	year	N (g/kg)	(m/g)		(mm)		
Acer saccharum, 94 y	Michigan, USA	46° 52′ N	88° 53′ W	4.8	821	7.4	17.5	June-August	18.5	571	2.7	v	Excised roots	Burton et al. 2004
Pinus sylvestris, Picea	Uppsala, Sweden ^a	60°5′ N	17° 30′ W	5.5	527	2.3	14.0	July-August	6.5	613	5.0	~2p	Intact root mats	Widén and Majdi 2001
<i>abie</i> s, 34–105 y														
Acer saccharum, 88 y	Michigan, USA	45° 33′ N	84° 51′ W	6.1	828	9.8	20.0	June-August	19.6	439	2.7	v	Excised roots	Burton et al. 2004
Quercus crispula, Betula	Central Japan	36° 80′ N	137°26′ E	6.1	2175	3.7	16.0	July		673		AII	Trenched plots	Lee et al. 2003
ermanii, 40 y														
Acer saccharum, 89 y	Michigan, USA	44°23′ N	85° 50' W	6.9	856	6.9	19.1	June-August	19.4	392	2.7	V	Excised roots	Burton et al. 2004
Acer saccharum, 93 y	Michigan, USA	43°40′ N	86° 09′ W	7.6	793	5.6	19.4	June-August	18.7	485	2.7	V	Excised roots	Burton et al. 2004
Betula, Quercus, Tilia	North Carolina, USA	35°3′ N	83° 25′ W	9.4	2607	4.7	18.2	Early June	15.0	620	2.4	v,1c	Excised roots	Burton et al. 2002; Davis
														et al. 2004
Quercus, Carya	North Carolina, USA	35°3′ N	83° 25′ W	11.1	2502	4.2	17.8	Early June	12.9	740	3.1	v <mark>₁</mark> c	Excised roots	Burton et al. 2002; Davis
														et al. 2004
Lirodendron tulipifera,	North Carolina, USA	35∘4′ N	83°26′W	12.7	1816	10.6	19.3	Early June	20.7	468	2.6	√ √	Excised roots	Burton et al. 2002; Davis
40 y														et al. 2004
Pinus radiata, 20 y	Canberra, Australia	35° 25' S	148°56′ E	13.5	791	10.4 ^d	21.0	January	7.4	257	2.0	2 2	Intact root mats	Ryan et al. 1996
Pinus elliottii plantation,	Florida, USA	30°37′ N	81°43′ W	20.0	1 303	6.3	26.5	Early June	9.6	205	2.5	°,	Excised roots	Burton et al. 2002; Shan
17 y														et al. 2001
Pinus elliottii plantation,	Florida, USA	29° 44′ N	82°9′ W	21.7	1342	4.5	28.0	Summer		870	2.1	2 >	Intact roots	Gholz et al. 1991;
24 y														Cropper and Gholz
														1991; Ewel et al.
														1987a
Eucalyptus urophylla x	Congo-Brazzaville,	4∘ S	12° E	25.0	1400	10.3	30.0	AprihJune		193	2.2	<2 2	Excised roots	Marsden et al. 2008
Eucalyptus grandis, 3 y	central Africa													
^a Average of sites with	three aspects, SW,	N and S.	^b 90% of r	oots <	2 mm.	^c Biomass valu	ue is for all root	s <2 mm. ^d Pi	ublished r	espiratic	on for '	5 ∘C wa	is adjusted upw	ard using a Q ₁₀ of 2.
A divictment for moon	and to activity of other			-041-0		0 1.000 not	ting point							
Adjustment for measu	ring respiration at atm	ospnenc l		erura	ו צמוו ר	U2] Was IIUL	carried out.							

1474 Journal of Integrative Plant Biology Vol. 50 No. 11 2008

Table 2. Continued.

Figure 4. Specific root respiration rates at ambient soil temperature (**A**), specific respiration rates at a reference temperature of $18 \degree C$ (**B**), and N concentration (**C**) for fine roots (<1 mm) from control (\Box) and heated (**B**) plots for three Harvard Forest soil warming studies.

Ambient soil temperatures for the control and heated treatments on the measurement date are indicated on the data bars in (**A**). Soil warming significantly increased respiration rate at ambient treatment temperature (P = 0.009) and significantly decreased respiration rates measured at the 18 °C reference temperature (P = 0.003). Horizontal lines in (**A**) indicate expected respiration rates for the warmed plots if rates observed for the control plots were exponentially increased from control plot temperature to heated plot temperature using the average Q₁₀ for root respiration of 2.7 from the studies listed in Table 2.

Figure 5. Relationships between fine root respiration and fine root N concentration for all data from the three Harvard Forest soil warming experiments.

The linear relationship for the warmed plots (\circ , dashed line) has a similar slope, but significantly lower intercept (P < 0.001), than that for the control treatment (\blacktriangle , solid line).

increase in ANPP with MAT that is equivalent to a Q_{10} of 1.7 ($r^2 = 0.24$, P < 0.001). Excessively high rates of ecosystem root respiration would not allow for high aboveground productivity (Vogt et al. 1996), but the more tempered increase in ecosystem root respiration with MAT, illustrated in Figure 1, avoids excessive ecosystem root respiration for warm climates, allowing increases in productivity to occur. Similar rates of increase with MAT for forest ecosystem root respiration (this study) and ANPP (Vogt et al. 1996) are consistent with the idea that total autotrophic respiration uses a constant proportion of GPP (Litton et al. 2007). It should be noted, however, that others have not always found such relationships. For example, Bond-Lamberty et al. (2004) did not find a relationship between soil autotrophic respiration and aboveground, belowground or total NPP for 17 forested sites.

Across forest ecosystems, annual ecosystem root respiration increases at a much lower rate than occurs within ecosystems in response to short-term temperature changes. This suggests that ecosystems from warmer climates must have either lower root biomass or roots with lower metabolic capacity (i.e. lower respiration rate at a given temperature). Our examination of published fine-root specific respiration rates and biomass suggests both mechanisms likely play a role. The increase in mid-growing season fine-root specific respiration rate with increasing MAT (Figure 2A) is representative of a Q₁₀ of about 1.2, far less than the typical Q₁₀ for fine root respiration associated with shortterm changes in measurement temperature (mean 2.7, range 1.9 to 5.6, Table 2). Using specific respiration rates adjusted to a common temperature of 16 °C as an indicator of metabolic capacity, there is a tendency for declining metabolic capacity with increasing MAT (Figure 2B). This would suggest that root system respiratory capacity is acclimated to growth temperature. Essentially, fine roots are constructed with a smaller metabolic machine that runs faster due to warmer conditions, allowing root functions to be carried out without unneeded C loss. Under such a scenario, the maximum respiratory rate might actually be similar for plants from warm and cold locations, with the temperature at which the maximum rate occurs being lower for the cold location.

One mechanism that can result in lower metabolic capacity is the construction of plant tissues with lower protein and amino acid contents. Such roots would have lower N concentrations and lower respiration rates, in agreement with the many reports of strong correlations between tissue N and respiration rate (Burton et al. 1996, 2002; Ryan et al. 1996; Zogg et al. 1996; Atkinson et al. 2007). Tjoelker et al. (1999) found conifer seedlings grown at warmer temperatures had much lower foliar N concentrations associated with lower dark respiration rates at a given temperature, and Atkinson et al. (2007) found temperature acclimation in roots of herbaceous plants grown at warmer temperatures that was partially, but not totally, explained by lower tissue N. For the experiments described in Table 2, there is indeed a strong relationship between tissue N concentration and specific respiration rate at the 16 °C reference temperature (Figure 6). The two instances of warm MAT for which root N data were available both had low root N and low specific respiration rates (Table 2). It should be noted that low root N and specific respiration rates were also common in many boreal forests (Table 2), presumably due to nutrient limitation in cold, wet, low productivity forests with low rates of nutrient release, rather than acclimation to warm temperatures.

There is considerable noise around the linear trends for the relationships between specific respiration rates and MAT

Table 3.	Surface soil	moisture	contents f	or three	Harvard	Forest so	il warming	experiments	in Septemb	er, 2007
----------	--------------	----------	------------	----------	---------	-----------	------------	-------------	------------	----------

Experiment	Moisture units	Control	Heated	P-value
1991	Volumetric %	6.4 (0.2)	5.7 (0.4)	0.153
2003: Forest floor	Gravimetric %	50.3 (6.8)	35.2 (2.4)	0.044
2003: Surface soil	Gravimetric %	27.8 (1.2)	22.9 (0.7)	0.002
2006	TDR (volumetric %)	11.6 (0.8)	9.7 (0.3)	0.051

Values are the mean, with standard error in parentheses. TDR, time-domain reflectometry.

Figure 6. Linear increase in specific respiration rate at 16 °C with N concentration (r = 0.59, P = 0.02) for the studies listed in Table 2.

Boreal (○); non-boreal (■).

(Figure 2). This is likely due to in part to site-to-site variation in nutrient and moisture availability and their effects on GPP, net growth and autotrophic respiration. However, the ability for ecosystem root activity to be constrained by reductions in root biomass, rather than reductions in metabolic capacity, also appears to play a role. In some cases, fairly high root respiration rates occurred at warm locations (Figure 3), but in these situations, root biomass was consistently low. There were no instances of high mid-season respiration rates and high root biomass occurring together.

Root respiration in soil warming experiments

Our comparisons across ecosystems and climatic zones indicate that stand-level root respiration in forests is constrained under warm conditions by either low root biomass or low respiratory capacity. Of more concern with regard to climatic change is whether or not root biomass or respiratory capacity will change within an ecosystem as climate warms. Previous soil warming experiments in forests have examined soil respiration, but generally do not provide information on either specific root respiration rates or root biomass. Still, changes in soil respiration over time provide some insight regarding possible changes in root system respiration.

Ecosystem warming experiments typically show significant increases in soil respiration in the first 1–3 years of warming, but the enhancement tends to lessen over time (Peterjohn et al. 1994; Rustad et al. 2001; Melillo et al. 2002, 2004; Eliasson et al. 2005; Bronson et al. 2008). This transient response is often attributed to rapid decomposition of labile soil C compounds in the first years of soil warming (Peterjohn et al. 1994; Melillo et al. 2002, 2004; Eliasson et al. 2005; Davidson and Janssens 2006). After this period, available substrate could become more limiting and the heterotrophic portion of soil respiration would not be greatly elevated. Still, soil respiration should remain measurably elevated due to greater autotrophic root respiration, unless root biomass or respiratory capacity has changed. If root biomass and metabolic capacity are unchanged, then soil temperature increases of 4-5 °C would increase root respiration from 32%-73%, assuming typical Q10's for root respiration of 2-3. Root respiration tends to produce about one half of annual soil CO₂ efflux for forested ecosystems (Hanson et al. 2000; see also Table 1 and references therein). Thus if root biomass and root metabolic capacity are unchanged by soil warming, the 4-5 °C warming typical of forest soil warming experiments should result in an increase of 16%-37% in soil respiration due to increased ecosystem root respiration alone. Instead, soil respiration rates were reported to be 11% greater after 2 years of 5°C soil warming in black spruce (Bronson et al. 2008) and only 5% greater after 7 years of 5 °C soil warming in a mixed hardwood forest (Melillo et al. 2002). Even very low contributions of root respiration to soil respiration (approximately 20%, Melillo et al. 2002), should cause increases in soil respiration of 8%-15% for a 5 °C warming and Q10 between 2 and 3.

In the long-term, heterotrophic respiration in these experiments should be approaching equilibrium with detrital inputs after enhanced loss of labile soil C has subsided. If detrital inputs in these experiments were little changed by warming, or somewhat greater due to enhanced productivity (Rustad et al. 2001; Strömgren and Linder 2002), then soil respiration would have to be measurably increased if root-associated respiration increased exponentially with temperature in accordance with published Q_{10} values. Since this has not happened, increases in root system respiration in soil warming experiments would appear to have been constrained by either changes in root biomass or changes in root metabolic capacity. Bronson et al. (2008) found that heating soil alone, or soil and air, resulted in reduced root biomass for 12-year-old black spruce plantations, in agreement with this assumption.

Our examination of fine root specific respiration rates for three soil warming experiments at Harvard Forest suggests decreases in metabolic capacity are occurring, to some degree, in those experiments. By comparing heated and control plots from the three experiments, we have documented long-term values of Q_{10} for root respiration that are much lower than short-term Q_{10} values for the same locations. These findings are in agreement with previous examinations of whole-plant respiration in agricultural and floricultural warming experiments, where long-term Q_{10} values, based on comparisons across growth temperatures, often were between 1.2 and 1.6, and sometimes were less than 1.0 (Frantz et al. 2004; van lersel 2006). Lower long-term Q_{10} and lower respiration rates at the constant reference temperature for roots from warmed soils of all three experiments at Harvard Forest may indicate physiological acclimation to warmer temperatures (Atkin et al. 2000), but they also may simply be a consequence of drier soils on the heated plots (Table 3), as dry soils have previously been shown to reduce root respiration (Bryla et al. 1997, 2001; Burton et al. 1998; Moyano et al. 2008).

True acclimation could occur through the construction of fine roots with lower root amino acid and protein concentrations, as discussed in the preceding section. We did not see evidence for this, but instead found lower respiration rates per unit N in fine roots from warmed soils. Thus either drier soil conditions are responsible, or temperature acclimation associated with substrate availability and/or sink strength, rather than enzyme availability, has occurred. Tjoelker et al. (2008) compared jack pine foliar respiration measured at 20 °C in three North American common gardens and found seasonal acclimation in dark respiration, with rates inversely tracking seasonal changes in temperature. Temperature acclimation was associated with variations in N and soluble carbohydrates, indicating that regulation by both enzyme and substrate availability was involved. Lee et al. (2005b) found similar mechanisms underlying foliar temperature acclimation in oak and maple seedlings. These results are consistent with the hypothesis that over sufficiently long periods (weeks to a year), autotrophic respiration is linked to photosynthesis (Saxe et al. 2001). Alternatively, Atkin and Tjoelker (2003) describe a mechanism by which acclimation can occur through adenylate control caused by demand for the products of respiratory activity being significantly less than the ability of the respiratory pathways to provide them (i.e. low use of adenosine triphosphate resulting in reduced regeneration of adenosine diphosphate). Acclimation associated with either substrate or adenylate control could occur without changes in tissue N concentration.

We have used respiration at a constant, intermediate temperature to assess acclimation, but it should be noted that additional methods for assessing acclimation, both within and across ecosystems, include determining the temperature of maximum respiration rate and assessing respiration at both cold and warm constant temperatures. The combination of these methods might help one determine whether the entire response curve for respiration versus temperature shifts right for plants grown at higher temperatures, or if the shape of the curve is altered. For the Harvard Forest warming plots, root respiration measurements made throughout a growing season might help elucidate the relative importance of dry soils and physiological acclimation in reducing root metabolic capacity, assuming such a sampling regime includes periods when precipitation inputs had been sufficient to eliminate soil moisture differences between treatments. Still, our one-time sampling at Harvard Forest makes it clear that specific root respiration rates did not simply increase exponentially with long-term warming in accordance with observed Q10 relationships for short-term temperature changes.

Effects of co-occurring changes induced by warmer temperatures

Climatic warming can result in increased frequency of soil moisture deficits if precipitation inputs do not simultaneously increase enough in quantity and frequency to offset increased evaporative demand. In soil warming experiments, the cooccurring decline in soil moisture availability (Rustad et al. 2001) often influences ecosystem responses as much or more than temperature change (Saleska et al. 1999; Loik et al. 2000; Shaw and Harte 2001). As described above, drier soil conditions can result in reduced root respiration rates. The impact of periodic moisture deficits on annual ecosystem root respiration will depend on the duration and intensity of moisture deficits during the growing season. Reduced root respiration due to drought will decrease the annual C cost of root activity, but severe moisture deficits might also limit ecosystem photosynthesis and net productivity. Controlled studies that manipulate temperature and moisture, at a scale encompassing entire forest root systems, are lacking for forests, and the lack of multiple-factor, multipleyear experiments of ecosystem responses to global change factors limits our ability to make predictions of real-world future responses (Morgan 2002).

If moisture is sufficient, a warmer climate can increase rates of organic matter production and decomposition. In soil warming experiments, increased N mineralization has often occurred (Rustad et al. 2001; Strömgren and Linder 2002). Evidence to date from the Harvard Forest warming experiments suggests that the effects of warming on soil moisture status are not overriding the effects of higher temperatures, as N availability has increased (Melillo et al. 2002). Increased N availability has the potential to alter proportional allocation of C to above- and belowground sinks. Forests often respond to fertilizer N additions by decreasing root biomass (Haynes and Gower 1995; Ryan et al. 1996; Litton et al. 2007). Thus warming-induced enhancement of N availability provides a potential mechanism, reduced root biomass, which could result in the occurrence of little change or even reductions in ecosystem root respiration with warming, rather than exponential increases

This paper has focused on responses of root system respiration to climatic warming, but similar responses are also possible for the fungal portion of the belowground absorbing network and for rhizosphere microbes dependent on substrates produced by live roots (exudates and sloughing). Both of these can contribute important portions of root-associated respiration. Allocation to mycorrhizal fungi has been reported to use from 0% to 22% of GPP in forest ecosystems, with mycorrhizal mycelium contributing from 3% to 25% of soil respiration (Heinemeyer et al. 2007; Moyano et al. 2008). The response of mycorrhizal fungal respiration to temperature is not well understood, but recently both Heinemeyer et al. (2007) and Moyano et al. (2008) have reported that respiration of mycorrhizal hyphae did not respond to changes in soil temperature. Heinemeyer et al. (2007) did find significant decreases in ectomycorrhizal hyphal respiration as soils dried.

The alteration of N availability by warming could potentially have important effects on rhizomicrobial activity. Decreases in mycorrhizal abundance and activity (Wallenda and Kottke 1998; Treseder 2004; van Diepen et al. 2007) as well as community structure (Lilleskov et al. 2002) can occur in response to enhanced N availability in forest ecosystems, although occasional instances of little change and increases have also been noted (Treseder et al. 2007). Rhizosphere microbes can also be affected. Phillips and Fahey (2007) found N additions reduced microbial respiration and mycorrhizal colonization in a northern red oak plantation; reduced root biomass, microbial respiration and reduced only microbial respiration in a yellow birch forest. In all cases, N availability effects on microbial respiration were greater in the rhizosphere than bulk soil.

Despite the need for much more information regarding the responses of mycorrhizal fungi and rhizosphere microbes to altered environmental conditions, the evidence available suggests that exponential increases with climatic warming in their contributions to root-associated respiration are unlikely, due in part to the negative effects of co-occurring changes in moisture and nutrient availability.

Across ecosystems, root associated respiration tended to increase from cooler to warmer climates. However, the rate of increase across ecosystems was less than would be caused by exponential increases similar to those occurring for specific root respiration in response to short-term warming. In warmer climates, ecosystem root respiration was constrained by either lower root biomass or the production of fine roots with lower metabolic capacity. Our cross-ecosystem comparison found no occurrences of ecosystems with both large root biomass and high respiratory capacity in warm climates. It is not known if reductions in root biomass or specific respiratory capacity will occur within a given ecosystem in response to long-term climatic warming, but limited evidence from existing forest soil warming experiments suggests that decreases in both can occur in response to the combination of warmer soil, drier conditions and altered N availability predicted for warmer climates. Modeling efforts that allow root respiration to increase exponentially with temperature may be suitable for estimating the effects of shortterm climatic variation, but are likely to over-predict ecosystem root respiration rates following long-term climatic warming, and thus may underestimate the amount of C available for other uses, including NPP. To address this issue, there is a need for studies that manipulate temperature and moisture at scales that would encompass entire forest root systems. Data from such studies on the tissue and ecosystem level responses of roots, mycorrhizae and rhizosphere microbes, gathered across growing seasons and years, will allow modelers to better predict belowground C allocation for future climates, C available for

aboveground productivity, and contributions of root systems to soil CO₂ efflux.

Materials and Methods

Effects of temperature on annual ecosystem root respiration

Published values for annual forest root respiration from 44 stands were examined to assess the cross-ecosystem relationship between annual C efflux from root respiration and mean annual temperature (MAT) (Table 1). The MAT for the studies ranged from $-4.7 \,^{\circ}$ C to $25.8 \,^{\circ}$ C. Very young stands with root systems that might not fully occupy the soil were excluded. Semiarid forests, with sparse canopy cover were also excluded from the assessment. Methods used to calculate annual root respiration included root exclusion by trenching (17 studies), elimination of root respiration by harvest or girdling (three studies), carbon mass balance (12 studies), and modeling annual root respiration from periodic respiration measurements of excised roots (10 studies) or intact roots (two studies).

For root exclusion methods, annual root-associated respiration was calculated as the difference between soil respiration on plots with and without roots. Root-associated respiration for these studies included CO_2 efflux produced by live roots, mycorrhizae, and microbial use of soil C inputs from root exudation or sloughing. Many of the studies that used trenching or harvest to eliminate root-associated respiration also adjusted values to account for the estimated contribution to soil respiration of CO_2 flux from decaying dead roots, or allowed time for this source of soil CO_2 efflux to subside.

Carbon mass balance methods involved subtracting measured contributors to soil respiration (e.g. decomposition of aboveground and belowground litter decomposition) from measured soil respiration. Depending on the assumptions made, some studies estimated total ecosystem root respiration, while others estimated root-associated respiration, as defined above, or rhizosphere respiration. Rhizosphere respiration was equivalent to root-associated respiration less the contribution of mycorrhizal hyphae existing in bulk soil, away from the roots. For C mass balance methods, above- and belowground litter decomposition was either assumed to be in equilibrium with inputs or was adjusted using rates of change in soil C storage over time. Measured or published values for mycorrhizal contributions to soil respiration and rates of root C exudation were used to further adjust values in some cases, to allow estimates of the components of root-associated respiration, including the contributions of roots alone.

Studies that modeled root respiration from individual measurements first derived relationships between root respiration rate and temperature (or temperature and moisture). Data used to do this were gathered from either multiple sample dates or from manipulation of measurement conditions on a single date. These relationships were then used in conjunction with onsite measurements of root biomass and soil temperature and moisture made throughout the year, in order to estimate annual root respiration. These studies only estimate root respiration for the root size classes from which the empirical relationships were derived (indicated in Table 1).

Using the published data in Table 1, the cross-ecosystem relationship between the natural log of forest ecosystem root respiration and MAT was assessed using linear regression.

Trade-offs between specific respiratory activity and root biomass

Relationships among specific root respiration rates, root biomass and MAT were assessed using published values for mid-growing season fine root respiration from 25 forests for which fine root biomass data was also available (Table 2). Fine roots in these studies were typically defined as being <1 mm or <2 mm in diameter. Mean annual temperature for the study locations ranged from $-4.7 \,^{\circ}$ C to $21.7 \,^{\circ}$ C. Mid-growing season respiration rates were used as an indication of the greatest rate of C flow to root respiration typically occurring. Most studies (13) determined respiration rates on excised fine roots using infra-red gas analyzers (IRGA), but IRGA measurements on intact root mats were also fairly common (nine studies). In three studies, root respiration rates were determined by dividing mid-growing season root respiration flux (g C/m² per s) from trenching studies, by root biomass (g/m²) for the same location.

Trade-offs between root biomass and specific root respiration rates in regulating ecosystem-level root respiration were assessed using linear regression. Fine root-specific respiration rates adjusted to the median temperature of all of the studies, 16 °C, were used as an indicator of fine root metabolic capacity. Published Q₁₀ values for the study locations were used if available (23 studies. Table 2) to make the adjustment to 16 °C. For the two studies that did not provide a Q₁₀ value, a Q₁₀ of 2.5 (midway between median and mean Q10 values in Table 2), was used to determine a respiration rate at 16 °C. The respiration rates at 16 °C were used both to assess the relationship between metabolic capacity and root N concentration and to determine whether or not there was a tendency for metabolic capacity to decrease as MAT increased. Note that such a relationship would not preclude the possibility that realized respiration rates in the field would be higher at warmer sites, due to the effects of warmer field temperatures being sufficient to counteract the lower metabolic capacity at the 16 °C reference temperature.

Root respiration rates in Harvard Forest soil warming experiments

In September, 2007, fine root (<1 mm) respiration rates were measured in control and heated plots of three soil warming

experiments at Harvard Forest. The experiments used buried heating cables to warm the soil to a target of 5 °C above ambient soil temperature (Peterjohn et al. 1994). The warming experiments varied in age and size of treated areas and included: a study with warming initiated in 1991 that used 6×6 m plots, with six replicates per treatment (Melillo et al. 2002); a study with warming initiated in 2003 that used large, $30 \text{ m} \times 30 \text{ m}$, unreplicated control and heated plots; and an experiment with warming initiated in 2006, with $3 \text{ m} \times 3 \text{ m}$ plots and six replicates per treatment. The ecosystems at the Harvard Forest sites are even-aged, mixed hardwood forests whose dominant tree species include paper birch, sugar and red maple, black oak and striped maple (Melillo et al. 2002).

Specific root respiration rates per gram dry weight were determined at ambient soil temperature for control (approximately 15 °C on the measurement date) and heated plots (approximately 21°C on the measurement date) and at a constant reference temperature of 18 °C. Respiration rates were measured using excised roots collected with 5 cm diameter \times 10 cm deep soil cores. Samples of fine roots (<1 mm diameter) were hand sorted from the cores and brushed free of adhering soil and organic matter, with approximately 2 g fresh weight placed in a respiration cuvette attached to an infrared gas analyzer (CIRAS-1 portable gas analyzer, PP Systems, Haverhill, MA). Respiration was analyzed at a CO₂ concentration of 1 000 µL/L which approximates the concentrations typically found near the soil surface in northern hardwood forests (Burton and Pregitzer 2003). The base of the aluminum root respiration cuvette was either inserted into the soil, allowing roots inside to be maintained at ambient soil temperature during measurement, or placed in a water bath at 18 °C to enable respiration rates to be measured at the 18 °C reference temperature. Measurements at a constant reference temperature are considered to be one of the most reliable tests for the occurrence of partial acclimation in response to either seasonal changes in temperature or to warming treatments (Atkin et al. 2000). All root respiration samples were subsequently returned to the laboratory, rinsed with deionized water to remove any soil or organic matter not removed during field-cleaning prior to measurement (<2% of sample weight), dried for determination of actual sample weight, and analyzed for N concentration using an elemental analyzer (Carlo Erba NA 1500 NC, CE Elantech, Lakewood, NJ). One sample per plot was taken for the 1991 experiment (six control and six heated). For the 2003 large plot experiment, root samples from six separate locations within each plot were measured. Samples from two control and two heated plots were measured from the 2006 experiment. Differences among experiments (1991, 2003, 2006) and warming treatments (unheated control, heated 5 °C above control) in respiration rates at ambient and reference temperatures were examined using two-factor ANOVA. Relationships between root N and respiration rate at the 18 °C reference temperature were examined using linear regression, with differences between control and heated plots in regression slopes examined using analysis of covariance.

Soil moisture contents were measured for all experiments within 4 d of root respiration determination, as part of routine scheduled measurements for the experiments. Methods used included: volumetric water contents to a 5 cm depth taken 3 d after root respiration measurements for the 1991 experiment; gravimetric sampling of forest floor and surface mineral soil water contents 4 d prior to respiration measurements for the 2003 experiment; and time-domain reflectometry (TDR) measurements taken 1 d after root respiration measurement for the 2006 warming experiment. Precipitation events did not occur during this week-long period.

Acknowledgements

The authors thank Seeta Sistla, Alix Contosta, Sarah Butler and Jen Johnson for their help with field sampling at Harvard Forest and measurement of the soil moisture data and the Harvard Forest Long Term Ecological Research program for their support of the long-term warming experiments.

References

- Atkin OK, Edwards EJ, Loveys BR (2000). Response of root respiration to changes in temperature and its relevance to global warming. *New Phytol.* 147, 141–154.
- Atkin OK, Tjoelker MG (2003). Thermal acclimation and the dynamic response of plant respiration to temperature. *Trends Plant Sci.* 8, 343–351.
- Atkinson LJ, Hellicar MA, Fitter AH, Atkin OK (2007). Impact of temperature on the relationship between respiration and nitrogen concentration in roots: an analysis of scaling relationships, Q₁₀ values and thermal acclimation ratios. *New Phytol.* **173**, 110–120.
- Bond-Lamberty B, Wang C, Gower ST (2004). A global relationship between the heterotrophic and autotrophic components of soil respiration? *Glob. Change Biol.* **10**, 1756–1766.
- Bowden RD, Nadelhoffer KJ, Boone RD, Melillo JM, Garrison JB (1993). Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest. *Can. J. For. Res.* 23, 1402–1407.
- Bronson DR, Gower ST, Tanner M, Linder S, Van Herk I (2008). Response of soil surface CO₂ flux in a boreal forest to ecosystem warming. *Glob. Change Biol.* **14**, 856–867.
- Bryla DR, Bouma TJ, Eissenstat DM (1997). Root respiration in citrus acclimates to temperature and slows during drought. *Plant Cell Environ.* 20, 1411–1420.
- Bryla DR, Bouma TJ, Hartmond U, Eissenstat DM (2001). Influence of temperature and soil drying on respiration of individual roots in citrus: integrating greenhouse observations into a predictive model for the field. *Plant Cell Environ.* 24, 781–790.

Burton AJ, Pregitzer KS (2003). Field measurements of root respiration

indicate little to no seasonal temperature acclimation for sugar maple and red pine. *Tree Physiol.* **23**, 273–280.

- Burton AJ, Pregitzer KS, Crawford JN, Zogg GP, Zak DR (2004). Simulated chronic NO₃⁻ deposition reduces soil respiration in northern hardwood forests. *Glob. Change Biol.* **10**, 1080–1091.
- Burton AJ, Pregitzer KS, Ruess RW, Hendrick RL, Allen MF (2002). Root respiration in North American forests: effects of nitrogen concentration and temperature across biomes. *Oecologia* 131, 559–568.
- Burton AJ, Pregitzer KS, Zogg GP, Zak DR (1996). Latitudinal variation in sugar maple fine root respiration. *Can. J. For. Res.* 26, 1761–1768.
- Burton AJ, Pregitzer KS, Zogg GP, Zak DR (1998). Drought reduces root respiration in sugar maple forests. *Ecol. Appl.* 8, 771–778.
- Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. *Nature* 408, 184–187.
- Cropper WP, Gholz HL (1991). In situ needle and fine root respiration in mature slash pine (*Pinus elliottii*) trees. Can. J. For. Res. 21, 1589– 1595.
- Davidson EA, Janssens IA (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. *Nature* 440, 165–173.
- Davis JP, Haines B, Coleman D, Hendrick R (2004). Fine root dynamics along an elevational gradient in the southern Appalachian Mountains, USA. For. Ecol. Manage. 187, 19–34.
- Dilly O, Bach HJ, Buscor F, Eschenbach C, Kutsch WL, Middlehoff U et al. (2000). Characteristics and energetic strategies of the rhizosphere in ecosystems of the Bornhöved Lake district. *Appl. Soil Ecol.* 15, 201–210.
- Edwards NT, Harris WF (1977). Carbon cycling in a mixed deciduous forest floor. *Ecology* 58, 431–437.
- Edwards NT, Sollins P (1973). Continuous measurement of carbon dioxide evolution from partitioned forest floor components. *Ecology* 54, 406–412.
- Eliasson PE, McMurtrie RE, Pepper DA, Strömgren M, Linder S, Ågren GI (2005). The response of heterotropic CO₂ flux to soil warming. *Glob. Change Biol.* **11**, 167–181.
- Epron D, Farque L, Lucot E, Badot PM (1999). Soil CO₂ efflux in a beech forest: the contribution of root respiration. Ann. For. Sci. 56, 289–295.
- Ewel KC, Cropper WP Jr, Gholz HL (1987a). Soil CO₂ evolution in Florida slash pine plantations. I. Changes through time. *Can. J. For. Res.* 17, 325–329.
- Ewel KC, Cropper WP Jr, Gholz HL (1987b). Soil CO₂ evolution in Florida slash pine plantations. II. Importance of root respiration. *Can. J. For. Res.* **17**, 330–333.
- Fahey TJ, Tierney GL, Fitzhugh RD, Wilson GF, Siccama TG (2005). Soil respiration and soil carbon balance in a northern hardwood forest ecosystem. *Can. J. For. Res.* 35, 244–253.
- Frantz JM, Cometti NN, Bugbee B (2004). Night temperature has a minimal effect on respiration and growth in rapidly growing plants. *Ann. Bot.* 94, 155–166.
- Gaumont-Guay D, Black TA, Barr AG, Jassal RS, Nesic Z (2008). Biophysical controls on rhizospheric and heterotrophic components

of soil respiration in a boreal black spruce stand. *Tree Physiol.* **28**, 161–171.

- Gholz HL, Vogel SA, Cropper WP Jr, McKelvey K, Ewel KC, Teskey RO et al. (1991). Dynamics of canopy structure and light interception in *Pinus elliottii* stands, north Florida. *Ecol. Monogr.* **61**, 33–51.
- Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000). Separating root and soil microbial contributions to soil respiration: a review of methods and observations. *Biogeochemistry* 48, 115–146.
- Hanson PJ, Wullschleger SD, Norby RJ, Tschaplinski TJ, Gunderson CA (2005). Importance of changing CO₂, temperature, precipitation, and ozone on carbon and water cycles of an uplandoak forest: incorporating experimental results into model simulations. *Glob. Change Biol.* **11**, 1402–1423.
- Haynes BE, Gower ST (1995). Belowground carbon allocation in unfertilized and fertilized red pine plantations in northern Wisconsin. *Tree Physiol.* 15, 317–325.
- Heinemeyer A, Hartley IP, Evans SP, de la Fuente JAC, Ineson P (2007). Forest soil CO₂ flux: uncovering the contribution and environmental response of ectomycorrhizas. *Glob. Change Biol.* 13, 1786–1797.
- Högberg P, Nordgren A, Ågren GI (2002). Carbon allocation between tree root growth and root respiration in boreal pine forest. *Oecologia* 132, 579–581.
- Högberg P, Read DJ (2006). Towards a more plant physiological perspective on soil ecology. *Trends Ecol. Evol.* 21, 548–554.
- Jiang L, Shi F, Li B, Luo Y, Chen J, Chen J (2005). Separating rhizosphere respiration from total soil respiration in two larch plantations in northeastern China. *Tree Physiol.* 25, 1187–1195.
- King AW, Gunderson CA, Post WM, Weston DJ, Wullschleger SD (2006). Plant respiration in a warmer world. Science 312, 536–537.
- Kutsch WL, Staack A, Wötzel J, Middelhoff U, Kappen L (2001). Field measurements of root respiration and total soil respiration in an alder forest. New Phytol. 150, 157–168.
- Lalonde RG, Prescott CE (2007). Partitioning heterotrophic and rhizospheric soil respiration in a mature Douglas-fir (*Pseudotsuga menziesii*) forest. Can. J. For. Res. 37, 1287–1297.
- Lavigne MB, Boutin R, Foster RJ, Goodine G, Bernier PY, Robitaille
 G (2003). Soil respiration responses to temperature are controlled more by roots than by decomposition in balsam fir ecosystems. *Can. J. For. Res.* 33, 1744–1753.
- Lee MS, Nakane K, Nakatsubo T, Koizumi H (2003). Seasonal changes in the contribution of root respiration to total soil respiration in a cool-temperate deciduous forest. *Plant Soil* 255, 311–318.
- Lee MS, Nakane K, Nakatsubo T, Koizumi H (2005a). The importance of root respiration in annual soil carbon fluxes in a cool-temperate deciduous forest. *Agric. For. Meteorol.* **134**, 95–101.
- Lee TD, Reich PB, Bolstad PV (2005b). Acclimation of leaf respiration to temperature is rapid and related to specific leaf area, soluble sugars and leaf nitrogen across three temperate deciduous tree species. *Funct. Ecol.* **19**, 640–647.
- Lilleskov EA, Fahey TJ, Horton TR, Lovett GM (2002). Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. *Ecology* 83, 104–115.

- Litton CM, Raich JW, Ryan MG (2007). Carbon allocation in forest ecosytems. *Glob. Change Biol.* **13**, 2089–2109.
- Loik ME Redar SP, Harte J (2000). Photosynthetic responses to a climate-warming manipulation for contrasting meadow species in the Rocky Mountains, Colorado, USA. *Funct. Ecol.* 14, 166–175.
- Luo Y, Wan S, Hui D, Wallace LL (2001). Acclimatization of soil respiration to warming in a tall grass prairie. *Nature* 413, 622–625.
- Majdi H, Nylund JE, Ågren GI (2007). Root respiration data and minirhizotron observations conflict with root turnover estimates from sequential coring. *Scand. J. For. Res.* 22, 299–303.
- Malhi Y, Baldocchi DD, Jarvis PG (1999). The carbon balance of tropical, temperate and boreal forests. *Plant Cell Environ.* 22, 715– 740.
- Marsden C, Nouvellon Y, M'Bou AT, Saint-Andre L, Jourdan C, Kinana A et al. (2008). Two independent estimators of stand-level root respiration on clonal Eucalyptus stands in Congo: up scaling of direct measurements on roots versus the trenched plot technique. *New Phytol.* **177**, 676–687.
- Matamala R, Schlesinger WH (2000). Effects of elevated atmospheric CO₂ on fine root production and activity in an intact temperate forest ecosystem. *Glob. Change Biol.* 6, 967–979.
- Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP et al. (2002). Soil warming and carbon-cycle feedbacks to the climate system. Science 298, 2173–2176.
- Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP et al. (2004). Soil warming—a major consequence of global climate change. In: Foster D, Aber JD, eds. Forests in Time: The Environmental Consequences of 1000 Years of Change in New England. Yale University Press, New Haven. pp. 280–295.
- Morgan JA (2002). Looking beneath the surface. *Science* **298**, 1903–1904.
- Moyano FE, Kutsch WL, Rebmann C (2008). Soil respiration fluxes in relation to photosynthetic activity in broad-leaf and needle-leaf forest stands. Agric. For. Meteorol. 148, 135–143.
- Nakane K (1980). Comparative studies of cycling of soil organic carbon in three primeval moist forests. *Jap. J. Ecol.* **30**, 155–172.
- Nakane K, Kohno T, Horikoshi T (1996). Root respiration before and just after clear-felling in a mature deciduous broad-leaved forest. *Ecol. Res.* **11**, 111–119.
- Nakane K, Yamamoto M, Tsubota H (1983). Estimation of root respiration rate in a mature forest ecosystem. Jap. J. Ecol. 33, 397–408.
- O'Connell KEB, Gower ST, Norman JM (2003). Net ecosystem production of two contrasting boreal black spruce communities. *Ecosystems* 6, 248–260.
- Peterjohn WT, Melillo JM, Steudler PA, Newkirk KM, Bowles FP, Aber JD (1994). Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. *Ecol. Appl.* 4, 617–625.
- Phillips RP, Fahey TJ (2007). Fertilization effects on fine root biomass, rhizosphere microbes and respiratory fluxes in hardwood forest soil. *New Phytol.* 176, 655–664.
- Rey A, Pegoraro E, Tedeschi V, De Parri I, Jarvis PG, Valentini R (2002). Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. *Glob. Change Biol.* 8, 851–866.

- Ruess RW, Hendrick RL, Burton AJ, Pregitzer KS, Sveinbjornssön B, Allen MF et al. (2003). Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska. *Ecol. Monogr.* **73**, 643–662.
- Ruess RW, Van Cleve K, Yarie J, Viereck LA (1996). Contributions of fine root production and turnover to the carbon and nitrogen cycling in taiga forests of the Alaskan interior. *Can. J. For. Res.* 26, 1326–1336.
- Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE et al. (2001). A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. *Oecologia* **126**, 543–562.
- Ryan MG, Hubbard RM, Pongracic S, Raison RJ, McMurtrie RE (1996). Foliage, fine-root, woody-tissue and stand respiration in *Pi-nus radiata* in relation to nitrogen status. *Tree Physiol.* **16**, 333–343.
- Ryan MG, Lavigne MB, Gower ST (1997). Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate. J. Geophys. Res. 102, 28871–28883.
- Saleska SR, Harte J, Torn MS (1999). The effect of experimental ecosystem warming on CO₂ fluxes in a montane meadow. *Glob. Change Biol.* 5, 125–141.
- Saxe H, Cannell MGR, Johnsen Ø, Ryan MG, Vourlitis G (2001). Tree and forest functioning in response to global warming. *New Phytol.* 149, 369–400.
- Shaw MR, Harte J (2001). Control of litter decomposition in a subalpine meadow-sagebrush steppe ecotone under climate change. *Ecol. Appl.* **11**, 1206–1223.
- Shan J, Morris LA, Hendrick RL (2001). The effects of management on soil and plant carbon sequestration in slash pine plantations. J. Appl. Ecol. 38, 932–941.
- Steele SJ, Gower ST, Vogel JG, Norman JM (1997). Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada. *Tree Physiol.* 17, 577–587.
- Striegl RG, Wickland KP (1998). Effects of a clear-cut harvest on soil respiration in a jack pine – lichen woodland. *Can. J. For. Res.* 28, 534–539.
- Strömgren M, Linder S (2002). Effects of nutrition and soil warming on stemwood production in a boreal Norway spruce stand. *Glob. Change Biol.* 8, 1195–1204.
- Sulzman EW, Brant JB, Bowden RD, Lajtha K (2005). Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO₂ efflux in an old growth coniferous forest. *Biogeochemistry* **73**, 231–256.
- Tang J, Misson L, Gershenson A, Cheng W, Goldstein AH (2005). Continuous measurements of soil respiration with and without roots in a ponderosa pine plantation in the Sierra Nevada Mountains. *Agric. For. Meteorol.* **132**, 212–227.
- Tate KR, Ross DJ, O'Brien BJ, Kelliher FM (1993). Carbon storage and turnover, and respiratory activity, in the litter and soil of an oldgrowth southern beech (*Nothofagus*) forest. *Soil Biol. Biochem.* 25, 1601–1612.

- Tjoelker MG, Oleksyn J, Reich P, Zytkowiaki R (2008). Coupling of respiration, nitrogen, and sugars underlies convergent temperature acclimation in Pinus banksiana across wide-ranging sites and populations. *Glob. Change Biol.* 14, 782–797.
- Tjoelker MG, Reich PB, Oleksyn J (1999). Changes in leaf nitrogen and carbohydrates underlie temperature and CO₂ acclimation of dark respiration in five boreal tree species. *Plant Cell Environ.* 22, 767– 778.
- Treseder KK (2004). A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO₂ in field studies. *New Phytol.* 164, 347–355.
- Treseder KK, Turner KM, Mack MC (2007). Mycorrhizal responses to nitrogen fertilization in boreal ecosystems: potential consequences for soil carbon storage. *Glob. Change Biol.* **13**, 78–88.
- Trumbore SE, Davidson EA, de Camargo PB, Nepstad DC, Martinelli LA (1995). Belowground cycling of carbon in forests and pastures of Eastern Amazonia. *Global Biogeochem. Cycles* 9, 515–528
- Uchida M, Nakatsubo T, Horikoshi T, Nakane K (1998). Contributions of micro-organisms to the carbon dynamics in black spruce (*Picea mariana*) forest soil in Canada. *Ecol. Res.* **13**, 17–26.
- Valverde-Barrantes OJ (2007). Relationships among litterfall, fine-root growth, and soil respiration for five tropical species. *Can. J. For. Res.* 37, 1954–1965.
- van Diepen LTA, Lilleskov EA, Pregitzer KS, Miller RM (2007). Decline of arbuscular mycorrhizal fungi in northern hardwood forests exposed to chronic nitrogen additions. *New Phytol.* **176**, 175– 183.
- van lersel MW (2006). Respiratory Q₁₀ of marigold (*Tagetes patula*) in response to long-term temperature differences and its relationship to growth and maintenance respiration. *Physiol. Plant.* **128**, 289–301.
- Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O'Hara J, Asbjornsen H (1996). Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. *Plant Soil* 187, 159–219.
- Wallenda T, Kottke I (1998). Nitrogen deposition and ectomycorrhizas. New Phytol. 139, 169–187.
- White A, Cannell MGR, Friend AD (1999). Climate change impacts on ecosystems and the terrestrial carbon sink: a new assessment. *Glob. Environ. Change* 9, S21–S30.
- Widén B, Majdi H (2001). Soil CO₂ efflux and root respiration at three sites in a mixed pine and spruce forest: seasonal and diurnal variation. *Can. J. For. Res.* **31**, 786–796.
- Woodwell GM, Mackenzie FT (eds) (1995). Biotic Feedbacks in the Global Climatic System: Will the Warming Feed the Warming? Oxford University Press, Oxford.
- Wythers KR, Reich PB, Tjoelker MG, Bolstad PB (2005). Foliar respiration acclimation to temperature and temperature variable Q(10) alter ecosystem carbon balance. *Glob. Change Biol.* **11**, 435–449.
- Zogg GP, Zak DR, Burton AJ, Pregitzer KS (1996). Fine root respiration in northern hardwood forests in relation to temperature and nitrogen availability. *Tree Physiol.* 16, 719–725.