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Summary

We review probabilistic and graphical rules for detecting situations in which a dependence of
one variable on another is altered by adjusting for a third variable (i.e., non-collapsibility or non-
invariance under adjustment), whether that dependence is causal or purely predictive. We focus on
distinguishing situations in which adjustment will reduce, increase, or leave unchanged the degree
of bias in an association that is taken to represent a causal effect of one variable on the other. We
then consider situations in which adjustment may partially remove or introduce a bias in estimating
causal effects, and some additional special cases useful for case-control studies, cohort studies with
loss, and trials with non-compliance (non-adherence).
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1 Introduction

A common analysis question is whether adjustment for a variable C will reduce, increase,
or leave unchanged the degree of association between two other variables, say X and Y . The
question comes into focus at two stages of the analysis. First, the investigator may have a simple
qualitative model of the data-generating process and may wish to test whether predictions of
that model match the observed changes in associations that are induced by various adjustments.
Second, when the association of interest is taken to represent the causal effect of X on Y , the
investigator may wish to minimize bias by adjusting for the proper set of variables. In both
stages, predicting the effect of an adjustment on a given measure of association becomes a
question of central concern.

Many authors have considered aspects of adjustment effects using causal diagrams (e.g., Pearl,
1995; Greenland et al., 1999a; Robins, 2001; Greenland, 2003; Chaudhuri & Richardson, 2003;
Hernán et al., 2004; Schistermann et al., 2009; VanderWeele, 2009a; Didelez et al., 2010). In
this paper, we attempt to encompass these earlier results and reviews to provide a comprehensive
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guide to when adjustment may not fully remove or may even introduce a source of bias, based
on examining graphical models for the data-generating process. We contrast the impacts of
adjustment on odds ratios versus other measures such as risk differences and mean differences.
We show how adjustment may be used to discriminate among competing models. We also
consider some additional special cases useful for estimating causal effects from case-control
studies with differential selection, cohort studies with differential loss to follow-up, and trials
with non-compliance (non-adherence).

Specifically, we focus on graphical (and hence qualitative) tools for recognizing situations
in which an adjustment for C can or cannot alter a measure of the dependence of Y on X .
These tools apply whether that dependence is causal (i.e., a comparison of Y distributions
under different interventions on X ) or purely predictive (i.e., a comparison of Y distributions in
subpopulations defined by X ). Central to our discussion will be concepts of collapsibility. When
an adjustment does not alter a measure, the measure is said to be collapsible over C or invariant
with respect to the adjustment. Conversely, if an adjustment alters a measure, the measure is
said to be non-collapsible over C or non-invariant with respect to the adjustment. Thus, our
paper reviews graphical conditions for collapsibility or invariance of measures with respect to
particular adjustments.

When collapsibility cannot be deduced from the graph alone, we will say that we “expect”
adjustment to change our estimate (i.e., we expect non-collapsibility). That is because in those
cases, collapsibility will require sharp (dimension-reducing) constraints on the joint distribution
of the variables in the graph, and these constraints are often unnatural in form (e.g., requiring
perfect parametric cancelations; see Whittemore, 1978). Otherwise, we will use the phrase
“we might ordinarily expect” to indicate less precisely those situations we expect to hold in
ordinary applications in the health and social sciences, when violations seem to require unusual
distributions. We will draw heavily on statistical results for collapsibility of risk, rate, and odds-
based measures in contingency tables and binary regression (e.g., Whittemore, 1978; Samuels,
1981; Ducharme & LePage, 1986; Gail, 1986; Wermuth, 1987; Greenland & Mickey, 1988;
Geng, 1992; Frydenberg, 1990; Clogg et al., 1995; Guo & Geng, 1995; Greenland, 1996; Geng
& Li, 2002; Geng et al., 2002; Janes et al., 2010). Nonetheless, as with earlier graphical articles
our discussion applies to continuous variables as well, due to the non-parametric nature of the
formulas and graphical results we employ.

The paper begins by briefly reviewing necessary concepts and results from probability,
population sciences, and graph theory in the general form we will need. We then explain, in a
series of simple examples, how these concepts can be used to determine the qualitative impact
of various adjustments on bias in estimating causal effects. The examples provide the basic
graphical structures (subgraphs) that frequently appear within more complex models, and are
useful because bias arising within a subgraph would usually arise within any embedding model.

2 Conditioning, Summarization, and Standardization

Unless stated otherwise, all subpopulations and distributions we discuss will be within the
source population of the study, by which we mean the population serving as the source of study
subjects (not person-time). By conditioning on a variable (or set of variables) C we will mean
examining relations within levels of C (i.e., within strata defined by single values of C). By
summarization over C we will mean summarization of conditional (C-specific) dependencies
across C. This definition includes pure conditioning, in which the summary is the list (vector)
of C-conditional dependence measures, such as C-specific risk differences, risk ratios, log odds
ratios, and so on; it also includes averaging these measures over C.
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Adjustments and their Consequences 403

In practice, summarization is usually done using a regression coefficient under a highly
fictional model in which the coefficient relating X to Y is assumed constant across C (known
as homogeneity, uniformity, parallelism, “no interaction,” or “no effect modification”). Any
average coefficient must then equal this constant, so the method of averaging does not matter.
We will, however, focus on the general case, free of homogeneity assumptions, in which the
averaging method can be important.

By adjustment for C we will then mean one of the many ways one might adjust the
dependence of Y on X to account for the relations of C to Y and X . This definition includes
both conditioning and averaging of C-specific (conditional) measures, but also includes
standardization (comparisons of average outcomes), which can diverge from averaging of
C-specific measures. In common usage, the word “control” is often used as a synonym for
“adjustment” and will be used that way here. Adjustment should not however be confused with
experimental control (manipulation or intervention) as the consequences of experimental control
of C can be quite different from conditioning and other adjustments for C; we will point out
some parallels and divergences when discussing adjustments for causes of C.

Of special focus will be comparisons across X of the distribution of Y given X and C,
p(y|x, c), when this distribution is averaged over a specific distribution p∗(c) for C. Following
common usage in demography, epidemiology, and survey research, when p(y|x, c) is derived
from population observations, we will call the joint distribution p(y, x, c) for these observations
the source-population distribution, and p∗(c) the standard distribution, which need not equal the
marginal distribution p(c) of C in the source population. We will denote the resulting averages by

p{y|x ; p∗(c)} ≡
∑

c

p(y|x, c)p∗(c) (1)

(the sum is over all values of C). We will assume that p∗(c) = 0, whenever p(x, c) = 0 so that
the average remains defined. Such averages are commonly known as the “probability of Y = y
given X = x, standardized to (averaged over) p∗(c)”; they are the expectations of the indicator
of the event Y = y in a population which the conditional distributions of Y given X and C are
p(y|x, c), X is constant at level x, and the marginal distribution of C is p∗(c).

When Y is a health or disease outcome variable, p{y|x; p∗(c)} is the classical standardized
risk of Y = y when X = x and p∗(c) is the standard distribution (Rothman et al., 2008, ch. 3 and
21). In particular, when p∗(c) = p(c),

p{y|x ; p(c)} ≡
∑

c

p(y|x, c)p(c) (2)

are the risks of Y = y standardized to the total source population. Also of traditional interest
are averages over a specific “reference standard” p∗(c) = p(c|xr), where xr is a contextually
determined reference value of X (e.g., exposure or non-exposure):

p{y|x ; p(c|xr )} ≡
∑

c

p(y|x, c)p(c|xr ). (3)

Note that when (3) is evaluated at X = xr, C disappears from the expression:

p{y|xr ; p(c|xr )} =
∑

c

p(y|xr , c)p(c|xr ) = p(y|xr ).

A fundamental research question is how much variation in Y can be attributed to variation in X
rather than C. A non-parametric answer can be obtained by examining how averages, such as (1),
(2), or (3) vary with X . The resulting comparisons across X are called C-standardized measures
of the dependence of Y on X . The C distribution p∗(c) is held constant across these comparisons,
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thus removing this distribution as a factor contributing to variation in the Y distribution across X .
When the standard (weighting) distribution p∗(c) and the Y dependence p(y|x, c) are derived
from the same population, as in (2) and (3), the resulting average is said to be population
standardized. Examples include the standardized morbidity ratio (SMR) for subpopulation with
X = xr, which divides (3) evaluated at X = xr by (3) evaluated at another value of X ; it simplifies
to p(y|xr)/p{y|x; p(c|xr)} (Rothman et al., 2008, ch. 4).

Standardized distributions are equivalent to the distribution of Y given X obtained after
inverse-probability weighting of the joint distribution using the distribution of X given C
(Robins et al., 2000; Sato & Matsuyama, 2003; Rothman et al., 2008, ch. 21). For example,
p(y|x, c)p(c) = p(y, x, c)/p(x|c) and so

p{y|x ; p(c)} =
∑

c

p(y, x, c)

p(x |c)
,

More generally,

p(y|x, c)p∗(c) = p(y, x, c)p∗(c)

p(x |c)p(c)

and so

p(y|x ; p∗(c)} =
∑

c

p(y, x, c)r∗(c)

p(x |c)

where r∗(c) = p∗(c)/p(c) measures divergence of the chosen standard p∗(c) from the source-
population standard p(c). Marginal structural modeling (Robins et al., 2000; Rothman et al.,
2008, ch. 21) directly models these quantities, typically using smoothed estimates of p(x|c).
When C is sufficient for confounding control (see further), the contrasts among these quantities
(e.g., differences and ratios) are then referred to as marginal effects.

3 Measure Averaging and Collapsibility

A common question in practice is when C can be ignored in an analysis, for example, when
does p{y|x; p∗(c)} = p(y|x) so that the standardization step can be skipped? The following basic
collapsibility results provide some answers and have been noted in various forms at least since
Yule (1934):

(a) Any standardized probability (1) will simplify to p(y|x) if C is independent of Y given X ,
that is, if p(y|x, c) = p(y|x) then p{y|x; p∗(c)} = p(y|x).

(b) Population-standardized probabilities (2) and (3) will simplify to p(y|x) if C and X are
marginally (unconditionally) independent; that is, if p(c, x) = p(c)p(x) then

p{y|x ; p(c|xr )} = p{y|x ; p(c)} = p(y|x).

Result (a) follows from the fact that if p(y|x, c) = p(y|x) then p(y|x) factorizes out of the
summation over c and the latter summation becomes 1. Result (b) follows by noting that if
p(c, x) = p(c)p(x) then expression (2) becomes

∑

c

p(y, x, c)p(c)

p(x)p(c)
=

∑

c

p(y, x, c)

p(x)
= p(y, x)

p(x)
= p(y|x),
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and since p(c|xr) = p(c), expressions (2) and (3) are equal. It follows from these results that
population-standardized measures (such as differences and ratios of population-standardized
probabilities) are collapsible over C if either (a) C is independent of Y given X , or (b) C and X
are marginally independent.

Standardized measures are constructed by taking averages over C before comparisons (e.g.,
ratios or differences) across X . Many other familiar adjusted measures are instead derivable by
taking averages of comparisons within levels of C; that is, they average over conditional measures
of association, after comparison across X . Examples include inverse-variance (information)-
weighted averages. Recalling Jensen’s inequality (an average of a non-linear function does not
equal the function applied to the averages), it should not be surprising to find divergences
between collapsibility conditions depending on the step at which averaging is done (Samuels,
1981, sec. 3).

Standardized difference and ratio measures can be rewritten as averages of conditional
measures. For example, in comparing two levels x1 and x0 of X using formula (2), the difference is

∑

c

p(y|x1, c)p(c)−
∑

c

p(y|x0, c)p(c) =
∑

c

{p(y|x1, c) − p(y|x0, c)}p(c)

that weights the C-specific differences p(y|x1, c) − p(y|x0, c) by p(c). The standardized ratio is
∑

c
p(y|x1, c)p(c)

∑
c

p(y|x0, c)p(c)
=

∑
c
{p(y|x1, c)/p(y|x0, c)}w0(c)

∑
c
w0(c)

that weights the C-specific ratios p(y|x1, c)/p(y|x0, c) by w0(c) = p(y|x0, c)p(c) (Rothman
et al., 2008, p. 267). This ratio must fall within the range of the C-specific ratios. The same is
true of other averages such as Mantel–Haenszel risk ratios (Rothman et al., 2008, p. 275) and
geometric mean ratios (such as those based on information weighting of log risk ratios).

3.1 Collapsibility Over Constant Measures

Even if C and X are marginally independent, not all averages of C-specific measures
will be collapsible. Suppose, however, the C-specific measures are constant across C. If the
unconditional measure equals this constant value, the measure is said to be strictly collapsible or
simply collapsible over C (Whittemore, 1978; Ducharme & LePage, 1986; Geng, 1992). Since
all averages of the C-specific measures must equal this constant, simple collapsibility implies
collapsibility of these averages.

As an example, odds ratios are simply collapsible if X is independent of C given Y , as can be
seen from the familiar XY “inversion” (symmetry) property of odds ratios: The C-specific odds
ratios are

p(y1|x1, c)p(y0|x0, c)

p(y1|x0, c)p(y0|x1, c)
= p(x1|y1, c)p(x0|y0, c)

p(x1|y0, c)p(x0|y1, c)
.

If C is independent of X given Y the latter term becomes

p(x1|y1)p(x0|y0)

p(x1|y0)p(x0|y1)
= p(y1|x1)p(y0|x0)

p(y1|x0)p(y0|x1)
,

thus, demonstrating simple collapsibility over C.
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3.2 Non-collapsibility of Odds and Rate Measures

Because standardized risk differences and risk ratios are averages of C-specific values,
simple collapsibility of risk differences and risk ratios implies collapsibility of standardized
risk differences and risk ratios. Simple collapsibility of odds ratios and differences does not
however imply collapsibility of the standardized odds ratios and differences. Instead, rather
paradoxically, if C and Y are dependent given X but C is marginally independent of X , all
population-standardized odds ratios will be collapsible but simple collapsibility cannot hold
(Miettinen & Cook, 1981; Greenland et al., 1999b). Parallel results hold for odds differences,
as well as for rate ratios and differences (Greenland, 1996).

More generally, if an unadjusted (unconditional) measure is outside the range of the
C-conditional measures, then the measure cannot be collapsible with respect to any average
of C-conditional measures (such as a standardized risk difference or risk ratio). Nonetheless, an
odds ratio or rate ratio may still be collapsible with respect to other adjustments. For example,
standardized odds ratios constructed from (1) to (3) usually do not reduce to weighted averages
of C-specific odds ratios. Thus, an odds ratio may be collapsible with respect to a particular
standardization, yet may be non-collapsible with respect to any average over the C-specific odds
ratios. This conflict complicates the interpretation of odds ratios and has led to much confusion
in the literature. In particular, non-collapsibility over C with respect to averaging over odds ratios
(or their logs) is sometimes called a “bias,” but if C is sufficient for confounding control (see
further), it does not correspond to a bias in estimating causal effects (Greenland et al., 1999b).

3.3 Complete Collapsibility

Now suppose that conditioning on C does not alter the dependence of Y on X , that is,
p(y|x, c) = p(y|x) for all c and x (conditional independence of Y and C given X ). Then
conditioning on C cannot change any measure of dependence of Y on X , and any reasonable
adjustment for C (whether standardization of probabilities or averaging of measures across levels
of C) must produce a measure equal to the unconditional (unadjusted, marginal) measure. In
other words, independence of C and Y given X implies simple collapsibility for all dependence
measures. We will call this condition complete collapsibility over C: neither standardization nor
conditioning nor averaging measures over C will change the dependence of Y on X . Complete
collapsibility thus corresponds to a situation in which adjustments for C have no impact on bias
for any measure.

3.4 Conditional Collapsibility

All the above definitions and concepts can be applied conditional on a set S of further
covariates. For example, independence of Y and C given X and S implies complete collapsibility
given S (after conditioning on S, further conditioning or adjustment for C does not change
the dependence of Y on X given S). Similarly, an adjusted measure adjusted for C and S is
collapsible over C given S if it equals its counterpart from adjusting for S only.

4 Connectivity and Associations in Directed Acyclic Graphs

There are now many introductory reviews of causal and probabilistic analysis using directed
acyclic graphs (DAGs) (e.g., Greenland et al., 1999a; Glymour & Greenland, 2008; Greenland
& Pearl, 2010; Pearl, 2010a), as well as much more in-depth treatments (e.g., Pearl, 2009; Spirtes
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a) A C 
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b)        X       Y      
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Z 

Figure 1. Graphs with C connected to X and Y under all conditions.

et al., 2001). Figure 1 gives three basic cases: In (a) the covariate C is a cause of X and Y , in (b)
it is a mediator between X and Y , and in (c) it is an effect of both X and Y . We summarize briefly
the graphical concepts we will use to analyze them. Throughout, we will assume the graph
represents relations in a specific population under study. The results we will use apply even if
the graph represents only conditional independencies rather than causal relations, although as in
decision analysis their interest here derives from their causal interpretation (Kiiveri et al., 1984;
Spiegelhalter, 1987). Readers familiar with DAGs may skip this section.

Two arrows in a DAG are adjacent if each touches the same variable (whether by head or tail).
A path between X and Y is a sequence of adjacent arrows going through the DAG from X to
Y . A variable on a path between X and Y is an interceptor on the path. An interceptor C where
two arrowheads meet (two arrows collide, as in the path from X to Y in Figure 1(c)) is a collider
on the path, and the path is said to be unconditionally blocked at C. If instead C is where an
arrowhead meets a tail (as in the path from X to Y in Figure 1(b)) it is a mediator on the path.
Finally, if C is where two arrowtails meet (as in the path from X to Y in Figure 1(a)) it is a fork
on the path. Note that all three of these conditions are only relative to a path; for example, in
Figure 1(a), C is a fork on the path X←C→Y , a mediator on the path A→C→Y , and a collider
on the path A→C←X ; thus, it is not meaningful to speak of a variable as a mediator or collider
without reference to the path on which it is so.

A path is said to be unconditionally closed or blocked at every collider and unconditionally
open at every mediator or fork. Thus, a path is unconditionally open if it contains no collider;
conversely, if the path contains a collider it is unconditionally closed or blocked. Two variables
in a DAG are said to be unconditionally d-connected if there is an open path between them,
and are unconditionally d-separated (Pearl, 1988, 1995, 2009) if there is no such path. The
“d-” in these definitions stands for “directionally” and distinguishes these conditions from other
concepts of separation. Nonetheless, because the popular DAG literature uses only directional
concepts, in what follows we will shorten “d-connected” to “connected” and “d-separated” to
“separated” (as in Greenland et al., 1999a). We may then say that two variables are connected
by all the open paths between them.

A path is directed if it contains only mediators (so that one moves from arrowhead to arrowtail
at each variable in the path). If there is a directed path from one variable to another, the
tail-end variable (the start) is called an ancestor of the variable at the ending arrowhead; and
the variable at the final arrowhead (the end) is called a descendant of the starting variable. In a
DAG, no variable is its own ancestor (i.e., there are no feedback loops). If the DAG is taken as
a causal model, a variable is said to causally affect its descendants and be causally affected by
its ancestors.
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A path is open given a set of variables S if (i) S contains no mediator or fork on the path and
(ii) any collider on the path is either in S or has a descendant in S; otherwise it is closed given
S or blocked by S. Two variables in a DAG are connected given S if there is a path between
them that is open given S; otherwise they are separated given S. Two variables are adjacent if
they have an arrow between them. The variable at the tail is called the parent of the variable at
the head, which is called the child of the tail variable. The set of parents of a variable X in a
given DAG is denoted pa(X ). If X has no parent in the DAG, as in Figure 1(b), pa(X ) is empty
and X is said to be exogenous in the DAG; otherwise X is endogenous, as in Figure 1(a) where
pa(X ) = {C}.

4.1 Compatibility between DAGs and Distributions

A distribution p and a DAG over a set of variables are said to be compatible if p factorizes
into

∏
p(x|pa(X )), where the product is over all the variables (this product is called the Markov

factorization implied by the DAG). It can be shown (Pearl, 1988, 2009; Lauritzen, 1996; Spirtes
et al., 2001) that for any compatible p, two variables X and Y in a DAG will be independent given
another set of variables S in the DAG if X and Y are separated by S. The converse is not true in
general, but if S does not separate X and Y we would expect X and Y to be associated given S,
because exceptions in which connected variables are nonetheless independent in p given S
correspond to sharp constraints on p (and hence are sometimes referred to as “unstable” or
“unfaithful” properties of the distribution; Pearl, 2009; Spirtes et al., 2001).

The remainder of this paper is concerned primarily with describing properties of distributions
compatible with a given graph. As a simple example of such a property, adjacent variables will
always be connected and hence cannot be assumed independent, no matter what information we
obtain about the remaining variables in the DAG. In other words, adjacent variables may remain
dependent at any level of conditioning on the remaining variables in the DAG. Conversely, two
non-adjacent variables X and Y are separated by at least one of pa(Y ) and pa(X ), and will be
unconditionally independent if neither is a descendant of the other or a shared ancestor.

We emphasize that the statistical assumptions encoded by the DAG are carried by the absence
of arrows: Given non-adjacent variables X and Y with X a non-descendant of Y , X and Y will
be independent given the parents of Y . Thus, one should pay special attention to the contextual
justification for leaving certain variables non-adjacent (Greenland, 2010). In light of this caution,
in what follows we will assume each variable in a graph represents either a single variable or
else a set of variables such that every arrow from or into the variable represents a set of arrows
from or into every variable in the set it represents. If there are non-adjancies within the variables
in the set, there will be fewer open paths for bias transmission than if there were none, and the
results we present can be applied within the set to find more opportunities for bias control.

5 Separation and Collapsibility

We now consider when the relations encoded in a DAG signal the absence or presence of
collapsibility. Considering the DAG as a probabilistic influence network or Bayes net (Lauritzen
& Spiegelhalter, 1988; Pearl, 1986, 1988), information can flow from one point to another along
open paths. In particular, if two variables are connected, then information can flow between
them. This means we should not assume that connected variables are independent; in particular,
new information obtained about a variable C may (upon conditioning on that information) alter
our probabilities regarding any variable connected to it. Furthermore, if a variable C is connected
to both X and Y , we should not be surprised if obtaining and conditioning on information about
C alters the connection between X and Y .
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Conversely, because separation implies independence in compatible distributions, we obtain
the following two criteria for detecting collapsibility in a distribution given a compatible
graph. These criteria allow us to recognize graphically when a dependency is invariant under
conditioning and standardization:

(a) If C is separated from Y given X , then the dependence of Y on X will be completely
collapsible over C (i.e., unaltered by adjustment for C).

(b) If C is separated from X unconditionally, then population-standardized measures of
dependence of Y on X will be collapsible over C.

Both these criteria also apply conditional on a set S of covariates, and with C replaced by a
set of covariates.

When comparing two levels x1 and x0 of X , criterion (a) applies to standardized differences
and ratios of probabilities, such as p{y|x1; p(c)} − p{y|x0; p(c)} and p{y|x1; p(c)}/p{y|x0; p(c)}
derived from expression (2). Under criterion (b) (unconditional separation of C and X ), both
these measures equal the analogous unconditional (unadjusted) measures p(y|x1) − p(y|x0) and
p(y|x1)/p(y|x0) obtained by dropping p(c) from the expressions. (These measures usually take Y
to be a binary disease indicator with y denoting disease; our results apply to any Y and y.) Both
criteria also apply when comparing two levels y1 and y0 of the outcome Y via standardized odds
such as p{y1|x; p(c)}/p{y0|x; p(c)}, as well as to differences and ratios of these odds: Under
either criterion, the resulting measures will be unchanged by standardization.

Each of criteria (a) and (b) is sufficient alone, but neither is necessary and so the converse of
each is not quite correct. Nonetheless, if C is connected to Y conditional on X , then without more
restrictions we will not have complete collapsibility for the dependence of Y on X ; in particular,
we would expect the C-conditional risk differences and risk ratios and their summaries to differ
from the corresponding unconditional risk differences and risk ratios. Furthermore, if C is also
connected to X unconditionally, we would expect non-collapsibility for averages across C of the
risk differences and risk ratios. Again, collapsible exceptions require sharp constraints (unstable
or unfaithful properties) for the distribution, and do not arise with binary C (Whittemore, 1978).

Whether the changes upon conditioning on C or adjustment for C represent increased or
decreased bias depends upon further details, especially on the effect targeted for estimation
(Glymour & Greenland, 2008; VanderWeele, 2009a). Intuitively, we might think conditioning
on C will remove bias for estimating any effect of X on Y in Figure 1(a) and direct effects in
Figure 1(b), but will create bias for estimating the total effect (the net of all effects transmitted
through directed paths from X to Y ) in Figure 1(b) and any effect in Figure 1(c). As discussed
below, these intuitions are correct when targeting total-population effects.

When we consider odds p(y1|x, c)/p(y0|x, c) and their comparisons conditional on C, instead
of those computed from standardized probabilities, criterion (b) is no longer relevant. In its
place, we have

(c) If C is separated from X conditional on Y, then the odds ratio will be collapsible over C.

As a partial converse, if C is connected to X conditional on Y and is connected to Y conditional
on X , then we expect non-collapsibility over the C-conditional odds ratios (Didelez et al., 2010).
Again, we say “expect” because of special exceptions when C is not binary (Whittemore,
1978) and caution that, even in Figure 1(a), odds-ratio non-collapsibility partly represents a
mathematical peculiarity of odds ratios and differences rather than pure confounding (Greenland
et al., 1999b). Parallel remarks apply to differences and ratios of rates (hazards) (Greenland,
1996), with Y now understood to contain both time at risk and the outcome indicator.
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6 Relations to Causal Effects

The collapsibility results we have described do not assume the quantities at issue are related to
causal effects. Historically, most statistical treatments of collapsibility left that relation informal,
a practice that leads to pitfalls and thus has been gradually giving way to formal causal modeling.
We thus now consider some formal connections and how they serve as guides to when adjustment
will aid effect estimation.

6.1 Causal Models

Throughout, we assume the target of estimation is a causal parameter defined with respect to
an explicit causal model. This target parameter is usually called “the” effect of X on Y, although
there may be several different causal parameters (e.g., differences, ratios, etc.). A key question
in causal analyses is whether the targeted effect equals a particular association measure before
or after conditioning on a particular variable or set of variables. The answer will largely depend
on the structure encoded by the causal model. The discrepancy between the targeted effect and
an association measure is usually called the bias in taking the latter measure to equal the targeted
effect; it is this bias which will concern us in what follows. When it is present, it persists asymp-
totically; we will not consider other forms of bias (such as small-sample and sparse-data bias).

There are now many formal causal models in widespread use, reviewed for example, in Pearl
(2009). Fortunately, for our purposes all these models have extensive parallels and lead to the
same graphical algorithms for bias identification and control. One approach defines p(y|do[x])
as the distribution Y would have upon intervening to set X to the value x for everyone in the
population, when that is possible; a causal model on a set of variables V then specifies or
constrains these intervention distributions for every subset X and Y of V . This do[x] formalism
is closely related to the potential-outcome (counterfactual) model of causation, in which each
individual is presumed to have a well-defined potential-outcome variable Yx when administered
level x of X, whether or not x is the level actually administered; in that case p(y|do[x]) = p(yx)
(Pearl, 2009, ch. 7; Robins & Richardson, 2010).

In either formalism, care is needed in choice of X in order for the setting of X to a level x
represented by do[x] or Yx to make sense (Greenland, 2005a; Hernán, 2005). This would be so if X
indicated a treatment such as a vaccination, but not if X indicated a defining property of an indi-
vidual such as their sex. This issue is often subsumed under the topic of consistency (that Y = Y x

when X = x; see Cole & Frangakis, 2009; VanderWeele, 2009b; Pearl, 2010b). It must also be
assumed that any ancestor (cause) shared by two variables in the graph is in the graph (often
called the “no unmeasured confounders” assumption, although this is a misnomer since variables
in the graph may be unmeasured).

6.2 Sufficiency for Effect Estimation

When do [x] is well defined, we say a set of covariates S is sufficient or admissible for
estimating total-population effects of X on Y if p{y|x; p(s)} = p(y|do[x]); that is, S is sufficient
precisely in the case that standardization by p(s) yields the effect of setting X = x. This condition
is also known as sufficiency for confounding control, or adjustment sufficiency. When S is
sufficient, p{y|x; p(s)} is said to be unconfounded. S is minimal sufficient if it is sufficient but
no subset of S is. Note that it is possible for some supersets of S to be insufficient even though
S is sufficient and the superset contains no descendant of X or Y. A simple example is the “M
diagram” X ←A→C←B→Y in which the empty set is sufficient, that is, p(y|x) = p(y|do[x]) but
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p{y|x; p(c)} �= p(y|do[x]) for most compatible distributions, even though C is a non-descendant
of X and Y (the exceptions being “unfaithful,” i.e., obey sharp constraints).

If S is sufficient for the total-population effects and (as elsewhere in the current paper) we
assume no contagion (i.e., disease in one person does not cause disease in another person), we
expect standardization by p(s|xr) to be sufficient for estimating effects in the subpopulation with
X = xr; that is, we expect p{y|x; p(s|xr)} to equal the effect of having set this subpopulation to
X = x instead of its actual setting of X = xr (Shpitser & Pearl, 2009; see also Robins &
Richardson, 2010, appendix A). The converse is not correct: A set may be sufficient for some
choices for xr (some subpopulations) but insufficient for other choices of xr; more generally, a set
may be sufficient for some subpopulation effects but insufficient for others or for total-population
effects (Joffe et al., 2010). Contagion further complicates analysis of subgroups because then
the distribution in one subgroup may depend on the distribution and hence alteration of other
subgroups (Halloran & Struchiner, 1995).

6.3 Causal Graphs

In a DAG which represents a causal model on a set of variables V (i.e., in a causal graph),
arrow directions always reflect temporal ordering, and for any two disjoint subsets of variables,
X and Y in V :

(1) Every intervention distribution p(y|do[x]) from the causal model is compatible with the
graph; that is, every separation in the graph remains a valid conditional independence in
the post-intervention distribution p(y|do[x]), so that interventions destroy but never create
dependencies.

(2) The conditional distribution p(x|pa[X ]) remains invariant to interventions not directly
affecting X ; that is, for any subset Z of V that excludes X and its parents,

p(x|pa[X ], do[z]) = p(x|pa[X ]).

It can be shown (Bareinboim et al., 2011) that properties (1) and (2) are equivalent to the more
usual definition of causal graphs, in which an intervention do(x) removes all arrows pointing to
X and sets X to a constant X = x (Spirtes et al., 2001; Pearl, 2009).
Two useful properties following from (1) and (2) are:

(1) Conditional on a set S sufficient for estimating the total population effect of X on Y, X will
be connected to Y given S only via directed paths from X to Y.

(2) The set of parents of X, pa[X ], is a sufficient set for estimating the total-population effects
of interventions on X, that is, p{y|x; p(s)} = p(y|do[x]) whenever S = pa[X ].

(Pearl, 2009, p. 24). Sufficient sets that do not contain pa[X ] can be recognized using the
following criterion, based on paths that go through pa[X ]. Specifically, a path from X to Y is
said to be back-door (relative to X ) if it starts with an arrow into X. A subset S of V then satisfies
the back-door criterion for estimating the effect of X on Y if it (i) contains no descendant of X
and (ii) blocks every back-door path from X to Y. Such a set is sufficient for effect estimation
under the model (Pearl, 1995, 2009). Generalizations of the back-door criterion to sufficient sets
containing descendants of X are available (Pearl, 2009, pp. 339–340; Shpitser et al., 2010).

Now suppose that R is a sufficient set and T is a subset of R. Then, S = R−T will also
be sufficient if T is either independent of X given S or independent of Y given S and X. In
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graphical terms, this result implies that if S separates T from either X or Y, then S as well as
R will be sufficient. More generally, S will be sufficient if T = T1 ∪ T2 with T1 independent
of X given S and T2 independent of Y given S, X, and T1 (see Robins, 1997, corollary 4.1). In
graphical terms, this result implies that S will be sufficient if S separates T1 from X and S, T1,
X together separate T2 from Y. When R is not sufficient, the preceding condition still guarantees
that standardizing by S using p(s) will yield the same parameter as standardizing by R using p(r)
(Pearl & Paz, 2010, Thm. 3).

Tian et al. (1998) provide fast algorithms for finding minimally sufficient sets (when they
exist) of observed variables in DAGs which may include unobserved variables. Suppose then
we have found several minimal sufficient sets S1, . . . , Sn. Their union S = ∪i Si is then also
sufficient (Pearl & Paz, 2010, appendix), and efficiency considerations can lead to preference
for the unique minimally sufficient subset that, given X , separates Y from all other members of
S (Pearl 2011, section 3).

7 Effects of Conditioning and Adjustment in Basic Structures

We now apply the above results to determine the effects of conditioning and adjustment in
basic graphical structures (subgraphs) that frequently appear within causal models for studies. We
emphasize again that understanding simple structures is key to bias recognition in more complex
graphs: A bias arising within a simple graph will typically arise in any supergraph containing
(embedding) that simple graph. Conversely, we caution that the absence of bias within a simple
graph does not imply or even suggest absence of bias in an embedding supergraph.

The examples are organized around graphical properties of variables, rather than around
type of bias (which can only be determined after one writes down the graph or its algebraic
analog). This organization is based on the following application guideline: First, one should
write down the graph for the data generating process (or several, if the structure is in doubt
and sensitivity analysis is needed), which is essentially a non-parametric representation of the
data distribution function. Second, one should examine the graph to see the bias implications of
various adjustments.

7.1 Effects of Conditioning on an Interceptor

In each graph in Figure 1, C intercepts a path from X to Y. In particular, C is connected
to X unconditionally and conditional on Y , and to Y conditional on X. Thus, we expect non-
collapsibility over C (non-invariance under C conditioning) for all measures; that is, in almost
all cases, conditioning on C will change the risk differences, risk ratios, and odds ratios relating
X to Y. Nonetheless, the meaning of this change with respect to bias is quite different across the
graphs.

In Figure 1(a), the path between X and Y via C (X←C→Y ) has a fork at C, and so is an open
path; hence X and Y may be associated via this path. The association transmitted along this path
is a source of bias for estimating the effect of X on Y , sometimes called “classical confounding”
because the path contains a shared cause of X and Y (Greenland, 2003). Note that the key source
of this confounding is that C is uncontrolled, not that it is unmeasured. For example, C may
have been measured but left uncontrolled because it failed to have a “statistically significant”
association with X or with Y . Conversely, C may have been controlled without being measured
by virtue of design features (e.g., for practical purposes, a population-based study in Finland
will have controlled for conventional American “race” categories by being almost entirely white,
as well as other homogeneous Finnish-population characteristics).
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Conditioning on C will block (close) the confounding path in Figure 1(a); hence if X has
no effect on Y , then X and Y will be independent given C (independent within every stratum
or level of C), reflecting correctly this absence of effect. Put more generally, C alone satisfies
the back-door criterion and thus is sufficient for estimating effects; furthermore, it is minimal
sufficient. Hence, to estimate an effect of X on Y, we should condition on C. If we modified
Figure 1(a) by inserting a mediator M or fork F between C and X or between C and Y (but not a
fork between both C and X and C and Y ), C would remain sufficient (as would M alone, F alone,
or any combination of C, M , or F) and the value of expressions (1) and (2) would not change.

In Figure 1(b), the path between X and Y via C (X→C→Y ) is direct through C, and so is an
open path; hence X and Y may be associated via this path. In both Figures 1(a) and 1(b), the
open path will be blocked by conditioning fully on C; hence if X had no direct effect on Y, X
and Y would be separated given C, reflecting correctly this absence of effect. Thus, to estimate
a total effect of X on Y, we should not condition on C because C is a mediator (intermediate)
between X and Y, carrying part of the total effect; but if we want to estimate a direct effect of
X on Y, we would condition fully on C. We caution that in applications, further conditioning
on confounders of net and direct effects would be needed (Robins & Greenland, 1992; Cole &
Hernán, 2002).

Behavior opposite of the confounding case in Figure 1(a) arises in Figure 1(c), where the path
between X and Y via C (X→C←Y ) is blocked at C, and hence X and Y cannot be associated
via this path. This closed path will however be unblocked (opened) by conditioning on C; this
means that X and Y may be dependent given C (dependent within at least one level of C) even if
there is no effect of X on Y. This would continue to be so if we inserted a mediator M or fork F
between X and C or between Y and C (but not a fork between both). Thus, to estimate an effect
of X on Y, we should not condition on C, the opposite situation from Figure 1(a). Figure 1(c)
could arise when C is a complete-record indicator in database studies, an indicator of selection in
case-control studies, or a censoring indicator in cohort studies and trials with losses; for a more
general graphical treatment of the effect of conditioning on outcome (Y ) effects, see Didelez et
al. (2010) and Bareinboim & Pearl (2011).

7.2 Effects of Conditioning on a Descendant of an Interceptor

Consider next conditioning on a child Z of C for which the connection C→Z is not invertible,
so that at most conditioning on Z corresponds to only partial adjustment for C. The situations
in Figure 1 would arise if (for example) C was unmeasured and Z was an imperfect but non-
differential measurement of C or proxy for C (i.e., Z is independent of X and Y given C). Again,
if we do not condition on Z in Figures 1(a) and 1(b), X and Y remain connected through C,
which is a source of bias for estimating any effect of X on Y in Figure 1(a) or a direct effect in
Figure 1(b); in Figure 1(c), X and Y remain separated and there is no bias for estimating any
effect of X on Y.

What if we condition on Z only? For each case in Figure 1 we see that Z is connected to
X both unconditionally and conditional on Y, and is connected to Y given X. Thus we expect
non-collapsibility over Z for all measures. In Figures 1(a) and 1(b), one way to interpret the
changes in risk differences and risk ratios is that conditioning on Z partially closed the open path
connecting X and Y through C. In Figure 1(c), however, these changes correspond to a partial
opening of the unconditionally closed path X →C← Y. See Pearl (2009, p. 338) for a graphical
explanation using the concept of “virtual colliders.”

Conditioning on Z can be viewed as adjustment for C using a non-differentially misclassified
or coarsened (e.g., dichotomized) proxy. Under Figure 1(a), a traditional rule is that such
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non-differential proxy adjustment induces partial control of confounding (e.g., Greenland, 1980;
Fung & Howe, 1984; Savitz & Baron, 1989); that is, we would ordinarily expect conditioning
on Z to move us part way from the confounded unconditional (unadjusted) association of X
and Y toward the total effect of X on Y. Nonetheless, Brenner (1993) showed that this rule did
not in general extend to polytomous covariates. Ogburn & VanderWeele (2012) showed that
exceptions to this rule can occur even for binary covariates, but that the rule holds under mild
conditions for binary covariates when using SMR = p(y|xr)/p{y|x; p(c|xr)}, and also holds for
more general adjusted estimators and covariates under monotonicity of the C effects on X and
Y ; see also Chaudhuri & Richardson (2003, lemma 3.1). When Z represents a coarsening of C,
various algebraic results are available to determine whether conditioning on Z is sufficient for
control of confounding by C (Davis, 1986; Ducharme & Lepage, 1986; Geng et al. 2001, 2002;
Guo et al. 2001). Pearl (2010c) provides further conditions under which the X effect on Y is
identifiable from Z without C.

By conditioning on Z in Figure 1(b), it appears we are partially adjusting for the effect of X
on Y mediated through C; thus, for risk differences and risk ratios, we might ordinarily expect
this adjustment to move us partway from the total effect of X on Y toward a direct effect of X
and Y. Such movement introduces bias if our target is the total effect, but reduces bias if our
target is the direct effect. For a graphical explanation using the concept of “virtual colliders” see
Pearl (2009, p. 339).

Again, Figure 1(c) brings an opposite phenomenon from Figure 1(a): Conditioning on Z
produces an open non-causal path from X to Y, which we expect to introduce bias where none
existed before. In each figure, however, Z is separated from Y by C and X, implying that we will
have complete collapsibility over Z given C.

7.3 Effects of Conditioning on an Ancestor of an Interceptor

Turning now to a parent A of C, suppose that C is not completely determined by A (i.e., the
connection A→C is not perfect), so that at best conditioning on A corresponds to only partial
control of C. Unlike a descendant of C, A actually does control C in a causal sense. Hence, under
the diagrams we present, the consequences of conditioning on A parallel the consequences that
would follow if A were an (imperfect) intervention to set the level of C. Because of this parallel,
we will see some telling divergences from what happens when conditioning on the child Z of C:
This is because, unlike with A or C, intervention to change the level of Z could have no effect
on any other variable.

What if we condition on A only? In Figure 1(a) we see that A (like Z) is connected to X both
unconditionally and conditional on Y, and is connected to Y conditional on X, so we expect
non-collapsibility for all measures. For risk differences and risk ratios we can interpret these
changes as reflecting partial closure of the open path connecting X and Y through C. Thus, for
binary A we would ordinarily expect partial control of confounding if we condition on A in place
of C, moving us from the confounded unconditional (unadjusted) association of X and Y toward
the total effect of X on Y.

In Figure 1(b), however, A is separated from X unconditionally. Thus, from (b), population-
standardized measures will be collapsible over A. Nonetheless, A is connected to Y conditional
on X, so we expect some A-specific measures to differ from their corresponding unconditional
measure, which we might interpret as partial control of the effect of X on Y mediated through C.
Furthermore, A is connected to X conditional on Y, so we expect average odds ratios to differ from
unconditional odds ratios. It might be tempting to think that these odds-ratio changes represent
partial control of the effect of X on Y mediated through C, but the reality is more complex.
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a) A C 

     Z X      Y 

b)        X       Y      

    A C 

Z        

c) A C 

     Z X      Y 

d)        X      Y        

    A C 

Z 

Figure 2. Graphs with C separated from X or Y under some condition.

In Figure 1(c), A is not connected to Y conditional on X, and so, unlike with C or Z, we have
complete collapsibility over A. In graphical terms, conditioning on A does not even partially
open the path from X to Y through C, and thus induces no bias; this is so even if A determines
C completely (C = A), for in that case X and Y will no longer affect C (so the arrows into C
from X and Y disappear). Nonetheless, A is connected to X given C, to X given Y and C, and
to Y given X and C. Thus, unlike with Z, we expect non-collapsibility over A given C for all
measures. If C represents selection, this means that A will appear to be a confounder among the
selected, even though it is not. In contrast, in Figures 1(a) and 1(b), A is separated from Y by C
given X, so there will be complete collapsibility over A given C.

The results just described extend to any ancestor A of C that is not connected to X or Y except
through A.

7.4 Some Special Cases

We now consider some important special cases that often arise in observational studies of
effects. First, suppose C and Y share no ancestor and do not affect each other, except possibly
through X. Simple cases are shown in Figures 2(a) and 2(b), which drop the arrows between
C and Y in Figures 1(a) and 1(b). A, C, and Z are all separated from Y given X ; hence, we
have complete collapsibility over A, C, and Z, whether we consider them singly, in pairs, or all
together. Figure 2(a) is of special note because A, C, and Z could singly appear important in a
propensity-score analysis of the effect of X on Y, yet none would be needed or even desirable for
any adjustment procedure; see the discussion later on bias amplification and variance inflation.

Next, suppose C and X share no ancestor and do not affect each other, except possibly through
Y. Simple cases are shown in Figures 2(c) and 2(d), which drop the arrows between C and X
in Figures 1(a) and 1(c). In Figure 2(c), A, C, and Z are all unconditionally separated from X ;
hence population-standardized measures of dependence of Y on X are collapsible over A, C, or
Z, since p{y|x; p(c)} = p{y|x; p(a)} = p{y|x; p(z)} = p(y|x). Moreover, those measures will be
unconfounded, since p(y|x) = p(y|do[x]). Thus, A, C, and Z could singly appear important in a
Y -regression analysis of the effect of X on Y, yet none would be needed or even desirable for
any adjustment procedure. Nonetheless, C, A, and Z are all connected to X given Y and to Y
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given X ; hence we should expect the XY odds ratios to be non-collapsible over them despite the
lack of confounding (illustrating graphically the “odds-ratio paradox” discussed earlier).

In Figure 2(d), C and Z are connected to X unconditionally and to Y given X ; hence we expect
population-standardized measures of dependence of Y on X to be non-collapsible over C and Z,
and this remains so if we condition on A as well. On the other hand, A, C, and Z are separated
from X given Y, implying that odds ratios will be collapsible over all of them. Furthermore, if
we do not condition on C or Z, A will be separated from Y conditional on X and so we have
complete collapsibility over A.

Figure 2(d) can be taken as representing a case-control study with exposure X, disease Y, C
indicating selection, and Z indicating consent. In such a study, Y by definition affects selection
C very strongly, resulting in severe non-collapsibility over C of all measures except odd ratios.
Under this graph the unconditional measures are not confounded, hence this non-collapsibility
over C represents a strong bias from conditioning on C. This bias afflicts all familiar measures
that depend on absolute frequencies of Y values in some fashion, such as risk differences, odds
differences, and risk ratios; for example, risk ratios cannot exceed 2 if the absolute frequency of
Y = 1 is never below 1

2 , as often occurs in case-control studies. In contrast, odds ratios relating X
to Y depend only on relative frequencies of Y values given X and C, and hence are collapsible,
as can also be seen from the fact that C and Z are separated from X by Y ; this collapsibility can
be viewed as a graphical generalization of the famous result by Cornfield (1951), and justifies
use of the odds ratios from participants (C = Z = 1) to estimate the unconditional odds ratios
(Didelez et al., 2010; Bareinboim & Pearl, 2011).

Nonetheless, an effect of X (or of an ancestor of X ) on selection C (as in Figure 1(c)) or
consent Z will connect X to Y, and thus introduce bias in the odds ratio as well as in other
measures; this bias is the familiar Berksonian form of selection bias (Greenland et al., 1999a;
Glymour & Greenland, 2008; Pearl, 2009). Similar concerns arise in cohort studies in which
C represents loss to follow-up or other forms of censoring, in studies in which C indicates
completeness of records, and in trials in which C is a compliance indicator and the analysis
discards non-compliers (“per-protocol” analysis).

8 Extensions to Diagrams with Other Adjustment Variables

There are many ways to extend the previous graphical results. We present some examples
to illustrate how the rules we have described may guide us in selecting adjustment variables
that are not confounders in the classical sense that C is in Figure 1(a). In each example in
Figures 3(a)–3(d), the XY association exhibits some form of non-collapsibility over C, but in the
first example this non-collapsibility amplifies a bias, in the second and third it reduces a bias,
and in the fourth it does both. We again emphasize that biases within these simple structures
extend to graphs that contain these structures as subgraphs.

8.1 Bias Amplification

Figure 3(a) adds an uncontrolled confounder U to Figure 2(a). A, C, and Z satisfy graphical
conditions for instrumentality, that is, unconditional connection to X and connection to Y only
through X as a mediator (Pearl, 2009); they are also connected to X given Y. Unlike in Figure 2(a),
however, A, C, and Z are connected to Y conditional on X via the path C→X←U→Y because X
is a collider on that path. Thus, we expect non-collapsibility over A, C, and Z, singly and jointly,
for all measures (if we could condition on U we would be back in a completely collapsible
situation like that in Figure 2(a)).
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a) A C      U 
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b) A C      U 
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c) A C              U 
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e)        X       Y        C      A 

         S         Z 
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            X      Y      
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Figure 3. Graphs with an additional ancestor U or descendant S of X or Y .

Considering cases in which effects can be given a sign (positive or negative), Bhattacharya
& Vogt (2007) and Pearl (2010d) show algebraically how the unconditional non-collapsibility
over A, C, Z in Figure 3(a) can lead to increased bias from the confounding back-door path
X←U→Y . In particular, in the class of models analyzed in Pearl (2010d), the bias from adjusting
for A, C, or Z is in the same direction as (and thus amplifies) the bias from failing to adjust
for U . Intuitively, when we consider the unconditional (crude) association between X and Y,
systematic variation in X is partly explained by variation in C and partly by variation in U .
The U component is transmitted to Y via the confounding path X←U→Y and so counts toward
bias. If we condition on C, however, the C component vanishes; hence all systematic variation
in X comes from variation in U and is transmitted to Y via the confounding path, with larger
bias as a result. Such amplification may also take place when C is a “near instrument,” that is,
a confounder that influences exposure much more strongly than the outcome (Pearl, 2011).

A test of collapsibility over an instrumental variable (C, A, or Z in Figure 3(a)) provides
a test of sufficiency of those covariates already controlled. Given insufficiency and due
attention to instrumentality (e.g., Hernán & Robins, 2006), we may turn to specialized methods
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for instrumental-variable adjustments (e.g., Sommer & Zeger, 1991). The bias-amplification
problem does not arise in these methods because the instruments are used to correct the
unconditional association, instead of being conditioned on as in outcome-regression and
propensity-score adjustment. Nonetheless, some authors recommend selecting all variables
that influence exposure X for propensity-score adjustments, without regard to their relation to
the outcome Y (e.g., Hirano & Imbens, 2001; Rubin, 2002, 2009). Unfortunately adjusting for
variables related only to exposure may not only amplify bias, but may unnecessarily inflate
variances (e.g., see Day et al., 1980; Thomas & Greenland, 1983; Brookhart et al., 2006; Austin
et al., 2007; White & Lu, 2011; de Luna et al., 2011).

Conditioning on apparent instrumental variables can also amplify certain types of selection
bias (Pearl, 2010d). Consider Figure 3(b), which modifies Figure 3(a) by replacing U→Y with
U→S←Y . Before conditioning on S, the association of X and Y will be collapsible over A, C,
or Z because X separates those variables from Y. Nonetheless, conditioning on S opens a path
from X to Y via U and S, introducing selection bias. Furthermore, X no longer separates A,
C, or Z from Y, so we should expect the association of X and Y to be non-collapsible over A,
C, or Z given S. This non-collapsibility over selection S may result in either amplification or
attenuation of bias.

On the other hand, if A, C, and Z remain separated from Y by X after selection, conditioning
on A, C, or Z will not amplify the selection bias. This is because A, C, and Z will remain
independent of Y given X. As an example, consider Figure 3(c), which modifies Figure 3(a) by
replacing U→X with U→S←X . Again, conditioning on S produces bias because it opens a path
from X to Y via U and S, but the association remains unchanged and hence is not further biased
by conditioning on A, C, or Z. This example illustrates bias equivalence (bias from conditioning
on S is equivalent to bias from conditioning on S and any combination of A, C, or Z), which is
discussed below.

8.2 Selection-Bias Removal

Figure 3(d) modifies Figure 1(c) by replacing X→C←Y with X→C→S←Y , as could arise
when S is an indicator of inclusion in the statistical analysis (S = 1 for inclusion) and C is an
adherence or complete-record indicator. The unconditional XY association is unbiased for the
effect of X on Y. S is connected to X both unconditionally and given Y, and is connected to Y
given X, so we expect conditioning on S alone (as in per-protocol and complete-case analyses) to
introduce bias in estimating the effect (Pearl, 2009, Ch.8; Daniel et al., 2011; Westreich, 2011).

As in Figure 1(c), in Figure 3(d) both C and Z are connected to X unconditionally and given
Y, while A is not connected to X. Nonetheless, A, C, and Z are independent of Y given X, so we
have complete collapsibility over them all. Conditioning on S reverses the situation, however:
A, C, and Z are connected to Y given X and S, and are connected to X given S and given Y and
S. Thus, we expect non-collapsibility over A, C, and Z given S, singly and jointly. For the odds
ratio, however, further conditioning on C removes this problem: S is separated from X given C
and Y, so we have collapsibility of the XY odds ratio over S given C as well as over C; hence this
odds ratio is collapsible over the compound variable {C,S} even though we cannot assume that it
is collapsible over S or over C given S. Put another way, conditioning on C removes the selection
bias in the odds ratio produced by conditioning on S, making C a “bias-breaking” variable for
the odds ratio (Geneletti et al., 2009; Didelez et al., 2010; Bareinboim & Pearl, 2011).

The same bias removal occurs if the X→C relation is reversed to C→X so that C is a fork
rather than a mediator between X and S (X←C→S), or if C is instead a mediator between Y
and S (Y→C→S) (Bareinboim & Pearl, 2011). Note, however, that in all these cases, removal
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of bias by conditioning on C is limited to the odds ratio; that is, we expect only odds-ratio
collapsibility over {C,S}. This limitation corresponds to the well-known fact that conditioning
on a variable affected by the outcome variable Y (as in case-control sampling) will alter the
observed proportions with a specific outcome (such as disease) and so alter risk differences,
risk ratios, and odds differences (Rothman et al., 2008, ch. 8; Pearl 2009, p. 339).

In Figure 3(d), we expect non-collapsibility of the XY odds ratio over A and over Z given S, but
(in contrast to {C,S}) we also expect non-collapsibility over {A,S}, {Z,S}, and {A,Z,S}. This
means that, after conditioning on S, we might ordinarily expect bias reduction from the change
induced by conditioning on A, Z, or both, but we would not expect complete bias removal.

Consider next Figure 3(e), where C is instead a fork between Y and S (Y←C→S). Again there
is no bias in any unconditional measure, but we expect all measures to be non-collapsible over
S and thus biased conditional on S. Further conditioning on C will remove this bias from all the
C-specific measures (this time, not just the odds ratios); that is, we expect C-specific measures
to be collapsible over S. Furthermore, we might ordinarily expect conditioning on A, Z, or both
to partially remove the bias from conditioning on S. Typically, however, one observes only the
distribution of C among the selected, p(c|S = 1); thus the population-standardized measures
cannot be recovered without further information to reconstruct p(c) (Bareinboim & Pearl, 2011).

Finally, in all the cases just described (Figure 3(d) and modifications, and 3(e)), one could
reconstruct all desired measures from selection-biased data if given selection probabilities
p(S = 1|R) where R is a set of variables separating S from X and Y (R may include X or Y or
both). These probabilities allow reconstruction of the (unbiased) marginal distribution p(x, y),
for example, by using their inverses to reweight the data or to construct direct bias corrections
(Horvitz & Thompson, 1952; Rothman et al., 2008, pp. 362–363).

8.3 Bias Equivalence

Figure 3(f) adds an uncontrolled unconditional confounder U of XY to Figure 3(d). Now the
unconditional XY odds ratio is biased, being a mix of the study effect X→Y and the association
over the confounding back-door path X←U→Y . Because this confounding path has no overlap
with the selection-bias path X→C→S←Y , the previous observations about the latter path
continue to apply: We have non-collapsibility over S but collapsibility over both C and {C,S}
relative to the U-confounded (unconditional) XY odds ratio. This collapsibility is a simple
example of confounding equivalence (Pearl & Paz, 2010): we are left with the same degree of
confounding (from U) whether we condition on nothing, on C, or on both C and S.

More generally, Pearl & Paz (2010) derive conditions for determining when two arbitrary
covariate sets R and S are confounding equivalent in the sense that standardization by either
p(r) or p(s) yields the same association or effect measure. Because of the correspondence
between probability standardization and inverse-probability data weighting described earlier,
such standardization equivalence will also imply equivalence of marginal effects derived from
weights of 1/p(x|r) and weights of 1/p(x|s). Remarkably, this equivalence can occur even if the
associations are heterogeneous across strata of R and S; but in that case we should not expect
perfect equality between R-adjusted and S-adjusted measures that correspond to other weighting
schemes (e.g., logistic-regression coefficients).

Conditional on U we also have non-collapsibility over S but collapsibility over both C and {C,
S} relative to the unconfounded (U-conditional) XY odds ratio, so we also have bias equivalence
given U (which in this case is no bias whether in addition to U we condition on nothing,
on C, or on both C and S). If instead we condition on A, Z or both after conditioning on
S, we no longer have such equivalencies, since we have unconditional collapsibility over A,
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Z, or both, but we expect non-collapsibility over {A, S}, {Z, S}, and {A, Z, S}. Thus as in
Figures 3(d) and 3(e), we would not expect conditioning on A or Z to be sufficient for removal
of the bias from conditioning on S, even for odds ratios.

8.4 Overlapping Bias Paths

Figure 3(g) adds an uncontrolled variable U to Figure 3(d), one which does not unconditionally
confound the XY relation but does confound other relations. Hence, there is no bias uncondition-
ally. Nonetheless, conditioning on C, S, or Z now opens a new path from X to Y, X→C←U→Y .
As a consequence, we no longer have collapsibility over C or Z, and conditioning on S opens
two paths from X to Y (the new path, as well as X→C→S←Y ).

As in Figure 3(f), we still have odds-ratio collapsibility over S given C, so C and {C, S}
remain bias equivalent for odds ratios, as do {C, U} and {U , C, S}; and, once we condition on
S (as we are forced to do when S is selection), we would have to condition on U as well as C
to remove all odds-ratio bias. Unlike Figure 3(f), however, in Figure 3(g) U could be ignored
if there was no conditioning on C, S, or Z. Furthermore, we might ordinarily expect the bias
from the X→C←U→Y path to be larger if C were conditioned than if only S were conditioned.
In this sense, after conditioning on S, we would ordinarily expect further conditioning on
C to amplify the bias from the X→C←U→Y path even though it would remove the bias
from the X→C→S←Y path; the net impact of conditioning on C given S is thus hard to
predict.

If instead of C we condition on A, Z or both after conditioning on S, we no longer have
bias equivalencies. We have unconditional collapsibility over A, but after conditioning on S we
expect non-collapsibility over any combination from A, U , or Z. Thus, as in Figures 3(d)–(f),
we would not expect conditioning on A, Z or both to be sufficient for complete removal of the
bias from conditioning on S, even after conditioning on U .

As seen in Figures 3(f) and 3(g), odds ratios have the potential to remain unbiased when
conditioning on variables affected by the outcome Y , provided that conditioning does not open a
path from X to Y. The application of these results extends from odds-ratio to rate-ratio analysis
when sampling or conditioning is done in a manner that forces sample odds ratios to estimate
hazard (rate) ratios, as is typical in case-control studies with risk-set (density) sampling and in
survival analysis (Rothman et al., 2008, pp. 113–114 and 294–295).

9 Separation and Collapsibility Testing

The fact that different graphical and probability structures have different collapsibility
implications leads naturally to consideration of model testing and selection. A causal model
can only be tested through its statistical implications, such as the conditional independencies
implied by separation; as a consequence, the bulk of causal assumptions embedded in such
a model will remain untested. Nonetheless, many testing strategies have been developed
(Pearl, 1988, ch. 8; Robins, 1999; Spirtes et al., 2001, sec. 6.9; Tian & Pearl, 2002; Shpitser &
Pearl, 2008; Pearl, 2009, pp. 345–348; de Luna et al., 2011; Shpitser et al., 2011).

To test a separation criterion, higher statistical power can be attained by testing the
independency implied by the criterion rather than by testing the implied collapsibility. On
the other hand, collapsibility is often more relevant to causal inference (as may be seen from the
examples later). Thus, Pearl & Paz (2010) suggest using collapsibility tests and bias-equivalence
tests as diagnostics for graphical models, analogous to collapsibility-based tests of parametric
models (e.g., Whittemore, 1978; Hausman, 1978; Greenland & Mickey, 1988; Clogg et al.,
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1995). Their recommendation is based on the fact that collapsibility holds under either or both
of two conditional independencies (as well as under other conditions); therefore, if a test rejects
collapsibility, it rejects all graphical models that imply the collapsibility.

When C and S are vectors of covariates, such tests can be performed using familiar modeling
strategies. Suppose a graph predicts that a measure of the dependence of the outcome Y on the
exposure X is collapsible over C given S. One approach starts with a model for p(y|x, c, s), such
as a logistic regression model, and then tests whether the X coefficient is equal to that obtained
when C is dropped to produce a model for p(y|x, s); equality is collapsibility of the X coefficient
over C (Clogg et al., 1995).

Asymptotic tests can however falter with very high-dimensional S, especially when S strongly
predicts X and Y. An alternative for these cases replaces the pair of vectors (C, S) and the
vector S with fitted values from models for the exposure-propensity scores p(x|c, s) and p(x|s),
respectively; that is, (C, S) and S are replaced by their fitted X -propensity scores. We may then
test equality of the adjusted measures derived from the two scores, which is equivalent to testing
collapsibility of the measure over C (Pearl, 2009, p. 349). The two approaches can be combined
by using the propensity scores to fit the Y (outcome) model, as in doubly robust estimation (Kang
& Shafer, 2007). Again, rejection of equality (collapsibility) of a measure after deleting C from
both the Y and X models implies rejection of all graphical models that entail collapsibility of
the X coefficient over C (assuming correct model specification).

We caution that the use of preliminary tests for model and covariate selection (whether for
independence or for collapsibility testing) can distort the final p-values and confidence intervals
for the effect of interest. Among commonly proposed solutions are methods that rely on shrinkage
instead of selection; for example, see Greenland (2008) for a review and suggested alternatives to
preliminary testing in the context of confounder selection in regression modeling of effects. For
high-dimensional problems, however, strategies based on cross-validation and simulation, such
as bootstrapping, bagging, and boosting (Hastie et al., 2009) exhibit considerable advantages.
To date, their application to causal modeling has been mostly for inverse-probability weight
estimation (e.g., McCaffrey et al., 2004; Lee et al., 2011) although more targeted uses have been
developed (Van der Laan & Rose, 2011).

10 Discussion

We have reviewed algebraic results and introduced graphical criteria to answer questions about
when one may expect adjustment for particular variables to alter the bias from a particular source
in a given graphical model. In connection with the model-selection issue, there is considerably
more that could be researched and discussed regarding implications of adjustment for statistical
efficiency and mean-squared error (or more generally, net loss), and quantification of the bias
added or removed by a given adjustment. Basic results on these topics are available, especially
for ratio measures (e.g., Yanagawa, 1984; Gail, 1986; Robinson & Jewell, 1991; Greenland,
1991, 2003; Clogg et al., 1995; De Stavola & Cox, 2008; Janes et al., 2010; de Luna et al.,
2011), but many details and extensions remain to be worked out (which is unsurprising given
the many parameters that must be modeled to quantify efficiency and bias). A systematic review
of this topic would be valuable for guidance on currently available methods as well as for future
research.

It has been observed that, under simple models in which each association can be fully
summarized by a single number, association and hence non-collapsibility appears to attenuate
when it arises from more extended paths (Greenland, 2003; Chaudhuri & Richardson, 2003).
Under these conditions (which typify models in the health and social sciences), we would
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ordinarily expect the strength of associations of Z with X and Y to be less than the strength
of associations of C with X and Y. That is because each path connecting Z to X or Z to Y
properly contains the corresponding path connecting C to X or C to Y. As a result, we would
ordinarily expect a smaller degree of XY non-collapsibility over Z than over C, which means that
adjusting for Z will move us less from the unconditional association than will adjusting for C. In
Figure 1(a), this means we would ordinarily not expect Z-adjustment to remove as much bias as
C-adjustment; in Figure 1(c), it means we would ordinarily not expect Z adjustment to produce
as much bias as C-adjustment; and in Figure 1(b) the bias implication depends on whether we
are interested in a direct or total effect.

Another avenue for extending qualitative results is in terms of direction of bias, which can
be derived by adding signs to path arrows (VanderWeele et al., 2008; VanderWeele & Robins,
2010). Quantitative considerations will have to enter when one considers multiple bias sources,
as occur in Figures 3(f) and 3(g) after conditioning on S. We expect that the net bias in most such
situations will be not be simple in form and will be heavily dependent on contextual details; thus
general results that can simplify context-specific analyses would be valuable. We hope that the
results provided here provide a reasonable starting or reference point for further extensions.
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Résumé

Nous passons en revue les méthodes probabilistes et graphiques dans la détection de situations où la dépendance
d’une première variable par rapport à une seconde variable se trouve modifiée par la prise en compte d’une troisième
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variable, que cette dépendance soit de nature causale ou purement prédictive. Nous mettons l’accent, en particulier,
sur la détection des cas où la prise en compte d’une tierce variable entraı̂ne la réduction ou l’augmentation du biais des
mesures d’association représentant l’impact causal d’une variable sur l’autre. Nous considérons ensuite les situations
dans lesquelles la tierce variable est susceptible d’annuler, ou de biaiser l’estimation des effets de causalité, ainsi que
quelques cas particuliers utiles dans les études de cas-témoins, les études de cohortes, et les essais en présence de
non-observance (non-compliance).
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