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Immunotherapy using checkpoint blockade has revolutionized cancer treatment,

improving patient survival and quality of life. Nevertheless, the clinical outcomes of such

immunotherapy are highly heterogeneous between patients. Depending on the cancer

type, the patient response rates to this immunotherapy are limited to 20–30%. Based on

the mechanism underlying the antitumor immune response, new therapeutic strategies

have been designed with the aim of increasing the effectiveness and specificity of the

antitumor immune response elicited by checkpoint blockade agents. The activation of

toll-like receptor 9 (TLR9) by its synthetic agonists induces the antitumor response

within the innate immunity arm, generating adjuvant effects and priming the adaptive

immune response elicited by checkpoint blockade during the effector phase of tumor-cell

killing. This review first describes the underlying mechanisms of action and current

status of monotherapy using TLR9 agonists and immune checkpoint inhibitors for cancer

immunotherapy. The rationale for combining these two agents is discussed, and evidence

indicating the current status of such combination therapy as a novel cancer treatment

strategy is presented.

Keywords: adjuvant, cancer immunotherapy, CpG-ODN, innate immune, toll-like receptor, immune checkpoint

blockade

INTRODUCTION

Major advances have been made in the field of cancer immunotherapy in the past two decades
(1, 2). Imiquimod, a toll-like receptor (TLR)7 agonist, was FDA-approved in 1997 under the brand
Aldara for treating genital warts and later approved for treating superficial basal cell carcinoma
in 2004 (3–5). Three anti-cancer vaccines have been approved by the FDA. BCG (TheraCys),
was first approved in 1990 for non-muscle invasive bladder carcinoma (6). Subsequently,
Sipuleucel-T (Provenge) was approved for metastatic castration-resistant prostate cancer, and
talimogene laherparepvec (T-VEC or Imygic), an oncolytic-virus–based vaccine was approved
for advanced melanoma (7, 8). The components of BCG and oncolytic viruses activate TLRs in
cells to elicit immune responses (9, 10). Further developments include anti-cancer adoptive cell
transfer, including dendritic cell and cytotoxic T-cell therapies, in which patients are treated with
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ex vivo expanded autologous immune cells (11, 12). Studies of
T-cell activation and suppression mechanisms have led to the
discovery of key checkpoints for immune suppression, including
the cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4)
(13–15), programmed cell death protein 1 (PD-1), and the
PD-1 ligands programmed death-ligand (PD-L)1 and PD-L2
(16–19). The use of antibody (Yervoy, ipilimumab) for immune
checkpoint blockade to increase the anti-cancer effect of T-cells
was first approved by the FDA in 2011, and several additional
checkpoint blockage drugs were subsequently approved (20–
22). These immunotherapies have effectively improved the
survival and life quality of cancer patients, resulting in their
acceptance as the fourth standard treatment for cancers after
surgery, chemotherapy, and radiation therapy. In 2016, the
American Society of Clinical Oncology (ASCO) announced
“Immunotherapy” as the year’s top cancer advance. Further, in
2017, the ASCO named “Immunotherapy 2.0” as advance of the
year, emphasizing the recent, rapid progress of research into
new agents that enhance the innate abilities of immunity to
fight cancers (23). Although cancer immunotherapy is a major
achievement in fighting cancer, the efficacy for patient treatment
is still limited and unsatisfactory. For example, the response rate
of patients with solid tumors to checkpoint inhibitors is only 20–
30% (24, 25). Therefore, novel strategies to improve the efficacy
of cancer immunotherapy are needed.

Cancer cells are targeted by immune surveillance through
a process similar to the host immune response to microbe-
infected cells. The human immune system is capable of
discriminating and destroying cancer cells that display tumor
antigens. These tumor antigens originate from self molecules
but exhibit antigenic mutations and/or ectopic expression during
tumor development (26, 27). Many cellular andmolecular factors
are involved in this process of immune suppression of tumor
growth. Innate immune cells, including natural killer (NK)
cells, monocytes/macrophages, and dendritic cells, mediate direct
innate antitumor responses and activate adaptive immune cells
such as T and B cells to developmemory and long-term responses
to tumor cells. In the innate immune arm, cells release a variety
of cytokines to support the immunological activities in the
tumor microenvironment. NK cells directly lyse abnormal cells.
Monocytes/macrophages and dendritic cells take up debris from
dead cancer cells to present peptide fragments of tumor antigens
to T-cells through the major histocompatibility complex (MHC)
molecules. Such antigen presentation activates the subpopulation
of B and T-cells that express tumor antigen recognition receptors
to proliferate and differentiate. B cells generate a humoral
response by secreting antibodies specific to tumor antigens.
T-cells are classified into two major subsets: CD4+ helper T-
cells release immunomodulatory cytokines, and CD8+ cytolytic
T-cells act as effector cells to directly lyse tumor cells during the
adaptive antitumor immune response (28–31).

Thus, the immune system employs coordinated innate
immunity and adaptive immunity to fight tumors. This
observation provides the rationale for boosting the efficacy
(including strength and precision) of an adaptive antitumor
immunotherapy such as checkpoint blockade by targeting innate
immune cells to activate of the adjuvant response or priming

effect (28–31). TLRs are broadly expressed in immune cells for
the detection of microbial pathogens to initiate host responses
to infection (32–34). Synthetic TLR agonists such as imiquimod
have been approved for anti-virus and cancer therapies, and
others are being investigated for mono- or combination cancer
therapies (10, 35–37). In the following discussion, we will focus
on advances in the use of CpG-oligodeoxynucleotide (CpG-
ODN), a synthetic TLR9 agonist to increase the efficacy of cancer
immunotherapy with checkpoint blockade.

TLR9 FUNCTION, CELLULAR
LOCALIZATION, AND SIGNALING

The innate immunity is essential for host defense against
microbial infections. Innate immune cells use a diverse variety
of pattern recognition receptors (PRRs), including TLRs, to
detect various microbial pathogen-associated molecular patterns
(PAMPs). Such recognition initiates immediate innate immune
responses, leading to the development of adaptive immune
responses (33, 38–40). Thirteen TLRs (TLR1–13) have been
identified in mammals, and ten (TLR1–10) are expressed in
humans. These TLRs recognize a diverse variety of microbial
PAMPs via their extracellular domain consisting of multiple
leucine-rich repeats (LRRs) (41–45). TLR1, TLR2, TLR6, and
TLR10 comprise a subfamily. TLR2 recognizes a broad range
of microbial products, including lipoproteins, lipoteichoic acids,
lipoarabinomannan, peptidoglycan, glycophosphatidylinositol
anchors, zymosan, and prions. TLR2 and TLR1 form a
complex that selectively recognizes bacterial lipoproteins and
triacyl lipopeptides, whereas a heterodimer composed of TLR2
and TLR6 preferentially recognizes mycoplasma macrophage-
activating lipopeptide 2 (46–51). The natural ligand of TLR10
is not yet well characterized; however, a recent study showed
that this TLR recognizes double-stranded RNA (dsRNA)
(52). TLR4 and TLR5 are closely related. TLR4 recognizes
lipopolysaccharides from gram-negative bacteria, and TLR5
recognizes bacterial flagellin (53, 54). The members of the TLR3,
TLR7, TLR8, and TLR9 subfamilies recognize nucleic-acid–
derived structures. TLR3 detects double-stranded RNA (dsRNA)
generated from viral replication in infected cells (55). TLR7 and
TLR8 interact with single-stranded RNA viruses such as influenza
virus and the vesicular stomatitis virus (56, 57). TLR9 responds to
unmethylated CpG-DNA, including microbial DNA from DNA
viruses (58, 59). In addition, TLRs recognize a wide variety
of endogenous danger-associated molecular patterns (DAMPs)
released from dead cells in damaged tissues. These DAMPs
are cellular components and stress-induced gene products
such as extracellular matrix components, extracellular proteins,
intracellular proteins, and nucleic acids (60, 61).

Of the TLRs, TLR9 has the narrowest cell expression profile.
In humans, this TLR is constitutively expressed in B cells and
plasmacytoid dendritic cells (pDCs) and to some extent is
also expressed in activated neutrophils, monocytes/macrophages,
cDCs, and T-cells. In addition, TLR9 has been shown to be
expressed in some non-immune cells, including keratinocytes
and gut, cervical, and respiratory epithelial cells (37, 62, 63).
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FIGURE 1 | TLR9 signaling to produce inflammatory cytokines and type I IFNs. (A) TLR9 synthesized in the endoplasmic reticulum traffics through the ER, Golgi to

endosome with the aid of UNC93B and AP2, where TLR9 interact with CpG-ODN, recruits MyD88 and downstream signaling molecules to activate NF-κB and IRF-7,

resulting in the production inflammatory cytokines and type I IFNs (B,C). Two proposed models for the spatiotemporal activation of NF-κB and IRF-7 at different type

of endosomes. In the first model, TLR9 triggers NF-κB activation from the VAMP3+ endosomal compartments within minutes after activation and initiates IRF-7

activation in the LAMP1/2 endosomal compartment in 30min to hours (B). In the second model in plasmacytoid dendritic cells, class A CpG-ODNs activate IRF-7 to

produce type I IFNs from the EEA1+, TfR+ early endosomes. In contrast, class B CpG-ODNs activate NF-κB for inflammatory cytokine production in LAMP1+ and

lysoTracker+ late endosomes/lysosomes (C). The capability of class C CpG-ODNs to activate production of type I IFNs and inflammatory cytokines is in between the

capabilities of CpG-ODNs in class A and class C.

Distinct from other TLRs, TLR3, TLR7, TLR8, and TLR9
are located in intracellular vesicles (64–66). In resting cells,
TLR9 is localized in the endoplasmic reticulum (ER) and must
be trafficked to endosomes for activation by its agonist. The
intracellular trafficking of this TLR is regulated by accessory
proteins such as UNC-93 homolog B1 (UNC93B1) and specific
adaptor proteins (APs). UNC93B1 interacts with TLR9 in the
endoplasmic reticulum (ER) and follows the secretory pathway
through the Golgi apparatus to the plasma membrane via coat
protein complex II (COPII) vesicles. At the cell membrane,
UNC93B1 recruits the adaptor protein AP-2 for the endocytosis
of TLR9 via clathrin-containing vesicles. In the endosome, TLR9
interacts with its agonist CpG-DNA, which also enters cells via
endocytosis [Figure 1A, (67–69)].

This engagement culminates in two outcomes: activation of
NF-κB to produce inflammatory cytokines and activation of
interferon regulatory factors (IRFs) to produce type I interferons
(IFNs). Myeloid differentiation primary response 88 (MyD88)
is required for TLR9 signal transduction, as MyD88 deficiency
abolishes downstream signaling for cytokine productions
following TLR9 activation (70). Following recruitment by TLR9,
MyD88 in turn interacts with interleukin-1 receptor-associated
kinase-1 (IRAK-1) and IRAK-4 through its death domain.

IRAK-4 phosphorylates IRAK-1, up-regulating its kinase
activity, which leads to the recruitment of tumor necrosis factor
associated factor 6 (TRAF6) and the activation of transforming
growth factor-β associated kinase 1 (TAK1). This cascade results
in activation of the transcription factors NF-κB, which are
responsible for the transcription of pro-inflammatory cytokine
genes, including IL-6, IL-12 and TNF-α (71–74). Other than
this, the transcription factor IRF5 is reported to be indispensable
for TLR9-mediated production of pro-inflammatory cytokines.
IRF5 interacts with MyD88, and TLR activation induces nuclear
translocation of this transcription factor to promote gene
expressions (75). In addition to inducing pro-inflammatory
cytokine expression, TLR9 activation results in the production
of type I IFNs, which are composed of multiple IFN-αs and a
single IFN-β. These IFNs play a critical role in TLR9-mediated
antitumor responses because they are involved in activation of
the adaptive immune response required for tumor-cell killing
(76–78). IRF-7 is a transcription factor expressed in pDCs that
regulates the expression of type I IFN genes. IRF-7 associates
with the complex of MyD88, IRAK1, IRAK4, and TRAF6,
where IRF-7 becomes phosphorylated and translocates into the
nucleus to induce transcription of type I IFNs (79, 80). In mice,
TLR9-mediated production of IFNs is abrogated in cells deficient
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in osteopontin (Opn) and TRAF3, whereas the production of
IL-12 unaffected, suggesting that Opn and TRAF3 are involved
in the signaling pathway that mediates TLR9-induced activation
of type I IFN production [Figure 1A, (81, 82)].

Two different mechanisms have been proposed for this signal-
bifurcated process. One model suggests that TLR9 from the Golgi
enters endosomes and then the VAMP3+ (vesicle-associated
membrane protein 3) endosomes, leading to inflammatory
cytokine expression. Subsequently, with the aid of AP-3,
TLR9 is shuttled to LAMP1/2+ (lysomal associated membrane
protein 1/2) lysosome-related organelles (LROs) to promote the
production of type I IFNs [Figure 1B, (83, 84)]. In contrast,
another model suggested that TLR9 activation, signalings leading
to gene transcription of inflammatory cytokines and type I
IFNs come from different type of endosomes. In this model,
TLR9 activation in the TfR (transferrin receptor) and EEA1
(early endosomal antigen 1) expressed early endosomes results
in IRF-7 activation and production of type IFNs, whereas
activation of TLR9 in the LAMP1 and LysoTracker positive
late endosome/lysosome lead to the activation of NF-κB and
production of inflammatory cytokines [Figure 1C, (85–87)].
Although the location of TLR9 required to trigger such signaling
is uncertain, the acidic pH of the endolysosomal compartments
is thought to be required for ligand recognition of TLR9, as
compounds that interfere with endosomal acidification, such
as bafilomycin A1 and chloroquine, are inhibitors of TLR9
activation (88).

SYNTHETIC CpG-ODNS FOR TLR9
ACTIVATION

The immunostimulatory activity of microbial DNA was first
observed in a DNA fraction of bacillus Calmette–Guerin (89,
90). Further studies revealed that the presence of unmethylated
CpG deoxynucleotides in a particular context called the CpG
motif is required for such DNA activity (91, 92). In vivo
studies of gene knockout mice and in vitro studies of cell-
based TLR9 activation assay later showed that TLR9 is the
cellular receptor for CpG-DNA (58, 59, 93). The presence of
CG dinucleotides in eukaryotic DNA is lower than in the
prokaryotic DNA sequences. Further more the frequency of
methylation on CpG sites are higher within eukaryotic DNA
than in microbial DNA (94, 95). This difference in CpG-
methylation provides a molecular base for TLR9 to distinguish
self from non-self DNA in the host defense immune response to
microbial infections (91, 96). Synthetic CpG-ODNs mimicking
the immunostimulatory nature of microbial CpG-DNA were
developed for therapeutic use (77, 96, 97). Natural microbial
DNA contains a phosphodiester backbone that is easily degraded
by nucleases in vivo. Replacement of the oxygen in the nucleic
acid phosphate group with sulfur creates CpG-ODNs with a
phosphorothioate backbone, making them more resistant to
nucleases (98, 99).

CpG-ODNs are classified into three major classes based on
their structure. The Class A CpG-ODNs (also known as type
D) consist of a central phosphodiester palindromic region with

one or more CpG-motifs and contain poly (G) sequences with a
phosphorothioate backbone attached to both of the 5’ and 3’ ends.
Class B (type K) CpG-ODNs contain several CpG-motifs and
a phosphorothiolate backbone throughout the entire sequence.
Class C CpG-ODNs contain one or two CpG-motifs, an entire
phosphorothioate backbone, and a palindromic sequence at the
3’ end (100–103). More recently, CpG-ODNs with different
structural features have been developed to improve their
effectiveness and reduce their toxicity. For example, IMO-2125
is generated by linking two CpG-ODN together through their
3’ ends (104). MGN1730 contains two loops of CpG-ODN, each
containing three CpG-motifs linked by a double-stranded linker
(105). Another design employs CpG-ODN conjugated with an
antisense oligonucleotide of signal transducer and activator of
transcription (STAT3), an oncogenic transcription factor. The
first generation of this CpG-STAT3 inhibitor (CSI-1) uses RNA
interference for STAT3 silencing. The second generation of this
molecule (CSI-2) uses a decoy oligodeoxynucleotide to increase
its nuclease resistance (106, 107).

The immunostimulatory activity of a CpG-ODN is dependent
on its structure. Class A CpG-ODNs induce maturation of pDCs,
have little effect on B cells, and activate the production of
large amounts of IFN-α. Class B CpG-ODNs strongly induce
B-cell proliferation, activate pDC and monocyte maturation, NK
cell activation, and inflammatory cytokine production. These
CpG-ODNs also stimulate the production of IFN-α, but to a
lesser extent than do the class A CpG-ODNs. The capability
of class C CpG-ODNs to induce B-cell proliferation and IFN-α
production is between that of class A and B CpG-ODNs (100–
103). The distinct abilities of class A and class B CpG-ODNs
in induction of type I IFNs is resulted from their higher order
structures. Class A CpG-ODNs are able to form multimeric
aggregates with a diamteter of about 50 nm. In contrast, Class
B CpG-ODNs are monomeric and do not have such a feature
(108). Further, a model of spatiotemporal regulation of TLR9
as shown in the Figure 1C has been suggested to explain
the differential immunostimulatory activities of CpG-ODNs.
According to this model, Class A CpG-ODNs activate TLR9
in early endosomes to trigger IRF7 activation, inducing the
production of large amounts of IFNs. Class B CpG-ODN is
quickly transported to late endosomal/lysosomal compartments
for TLR9 activation to activate NF-κB and produce inflammatory
cytokines. In contrast, class C CpG-ODNs can be retained
in these endosomal compartments, where they activate the
production of IFNs and inflammatory cytokines (85–87). In line
with these, encapsidation of class B CpG-ODNs into particles
allow their retention in eraly endosomes for induction of higer
level of type I IFNs (109).

The structure–function relationship of class B CpG-ODNs has
been extensively investigated to enable their clinical use. The
immunostimulatory activity of class B CpG-ODNs depends on
their nucleotide sequence, CpG-dideoxynucleotide–containing
hexamer motifs (CpG motif), and the number, spacing, position,
and bases surrounding these CpG-motifs (100, 110, 111).
Moreover, the activity of these CpG-ODNs differs between
species, a phenomenon known as “species-specific activity.” This
activity of a CpG-ODN is determined by the nucleotide context
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of its CpG-motifs. For example, CpG-2007, which contains 22
nucleotides and three copies of the GTCGTT-hexamer motif, is
more potent in activating human cells than is CpG-1826, which
contains 20 nucleotides and two copies of the GACGTT-hexamer
motif. In contrast, CpG-1826 is more potent in activating murine
cells than is CpG-2007 (93, 100, 110–112). The nucleotide length
of CpG-ODN also plays a significant role in determining its
species specificity. In rabbit cells, CpG-C4609, which contains
12 nucleotides and one AACGTT-hexamer motif, generates
a stronger immune response than does CpG-2007 or CpG-
1826 (113).

CpG-ODNS AS CANCER THERAPEUTICS

The activation of TLR9 by CpG-ODNs induces the immune
response in two phases, innate immune and adaptive immune
responses (96, 114, 115).Within hours of CpG-ODN stimulation,
an antigen-independent innate immune response is elicited for
an early immune response and for priming the subsequent
adaptive immune responses. During this first innate immune
response phase, DCs and B cells are activated. DCs are the
most effective antigen-presenting cells (APCs). In addition to
presenting extracellular antigens on MHC Class II molecules
to CD4+ T-cells, DCs also mediate cross-presentation of
extracellular antigens on MHC Class I molecules to CD8+

cytotoxic T-cells. These activities are crucial for establishing
effective anti-cancer immunity (116–118). DCs produce
inflammatory cytokines and type I IFNs through the activation
of NF-κB and IRF. B cells produce cytokines, including IL-6
and IL-12, and chemokines via NF-κB activation. In turn,
macrophages and NK cells are activated by IFNs released from
pDCs. The macrophages and DCs are major IFN-γ-producing
cells and APCs, and NK cells are capable of direct tumor
killing during the CpG-ODN-induced antitumor response
(119–122). These CpG-ODN–activated early immune responses
are followed by a second phase of antigen-specific immune
response that occurs several days later. B-cell stimulation by
CpG-ODNs increases their sensitivity to antigen stimulation and
promotes their differentiation into antibody-secreting plasma
cells, increasing their production of antigen-specific antibodies
(123, 124). Further, during this stage, CpG-ODN-activated APCs
become competent for antigen presentation and the production
of Th1-response–promoting cytokines. Increased expression
of costimulatory molecules such as cluster of differentiation 80
(CD80), CD86, and molecules of the MHC increases the antigen-
presenting activity of these cells to naïve T cells. The produced
cytokines (TNF-α, IL-12, and IFNs) promote the T-helper-1
polarization of CD4+ T cells. These result in expension of
antigen-specific CD8+ T cells (96, 114, 115, 125–127).

Because these immune responses facilitates eradication of
cancer cells from bodies, the antitumor effect of CpG-ODNs
has been investigated (76–78). In mouse tumor models, CpG-
ODN monotherapy showed modest activity in inducing T-cell-
mediated tumor regression. Injection of CpG-ODN into tumor
exerted better anti-tumor activity than administration of the
CpG-ODN at distant sites such as via intraperitoneal injection

or intravenous injection (128, 129). Combining CpG-ODN
with other therapeutics such as radiotherapy, chemotherapy,
antitumor antibody, or DNA-based vaccination usually achieves
greater tumor eradication (130–136). The effects resulting from
combination therapy and local administration indicate that CpG-
ODN exerts an adjuvant effect in the tumor microenvironment.
Because tumor destruction by other therapies promotes the
release of tumor antigens into the tumor microenvironment,
injection of CpG-ODN into the site where tumor antigen is
released has a greater effect on DC activation and antigen
presentation to elicit a tumor-specific T-cell response (76–78).

Based on the positive results of preclinical studies showing
that TLR9 activation can induce adjuvant effects to promote
T-cell activation and reduce tumor burden, CpG-ODNs have
been investigated in clinical trials as therapeutic antitumor agents
(10, 35, 137, 138). The most widely investigated CpG-ODN is
the B class agent PF-3512676 (also known as CpG-2006, CpG-
7909, Agatolimod). Monotherapy with PF-3512676 has been
investigated for treating basal cell carcinoma, renal cell cancer,
melanoma, and cutaneous T-cell lymphoma via different routes,
including subcutaneous, intravenous, and intratumoral injection.
In patients, this CpG-ODN elicits cytokine production and
antitumor T-cell responses with minimal toxicity beyond the
local injection site reaction; however, its efficacy in reducing
tumor growth is relatively low (139–142). Therefore, the efficacy
of combination therapies using CpG-ODN with existing cancer
therapeutics were investigated. In a phase II randomized trial
with 184 stage IIIb/c or stage IV melanoma patients, the effect
of subcutaneous PF-3512676 in monotherapy and combination
therapy with intravenous dacarbazine (DITC) was investigated.
Patients received either 10mg of PF-3512676, 40mg of PF-
3512676, 40mg of PF-3512676 plus DITC, or DITC alone
as a control. The object response rate (ORR) was greatest
in patients treated with 40mg of PF-3512676 plus DITC.
Nevertheless, no significant difference in overall survival (OS)
or median time to progression was observed between treatment
groups. Thus, the phase III portion of this study was not
continued (143). Another randomized phase II trial evaluated the
activity of subcutaneous PF-3512676 in combination with first-
line taxine/platinum chemotherapy in 111 patients with non-
small-cell lung cancer. The ORR (confirmed and unconfirmed)
was 38% in the PF-3512676 arm (n = 74) and 19% in the
chemotherapy-alone arm (n = 37). The median survival was
12.3 months in the PF-3512676 arm and 6.8 months in the
chemotherapy-alone arm, with one-year survival of 50 and
33%, respectively (144). The combination of PF-3512676 with
standard chemotherapy was further evaluated as a first-line
treatment for advanced non–small-cell lung cancer in phase
III trials. In one trial with 828 patients, the combination of
subcutaneous PF-3512676 with intravenous paclitaxel/carplatin
was compared with paclitaxel/carplatin alone. No significance
improvement in OS or progression-free survival (PFS) was
observed for PF-3512676 combination therapy. In another trials,
comparison of PF-3512676 combined with gemcitabine/cisplatin
and gemcitabine/cisplatin alone revealed a similar median OS
and PFS in these two treatments (145, 146). To date, no
CpG-ODN has been approved for cancer treatment, but a
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TABLE 1 | FDA-approved antibodies targeting immune checkpoints for treating different type of cancers.

Inhibitor Target Approved Tumor type References

Ipilimumab

(Yervoy®)

CTLA-4 2011 Advanced melanoma (1)

2018 Metastatic RCC (in combination of nivolumab), and CRC (161, 162)

Pembrolizumab

(Keytruda® )

PD-1 2014 Advanced melanoma (163)

2015 Metastatic NSCLC (164)

2016 Head and neck cancer (165)

2017 Classical Hodgkin lymphoma, urothelial carcinoma, any solid

tumor with a specific genetic feature, and advanced gastric and

gastroesophageal junction adenocarcinoma

(166–169)

2018 Advanced cervical cancer, and HCC (170, 171)

2019 Advanced RCC (in combination of axitinib) (172)

Nivolumab

(Opdivo®)

PD-1 2014 Advanced melanoma (173)

2015 Lung cancer, and metastatic RCC (174, 175)

2016 Hodgkin lymphoma, and head and neck cancer (175, 176)

2017 Advanced urothelial carcinoma, CRC, and HCC (previously treated

with sorafenib)

(177, 178)

Atezolizumab

(Tecentriq® )

PD-L1 2016 Advanced urothelial carcinoma, and NSCLC progressed in

platinum-containing therapy

(175, 179)

2018 Advanced bladder cancer (180)

2019 PD-L1 positive TNBC (in combination of abraxane), and SCLC (in

combination of carboplatin and etoposide)

(181, 182)

Avelumab

(Bavencio® )

PD-L1 2017 Merkel cell carcinoma, and urothelial cancer (167, 183)

2019 Genitourinary cancer (172)

Durvalumab

(Imfinzi® )

PD-L1 2017 Advanced urothelial cancer (167)

2018 NSCLC (184)

Cemiplimab-rwlc

(Libtayo® )

PD-1 2018 Advanced cutaneous squamous cell carcinoma (185)

RCC, renal cell carcinoma; CRC, colorectal cancer; NSCLC, non-small cell lung cancer; HCC, hepatocellular carcinoma; TNBC, triple-negative breast cancer; SCLC, small cell

lung cancer.

wide variety of clinical studies exploring the potential of CpG-
ODNs including in combinational use with immune checkpoint
inhibitors for cancer therapy are still ongoing (138, 147).

COMBINATION THERAPY WITH
CpG-ODNS AND IMMUNE CHECKPOINT
INHIBITORS

Immune checkpoints are regulators of the immune system that
maintain the immune response in a normal physiologic range
and prevent inflammatory or autoimmune disorders resulting
from over-activation of immune system. CTLA-4 and PD-1 are
the two best-characterized immune checkpoint regulators (148–
151). The expression of CTLA-4 is upregulated immediately
following engagement of the T-cell receptor. This protein
competes with the costimulatory receptor CD28 for its B7
ligands, CD80 (B7-1) and CD86 (B7-2), thereby interfering with
the activation of CD28-mediated costimulatory signaling by
these two ligands and attenuating T-cell activation. Because the

negative regulatory function of CTLA-4 involves the expression
of B7 ligands and CD28 signaling, CTLA-4 limits the early
immune responses of T cells in lymphoid tissue (13, 152–154).
In addition, CTLA-4 attenuates T-cell activation in peripheral
tissues, as B7 ligands are constitutively expressed at differing
levels in APCs and activated T cells. These observations suggest
that CTLA-4 plays a central role in the regulation of T-cell
activation and is critical for immune tolerance (14, 15, 149).
In contrast to CTLA-4, PD-1 is expressed in activated and also
exhausted T cells, B cells, and myeloid cells (16, 155, 156). Two
ligands of PD-1, PD-L1 and PD-L2 are identified. Of them,
PD-L2 induces IL-12 production in DCs. Given that IL-12 is
important for T-cell differentiation into Th1-type cells, PD-L1 is
a better target for inhibition to elicit antitumor immune response
than is PD-L2 (18, 19, 157). PD-1 mainly regulates the late
immune response of T cells in peripheral tissues, as its ligands are
widely expressed in non-lymphoid tissues. Engagement of PD-1
with its ligand negatively regulates T-cell activation by activating
the tyrosine phosphatase SHP2, which dephosphorylates and
inactivates molecules involved in TCR signaling. SHP2 was
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FIGURE 2 | Complementary mechanisms of TLR9 activation and checkpoint blockade in combinational cancer immunotherapy. DCs and T cells play key roles in the

antitumor immune response. These two types of cells are major target for TLR9 agonists and immune checkpoint inhibitors, respectively. (A) Activation of TLR9 by

CpG-ODN triggers innate immune responses, including cytokine production and the uptake and presentation of tumor antigen in DCs. These adjuvant effects,

particularly the production of IL-12 and type I IFNs, facilitate a Th1 response of T cells and expansion of tumor-specific T cells during the priming phase. Immune

checkpoint blockade by anti-PD-1/anti-PD-L1 antibody release inhibition of CD8+ cytotoxic T-cell activation during the effector phase. In contrast, anti-CTLA-4

inhibition activates T cells during both of the priming and effector phases. These events lead to a more effective and more specific adaptive immune response for

tumor-cell killing. (B) DCs and T cells involved in the antitumor immune response serve different immunological functions in different locations, as illustrated.

also shown to regulate CD28 signaling through its phosphatase
activity (17, 149, 158–160). These observations suggest that
CTLA-4 and PD-1 regulate T-cell activation by distinct but
somewhat overlapping molecular mechanisms (148–151).

Because CTLA-4 and PD-1 act through ligand-receptor
interactions, their activity can be blocked by specific monoclonal
antibodies. Indeed, a variety of CTLA-4 and PD-1/PD-L1
monoclonal antibodies have been developed for immune
checkpoint blockade. The anti-CTLA-4 antibody ipilimumab was
approved by the FDA in 2011 for treating metastatic melanoma.
Since then, six additional antibodies targeting PD-1 or PD-L1
have been approved for immunotherapy of different cancer types
(Table 1). These checkpoint blockade therapies demonstrate
notable efficacy for cancer treatment, nevertheless a large fraction
of patients still fails to response to this treatment, indicating a
tremendous need to improve the efficacy of therapies employing
immune checkpoint inhibitors (149, 186, 187). The resistance
of patients to immune checkpoint therapies may be caused
by deficiencies in various aspects of T-cell activation for the
antitumor response. Possibilities include poor immunogenicity
of the tumor resulting from insufficient formation of tumor
antigen and antigen presentation, inadequate T-cell activation
and killing activity, and altered T-cell trafficking. Therefore,
combining an immune checkpoint inhibitor with other treatment
may increase the efficacy of such therapies (188–192).

A process of T-cell mediated antitumor response includes
a priming phase which mainly involves with innate immune

responses and an effector phase of an adaptive immunological
tumor killing by T cells as shown in Figure 2. In the priming
phase, activated APCs, such as dendritic cells, produce IL-12 and
type 1 IFNs to facilitate a CD4+ T-cell-mediated Th 1 response.
In addition, the dendritic cells produce costimulatory molecules
and present antigen from a patient’s cancer cells to promote
proliferation of tumor-specific cytotoxic CD8+ T cells. These T
cells then migrate to tumor sites, displaying their tumor-killing
effects during the effector phase (29–31, 193–195). According to
this mechanism, combination therapy including a TLR9 agonist
and immune inhibitor is promising because these two agents
use different and complementary mechanisms to up-regulate the
T-cell-mediated antitumor response (138, 189–192). Activation
of TLR9 in dendritic cells by CpG-ODN initiates the immune
response via production of the costimulatory molecules CD80
and CD86 and cytokines TNF-α, IL-6, IL-12, and type I IFNs.
Moreover, injection of CpG-ODN into the tumor site can induce
local tumor-cell death, releasing more tumor antigens into the
tumor microenvironment and activating antigen uptake and
presentation by dendritic cells. These events promote effective
generation of tumor-specific cytotoxic CD8+ T cells during
the priming phase (86, 87, 120, 122). In contrast, the immune
checkpoint inhibitors release the inhibition of T-cell activity to
promote tumor-cell killing during the effector phase (148–151).
Thus, cancer therapy using a combination of TLR9 activation and
immune checkpoint blockade can result inmore robust andmore
specific tumor killing (Figure 2).
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TABLE 2 | Current clinical trials of combination cancer immunotherapies using a TLR9 activation agonist and a checkpoint blockade agent.

TLR9

agonist

Class Phase Treatment In combination

with

Tumor type References

CMP-001 A II I.V. Nivolumab Melanoma and lymph node cancer NCT03618641

I I.T. Pembrolizumab Melanoma NCT02680184

I S.C. Ipilimumab, and

nivolumab

Metastatic CRC NCT03507699

I/II I.T. Avelumab SCCHN NCT02554812

I IT/SC Atezolizumab NSCLC NCT03438318

IMO-2125

(Tilsotolimod)

III I.T. Ipilimumab Anti-PD-1 refractory melanoma NCT03445533

II I.T. Ipilimumab, and

nivolumab

Solid tumors NCT03865082

I/II I.T. Ipilimumab, or

pembrolizumab

Metastatic melanoma NCT02644967

MGN1703

(Lefitolimod)

I S.C. Ipilimumab Advanced cancers NCT02668770

SD-101

(Dynavax)

C II I.T. Pembrolizumab Prostate cancer NCT03007732

I I.T. Nivolumab Chemotherapy-refractory metastatic

pancreatic adenocarcinoma

NCT04050085

I/II I.T. Pembrolizumab Metastatic melanoma or recurrent or

metastatic HNSCC

NCT02521870

AST-008 I/II I.T. Pembrolizumab Advanced solid tumors NCT03684785

DV281 C I Inhaled Nivolumab Advanced NSCLC NCT03326752

I.T., Intratumoural; I.V., Intravenous; S.C., Subcutaneous; CRC, colorectal cancer; SCCHN, squamous cell carcinoma of head and neck; NSCLC, non-small cell lung cancer; HNSCC,

head and neck squamous cell carcinoma.

Studies using melanoma mouse models have shown
that a synergistic effect on tumor regression results from
combining CpG-ODN-mediated activation of APCs with
immune checkpoint inhibitor-mediated T-cell activation
(136, 196). Similar synergy resulting in longer survival was
also observed in murine bladder cancer when CpG-ODN was
combined with CTLA-4 or PD-1 inhibitors (197). Another
studies revealed that CpG-ODN can revert resistence to PD-1
blockade therapy by expending CD8+ T cells in colon cancer
animal model, enhances the efficacy of anti-PD-1 in head and
neck cancer animal model (198, 199). CpG-ODN modulates
tumor microenvironment, turns “cold” tumor into “hot”
tumor, enhances the anti-tumor effect of immune checkpoint
blockade in colon cancer animal model (200). Moreover,
CpG-ODN delivered by inhalation is capable of priming T-cell
responses against a poorly immunogenic lung tumor (201).
The encouraging results in these animal studies provided the
rationale for combined clinical regimens using CpG-ODNs
and immune checkpoint inhibitors simultaneously. Several
clinical investigations of such combination therapy are presently
underway. CMP-001 is a class A CpG-ODN encapsulated into
virus-like particles to render it stable. In a study of 69 patients
with advanced melanoma and resistance to pembrolizumab
therapy, CMP-001 and pembrolizumab were directly injected
into the accessible lesions. The response rate was 21.7%, and
an abscopal effect was observed, with shrinkage occurring in
non-injected cutaneous, nodal, hepatic, and splenic metastases
(202). In a study of SD-101/pembrolizumab combination

therapy in 9 advanced melanoma patients naïve to anti-PD-1
therapy, a response rate of 78% was observed (203). Similar to
the study of CMP-001, the SD101 exerted an abscopal effect, with
tumor shrinkage observed in both the injected and non-injected
lesions (202, 203). A clinical study of IMO-212 (Tilsotolimod),
another TLR9 agonist, was conducted in a cohort of 26 patients
with PD-1-inhibitor– refractory advanced melanoma. Combined
therapy with IMO-2125 and ipilimumab resulted in an ORR of
38.1%, an increase over the 13% reported in a previous study of
ipilimumab treatment alone. The disease control rate was 71.4%
for the combination therapy, and an abscopal effect was observed
with no synergistic toxicity. A global phase III randomized study
comparing IMO-2125 plus ipilimumab to ipilimumab alone for
treating PD-1-inhibitor refractory cancer is underway (204, 205).
Combination therapy using TLR9 agonists and different immune
checkpoint inhibitor are under clinical investigation for treating
melanoma and other types of tumors (Table 2).

CONCLUSION AND PERSPECTIVES

The field of cancer immunotherapy has progressed significantly
since the approval of ipilimumab in 2011. Therapy with
immune checkpoint blockade has revealed benefits to cancer
patients, improving their survival and quality of life. Despite
breakthroughs in the field, the pool of patients benefiting from
this therapy is relatively small. Thus, investigating combinations
of immune checkpoint inhibitors with other currently available
or novel cancer therapeutics is needed to maximize the benefits
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of this cancer immunotherapy. Activation of TLR9 by CpG-
ODN elicits the antitumor immune response. A wide variety
of clinical trials are presently investigating the use of CpG-
ODNs in antitumor therapy. Although no CpG-ODN has been
approved for use as a cancer therapeutic agent, one such agent
(CpG-1018) is used as an adjuvant in a Hepatitis B vaccine
(HEPLISAV-B) approved by the FDA in 2018. This vaccine
is proven more effective against Hepatitis B than those using
aluminum salt as the adjuvant (206, 207). This observation
suggests that CpG-ODN is a potent adjuvant and that is safe
for therapeutic use. The mechanism of action of CpG-ODNs
in activating the antitumor immune response is distinct and
complementary to that underlying immune checkpoint blockade.
Thus, the rationale for combining these agents for cancer therapy
is sound. A number of clinical trials of therapies combining these
two agents are presently underway for a variety of cancer types.
The results will reveal whether combining these agents improves
the efficacy of cancer immunotherapy using immune checkpoint

inhibitors. Worth to note, although this review is focused on
the antitumor effect of TLR9 activation, agonists of other TLRs
were also shown to have antitumor activities. Imiquimod, a TLR7

agonist had FDA approved for treatment of superficial basal
cell carcinoma in 2004 (3–5). Others including CADI-05 (TLR2
agonist), BO-112 (TLR3 agonist) and G100 (TLR4 agonist) were
investigated in clinical trials for their antitumor effects (208–
210). Whether these TLR agonists can improve the efficacy of
immune checkpoint inhibitors in combinational therapies is also
received attention.
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