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Abstract

Wireless sensor networks (WSNs) are gaining more and more interest in the research community due to their unique
characteristics. Besides energy consumption considerations, security has emerged as an equally important aspect in
their network design. This is because WSNs are vulnerable to various types of attacks and to node compromises, and
as such, they require security mechanisms to defend against them. An intrusion detection system (IDS) is one such
solution to the problem. While several signature-based and anomaly-based detection algorithms have been
proposed to date for WSNs, none of them is specifically designed for the ultra-wideband (UWB) radio technology.
UWB is a key solution for wireless connectivity among inexpensive devices characterized by ultra-low power
consumption and high precision ranging. Based on these principles, in this paper, we propose a novel anomaly-based
detection and location-attribution algorithm for cluster-based UWB WSNs. The proposed algorithm, abbreviated as
ADLU, has dedicated procedures for secure cluster formation, periodic re-clustering, and efficient cluster member
monitoring. The performance of ADLU in identifying and localizing intrusions using a rule-based anomaly detection
scheme is studied via simulations.

Keywords: Wireless sensor networks; UWB radio technology; Security in UWB WSNs; Anomaly-based detection;
Attack attribution; Ranging attacks

1 Introduction
A wireless sensor network is a network of cheap and
simple processing autonomous devices (called sensor
nodes) that are spatially distributed in an area of inter-
est in order to cooperatively monitor physical or envi-
ronmental phenomena. Mostly based on non-renewable
resources, such as batteries, wireless sensor networks
(WSNs) call for robust and energy-efficient solutions both
at the software and hardware levels. Undoubtedly, the
IEEE 802.15.4-2011 standard [1] for low-rate wireless per-
sonal area networks (LR-WPANs) is a valuable candidate
for the energy-constrained WSNs. The standard defines
the physical (PHY) and medium access control (MAC)
layers. Among the available PHY options, the impulse
radio ultra-wideband (IR-UWB) PHY (formerly defined in
the IEEE 802.15.4a-2007 standard) has several advanced
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properties, such as built-in ranging capabilities, low duty
cycle, low probability of detection, and robustness against
interference, appointing it an ideal information carrier for
communication among the sensor network devices [2].

From an application’s point of view, the driving force
behind research in WSNs is to develop systems that
can operate unattended for large periods. Besides energy
consumption considerations, the unattended nature of
the deployed WSNs raises administration problems and
appoints the security as an additional critical element in
the network design [3]. As identified in [4-6], WSNs are
susceptible to various types of attacks or to node com-
promises that exploit known and unknown vulnerabilities
of protocols, software, and hardware, and threaten the
security, integrity, authenticity, and availability of data that
reside in these networked systems.

UWB transmissions offer a potentially robust physi-
cal layer security for WSNs as a consequence of their
large bandwidth. Indeed, WSNs that rely on UWB radio
signals are somewhat inherently more secure, because
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the low output power and short pulses of these sig-
nals make their transmissions to appear as white noise
from a distance. Nevertheless, UWB signals could poten-
tially be sniffed by a determined attacker who is located
close to the transmitter, enabling the latter to launch an
attack against the WSN [7,8]. Therefore, even this class
of WSNs requires that security mechanisms are imple-
mented at every layer of the sensor network protocol
stack.

Currently, research on providing security solutions
for WSNs has mainly focused on key management [9],
authentication, and secure routing [10], as well as secure
services including secure localization [11] and secure
aggregation [12]. A few secure ranging and localization
protocols were specifically designed for protecting the
integrity of ranging and for addressing location-related
attacks in UWB WSNs [13-16]. Signaling schemes have
also been proposed to improve physical layer security
of UWB systems [8]. Finally, a number of routing and
clustering protocols attempt to address networking issues
in UWB WSNs [17], lacking however advanced security
features in their design.

In general, most of the security protocols mentioned
above can cope with weak, external attackers. However,
strong, internal attackers, which managed to penetrate
the first perimeter of defense (for instance through tam-
pering sensor nodes [18]), can only be dealt with using
intrusion detection systems (IDSs). Various signature-
based and anomaly-based IDS architectures have been
proposed for flat and hierarchical WSNs [19]. However,
the energy constraints and scalability issues in WSNs dic-
tate the use of an hierarchical anomaly-based detection
model for IDS [20]. In this grouping technique, the essen-
tial operation is to select a set of cluster heads (CHs)
among the nodes in the network and to cluster the rest
of the nodes with them. Cluster heads are responsible for
coordination among the nodes inside their clusters (intra-
cluster data gathering) and for forwarding the collected
data to the sink node, usually after efficiently aggregat-
ing them. With regard to anomaly detection, cluster heads
are also tasked with intrusion detection functions, such
as collecting intrusion alarms from their cluster mem-
bers (CMs). Additionally, the cluster head nodes may also
detect attacks against other cluster head nodes of the net-
work, since they constitute the backbone of the routing
infrastructure.

While a number of anomaly-based detection systems
(ADSs) have been proposed for hierarchical, cluster-based
WSNs [19-21], to the best of our knowledge, none of
them is specifically designed for the emerging UWB trans-
mission technology. The ultra-wideband nature of this
PHY and its high precision ranging capability (1-m accu-
racy and better [22]) enable the ADS not only to detect
a malicious behavior, but also to localize the anomaly

by relying on internal tools, namely on accurate time-of-
arrival (TOA)-based UWB distance measurements.

Accordingly, the present work contributes to the area
of wireless sensor network security by proposing a novel
anomaly-based detection and location-attribution algo-
rithm for cluster-based UWB WSNs, named ADLU. The
proposed algorithm has dedicated procedures for secure
cluster formation, periodic re-clustering, and efficient
cluster member monitoring. Furthermore, it exploits the
peculiar characteristics of the UWB PHY defined in
the IEEE 802.15.4 standard [1] in order to facilitate the
anomaly detection and location attribution processes. To
help address the security challenges, ADLU offers the
following contributions:

• It defines a novel, trust-aware leader election metric
that makes the leader election process of clustering
immune to ranging attacks.

• It introduces a monitoring mechanism for both the
cluster members and the cluster heads.

• It specifies a rule-based detection engine that
accurately analyzes data packets to detect signs of
sensor network anomalies.

• It encapsulates a UWB time-of-arrival triangulation
of ranges technique that adds location-attribution
capabilities to the algorithm.

ADLU is different from existing works in several other
ways. Firstly, it does not rely on a special type of hard-
ware, i.e., global positioning system (GPS) devices, to per-
form the localization task. Moreover, it does not require
heavy communication among the nodes, since the deci-
sion making and node revocation processes follow the low
overhead hierarchical network model.

The remainder of the paper is organized as fol-
lows. In Section 2, existing anomaly detection algo-
rithms developed for cluster-based WSNs are outlined. A
detailed description of the ADLU algorithm is provided
in Section 3. Section 4 illustrates the obtained simulation
results, followed by detailed reports. Finally, conclusions
are given in Section 5.

2 Related work
The issue of anomaly detection in hierarchical, cluster-
based WSNs has been addressed by several scientific
works. According to a recent study [20], the developed
ADSs can be categorized based upon the incorporated
anomaly detection pattern. The detection pattern is basi-
cally linked to who takes charge of carrying out the data
processing procedure of anomaly detection. There are
basically three available options, which are highlighted in
Figure 1. First, the cluster head is responsible for the pro-
cessing and decision making alone [23]. Second, the clus-
ter head and cluster members cooperate to accomplish



Karapistoli and Economides EURASIP Journal on Information Security 2014, 2014:3 Page 3 of 12
http://jis.eurasipjournals.com/content/2014/1/3

Figure 1 Anomaly detection patterns in hierarchical WSNs [20].

this [24-27]. Third, this procedure is carried out by a
central authority, namely, the base station (BS) [28,29].

More specifically, in the protocol of the first detec-
tion pattern [23], the cluster head depends on the alarms
or data received from the cluster members to determine
whether a node is malicious. Thus, the cluster members,
except collecting the input data sets, neither participate in
the data processing procedure nor contribute to the pro-
cedure of analysis and decision. However, this clearly leads
to the overuse of energy in the cluster heads. Moreover,
the decision making procedure depends on the validity
of the incoming data. If this data is falsified by a com-
promised node, the cluster head will not take the right
decision [30].

The second and third detection patterns seem to bal-
ance the nodes’ energy dissipation more reasonably. For
instance, in [26] and [25], the cluster head is taking care
of its cluster members, whereas a part of the cluster mem-
bers are activated for monitoring the cluster head. By
letting the cluster head be attended, one increases the
security, as he or she meets the ‘trust-no-node’ require-
ment [31]. In [26], the authors by employing the self-
organizing map (SOM) neural network algorithm and the
K-means clustering algorithm at the same time, they raise
massive computation burdens. Similarly in [25], the kernel
density estimator, on which this detection scheme relies,
requires massive information exchange between the sen-
sor nodes, or equivalently, smart strategies to reduce the
communication cost.

To reduce the energy overheads, the genetic algorithm
(GA)-based scheme presented in [28] benefits from the
hierarchical structure of the network arranging the pri-
mary computing tasks to the base station (recall that
the base station has much softer limitations for power
and computation). While this scheme is not directly con-
cerned with detection, however, it could assist detection
schemes in advancing their performance and efficiency
by optimizing, for instance, the placement of the mon-
itoring nodes. The limitation of this scheme is that GA

suffers from exponential time increase if the network’s
scale grows.

From the above analysis, it becomes apparent that
extensive work has been done in the area of anomaly-
based detection for cluster-based WSNs. However, none
of the proposed network-based ADS architectures can be
directly applied to IEEE 802.15.4-compliant WSNs oper-
ating under the UWB PHY since they do not take into
account the UWB technology strengths and limitations.
Therefore, in this paper, we move towards that direc-
tion by proposing a modular, robust, and lightweight ADS
architecture specifically designed for this class of wireless
sensor networks.

3 Anomaly detection and localization in UWB
wireless sensor networks

3.1 Basic concept and model assumptions
As already revealed, the energy constraints in WSNs dic-
tate the use of a hierarchical model for anomaly detection.
In order to partition the network into clusters and deter-
mine the cluster heads, a cluster formation protocol is
executed first. Towards securing the leader election mech-
anism of this protocol, a new trust-aware leader election
metric is defined. After the clusters are formed and a spe-
cific number of rounds is reached, called repetition period
(RP), ADLU redistributes the role of the CH. One round
is assumed to be completed when all cluster members (at
maximum Nu) have exchanged a packet with their CH.
Since each cluster may have a different number of clus-
ter members, a total number of Nu exchanges is assumed
so that all clusters begin and end their rounds in exactly
the same time. ADLU adopts the concept of cluster mem-
ber limitation, i.e., a maximum number of Nu nodes is set
that can be members of a CH, so as to avoid high-energy
transmissions and to bound the induced interference.

3.1.1 Exploiting the ranging capability of the 802.15.4
standard

Towards providing anomaly detection and localization
functionalities, ADLU exploits the peculiar characteris-
tics of the IEEE 802.15.4 UWB PHY and most impor-
tantly its capability at providing high precision ranging [1].
This feature is an enabler for our anomaly detection and
location-attribution algorithm. Ranging in IEEE 802.15.4
standard is an optional capability achieved through sup-
port of a number of specific PHY capabilities as well as
defined MAC behaviors and protocols. The mandatory
ranging protocol is the two-way ranging (TWR) depicted
in Figure 2, which allows for ranging measurements based
on the round trip delay between two stations, without the
need for a common time reference [22]. In this scheme,
the ranging-capable device (RDEV) A begins the session
by sending a range request packeta to node B. Then, node
B waits a time τ , known to both devices, to send a request
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Figure 2 Attacking the two-way ranging protocol of the IEEE 802.15.4 standard. A distance-decreasing attack is shown.

back to node A. Based on that packet, node A can measure
the round-trip time, troundA = tp + τ , and extract the one-
way time-of-flight, tp, with respect to its own reference
time.

3.1.2 Vulnerability of the two-way ranging protocol
In localizing anomalies, trustworthy distance measure-
ments are necessary. According to a recent study [32],
however, the two-way ranging protocol of the UWB PHY
is vulnerable to ranging attacks. A compromised node B
may tamper its processing time as τ ′ in order to manip-
ulate the distance measurement and cheat node A about
its distance (see Figure 2 for an explanation). Hence,
in making the UWB distance measurements immune to
ranging attacks, even in the presence of an adversary
interfering with the ranging process, ADLU adopts the
PHY hacks proposed in [32], which include an energy
detection (ED) countermeasure and convolutional plus
time-hopping code patches.

Next, we describe the ADLU algorithm in detail. Within
our model, we assume that no node can be fully trusted
since no pre-existing distributed trust model exists. More-
over, we assume that a number of legitimate nodes are
tampered with and reprogrammed for an adversary’s pur-
pose, i.e., in order to launch an attack against the clus-
tering protocol. While an adversary can completely take
over the nodes, we assume that such an adversary cannot
outnumber legitimate nodes by replicating captured ones
or introducing new ones in sufficiently many parts of the
network.

3.2 Detailed protocol description
The ADLU algorithm uses a round-based approach
towards cluster formation and anomaly detection. At the
end of each round (RP), the network is re-clustered and
new cluster heads are assigned. A monitoring mecha-
nism is introduced to assist the analysis and decision
making process of anomaly detection. Finally, anomalies
are localized using a geometric, trilateration technique.
The different phases of the ADLU algorithm are analyzed
below.

3.2.1 Phase 1: secure leader election and cluster formation
In order to establish the clusters, a modified version of the
energy-aware self-organizing clustering (EASOC) algo-
rithm [33] is used. This protocol is a leader-first clustering
protocol developed for UWB wireless sensor networks.
This means that the cluster heads are elected first, based
on an energy-aware interference factor (EAIF) shown in
Equation (1) and then other nodes join these cluster heads
forming a multi-cluster network.

EAIFi =
1

Ni

∑Ni
k=1 Dα

ik
Eres

i
. (1)

This protocol, however, does not offer the security we
need when electing the cluster heads, because internal
attackers that do not follow the protocol semantics can
lie about their distance or their residual energy to make
themselves elected as cluster heads, thus giving them the
chance to launch severe attacks. This vulnerability is dealt
with by modifying the leader election protocol (LEP). In
securing the LEP protocol, a new leader election metric
is introduced: the secure leader election indicator (SLEI).
For a node i with Ni neighbors, its SLEIi is computed as
follows:

SLEIi = EAIFi · Wi =
1

Ni

∑Ni
k=1 Dα

ik
Eres

i
· 1

Ni

Ni∑

k=1
θki, (2)

where Dik is the distance between node i and its kth
neighbor, α is the path loss exponent, Eres

i is the resid-
ual energy of node i, Wi is a weight ranging from 0 to 1,
and θki ∈[ 0, 1] is a trust value assigned to node i by its
peers. The rationale behind this definition is that when all
nodes have the same EAIFi, we should select the nodes
with the highest weighted trust, Wi. Nodes that have lower
weighted trusts are avoided from becoming cluster heads,
even though they may have higher EAIFi (note that the
EAIF indicator is upper bounded).

Basically, the clustering algorithm in [33] follows four
steps towards dividing the network into clusters and
defining the cluster heads. The first step consists of the
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exchange of ranging-enabled beacons between the neigh-
bor nodes and the computation of the EAIFi indicator. In
the second step, each node floods the network with a table
containing its closest Nu neighbors, and its locally com-
puted EAIFi, which maybe falsified if node i is malicious.

Hence, within ADLU, we modify this. Each node floods
the network with a table containing its EAIFi value and the
trust values θik this node assigns to its closest Nu neigh-
bors. The trust metric is initialized to 1 and is updated
every time a node enters the ‘monitoring and trust update’
phase. Trust updates are based on the trustworthiness of
a node. We classify the trustworthiness into three grades:
trust, distrust, and uncertain, valued as 1, 0, and 0.5,
respectively. Hence, if node i behaves maliciously, the trust
values assigned to this node by its monitoring neighbors,
θki, will be decreased using a two-step strategy: from 1
to 0.5 and then to 0. Accordingly, Wi and SLEIi will be
decreased. At the end of this step, every node constructs
a table of N entries, one for every node in the network.
Hence, all nodes have exactly the same global knowledge
of the network status.

In the third step, ADLU’s secure LEP protocol begins.
The node with the maximum SLEIi is marked as cluster
head, and all its neighbors, Nu at maximum, are removed
from the table. This procedure continues until there is no
node left to be examined that is not a cluster head. After
the cluster heads have been marked, every other node
selects the closest one and joins its cluster. In the fourth
step, the cluster heads and their cluster members exchange
data. The cluster heads then forward the collected data
to the BS. When a predefined number of data exchanges
is reached, namely RP, the entire procedure starts from
the beginning. In each RP, the cluster heads will probably
be different from the previous ones, and in this way, the
energy-consuming role of the cluster head is reassigned
among the nodes of the network, resulting in a more uni-
form energy consumption. We do not oversee the cases
where a malicious node is elected as cluster head, espe-
cially during the network setup when no prior knowledge
exists. This is the reason why we introduce a mechanism
to monitor the activity of the cluster heads as well.

3.2.2 Phase 2: monitoring and trust update
The next problem we must deal with is the determination
of the nodes that will run the ADS, i.e., how many and
which nodes should be on duty to detect misbehaviors.
In monitoring the cluster members, the intrusion detec-
tion function is activated on the cluster heads. If after an
interval equal to a monitoring period (MP) (measured in
rounds) a cluster member is judged to be abnormal by its
cluster head, it is revoked. In doing so, the trust value of
the malicious node as seen by its cluster head is updated
(reduced) and is broadcasted as an alarm message to all
cluster member nodes.

Cluster heads on the other hand are monitored by their
cluster members. Cluster head monitoring is necessary to
assure that even in the case the LEP protocol fails, mali-
cious cluster heads that went undetected do not retain this
role for long. A part of the cluster members, three in total,
are activated for monitoring and jointly making final deci-
sions on the maliciousness of their CH. In each MP, the
cluster member nodes with the second, third, and fourth
in succession biggest SLEIi values compose the monitor-
ing team of the CH (recall that the CH has the highest
SLEIi value within its cluster). If after the MP interval
half of these nodes indicate that the cluster head is mali-
cious (majority vote rule), then the cluster head is revoked
by the monitoring team. In revoking a malicious cluster
head, each member of the monitoring team broadcasts
an alarm message containing the reduced trust value of
the malicious cluster head, as well as its new EAIFi value
(recall that a change in the EAIFi value is reflected on the
SLEIi value; hence, this information would allow differ-
ent cluster member nodes to probably monitor the cluster
head in the next MP intervals). Following the identifica-
tion and revocation of the malicious CH, another cluster
head, among the cluster members, is elected. In this re-
clustering process, the node with the new highest SLEIi
value in the attacked cluster becomes its cluster head.
This node may retain the role of the CH until the next
RP round, unless it is marked as malicious by its cluster
members.

With a majority rule being applied when monitoring
the activity of a cluster head, if a node from the mon-
itoring team is compromised and issues a false alarm
trying to revoke a legitimate cluster head, it would have no
effect because the majority would prevail. However, since
the majority-vote rule represents a cooperative anomaly-
detection scheme, there might be the case that multiple
malicious nodes with high SLEIi values obtain the role
of the monitoring team inside a cluster, enabling them to
deceive the majority-vote rule and to revoke a legitimate
CH. This situation is identified by the simulation results
depicted in Section 4.2 and is indicated with a drop in the
detection accuracy of the ADLU algorithm when 40% or
more of the nodes behave maliciously. However, this is a
highly hostile condition and cannot be dealt effectively by
any cooperative anomaly-detection scheme.

3.2.3 Phase 3: anomaly detection and localization
Our network-based ADS detects anomalies based on the
packets that it monitors. Each node running the ADS
stores a data structure for each collected packet. Then,
each data structure is evaluated according to the sequence
of rules defined in Table 1 (please note that jamming
attacks are not considered in our study). This means
that within ADLU, we employ a rule-based approach to
anomaly detection. Rule-based detection appears to be
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Table 1 Rule definition

Rule description Detection metric Attack detected

When a packet is not forwarded as it should, Packet drop rate Selective forwarding and black hole attacks [34]
increase a counter. When this counter reaches a
threshold t after MP rounds, raise an alarm.

When a packet does not originate from a Packet origin address Hello flood and sinkhole attacks [35]
node with a distance no longer than the radio range
of a single hop, raise an alarm.

When the distance measurements between multiple, Distance matching criterion Sybil [36] attacks
at least two, distinct nodes match, raise an alarm.

very attractive in the context of WSNs in the essence
that the detection speed and complexity certainly ben-
efits from the absence of an explicit training procedure
required, for example, in data mining approaches [20]. In
rule-based detection, the anomaly detector uses prede-
fined rules to classify data points as anomalies or nor-
malities. While monitoring the network, these rules are
selected appropriately and applied to the monitored data
packets. A data packet is discarded after being tested
against all rules without violating any of them. On the
contrary, if a violation of any of these rules occurs or
equivalently if the rules defining an anomaly are satisfied,
an anomaly is declared and an alarm will be raised. An
alarm generated by a cluster head indicates that a cluster
member is an intruder and needs to be revoked. Similarly,
if the independent alarms raised by the monitor nodes of a
cluster head satisfy the majority-vote rule, then this clus-
ter head is revoked and a new cluster head, among the
cluster members, is elected.

Each time an untrustworthy node is revoked (the revo-
cation is indicated by a broadcast alarm message), an
UWB ranging-based localization algorithm is executed
to identify the location of the attacker. The location-
finding algorithm is composed of two steps: ranging and
localization [37]. The ranging process is the action of
estimating the distance between two devices. Localiza-
tion is the mechanism of finding the exact location of a
given node by utilizing three or more range estimates. As
already analyzed, among the available ranging techniques
defined by the IEEE 802.15.4 standard [1], within ADLU,
the range estimates are obtained using the two-way time-
of-arrival technique depicted in Figure 2. Regarding the
localization process, ADLU adopts the time-of-arrival tri-
angulation of ranges technique defined by the standard.
This technique applies to the general network lacking
synchronization between devices and/or a priori organi-
zation, and assumes that three ranges d1 = c × t1, d2 =
c × t2, and d3 = c × t3 are gathered from three ‘anchor
devices’ i = 1, 2, 3 with locations (xi, yi) (see Figure 3 for a
geometry of this technique). The role of the three anchor
nodes is assigned to those cluster member nodes that
within the given MP interval have been elected to monitor
the CH.

Following the assignment of the anchor nodes, the coor-
dinates of the target node in the 2D space are computed by
solving a linear least-squares (LLS) problem, which trans-
lates to finding the intersection of three circles. As soon as
the x, y coordinates of the malicious node are determined,
the anchor nodes are then responsible for forwarding this
information to the BS to enable the system administrators
and the security professionals to take countermeasures. In
doing so, they first transmit the location information to
the CH. Then, the CH forwards this information to the
BS either directly (if the BS is within range) or via multi-
ple hops (inter-cluster routing). Since, there might be the
case that the CH is the malicious node the anchor nodes
were monitoring and for which they initiated the localiza-
tion process, then in this case, the anchor nodes will have
to wait for the new CH to be elected before transmitting
this critical data to the legitimate one. The three phases of
the ADLU algorithm are summarized in algorithmic form
within Algorithm 1.

Figure 3 Time-of-arrival triangulation of ranges to determine
location (Adapted from [1]).
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Algorithm 1 The ADLU algorithm
{ Phase 1: Secure Leader Election and Cluster Formation}
for each node i in the network do

Step 1: exchange a ranging-enabled beacon with all its
neighbors (closest Nu)
Step 1: calculate its EAIFi indicator
Step 2: flood the network with the table {node_ID i,
EAIFi, θik = 1, ∀ neighbors k}

end for
Step 2: construct a table from the received messages
for each node i in the table run the LEP protocol do

if nodes are left in the table then
Step 3: mark node with the maximum SLEIi as cluster
head (CH)
Step 3: delete the neighbors of this CH from table (Nu
at most)

end if
end for
for each node left in the table do

Step 4: node i joins the closest CH
end for
Step 4: cluster members (CMs) exchange data with their CH

if Rounds > repetition period, RP then
start from the beginning (Step 1)

end if
{ Phase 2: Monitoring & Trust Update }
for each node i in the network do

if node i is the CH then
start monitoring your CMs
if Rounds > monitoring period, MP then

collect data, update, if necessary, the trust values, θik ,
and execute Phase 3

end if
else

select the cluster member nodes with the 2nd , 3rd ,
and 4th in succession biggest SLEIi values, and start to
monitor the CH
if Rounds > MP then

collect data, update, if necessary, the trust value θki
of the CH, and execute Phase 3
update, if necessary, the members of the CH’s mon-
itoring team based on the updated EAIFi values of
current monitoring nodes

end if
end if

end for
{ Phase 3: Anomaly Detection and Localization }
Apply rules on the collected data packets
if Rules are satisfied then

Step 1: Declare the anomaly and start node revocation
Step 2: Execute the time-of-arrival triangulation of ranges
algorithm to localize the malicious node

else
Discard the packet and continue operation

end if

4 Performance evaluation
We used a custom-developed simulation tool imple-
mented in C++ to evaluate the performance of the ADLU
algorithm. As stated earlier, comparison of our algorithm
with classical, cluster-based ADSs would not be appropri-
ate, as they do not take into account the UWB technology
limitations and strengths. We only compare the ADLU
algorithm with its ancestor, the EASOC algorithm [33],
in an attempt to evaluate the energy and communication
overhead it incurs to a clustering algorithm that does not
implement the detection and location-attribution engines
of the ADLU algorithm.

With regard to the network topology, 100 nodes were
randomly placed inside a square area of 100 × 100 m2

(the BS was placed at the center). The cluster member-
limitation parameter, Nu, was set to 10b. Cluster member
nodes where generating packets with an interarrival time
equal to two packets per second. We chose to vary the
monitoring period and the repetition period as follows:
MP = {1, 2, 3} rounds and RP = {80, 140} rounds. The
UWB PHY parameters are summarized in Table 2. All the
presented results were averaged over 20 simulation runs.

We simulated a security-oriented application support-
ing sink-based reporting, that is to say, traffic flowing from
the leaf nodes to the BS (typical case of a sensor net-
work). Randomly selected intelligent adversaries include
themselves in the network by replicating legitimate (cap-
tured) nodes and start launching an attack, as reflected
in Table 1. In case of selective forwarding attacks, a mali-
cious node selectively drops packets with a probability pd.
When pd = 1.0, the attacker is executing a black hole
attack.

Three metrics were used to evaluate the efficiency of the
ADLU algorithm. These are as follows:

1. The communication overhead, defined as the ratio of
the total communication overhead in a system that
incorporates our detection algorithm against a
system that does not

2. The percentage reduction in network lifetime,
resulting from the incorporation of our detection
algorithm

3. The detection accuracy, defined as the ratio of the
detected attacks to the total number of detected and
undetected attacks

4. False negative rate, defined as the rate at which
events are not flagged intrusive by the detector,
although the attack exists.

4.1 Energy and communication overhead
We begin by analyzing the communication overhead of
two systems, one incorporating the ADLU algorithm and
its anomaly detection and location-attribution engines,
and one that does not, namely the EASOC algorithm.
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Table 2 UWB PHY parameters

Property Value

PHY option IEEE 802.15.4 UWB PHY

Frequency band Channel {0} with fc = 499.2 MHz and BW = 499.2 MHz

Data rate 0.85 Mbs (mandatory data rate)

Rate-dependent and mean PRF = 15.60 MHz, Tdsym = 1, 025.64 ns,

Timing-related parameters Tpsym = 993.6 ns, Nsync = 64 symbols, Nsfd = 8 symbols

Power 36.5 μW (FCC limit for ≈ 0.5-GHz bandwidth)

Communication range 20 m

DATA packet length 1,038 symbols (+ 64 symbols for SYNC trailer)

Ranging support TW-TOA (mandatory ranging)

Channel access UWB preamble sense based on the SHR of a frame

(clear channel assessment - CCA Mode 5)

Their ratio is denoted as the relative communication over-
head. To simulate this scenario, we chose at random a
number of network nodes, and we programmed them to
selectively launch one of the attacks depicted in Table 1.
With regard to selective forwarding attacks (launched
only by cluster heads), the attacker was dropping pack-
ets with a probability pd = 30%. When pd = 100%,
the attacker was executing a black hole attack. We set
the threshold value for the percentage of packets being
dropped over an interval MP to be t = 20%. Above
this threshold, an alarm was generated and node revoca-
tion was initiated. Packets dropped at a lower rate were
attributed to other factors, such as collisions or node fail-
ures and did not produce an intrusion alert. For all other
types of attack, distance-related rules are responsible for
raising an alarm.

In Figure 4a, the curves show that the relative commu-
nication overhead increases smoothly as the percentage
of malicious nodes increases. This is because more packet
exchanges occur following the introduction, identifica-
tion, and revocation of an increasing number of adver-
saries. In all cases, however, the communication overhead

is kept at very low ratios, as low as 0.050 and 0.042 for RP =
80 and 140 rounds, respectively. A smaller RP value causes
a slightly higher increase to the relative communication
overhead, notably because of the slightly higher number
of packets being broadcasted as a result of the shorter
network re-clustering phase. As expected, the commu-
nication overhead is extremely low when the network
contains no malicious nodes. No curves are shown with
regard to the changing value of the monitoring period, MP.
This is because the MP interval by relating to the decision
making window of the monitoring phase mostly affects
the detection accuracy of the ADLU algorithm.

Figure 4b illustrates the percentage reduction in net-
work lifetime when common sensor nodes run our
anomaly detection and location attribution algorithm.
Once again, the results illustrate that as the percent-
age of malicious nodes inside the network increases,
the reduction in the network lifetime increases. As the
curves highlight, the reduction is slightly higher when RP
is equal to 80. As mentioned earlier, smaller RP values
cause a slightly higher increase to the relative communica-
tion overhead, which also translates to an increase in the

a b

Figure 4 Relative communication overhead (a) and percentage reduction in network lifetime (b).
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a b

Figure 5 Detection accuracy of (a) selective forwarding attacks and (b) black hole attacks.

energy dissipation of the nodes. Overall, the network life-
time decreases by as high as 14.4% when RP = 80 rounds,
and by 13.2% when RP = 140 rounds. The relatively small
reduction observed in both cases is due to the fact that
within ADLU, the nodes rotate the energy-consuming
roles of the CH and that of the monitoring team, and
as such, the energy dissipation is uniformly distributed
among the network nodes. Since the network lifetime is in
comparative levels when compared to a system that does
not incorporate our anomaly detection algorithm, this fact
can justify the installation of our ADS on the sensor nodes.

4.2 Detection accuracy and false-negative rate
The rest of the figures evaluate the detection accuracy
of the ADLU algorithm against the attacks of Table 1
and the false-negative rates that it achieved. In the sub-
sequent simulations, and more specifically in each attack
scenario presented next, there was always one single type
of attacker, which was varied in each simulation.

As an overall observation, we can say that the varia-
tion of MP solely affects the detection accuracy of the
selective forwarding and black hole attacks illustrated

in Figure 5a,b. This happens because these attacks are
assessed over a time window, and therefore, their detec-
tion accuracy is affected by the monitoring interval, MP.
Recall that the interval MP relates to the time window that
a monitor node has in order to gather packets and analyze
them for signs of intrusion. Since less packets are being
collected as a result of the smaller MP interval and given
that packets are dropped probabilistically, there might be
the case that during a monitoring interval, the dropped
packets are less than t = 20%, and hence, no alarm is pro-
duced, generating false negatives (see Figure 6a). This is
less probable to happen when the value of MP gets bigger
or when nodes launch black hole attacks, i.e., pd = 100%.
In the latter case depicted in Figure 5b, the probability
that the dropped packets during an MP interval are less
than t, which results in a false negative, is close to zero,
and hence, the accuracy in detecting this attack is close to
100% (this is also shown in Figure 6b).

Figure 7a illustrates the detection accuracy of hello
flood attacks (similar curves are obtained when the
attacker launches a sinkhole attack). In examining these
attacks, we chose to vary the accuracy in the UWB

a b

Figure 6 False-negative rate when detecting (a) selective forwarding attacks and (b) black hole attacks.
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Figure 7 Detection accuracy of (a) hello flood attacks and (b) Sybil attacks.

distance measurements resembling ranging attacks that
went undetected. When the range estimation error εr
is equal to 0%, the detection was always close to 100%,
notably because of the rule being applied to detect this
kind of attack. Another factor that keeps the detection
levels high in this case is that these attacks are not mis-
taken with occasional network or communication failures,
as the previous attack category, and as such, fewer false
negatives are generated as shown in Figure 8a. However,
an increase in the number of misdetections is obtained in
two cases. Firstly, when half or more of the network nodes
behave maliciously. In this case, the majority-vote rule
being applied fails to prevail. Secondly, when inaccura-
cies are introduced in the UWB range estimates, namely,
when εr is up to 5%. Recall that in these attacks, the rule
being applied depends on the distance measurements.
Hence, when range estimation errors exist, the detection
effectiveness of the ADLU algorithm drops.

Similar to the previous attack scenario, the accuracy in
detecting Sybil attacks depends on the accuracy of the
UWB distance measurements. As shown in Figure 7b, the
detection accuracy of Sybil attacks ranges between 99%

and 78.8%. The drop in the detection accuracy is higher
when compared to the previous attack scenario. This is
actually an indication of the higher dependence between
the rule being applied to detect this kind of attack and
the distance estimation error, εr. Apparently, the distance-
matching criterion could not be satisfied when inaccura-
cies in the range estimates, εr, are introduced. Following
this observation, we then relaxed the matching criterion
and adjusted the rule, taking into account errors in the
distance estimation in the order of 2%. By doing this, we
slightly reduced the number of generated false negatives
(see Figure 8b).

5 Conclusions
In this paper, we presented an anomaly detection and
localization algorithm specifically designed for hierarchi-
cal, cluster-based UWB wireless sensor networks. A novel,
trust-aware leader election metric was defined to secure
the algorithm’s cluster formation protocol. The simula-
tion results showed that the proposed algorithm achieves
high detection accuracy and low false-negative rates while
maintaining the communication overhead at low levels.

a b

Figure 8 False-negative rate when detecting (a) hello flood attacks and (b) Sybil attacks.
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In the future, we intend to examine the effectiveness of
the ADLU algorithm in detail by considering larger net-
works as well as the presence of malicious nodes heavily
interfering with the UWB ranging process.

Endnotes
aThe packets used for ranging estimation are standard

packets, with the only difference being the value of a
specific bit in the PHY header (PHR) called the ‘ranging
bit’, which is set by the transmitting PHY for frames
intended for ranging. A UWB frame with the ranging bit
set to 1 is called a ranging frame (RFRAME). There is
nothing else, beyond the ranging bit, that makes an
RFRAME unique. RFRAMEs can carry data or can even
be acknowledgments.

bNote that the choice of the Nu parameter may affect
the operation of ADLU. As such, we have run multiple
simulation tests to fine-tune this metric prior to selecting
its final value.
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